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This course will be about heat kernels and Harnack inequalities — we'll start with a general overview.

Definition 1

The heat kernel is the fundamental solution to the heat equation 0;u = %Au, which is

1 x = yI?
Pt(XvY)—WeXD T

(the density of Brownian motion at time t started at x).

What this actually means is that u(t,-) = p:(x, -) satisfies the heat equation for any fixed x, and as t | 0 this

solution approximates the Dirac mass dy. In particular, this means that for any smooth function f € C*(R"),

u(t, x) Z/Pt(XVY)f(Y)d)/

will solve the heat equation with initial condition f at time 0.
This object also has a probabilistic interpretation: we can do this procedure with any Markov process instead of
the Brownian motion, and we'll be curious how information on one side (geometry) relates to information about the

other (probability). The most basic relation is due to Varadhan — Varadhan's asymptotic says that for
1
atu = EAU
for A the Laplace-Beltrami operator, we have that
lim 2t | y) = —d(x,y)?
im 2tlog pe(x, y) (x,y)

for any x,y on our manifold. (So the heat kernel determines, or is at least closely related to, the geometry on our
space.) Manifolds are locally Euclidean, so this short-time behavior is perhaps not surprising. In contrast, the long-time

behavior can look very different: if we work on hyperbolic 3-space, we instead have

1 d(x,y) Xp( t d(x,y)Q)v

2 2t

Pt(XvY) = (27”-)"/2 sinhd(x,y))



and in particular we can derive that the expected distance we travel grows linearly in time instead of scaling as v/t.
The factor of % reflects the “spacetime scaling,” and it's natural to ask whether there are other possible scalings

as well.

Example 2

A symmetric a-stable process is a Levy process Y; with jump increments given by the Laplace transform
E {ei&(msf\é)} = exp (—t[¢]?)

for some a € (0, 2)

We don't have an exact formula for the heat kernel except for &« = 1< but we do have asymptotics — we know that

t
pe(x, y) = min (t‘”/"‘, ) )

X—y|”+°‘

In particular, the spacetime scaling is now given by % for some a < 2. And it turns out to be possible to do

a > 2 as well:

Example 3
It is possible to define Brownian motion on the Sierpinski gasket (the fractal object formed by iteratively
removing the median triangles of an equilateral triangle) as the limit of random walks on the approximating

shapes.

The heat kernel then turns out to satisfy (due to Barlow and Perkins)

/(dw—1)
c (X =yl
pe(x,y) < WGXP <—C (t '

where dr = log, 3 (Hausdorff dimension) and w = log, 5 (walk dimension), for all x,y and 0 < t < 1. And the point
in this case is that we get % So our goal is to understand how these different scalings can be captured by the
geometry of our underlying space, and when we'll get heat kernel estimates of each of the different types.

Remark 4. To convince us that the walk dimension can be greater than 2 even though we're inside a two-dimensional

space, consider simple random walk on the graph . Consider the expectation for how long it takes to hit another
outer vertex when started from an outer vertex; this turns out to be 5. But if we ask the same question for hitting the
inner triangle (scaled down by 2), the answer is just 1. This turns out to be a rather general picture: there is always

a fractal with specified dimensions with 2 < d,, < dr + 1.

We'll make use of the following boundary trace process as a useful tool. Suppose we have Brownian motion in
the upper half-space R"*1 x [0, c0) reflected on the boundary, and then we erase the actual path and only look at the
hitting points on the boundary. This can then be interpreted as a jump process on R”; what remains turns out (due to
Spitzer) to exactly be like the symmetric a-stable process with o = 1. This can then be generalized to any other a as
well: Molchanov and Ostrovskii showed that symmetric a-stable processes on R” can be viewed as boundary traces of
some reflected diffusion processes on H™! = R” x [0, 00). (For the Brownian motion case we didn't actually have to
do this reflection because of symmetry, but in general the reflection does matter.) So an interesting question to ask is
the converse one of when boundary processes behave like symmetric a-stable processes; there will be lots of domains

where this behavior occurs.



A good framework to study all of this is the theory of Dirichlet forms, and we'll make use of them throughout
the course. We'll mostly study symmetric processes, and there are four objects that are more or less equivalent (but
it's useful for us to see how they're related): (1) the semigroup, (2) the resolvent, (3) the generator, and (4) the
Dirichlet form.

For the semigroup, the idea is as follows. Given a Markov process (Y;) and a “nice function” f, define
Pif =By [F(Y:)]
(where this notation means that Yy = x). We then have by the Markov property that
Peyst = Ex[f (Yers)] = Ex [Ex [f(Yers)|Fel] = Ex [Ey, [F(Y5)]],

which is E,[(Psf)(Y:)] = P:Psf. So we get the property that Prrs = PiPs:

Definition 5
Let H be a Hilbert space over R with inner product denoted (-, -) and norm || - ||. A family of operators {T; : H —
H}i>o0 is a semigroup if the following properties hold:

1. (Symmetry) T; is symmetric for all t, meaning that (T.f,g) = (f, Trg) for all f,g. (Not all Markov

semigroups have this property, but many do.)
2. (Semigroup property) Tyrs = Ty o T for all t,s > 0.
3. (Contraction) ||T¢]| <1 for all t > 0, meaning that ||T¢(v)|| < ||u|| for all u € H.

4. (Strong continuity) T: approaches the identity as an operator in the sense that lim:o || T (v) — u|| = 0 for
all u e H.

Such Markov processes have right-continuous paths, so the idea is that this comes from the dominated convergence
theorem. (In contrast, "weak continuity” would ask that (T:(u), v) — (u, v) for all u, v, but this is actually equivalent

here.)

Example 6

The Brownian semigroup or heat semigroup is a family of operators P; : L2(R") — L2(R") defined by

w0 = [ e (2520 ) fay.

This is the expected value under Brownian motion started at x, and we can check that this satisfies all four

properties.
Example 7
The Ornstein-Uhlenbeck semigroup is defined as follows: let y,(dx) = (27r1)n/2 exp (7@) dx be the standard

Gaussian density, and defining P; : L2(R",,) — L2(R",7y,) via the stochastic differential equation
dX; = —Xedt +V2dB;y = Xy =€ Xg+ e 'Ber_1,

where By is standard Brownian motion in R”.




Note that being symmetric with respect to this L2 space is not the same as being symmetric with respect to the
usual L2. And this time we have

P00 = [ e+ VI— e pmay),

where we've used the Brownian scaling for the square root term.

Example 8

For a discrete state space example, consider X = {1, --- , n} and define a conductance matrix ¢ : XxX — [0, c0),
which we assume to be symmetric. Letting m(x) = 3 cx c(x,y), we can then define a discrete time random
walk via the transition matrix P(x,y) = CfSE’Xy)); this yields

Qf(x) =Ex [F(Z1)] = Y_ P(x.1)f(y) = Q¥f(x) = E,[f(Z)].

yeX

We can make such a chain continuous by waiting an Exp(1) amount of time between jumps and then going from

x to y with probability P(x, y). Then Y; = Z () for N(t) an independent Poisson process of rate 1, and now we have
Pef(x) = Ex[f(Ye)] = Ex[f (Znp)].

and we just sum over the possibilities for how many jumps we take:

o0

P.f(x) = iIP’(N(t) = KEF(Z) =D eftthkf(x).
k=0

k!
k=0

Again, we can verify that this semigroup on L?(X, m) (with m the function defined above) satisfies all four properties
mentioned above.

Remark 9. For an example of a process which is not symmetric, suppose Xy = Xq+t. This is clearly a (deterministic)
Markov process, so P.f(x) = f(x + t). This does not satisfy the symmetry property, but it does the other three for
L?(R).

The next object is basically the Laplace transform of the semigroup:

Definition 10

A resolvent on H is a family of operators {G, : H — H}aso Satisfying the following properties (paralleling the
four above):

1. (Symmetry) (Go(f), g) = (f, Ga(g)) for all f,g € H.

2. (Resolvent equation) for all a, 3 > 0, we have
Gy — Gﬁ + (Ol —ﬁ)GaGﬁ =0.
(In particular this makes G, and Gg commute.)

3. (Contraction) [|aGql|| < 1 for all & > 0, meaning that ||aGq(u)|] < ||ul| for all u € H.

4. (Strong continuity) limg—eo ||@Ge(u) — u|| =0 for all U € H.

Notice that we take a — oo instead of @ — 0; this is typical when studying Laplace transforms.



Proposition 11

For any semigroup {T; : t > 0}, define its Laplace transform

Go(Uu) = /OOO e *'T:(u)dt.

Then {G,(u)} is a resolvent.

There are various ways to define this integral — one is that by strong continuity we can view T; as a continuous

function and so it makes sense to take Riemann sums. But since we're in a Hilbert space, we can do something better:

Definition 12

Let / C R be any interval. We say that a function f : | — H is weakly measurable if the following hold:
+ the map t — ||f(t)]| is measurable,
- for any v € H, the function t — (f(t), v) is also measurable.

We further call a weakly measurable f integrable if [, ||f(t)||dt < co.

In such a case, |[{f(t),v)]| is also finite and integrable by Cauchy-Schwarz. So if f is weakly measurable and
integrable, we can define [, f(t)dt via its inner product with an arbitrary vector

</lf(t)dt, v> - //(f(t), v)dt.

Indeed T:(u) satisfies both conditions, and then from there it's easy to check that we satisfy the four resolvent

properties.

Example 13
In the simple case where T; =/ for all t > 0 (meaning that we don't move around at all), G4(u) = fooo e~ ¥tdt =

é/. In particular, this indeed solves the resolvent equation.

It may not be clear what the motivation for this is at the moment, but the resolvent turns out to be easier to
work with in this theory. And indeed Laplace transforms are injections, so the inverse Laplace transform vyields the
semigroup (but we'll come back to this later).

Our next object is basically the derivative of the semigroup at time t = 0, but we need to be precise because we're

now no longer going to have a bounded operator (in fact, it isn't defined on all of H):

Definition 14
Let {T;:H — H}+>0 be a semigroup. The generator of the semigroup is

defined on the domain D(A) of H for which this limit exists.

It's easy to check that the domain is a subspace, and we may ask why we would want to work with generators
instead of the objects above. The idea is that they are closer to the description of the Markov process and thus easier

to compute:



Example 15

Recall the notation of the discrete Example 8, in particular the transition probabilities P(x, y). Instead of waiting
an Exp(1) amount of time at each state before jumping, we can specify arbitrary values X : X — (0, oo) and wait
at state x with parameter Exp (A(x))) (so larger A means we wait a shorter amount of time) before jumping with
probability P(x,y).

In the case where all As are 1, it's easy to compute the semigroup because we have an easy expression for the
number of jumps. But now the number of jumps depends on the path that we take, and it will turn out to be easier to
compute the generator (which is local): we only need the semigroup up to linear terms in t. As t | 0, it's very likely
that we will make only zero or one jump in total (terms with two jumps scale as t2), so

Pef (x) = Ex[F(Y)] = e X0 (x) + (1 = e Y P(x, y)f(y) + O(t2),

and subtracting off f(x), dividing by t, and taking the limit yields the generator
LF(x) = =X()F(x) + M) D Px,y)F(y).
y

Furthermore, this computation tells us the measure with which we are symmetric, and we'll see that next time.
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We saw some relations between the semigroup, generator, and resolvent last time; we mentioned that these notions
end up being equivalent but that different objects will be useful in different contexts (for example, the resolvent is
easier to work with, and the generator is easier to compute). In Example 15 we previously computed the generator
of a continuous-time Markov chain with specified jump rates, finding that Lf(x) = lim;_q w = -AX)f(x) +

A(x) Zy P(x,y)f(y). Our goal is to calculate the symmetrizing measure, and we'll do so by rewriting
Lf(x) =20 (I = Q) (x),

where Q is the operator defined by Qf(x) = >_ cx P(x,y)f(y) (this corresponds to the discrete-time chain). By the

symmetry assumption on our conductance matrix,
m(x)P(x,y) = c(x,y) = cly, x) = m(y)P(y, x),
and therefore we can check that

(. Q(9)) L2(m) = (R(F). ) 2(m)-

So we know that (/ — Q) is symmetric with respect to m as well, but we need to make a correction for the A(x) term:

if we define a new measure m via m(x) = ’;’(XX)) then we will indeed find that

(f.Lg)2(my = (F. (1 = Q)g) 12(m) = ((I = Q)F, g)12(m) = (LT, 9)12(m)-

So the measure m makes our generator symmetric, and it will turn out to imply that the transition semigroup generates
a Markov process which will also be symmetric under this same measure.
We can interpret /m in a nice probabilistic way as well. Suppose that the corresponding discrete-time chain (Z,) is

irreducible; we know that after we run this chain for a long time, the discrete time chain will have occupation times



proportional to m(x). But since we wait at x for a total time Exp(A(x)) at each step, we should have

m(y)
ZZEX ﬁ](Z) ,

and this is true Py-almost-surely (that is, no matter where we start within an irreducible component).

1
lim =1{Y; = y}dt =
t—oo

We're now ready to write out the relations between these general objects more carefully. The definition of the
generator tells us that A(u) = limgo % but we can also think about this as a function f(t) = T¢(u) and

differentiate at nonzero times as well. We can rewrite that expression in two different ways:

- Teen(u) = Te(u) Th(u)—u o Tr(Te(w)) — Te(uw)
jrp DT 7 o (D=2 g DD T

So now if uis in the domain of the generator, the limit in the middle expression exists because T is a bounded operator,

and thus the limit in the latter expression should also exist, and we find that
Te(A(u)) = A(Te(u))

for any u € D(A). And we can rewrite this as a differential equation

df(t)
T A(f(1))

for some possibly unbounded operator A. If A were bounded (like it is in our finite-dimensional example above), we

would have f(t) = e!*(u), so in other words the semigroup is T; = e* and the resolvent “should be”

G (1) :/e—mn(u) :/e_to‘etA(u)dt: (o — A) Y (u).

So we'd like to say that the generator A determines the semigroup and the resolvent via those two formulas above, but
to do this we need to show that the generator is a self-adjoint operator. So we'll spend some time trying to develop

that theory now.
One issue we see is that this integral may not converge if A has positive spectrum, and so that's the first thing

we'll resolve:

Lemma 16
For any generator A, D(A) is a subspace of H, and the function A : D(A) — H is a linear map. Furthermore, A

is nonpositive definite, meaning that

(A(u), u) <0 for all ue D(A).

Proof. The first sentence follows directly from the definitions (limits interact nicely with linear maps and linear com-

binations). Thus we just need to prove the last fact, and we can look at the difference quotients. But
T:(u) —u
()

<

(Te(w), u) = (u, u))
(ITeC)Il - [ull = 1ull?)

O | |

by Cauchy-Schwarz and the fact that we have a contraction (so ||7¢|| < 1). So by continuity of the inner product, the

limiting quantity must also be nonpositive as well. O



Next, we'll see some properties of G,. If A is nonpositive definite, then —A is nonnegative definite and thus the
resolvent should also be nonnegative definite. We'll prove that now (though note that we don't know yet that every

resolvent comes from a semigroup):

Lemma 17
Let {Gy : @ > 0} be a resolvent. Then for all & > 0, G, is nonnegative definite, meaning that (G, (u), u) > 0 for

all u.

Proof. Fix some u. The function
fa) = (u, Ga(u))

turns out to be differentiable in a, because by the resolvent identity

fla) =fB) _ / Ga(u) —Gp(u)\ _ _
e ={u, o = —(u, GoGp(u)) = —(Gqu, Ggu)
since each Gq is a symmetric operator. So as a — 3, we have G, — Gg, and taking the limit yields that f'(a) =
—(Ga(u), Go(u)) < 0. On the other hand, we know that

lim af(a) = lim (u, aGy(u)) = {(u,u) >0

a—0o0 a—o0

by the strong continuity property. Thus f is nonnegative for all o, proving nonnegative definiteness as desired. O

If we have G = (a— A)~! formally, then we can solve for A and find that we should get the generator A = a—G_*

from the resolvent. For this to make sense, we must first show that the resolvent is invertible.

Lemma 18

For any resolvent, G, is injective for all a > 0.

Proof. Since G, is a linear map, we just need to check that the kernel is trivial. Suppose that G, (u) = 0; the resolvent

identity (multiplied by B) tells us that
BGa(u) = BGp(u) +B(B — a)Gp(Galu)),

but now plugging in Go(u) = 0 shows that BGg(u) = 0 for any arbitrary 8. Thus by strong continuity this implies

that v = 0 as well, which is what we wanted. O

We thus use that formula above to make our definition:

Definition 19
Let {G4 : & > 0} be a resolvent on H. The generator of the resolvent is defined by setting the domain to be
D(A) = Go(H) (that is, the range of G4 ), and defining

A(u) = au — G; (u)

for all u € D(A).

As an exercise, we can check from the resolvent identity that o — G * does not actually depend on a, and similarly

we can check that the range does not depend on a, so this generator is in fact well-defined.



Remark 20. /t's clear from strong continuity that the domain of the generator of a resolvent is dense, since D(A) is

the range of G, but aGy(u) (which is in the domain) converges to u as o — oo.

We haven't checked yet that “all of our operations commute:” if we take a Laplace transform of the semigroup (to
get the resolvent) and then find the generator of that, it should be the same as the generator of the original semigroup,
but it's not so clear that this is true yet. Before doing that, we'll first detour to the concept of self-adjointness:

Definition 21
Let H be a Hilbert space, and let T be a densely-defined operator on H (that is, it is an operator D(T) — H
where D(T) = H). The adjoint of T, denoted T*, is defined on the subspace of H

D(T*) ={x € H :the map y — (T (y), x) is bounded on D(T)} .

The idea is that Hahn-Banach allows us to extend a bounded functional to the whole space, and then Riesz
representation lets us represent that result as an inner product with some other element of H. Thus, for all
x € D(T*), there is some unique vector (which we define to be T*(x)) such that (T (y),x) = (y, T*(x)) for all
y € D(T).

Note that as stated right now, it's not clear that D(T*) is dense in the Hilbert space, and in fact we do need

additional assumptions in general for that to be case. Being self-adjoint will require an additional condition:

Definition 22

For any Hilbert space H, H x H is also a Hilbert space with inner product {(x1, y1), (x2, ¥2)) = {x1, x2) + ()1, y2).
For a linear operator T : D(T) — H, we let G(T) be the graph of T —that is, the set of points (x, T(x)) € HxH
for x € D(T). We say that T is closed if G(T) is closed in H x H.

We may recall from ordinary functional analysis that if the domain is the whole H, then being closed is the same

as being bounded. But it turns out that for densely defined operators, being closed is the right generalization.

Definition 23
An operator T : D(T) — H is symmetric if (T(x),y) = (x, T(y)) for all x,y € D(T).

From the definition of T, we see that T is symmetric if and only if T* is an extension of T. So the domain of T*
might be strictly larger than the domain of T, but we don't want that to be the case for self-adjoint operators:

Definition 24
An operator T : D(T) — H is self-adjoint if T = T*, meaning that T is symmetric and D(T*) coincides with
D(T).

This is a property that will be satisfied by generators and resolvents of semigroups, and the reason it's so useful
is that we understand exactly how they behave (up to some transformations). Notice also that symmetric operators
defined on the whole space are automatically self-adjoint (because the domain of the adjoint can only be bigger), and
by the closed graph theorem they are also continuous.

We'll first rephrase the relationship between an operator and its adjoint in terms of graphs:



Definition 25
Suppose M is a subspace of H (or H x H). Write M~ for the set of vectors u € H with (u, m) = 0 for all m € M.

Notice that M~ is always closed even if M is not (since this set is closed for any fixed m and the intersection of

closed sets is closed).

Lemma 26
Suppose T : D(T) — H is densely defined, and let V : H x H — H x H be the map (x,y) — (y, —x) (which

preserves the inner product). Then the graphs satisfy
G(T*) = V(G(T))*;

in particular this means the graph of T* is closed, so T* is always closed.

Proof. Saying that (x,y) € G(T*) is the same as saying that (T (v), x) = (u, y) for all u € D(T). But this is further
equivalent to
(V(u, T(u), (x,¥))uxn =0 for all ue D(T),

which is exactly the definition of the space on the right-hand side. O

Corollary 27
Let T : D(T) — H be injective and self-adjoint, and let R(T) be the range of T. Then the map T—*: R(T) — H

is a densely-defined, self-adjoint operator.

Proof. First we prove that R(T) is dense in H, or equivalently that R(T)+ = {0}. For any y € R(T)*, we know
that (y,0) € V(G(T))* (because a vector in V(G(T)) looks like V(x, T(x)) = (T(x), —x) for some x € D(T), and
the inner product of this with (y, 0) is always zero). By our previous lemma, this means that (y,0) € G(T*). But
G(T*) =G(T), so because T is one-to-one that must mean y = 0, as desired.

From here, we wish to prove self-adjointness. The graph of the inverse of a function and of a function are just
related by swapping the coordinates, so let S : H x H — H x H be the map S(x, y) = (y, x). We have, again by the
previous lemma and then our swap map operation, that

GUT™H") |=V(G(T )" = V(S(G(T))

Now V and S commute up to a negative sign, but since we look at orthogonal complements that means this is the
same as S(V(G(T))*. We now want to move the L from outside to inside the S; to justify that step we observe that
S also preserves the inner product and thus orthogonal complements. Thus this space is also (using our lemma once

again, and also using that T is self-adjoint)
S(V(G(T)) = S(G(T*) = S(G(T)) =|G(T™ ) |

So equating the boxed expressions, the adjoint of T~! is indeed T~ itself, completing the proof. O

10



Example 28
Let (Q, 1) be a measure space, and let H = L?(Q, u). Let X : Q — R be a measurable function, not necessarily
bounded. We can then define the “multiplication operator” My : D(M,) — H via

MA(f) = A(C)F ()

with domain exactly the set of functions f € H such that My(f) € H (that is, such that A\f € L2(Q, w)).

We claim that M, is a self-adjoint operator — this is a simple exercise using Cauchy-Schwarz. Specifically, it's clear
that this is symmetric, but we need to prove that the domain of Mj is not larger than the domain of M.
It turns out that every self-adjoint operator is essentially a multiplication operator:

Theorem 29 (Spectral theorem)

Let A be a densely-defined self-adjoint operator on a Hilbert space H. Then there is a measure space (2, u),
a measurable real-valued function X : (,u) — R, and a unitary bijection U : L?(Q, u) — H (meaning inner
products are conserved) such that UAU™! = M,,, and the domain D(A) is exactly {U(f) : f € D(My)}.

We've probably seen a version of the spectral theorem in our linear algebra course (viewing symmetric matrices as
diagonal matrices in some orthonormal basis); this is an infinite-dimensional version. This theorem will be useful for
us because it allows us to manipulate self-adjoint operators as if they are numbers, like in the heuristic integral we did

earlier.

Remark 30. There's a more complicated statement of the spectral theorem using projection-valued measures which
is more canonical, but we can still work with the version that we have here because we have uniqueness up to unitary

transformations.

Definition 31 (Functional calculus)
Let A be a (densely-defined) self-adjoint operator on H, and let A be nonpositive definite. For any Borel function
f: (—o0,0] — R, define the operator f(A) : D(f(A)) — H as follows. Expressing A via the equation U™*AU =
My, the domain of f(A) is

D(f(A)) = {U(9) : 9 € D(M¢r() }

and the operator is defined via U1 f(A)U = Me ey -

This is basically the analog of taking powers of matrices, where we first diagonalize and then apply the powers
componentwise to each diagonal element. And we can check that this definition is independent of our specific choice
of U.

Proposition 32
Let {T:}¢>0 be a semigroup, and let {Gy}o>0 be the associated resolvent G, (u) = fooo e~ T (u)dt for all u € H.
Let As and A, be the generators of {T;} and {G,}, respectively. Then A; = A,, and the generator is a nonpositive

definite operator.

The non-positivity part we've already proved from taking a limit in the semigroup interpretation, and the self-adjoint
part we've proved from the resolvent interpretation. But if we show that they coincide, then we get both of those

properties for freel

11
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We've now made connections between the semigroup, resolvent, and generator, and we used the spectral theorem to
do some of the relevant manipulations. One important detail is that if our self-adjoint operator A is also nonpositive

definite, then in fact A < 0 p-almost everywhere.

Proof of Proposition 32. To check that A, = As, we need to also check that the domains of the two operators are
the same, and it’s equivalent to prove that each is a restriction of the other.

First suppose that u € D(A,); this means that u is in the range of G4 and thus we can write u = G4 (v) for some
v € H (and in fact a unique v). We want to prove that v also belongs to D(As), which is checking differentiability.

Specifically, we'll check differentiability of e=*tT,(u) instead of T;(u) itself, since the two facts are equivalent. We

% (e Te(u) — u) = % (e“"tTt (/000 e_asTs(V)dV> - /0°° e_asTs(V)dV)

We can now interchange integrals with T; and then shift the inner integral to [t, o) instead of [0, c0); the result is

have

that most of the integral cancels and we're left with

1 t
—7/ e **Ts(v)ds,
0

t

and using right-continuity this approaches v as t | 0. So the point is that

%(Tt(u) _y) = %Tt(u)(l _emat) 4 % (e Ty(u) — ) |

and then as t | O this converges to au—v. So u indeed belongs to the semigroup with As(u) = au—v = au—G;(u),
and that is exactly the definition of A,(u) from Definition 19. Therefore A, is an extension of As.

For the other direction, we basically do the same computation. Since we've already shown that

for some u € D(As), by the same argument as before this limit exists (since in the boxed expression we know the first
two terms have limits) this approaches —Aq(u) + au. We expect u = G,(v), so we define w = u — G4 (v) (we want
to show this is zero) and compute
lim 1 (e ™ Te(w) —w) = (—v) — lim 1 (67 Te(Ga(v)) — Ga(v))
tlo t tlo t
=(-v)+v=0,

so indeed G,(v) = v and thus u € G4(H), which we know to be the domain of the resolvent. And as mentioned
before, we already did the work of showing the other properties of the operators (self-adjoint, nonpositive definite)
through either A, or As. O

We thus have the following operators between the generator A, resolvent G, and semigroup T, and the arrows

commute:
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Our goal is now to fill in some of the reverse arrows to complete the picture. Specifically, we'll try to go backwards
from the generator to the other objects:

Proposition 33

Let H be a Hilbert space and A : D(A) — H a nonpositive definite self-adjoint operator. Then we can define
{T: = exp(tA)}+>0 via the functional calculus, and similarly we can define {G, = (a— A) 1} 4s0; these are exactly
the semigroup and resolvent corresponding to A, respectively., and {G,} is the resolvent corresponding to {T;}.
Furthermore, there is a unique semigroup and resolvent corresponding to any A (so everything here is a bijection

between the set of objects of interest).

Proof sketch. By the spectral theorem, we can essentially assume A is a multiplication operator. Specifically, let
U:L2(Q u) — H and X : Q — R come from the spectral theorem, so that UAU™! = M. Then by definition we
must have

UTTU = Megp(eayy, U™ Gal = Miaa())1-

(Notice that we never divide by zero since o > 0.) Then T is indeed a contraction because exp(tA(x)) is always
nonpositive, and
<Tt(f)r g>7—l = <Mexp(t>\(~))(U71(f))' Ufl(g)>L2(Q,u)

at which point we can move the multiplication operator to the other argument to get symmetry. Furthermore, the
domain of each T; is always all of H, because Mepea()) 1S always multiplying “component-wise” by something in
[0, 1] and thus sends L2 functions to L2 functions. The other semigroup properties are also similarly easy to check:
multiplying by e®*() and then e*() is the same as multiplying by e(t**)X() so we get the semigroup property. And for
strong continuity we have

ITe(F) = FIl = |2V () = U (D)l 2

now by dominated convergence theorem this goes to 0 because the inner thing is (e*() — 1)U~(f), which has norm
at most 2.
The arguments for checking resolvent properties are similar, and we'll omit them here. To check that the resolvent

corresponds to the semigroup as well, we can just notice that

/ & * Mexp(n()) 9t = Mia-x())+.

since for any constant u < 0 we have fooc e"ttrtdt = (a — )1, so the multiplication operator (and then applying
U to get back to the original operator) yields the desired result.

Finally, to get uniqueness, we just need to check that the maps we've defined are one-to-one. We'll just do this
for the resolvent: assume that {G,} and {G.,} both correspond to the same generator A. We wish to show that
the resolvents are the same — to do this, consider the quantity w = G, (f) — G, (f) for an arbitrary f € H. By the
definition of the generator corresponding to a resolvent, we know that A=a — G;! = a — (G,)~! implies that

(a—A)Gy=(a—A)G,=ld = (a—Aw=F—f=0.

But now A is nonpositive, so
0= {(a—A)w,w) > a(w, w)

and the right-hand side is nonnegative, hence must be zero and thus w = 0 as desired. And the injectivity of the
Laplace transform also tells us that the map from generators to resolvent is also one-to-one (alternatively, we can also

do this directly via some differential inequalities). 0
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We can thus fill in the rest of our diagram now as well:

(a=A)"

Go=[ e T dt
Tt Ga

Inverse Laplace transform

It's left as an exercise for us to check (via the spectral theorem) that the following inverse Laplace transform is

correct:

Proposition 34

For a resolvent {G,}, we can recover the corresponding semigroup via the formula

Te(f) = J@m et i (t;LI)n(aGa)”(f),

n=0

where GJ means the repeated composition of G, with itself n times.

In particular, this tells us that if the resolvent is a contraction, then the semigroup is a contraction as well (by

taking operator norms).
We'll next introduce a quadratic form which essentially encodes all of this information as well, but instead of
describing “global behavior” (like the resolvent and semigroup) it will be more similar to “local behavior” (like the

generator).

Definition 35
Let H be a Hilbert space with inner product (-, -). A quadratic form is a map £ : F x F — R, where F is a dense

subspace of H, satisfying the following properties:
1. (Bilinearity) £(a1fi + axh, g9) = a1E(f, 9) + E(fh, g) for all fi, f,g € H and a1, a» € R.
2. (Symmetry) E(f,g) = E(g, f) forall f,g € H.

3. (Nonnegative definiteness) E(f, f) > 0 for all f € F. (This is the main difference with inner products — we

do not require that equality only holds for the zero vector.)

We usually write the quadratic form as (€, F). Such a quadratic form is closed if F is a Hilbert space with respect
to the inner product & (f, g) = E(f, g) + (f, g).

If we're familiar with the theory of Sobolev spaces, this is similar to how we have inner products along with a
gradient term. And the point is that closed quadratic forms corresponding to nonpositive self-adjoint operators,

so we can think of them as equivalent to generators. The following is an exercise:

Proposition 36
We have a “Cauchy-Schwarz inequality” |E(u, v)| < E(u, u)*?E(v, v)Y/? for all u,v € F, and also a “triangle
inequality” E(f + g, f + g)V/2 < E(f, F)Y2 + (g, 9)V/2.
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Theorem 37

Let A be a nonpositive definite, self-adjoint operator on a Hilbert space H. Define a quadratic form on F =
D(vV—A) via
E(F.g) = <\/—Af, \/—Ag> .

Then (£, F) is a closed quadratic form. Conversely, any closed quadratic form arises in this way from some
nonpositive definite self-adjoint A.

Proof. The proof actually makes use of the resolvent construction; somehow getting from quadratic forms to resolvents
is much easier than making connections in other ways. (But once we understand this basic theory, we'll typically just
work with the quadratic forms directly.) From the definitions, it is clear that (F, £1) is an inner product space (recalling
that &1(-,-) = E(-, ) + (-, -)), and all that's left is to check completeness.

This basically comes down to the fact that v/—A is a nonnegative definite self-adjoint operator, because v—X is
always defined and nonnegative. Indeed, for any Cauchy sequence (f;) in (F,&1), we can equivalently formulate this
as saying that the ordered pair (f,, v/—Af,) is a Cauchy sequence in H x H (by the definition of the inner product in a
product Hilbert space). This is a sequence of points in the graph G(v/—A) of the operator v/—A, and the graph of a
self-adjoint operator (in fact any adjoint operator) is always closed. Therefore (f,, v/—Af,) converges to some point
(f,/—Af) also on the graph, and that's equivalent to saying that f, — f in the &-inner product, proving closedness.

For the other direction, we define a generalization of & for all a > 0

Ealf,g) = E(f, g) + alf, g).

Each &, is comparable to each other one, meaning that (F,&y) is a Hilbert space for all @ > 0. Now the map
v = (u, v) is a bounded linear functional on #; it is also a bounded linear functional on (F, &,) for each a, so by the
Riesz representation theorem it must be of the form &,(Gu(u), v) for some unique G, (u) € F. We claim that this is

actually the resolvent we are looking for.

1. First, we check symmetry — we use the equation above with the roles of u, v swapped to get

(Ga(u), v) = Ea(Ga(u), Ga(v)),
but by the symmetry of &, that means this is also equal to (u, Go(Vv)).

2. Next, we check the resolvent identity. For any v € H and any v € F, we compute

[€a (Go(u) = (@ = B)GaGa(u). V) | = £a (Go(u), V) — (& = B)Ea (GaG(u). v)
= £a (Galu). v) — (@ — B)(Ga(u). v)

by our definition of G,. And now &, and &gz differ exactly by the latter term, so this expression simplifies to
Es((Gp(u), v)) = (u,v) =| Ea(Galu), v) |

Equating the boxed expressions and noting that this holds for all v in a Hilbert space, we must have that
Gp(u) — (@ — B)GaGp(u) = Gg(u), which is what we want.

3. Next, to check contractivity, we write

[ 10Ga(u)]] - |Ga(u)]] | = (@Ga(u), Ga(u)) < Ea(Galu), Ga(u))
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because the inner product is only one of the terms of &,. But now by definition of G4 this is (u, G, (u)) <
[lul] - 1|Ga(u)]] |, and so the boxed parts tell us that ||aGy(u)|| < ||u]| as desired.

4. Finally, strong continuity is a “long but easy computation.” We wish to show that aG,u — u; we have
allaGy(u) — U||2 = (aGu(u) — 1, aGq(u) — u)
< Ea(aGa(u) — u, aGa(u) — u)
= a®(u, Gou) — 20, u) + Ex(u, u))
= a?(u, Go(v)) + E(u, u).

(We used the definition of G, to simplify the first two terms in the expansion of &£,.) By Cauchy-Schwarz and

the fact that aG,, is a contraction, this is bounded from above by a{u, u) — a{u, u) + E(u, u). But this means
allaGa(u) = ull? < E(u, u)

and the right-hand side does not depend on «;, so indeed as & — oo we must have ||aGy(u) — u|| — 0 as desired.

So {G4} is a resolvent, and we can let A be its generator. Let £ be the closed quadratic form corresponding to
A: this means that

E'(u,v) = <\/ —Au, Vv —Av>
for all u, v € D(v/—A). We can then define £, by adding an a(-, -) term to &’; we find that
& (Ga(u), Ga(v)) = <\/—A(a A u VAl — A)—1v> +alu, V).

Moving the v/—A from one argument to the other and then using the definition of G, again reduces this to (G, (u), v) =
Ea(Gu(u), Go(v)). Since this was true for all u, v € H and G, has dense range, this means £ and &’ coincide on a

dense set and thus agree everywhere. O

Next time, we'll see when a generator corresponds to a Markov process, and that will lead us to the theory of

Dirichlet forms.

4 June 6, 2025

To start, let's look at the commutative diagram from last time (now complete with more arrows) and fill in a few

remaining parts:

E(u,v)=(V—Au/—Av)
T
A (E.F)

(a—A)"
Ea(Ga(u),v)=(u,v)
Go=[ e T dt
Tt GO(

Te=liMaore e~ S0 @O (4G )0

n=0 n!

First, let's give a more probabilistic heuristic for why the inverse Laplace transform (marked in red) should be true.

The expression
oGy = /ae‘o‘tTtdt
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involves the density of an exponential random variable, and thus we can think of this as an expected semigroup E[T¢,]
for €4 distributed as Exp(a). So we can think of the expression in red as sampling N from Poisson(at) and finding
the expectation

E[Te 4+ 4ey], Where & ~ Exp(av).

But we expect a sum of such independent exponentials £&; + - -+ + &y to converge to t for large a, and so indeed this
will converge to the semigroup T;. (And with this perspective, we can in fact also use properties about exponential

random variables to use this to prove the resolvent identity.)

Proposition 38
As an exercise, we can use the spectral theorem to show that we can go from the semigroup to the quadratic

form by setting )
E(f.f)= lim = (I =Tof, ),

where the expression inside the limit is nonincreasing in t and thus the limit will exist. We'll thus define £ to have
domain the set of all f € F where this limit is finite, and then this defines the quadratic form by the polarization
identity.

Proposition 39
Similarly, starting from the resolvent, we can get an expression for the quadratic form by considering the map
a— a((l —aGy)f, ). This expression is nondecreasing in a (by thinking of /| — aG, as a multiplication operator

with entries 1 — a%x(_)), and thus we can define
E(f, f) = |i_r>n a{(l — aGy)f, f)

where again f is the set of all vectors where this limit is finite.

The notion of semigroups we've introduced so far is far too general, though, and we want to restrict ourselves
to semigroups that are actually associated with Markov processes. That's what we'll do today — suppose we want to
have a semigroup P; which takes the form

Pef(x) = Ex[f(Y?)]

for some Markov process Y;. Notice that this implies that nonnegative functions should be sent to nonnegative

functions and that bounded functions are sent to bounded functions:

Definition 40

A bounded linear map T : L2(X, m) — L?(X, m) is Markovian if the following is true: for any function f
satisfying 0 < f < 1 m-almost everywhere, we also have 0 < T(f) < 1 m-almost everywhere. A semigroup {T;}
is Markovian if each T; satisfies this property, and similarly a resolvent {G,} is Markovian if each aG, satisfies

this property.

It's easy to check using the Laplace transform formulas that for an associated semigroup and resolvent, one is
Markovian if and only if the other one is. And so now we want to ask whether we can make a similar definition for the

other objects.
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Definition 41

Let (X, M, m) be a o-finite measure space. A Dirichlet form on L?(X, m) is a closed quadratic form & : Fx F —
R satisfying the following Markov property. Let aVV b = max(a, b) and a A b = min(a, b). Then for any function
feF, wealso have 0V (f A1) € F, and

EOV(FAL),0V(FAL))LEF F).

This definition (due to Beurling and Deny) may be a bit hard to immediately interpret, but it turns out to be
equivalent to the ones we saw before under our correspondence. To prove this, we'll need a technical lemma. Since

we're working in a o-finite measure space, it'll typically suffices to consider simple functions:

Lemma 42
Let P: L?(X, m) — L2(X, m) be a bounded, linear, m-symmetric Markovian operator, and let F be a 1-Lipschitz

function R — R (in other words, a contraction) such that F(0) = 0. Then we have the following:

1. For any n € N and any pairwise disjoint measurable sets Ay, -+, A, in X such that m(A;) are all finite, and
for all ai, -+, a, € R, define the function f = >_7_; a;1{A;}. Then

n
1
(=P Ay =D mai+5 D> ay(a-a)
=1 1<i<j<n
for nonnegative coefficients a;; = (1{A;}, P1{A;}) and p; = m(A;) — >4 ik

2. For any g € L?(X, m), § = F(g) satisfies the contraction property, meaning that

(1 =P)3,G)1z < ((I = P)f, f)2.

In particular, F(t) = 0V (t A1) satisfies this property in the statement, and the idea is that we'll prove the Markov
property for a Dirichlet form by first doing so for an expression of the form ((/ — P)f, f), then taking the limit in
Proposition 38 or Proposition 39.

Proof. First note that (1) immediately implies (2). Indeed, for the case where g is a simple function, § is also a simple
function with values on its intervals contracted toward the origin, so we see that every term on the right-hand side of
the equation in (1) gets smaller (since a? and (a; — a;)? are both nonincreasing). Then we can use density of simple
functions to get the result for all of L2. (Indeed in general g is in L? if g is in L? because |g(t)| < |g(t)| pointwise.)

Thus, we just need to do the computation and prove (1). We have

((1=P)F. £y = "> aa((l — P)L{A}, 1{A}})

i=1 j=1

= Z a?u(A,') — Z Z aiai(1{Ai}, PL{A;})
i=1 =1 j=1

- Z 22u(A) — Z Z a;ajou;
i=1 i=1 j=1

by separating out the / and P parts and noting that the A;s are disjoint. We now just need to do a bit of rearrangement:

this simplifies to

n n n
E : 2 E : § : 2

ai i + (a,- ajj — a,-aja,-j),
i=1

i=1 i=1
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and now using the symmetry a;; = a;; we can sum over only half the terms in the latter term; we end up summing
over | < j of (a? + aJ2 — 2ajaj)aj, and that is exactly what we want. What remains to be shown is that each p; is
positive — indeed,

N
wi=m(A) =D aix = ({A}, {A}) — <1{Ai}, P> 1{Ak}> :
P

k=1

But the function S0, 1{A,} is bounded between 0 and 1, so the same is true for P33 1{A}; in particular

wi > (la,1a) —(1a,1x) >0,

so we have nonnegativity as desired. O

Theorem 43
Let (€, F) be a closed quadratic form on L2(X, m) for some o-finite measure space (X, m). Let {T;}, {G4},
and A : D(A) — L?(X, m) be the corresponding semigroup, resolvent, and generator. Then the following are

equivalent:

1. The semigroup {T;} is Markovian,
2. The resolvent {G,} is Markovian (that is, &G, is Markovian for all o > 0),
3. For all functions f € D(A), we have (A(f),(f —1)Vv0) <0,

4. The quadratic form is a Dirichlet form (that is, for all u € F, i = 0VuAlisalso in F and £(d, i) = E(u, u)).

(It turns out that Markovian semigroups will correspond to Markov processes, but we'll need some additional
conditions and we'll see that next time.) To prove this correspondence, we'll need another technical result (which is

left as an exercise):

Lemma 44

Let T : L?(X, m) — L?(X, m) be a bounded linear operator. Then the following two conditions are equivalent:

1. If 0 < f <1 m-almost-everywhere, then 0 < Tf < 1 m-almost-everywhere.

2. If f <1 m-almost-everywhere, then T(f) < 1 m-almost-everywhere.

The main idea is that we can get a two-sided bound by considering —f instead of f, and often it's more convenient

to use the latter one-sided condition.

Part of proof. First of all, the equivalence of (1) and (2) follows from looking at the the Laplace and inverse Laplace
transforms. To show that (1) or (2) imply (4), we're considering quadratic forms of the type

1
E(F, ) =lim (I = TOF.F).

We know that %((/ — Ty)f, f) satisfy the Markov property for quadratic forms by our previous lemma; in fact, we get
something stronger, because we know that for any 1-Lipschitz F with F(0) =0 and any f € F, we have Fof € F
and E(Fof, Fof) <&(f, f). So we just need to plug in our particular choice of function F(t) =0V (t A1) and then
take the limit t | O (or in the case of resolvent use the other approximation).
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For (1) or (2) implies (3), we instead apply the inequality to the function F(t) = t A1l. This implies that fAl € F
and
E(FANLFAL)<ES,T),

and now if we write f as a sum of two functions (f — 1)4 + (f A1) (indeed (f — 1) is also in the domain of the

form), we can substitute in f — (f — 1), into the left-hand side to get
=28(F, (F=1)4) <E((f - 1)+ (F—1)4) <0.
So for any f € D(A), we have
—E(F (f = 1)4) = —(V=AfV=A(f = 1)) = (Af, (f = 1)),

which we've indeed shown is nonpositive. (Here we used that it's okay to move v/—A from one side to the other,
because if f € D(A), then v—Af € D(v/—-A).

Out of the remaining implications, it's most important to get from (4) to (1) and (2). To get to the resolvent,
recall that we already have the characterization E4(Gg(u), v) = (u, v),> for all u € L?(X, m) and all v € F (recall

that &, = € + a(-, -)2). We'll state another characterization now: consider the function 9 : F — R defined by

1

Y(w) =Ew, w) +alw —a tu,w—a tu).

This expression turns out to have a unique minimizer 1, and we claim that ¥, = G, (u). Indeed, it's enough to show
that

Y(w) — Y(Ga (1)) = Ea(Ga(u) — w, Go(u) —w) >0

by some kind of completing-the-square argument (or equivalently solving some kind of Euler-Lagrange equation to show
that we end up characterizing with the same equation for G, as above). Thus for (4) implies (2), we need to show that
if 0 < u <1 m-almost-everywhere, then 0 < aG,(uv) < 1 m-almost-everywhere, which is equivalent to saying that
truncating at 0 and 1 does not change the function. That's equivalent to the statement that v = 0V (Go(u) Aa™?)
is exactly equal to G,. Since 0 < u < 1 everywhere and G, minimizes the given functional %, it's enough to show
that ¥(v) < ¥(G4(u)) (because then v is also the minimizer). We'll worry about one term at a time: for the first
term, clearly £(v, v) < E(Gy(u), Go(u)) by assumption (4) (since we can use bilinearity of the quadratic form to scale

1

[0, 1] to any interval [0, @~1]). And for the second term, we know that 0 < a~'u < a~!, and therefore we also have

pointwise that

lv — a H(u)] < |Ga(u) —a t(u)| m-almost everywhere

(because a~'u is inside the interval of truncation, so when we truncate G,(u) to v that either does nothing or gets
us closer). Thus the inner product with v is also smaller than with G4 (u), as desired. (And then the inverse Laplace
transform gets us to the semigroup equivalence as well.) O

Later on we'll want to show existence of the heat kernel, and it'll be useful to understand operators not just in L}

but also in a general LP.

« By the Markov property of a semigroup, we know that
fel?(X,mynL=(X,m) = [|Te(Flloo <Ifllso

and we've also assumed by definition that T is also a contraction in L2. So now we'll take our o-finite measure
space and approximate it by a countable union of increasing sets X = |J A, where A, 1+ X but m(A,) < oo for
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all n. Then for any f € L, the function f1{A,} is always in L2 N L, and so it makes sense to define
T:f = lim T(f1{A,})
n—oo

for f € L°°(X, m) nonnegative m-almost everywhere. (This definition turns out to be independent of the choice
of A, that we make, for example by taking a common refinement.) From there, we can then split up a general
finto fi and f_ and define T+f = T;(f,) — T¢(f_); taking limits of the property above shows that T; is also a

contraction on L°.

« Now note that L' N L™ is dense in L', so we claim that T; : L*(X, m) — L*(X, m) will be a contraction for all
t > 0 as well. Indeed, by density it suffices to prove control on the L' norm for any f € L1 N L>. But by duality

between L1 and L,

ITeflli=  sup /Tt<f>gdm,
geL®NL2? ||g]lo=1

where the key is that by approximating any function in L°° by functions of our type we can now move the T;

from one side to the other (because we're in L?):

ITeflli=  sup /th(g)deHf\ll,
geL>nL? [|glle=1

since ||Ttg]loc < 1. Being a contraction on a dense subspace implies that we're a contraction on the whole

space.

« Finally, from here we can use Riesz-Thorin interpolation and duality to get the same contraction result for the

semigroup for any general p € [1, 00] and any t > 0.

5 June 9, 2025

We'll begin by clarifying a few points from the end of last lecture. First of all, here is a useful counterexample to keep

in mind:

Example 45

Let X = {1,2} with m the counting measure, and define the quadratic form
E(F, f) = (F(1) — £(2))* + F(1)* + A(F(1)* + £(2)?)

for some parameter A.

We can check the following facts by computing eigenvalues of a 2 x 2 matrix:

- £ is a nonnegative-definite, closed quadratic form on L?(X, m) if and only if A > @‘3.

« But £ is a Markovian such form if and only if A > 0. Thus there's some range of values A for which we are not

Markovian.

We typically mostly talk about defining the semigroup on L2, L1, L* and not so much on the intermediate ps, but

let's work through the reasoning in more detail. For any f € L' N L?, we have (all statements m-almost-everywhere)

—fl < f <|F| = =T (If]) < T:(F) < Te(If]) = |Te(F)] < Te(IF]).
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Thus for any sequence of subsets A, T X with m(A,) < oo, we show contraction in L! via

IOl = fim [ HANTAdm < fim LA Tfldm

| = lim
n—oo

(using the triangle inequality), and now interchanging the limit and the integral shows that this is equal to
lim T:(1{A.})If|dm < /|f|dm,
n—oo

where we've used that 1{A,} always takes on values in [0, 1] and thus so must T;:(1{A,}). So we are a contraction
on L' and since we also know that we are a contraction on L2 we get a contraction for all p € (1,2) as well. But for
our purposes going forward, what we've shown is already good enough.

We'll now talk about the construction of Markov processes from the semigroup. There are basically two issues

that might come up:

1. Letting 1 be the constant function, we may have that T;1(x) < 1, meaning that the Markov process started
at x yields a sub-probability measure instead of a probability measure. In such a case, we need to add an extra
absorbing state called the cemetery, such that once the Markov process reaches that state, it stays there forever,

and the mass is exactly the amount needed to give us a probability measure.

2. Note however that since we're only defining the semigroup on L2, the left-hand side T;1(x) (and functions in
general) is not even pointwise defined, so we need to be careful. We'll need to deal with a finer notion of
continuity, and to define a process associated with such a semigroup (just like in the space of LP spaces) we

need to throw away some “small sets” to make our construction unique.

We want to get something which is right-continuous with left limits, and we'll have to make some topological

assumptions on X rather than just having a measure space.

Definition 46
Let (X, M, m) be a o-finite measure space and let (£, F) be a Dirichlet form on L?(X, m). We call (£,F) a
regular Dirichlet form if it satisfies the following conditions:

1. X is a locally compact, separable, metrizable space (that is, X is Polish) with M its Borel o-algebra and m
a Radon measure with full support (that is, a Borel measure which is finite on compact sets and nonzero

on all nonempty open subsets).

2. "There are lots of continuous functions,” meaning that the vector space F N C.(X) is dense in (F, &)
(which we know to be a Hilbert space) and also dense in (Cc(X), || - ||sup). This is for example a property

of Sobolev spaces.

We're now ready to state a fundamental basic result in this area:
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Theorem 47 (Fukushima '71)

Let (£,F) be a regular Dirichlet form on L2(X, m) and let B be the Borel o-algebra on X. Let Xp = X U
{A} be the one-point compactification of X (so if X is compact this adds an isolated point) and define By =
BU{BU{A} : B € B}, a o-field on Xa. Then for all x € Xa, there is an Xa-valued stochastic process
(2, (Fe)e0, (Yo)teo.0) (Px)xex, ). Which satisfies the following properties:

+ The filtration (F¢)¢>0 is right-continuous (to ensure that certain hitting times are stopping times), and the

process (Y:)r>o is adapted to the filtration.
« For all E € By and all t > 0, the function x — P,(Y; € E) is a measurable function of x on (Xa, Ba).

+ (Markov property) For all x € X, E € Bp, and t,s > 0,

Py (Yets € E|F:) =Py (Y5 € E).

+ (Normality) P,(Yy = x) = 1 for all x, meaning that P, indeed “starts our process at x."

+ (Cemetery is absorbing) We have Y, (w) = A for all w € Q, and we have P, (Y;(w) = A) = 1 for all
t > ((w), where {(w) = inf{t > 0: Y;(w) = A} is called the lifetime of the process (and can be infinite).

- (Cadlag paths) The map t — Y;(w) is right-continuous on [0, co) and has left limits on (0, c0).

+ (Strong Markov property) For any probability measure i on X, and for any stopping time T, we have for
all s > 0 that
P, (Yris|Fr) = Py, (Ys € E),

where P, () = [Py(-)u(dx) means that the distribution of the starting state is given by w. (Every deter-
ministic time is a stopping time, so this is strictly stronger than the Markov property.)

Furthermore, we assume that our process has a law which is absolutely continuous with respect to the reference
measure, then we can also show that (via some version of the strong Feller property) we do have uniqueness.
Otherwise (see proof ideas below) we need to make some modifications.

Note that it's okay to set Yo (w) = A even if we have a recurrent process which never actually gets absorbed — it's
not that we're taking the limit of Y;(w) as t — oo. Indeed, we're not requiring left-continuity at infinity here with the
cadlag condition. And the point is that we need regularity to make this construction work.

We won't do the full proof here, but we'll give a sense of why it's true and why regularity is required. This has
to do with the fact that since we can approximate every function in the domain of our form F with continuous
functions, the semigroup maps any function in L? to F (this is a consequence of the spectral theorem) — the result
is quasi-continuous rather than continuous, so we're almost pointwise defined. Then positivity allows us to represent
something like Riesz representation for nonnegative functions (outside a negligible set). And the price we have to pay
for applying Hilbert space methods is the loss of uniqueness.

To explain further, let (2, (F¢)e=0. (Ye)tep.oo] (Px)xex,) be as above. We call a subset N C X properly excep-
tional for {Y;}tejo,o0) if AV is a Borel set with m(N') = 0 which is also negligible from the point of view of the process,
meaning that

P, ({w € Q| for all t,Y(w) € Xa \ N and Y;-(w) € Xa \N}) = 1.

In other words, if we start outside NV, we almost surely never see N, so it shouldn’t affect the semigroup and Dirichlet

form. We then have uniqueness in the following sense: for any two processes (Y;) and (Y;) corresponding to the
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same regular Dirichlet form, there is a common properly exceptional set A/ (meaning that it is exceptional for both
processes) such that P.(Y; € -) and ]?’X(f/t € -)forall t >0 and all x € X \ V. Here to be completely precise, we say
that (Y;) corresponds to the Dirichlet form (&, F) if the semigroup P} defined by

Py f(x) = Ex [f(Ye)1{t < ¢}]

is exactly equal to T¢, the Markovian semigroup associated with the Dirichlet form in the way discussed last lecture.
(The reason for the indicator is 1{t < (} is that we don't know the value of f on the cemetery state; this is equivalent
to just extending the function f via f(A) = 0.) The following result is important for the proof, which involves

modifications of quasi-continuous functions:

Definition 48
The 1-capacity of a set A C X is defined by

Cap;(A) = inf{&(f, f)|f € F, f > 1 m-almost-everywhere on a neighborhood of A}.

We call N E-polar if Cap;(A) = 0.

In particular, just the L? inner product term in £1(f, f) ensures that Cap;(A) > m(A) for all Borel sets, since
(f, ) > m(A) = & (f, f) > m(A). We might ask whether this is equivalent to the notion above, and we'll get to
that soon.

Example 49
An example of a set with zero measure but nonzero capacity would be a line segment from (0,0) to (1,0) in
R?, which has zero Lebesgue measure but positive capacity with respect to the usual Dirichlet form £(f, f) =
L [IVFf2dm.

Definition 50

We say that a statement S(x) (dependent on x € X) holds quasi-everywhere (sometimes written q.e.) on a
subset A C X if it holds for all A\ N for some £-polar set /. A function f € L?(X, m) is quasi-continuous
if, taking any representative of the equivalence class so that we are pointwise defined, there exists f: X >R
with £ = £ m-almost everywhere, such that for all € > 0 there is some open set G with Cap;(G) < €, and f is

continuous on the closed set X \ G.

Do note however that we cannot actually get continuity outside an £-polar set — we have to take this “nest” of
approximations with smaller and smaller capacity, and that's one of the annoying aspects of this theory. This notion

of almost-continuity is exactly what's used in the proof of Fukushima's theorem:

Theorem 51
Let (£,F) be a regular Dirichlet form on L?(X,m). Then every function f € F admits a quasi-continuous
modification £ : X — R (in particular, this implies f=f m-almost-everywhere), and any two quasi-continuous

modifications are equal quasi-almost-everywhere.

We can now discuss the relationship between our £-polar and properly exceptional sets /. It turns out they are

more or less the same thing:
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Fact 52

Any properly exceptional set is £-polar, and any £-polar set is contained in some properly exceptional set.

We'll state some more results without proofs in the remainder of this lecture and discuss how to think about them.
Many properties of our processes can be read off from properties of the Dirichlet form (which is useful because it is
much more infinitesimal than the semigroup), and we also have some control over the sample paths (which we know

are cadlag, but perhaps we want a diffusion where the paths are actually continuous):

Definition 53
Let (£, F) be a regular Dirichlet form on L2(X, m). We say that (£, F) is strongly local if for all f, g € F where

* supp,(f),supp,(g) are compact (here supp,,(f) = supp(f - m)), and
+ there exists some real number a € R such that supp,,(f — a) Nsupp,,(g) = &,

we have £(f,g) = 0. Similarly, we say that £(f, g) is local if whenever supp,,(f),supp,,(g) are compact and
supp,(f) Nsupp,(g) = @, we have E(f, g) + 0.

Example 54
Let £(f, g) = %fo - Vgdm be the usual Dirichlet form. This is strongly local because whenever f is constant

(equal to 1) on each region where g is supported, the integral evaluates to 0. On the other hand, £(f,g) =
(f. g)12(m) Is local but not strongly local.

Proposition 55
If (£, F) is strongly local, then {Y;} satisfies that — here consider t € [0, ) —

P, (t — Yi(w) € Xa is continuous) = 1.

Meanwhile if (£, F) is only local, then we instead have that statement but only considering t € [0, ¢).

From a probabilistic point of view, the latter implication is saying that we're allowed to make jumps but only to
the cemetery state. If we're familiar with Lévy processes, we might have seen a decomposition of those processes into

simpler parts, and there is also a nice one here for Dirichlet forms:
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Theorem 56 (Beurling-Deny decomposition)

For any regular Dirichlet form (£, F) on L2(X, m), we have a unique triple (§(°), J, k) (these three parts correspond
to “strongly local,” “jump,” and “killing”) where £(°) is a strongly local nonnegative definite bilinear form on F x F,
J is a symmetric Radon measure on X x X \ diagx (symmetric meaning that the measure is invariant under

swapping the two coordinates), and k is a Radon measure on X, such that
J(X x N\ diagx) =0, &W)=0
for any £-polar set A/, and we can write down our Dirichlet form as a sum of three parts

E(u,v) = EO(u,v) + //X ORI ORI ONCEDE /X G(x)7(x)k(dx),

where i, 7 are the quasi-continuous versions of v and v (everything is well-defined here because of our assumptions

on J and k).

We call J the jumping measure and k the killing measure; we can in fact think of the last integral here as
(d(x) — d(A))(7(x) — 7(A)) to match with the J integral, except that we can only jump from x to A and not vice
versa. So an interpretation at the probabilistic process can be made as follows: if we assume that 14 is in F for any
Borel set A (this is true for example for finite state spaces), we can let A, B be two disjoint Borel sets and compute
that

JAx B)=—=E(14a,1B)

(because we get contributions from x € A,y € B or vice versa), and the correspondence with semigroups yields that

this expression is exactly

I — Tl 1 Telg, 1 1
i =Tl 1)y (Tele 1a) :Iimf/IP’X(Yte B)m(dx).
tl0 t tl0 t tlo t Ja

So this indeed captures the jumping intensity from A to B. And similarly taking B to be the whole set X, we can

derive a similar interpretation for the killing measure as the jumping intensity into the cemetery state.

6 June 10, 2025

Last time, we saw the decomposition of a regular Dirichlet form £ into three parts (5(5), J, k), a strongly local diffusion
part, a jJump part, and a killing (jump to the cemetery) part. We'll saw that under the assumption that indicators 14
are always quasi-continuous (strictly speaking these aren't necessary because we can use approximations), the jump
part is indeed giving the measure of the jump intensity by considering disjoint sets A, B and letting u = 14 and v = 15.
But now if we let u = 14 and b be the constant function 1, we have

E(la, 1x) = /1Ax(dx) = k(A).

(Indeed, the diffusion term goes away by the strongly local property, and the jump term is zero because 7(x)—V(y) = 0.)

But now by the properties of the Dirichlet form we have that
1 1
A =Ilim=(14 (I —-T)lx)=lim= | P, (Y =A)d
KA = lim ¢ (La, (= Tl = lim ¢ [ B (% = ) dm(x),

and thus the killing measure is indeed the rate of jumps to the cemetery state.
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It turns out that £(°) is a bit harder to describe because we can have various (sometimes fractal) constructions of
diffusions on various spaces, and we'll see some examples of those later on.
We'll next see how to write probabilistic properties in terms of the associated Dirichlet forms of the Markov

processes.

Definition 57
Let (&€, F) be a regular Dirichlet form. We say that a Borel set A C X is E-invariant if for any f € F, 14f € F
(thus 1acf € F as well by linearity), and

E(f, f) = E(Qaf. 1af) + E(Lpcf, 1acf).

In other words, there is no interaction between energies in A and A°€.

This property turns out to be equivalent to the following condition on the semigroup (P;):
P.(14f) = 14P:(f) m — almost-everywhere for all f € L2(X, m).

That is, the evolution of the semigroup is contained in A, and probabilistically if our process starts in A (resp. A€) it
never leaves A (resp. A€). So this definition relates to the concept of irreducibility of a Markov process:

Definition 58
We say that (€, F) is irreducible if for every E-invariant set, either m(A) = 0 or m(A€) = 0.

Definition 59
Let (£, F) be a Dirichlet form on L2(X, m). The extended Dirichlet space F, is defined as

= {f fis m-a.e. the limit £ = lim f,, where f, € F satisfy £(f, — fm, fo — fm) "5 o} .

We then define E(f, f) = limy_o0 E(f4, fy) for all f; this turns out to be well-defined.

So we're completing the space with respect to £ rather than an inner product. This turns out to be related to

recurrence and transience of the underlying process.

Definition 60
A Markov semigroup (P) is transient if for any m-almost-everywhere-nonnegative function f € LY(X, m) N

L*>(X, m), the Green operator
N
Gf(x) = Iim/ P f(x)dt
N—oo 0

is finite m-almost-everywhere.

For example if f is the indicator of some set of finite measure, we're saying that for a transient semigroup, the

amount of time spent in that set is finite in expectation. We can generally think of this as a weighted occupation time.
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Definition 61
A Dirichlet form (£, F) is transient if there is some function m-almost-everywhere-positive f € L1(X, m) N
L>(X, m) such that

/ el < /2@, )
X

forall ue F.

Theorem 62

The following are equivalent:

1. (P:) is transient,
2. (€, F) is transient,

3. the extended Dirichlet space (F¢, £) is a Hilbert space (in particular, no nonzero functions have zero energy)

(2) implies (3) is easy to see, because by the definition of transience for (£, F) we have a Cauchy sequence for
fdm, and we produce a limit via some subsequence. And for the converse, we show that the Green's function is in
the domain of the form and use Cauchy-Schwarz and the fact that the Laplacian and Green's function are inverses.
But we won't go into the proof much beyond that.

We have a similar condition for recurrence:

Definition 63
A semigroup (P;) is recurrent if for all nonnegative functions f € LY(X, m) N L>=(X, m), the Green operator
Gf(x) = limy_o0o fON P:fdt takes on value either 0 or co m-almost-everywhere. A Dirichlet form (&, F) is

recurrent if 1x € F and £(1x,1x) = 0.

Theorem 64

(P;) is recurrent if and only if (&€, F) is recurrent.

In fact, an irreducible Markov process is always recurrent or transient.

Example 65

Consider the measure m(dx) = x"~1dx on (0, 0o) (the symmetric measure for the n-dimensional Bessel process).
The Dirichlet form for that process then takes the form £(f, g) = [, f'(x)g'(x)mdx on L2(X, m). The Bessel
process is recurrent for n = 1, 2 and transient otherwise; we can indeed show (exercise) that (&, F) is irreducible,

and it is recurrent if n € (0, 2] and transient if n € (2, 00).

We can also obtain a description in terms of the associated process Y;.
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Theorem 66
Let Y; be the associated process to (€, F). For any Borel set B C X, let Tg = inf{t > 0:Y; € B}. Thenif (£, F)
is irreducible and B is a non-polar Borel set, then “the process does see the set” in the sense that Py (75 < c0) > 0
for g-almost-every starting point x € X.

Furthermore if (€, F) is recurrent, then for any non-polar Borel set B we have

P, (Tgof, < o forall neN) =1,

where 6, is the "time-shift by n" operator (Y; 0 0s = Y;ys), for g-almost-every x € X. On the other hand if (£, F)

is transient, then the process is either killed or escapes to infinity in the sense that
IEDX<C:oo, lim \/t:A) = P, (¢ = o)
t—o0

(limY; = A meaning that we escape every compact set) for g-almost-every x € X.

The main takeaway is thus that we can deduce global properties (long-time behavior) from an infinitesimal de-
scription at time t = 0. Everything here is qualitative, but we'll see now that we can do the same with quantitative

properties such as the heat kernel.

Definition 67
Let (£, F) be a Dirichlet form on L2(X, m) and (P;) its corresponding semigroup. Consider a family (p¢)¢>o of
Borel measurable functions on X x X such that for any f € L?(X, m), we have

PLF(x) = /X pe(x. Y)F(y)m(dy).

If such a family exists, it is called a heat kernel.

We can think of p:(x, y)m(dy) as the law of Y; given Yy = x (at least up to quasi-almost-everywhere considerations)
—indeed if f is an indicator, this tells us probabilities of being in a particular set at time t. Heat kernels do not always
exist, for example if the Dirichlet form is just zero and thus we would need p; to be the Dirac mass.

The point is that if we know something about p;, then we have a way of measuring how the process evolves. The

following is a measure-theoretic result:

Proposition 68

Suppose (X, M, m) is a o-finite separable measure space, and T : L(X, m) — L>(X, m) is a bounded operator.
Then there exists a jointly measurable function K : X x X — R which is bounded (that is, K € L®(X x X, m®@m))
with [|T|]1500 = ||K]|so. and such that

Tr(x) = / K(x,y)F(y)m(dy).

If we already know T is of this integral kernel form, then the bound is easy because we can approximate f by a
Dirac mass at the maximum of K. So if we can show that the heat operator is a bounded operator from L! to L,
it will show the existence of p; and in fact give us a bound on how large it is. We will call such a bounded operator
from L' to L ultracontractive — the idea is that this also smooths out the operator, since L1 functions can in fact

be very spiky. So the question now is how we would prove such a bound for P;. (Note that it's possible for the heat

29



kernel to only exist after some cutoff time, or for the heat kernel to exist even without ultracontractivity. But we're
starting with the simplest case.)

Remark 69. The theory of regular Dirichlet forms assumes that we have a locally compact space. This precludes
infinite-dimensional systems of interest, but there is also a theory of quasi-regular Dirichlet forms where we can

construct processes similar to Fukushima's theorem.

Proposition 70

Let (£, F) be a Dirichlet form on L?(X, m), and let (P;) be the associated semigroup. Assume that we have
constants C; > 0,C, > 0,n > 1 (all real numbers) such that the following Nash inequality holds for all
felX(X mnF:

4
IFIET™2 < |IF1l (ClIFII2 + CoE(F, £))™*

Then (P:) admits a heat kernel (p;) satisfying the bound

nC, n/2
€ss supy yexPe(x, y) < max <2C1, t) .

In particular if C; = 0, then this tells us a bound of the form t="/2 as t — 0.

(It's always good to check that multiplying f by a constant in functional inequalities like the Nash inequality above
doesn’t change the statement.) This inequality was proven in the 1950s for the Dirichlet form of Brownian motion
with C; = 0 and n the dimension of the Brownian motion; we'll see Nash's proof later on. And in fact this fact applies
to all three examples we saw in the first lecture (Brownian motion, Brownian motion on the Sierpinski gasket, and
a-stable processes) and is sharp up to constants.

Proof. We wish to show that || P¢||1—e0 < max (2C1, ”—f?)n/z, so that we can apply Proposition 68. Instead of showing
this bound, we'll first show a bound from L! to L2 and then use duality (since we then also get a bound from L2
to L* for the adjoint and then compose them together).

Our first goal is to show

nC, n/4
IRl < max (260, 52) il

for all t > 0 and f € L*(X, m). Indeed, without loss of generality (by scaling by constants) we can assume that
|[f||; = 1 and we want to understand how the L2 norm evolves over time. One way to do this is to find a differential

inequality: we have
d d
SRR = [2(70) 2 (R dm,

and now we can justify this next step via the spectral theorem, since P; = etA — %Pt = Aet”: the above expression
becomes
—2/(Ptf)(—A)(Ptf)dm = —2&(Pf, P.f).

In particular, this tells us that the Dirichlet energy captures the rate of decrease of the L2 norm of the contracted
P.f. Defining ¥(t) = ||P:f||3, we've shown that

Y'(t) = —2E(Pf, Pif).
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Now applying the Nash inequality to P:f, we have

IPFE2" < (|P(F)]11 (CulIPeFI13 + CoE(Pef, Pif)) ™

< (CL|PeFI1 + GE(PF, PoF)) "

’ n/4
— w2 < () - V7

by plugging in our expression for 9’ and using that P; is also a contraction in L. Raising both sides to the power of
4/n yields

WO < ) - ).
Now if 9(t) < (2C;1)"? the boxed inequality is already true; otherwise if 1(t) > (2C;1)"/? we have
C
— V(1) 2 9(0)" = Cry(e)
> 9(t) (v()" - )

zwm(wn%—lww%)

2
— lw(t)1+2/n
5 )

and therefore we have ¥(t)1+2/" < —C14/(t) as long as ¥(t) > (2C;)"/2. Solving this differential inequality yields

a oy s 2
SOz 2

which, after integrating and rearranging, is the boxed inequality that we wanted. And finally to get the theorem from

the boxed inequality, we have

IPtl1500 = [IPe/2 © Pejallisoe < [IPej2llim2ll Pejall2—soo,

and now since everything is self-adjoint P; : L2 — oo is the adjoint of the operator P; : L' — L2, Thus both terms on

n/4
the right-hand side are max (2C1, %) , which is what we wanted. O

So the overall message is that because the Dirichlet energy tells us about the norm of the semigroup, we can
encode that via differential inequalities to get ultracontractive bounds and thus existence of the heat kernel. It may
seem weird why Nash did all of this when we already know the exact formulas for the heat kernel of Brownian motion,

but the point is that this method is robust to perturbations as well: if we have
E(f. f) = /Vf(x)TA(x)Vf(x)dx
for A :R" — M"" 3 positive definite, measurable, symmetric, matrix-valued function, and we have some A such that
AHIEIR < €T A(x)E < g

(so A is almost constant but we can have shears and various speeds in different places), we can think of having a
perturbation of Brownian motion, but still getting comparable Nash inequalities and thus comparable bounds on the

heat kernel.
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7 June 12, 2025

Last time, we discussed Fukushima's theorem (which lets us construct processes) and found ways to connect properties
of the Dirichlet form to properties of the process. We then also saw a quantitative result in the form of getting bounds on
the heat kernel from the (functional) Nash inequality and commented on the stability of the result under perturbations.

Today, we'll see a proof of the Nash inequality for the setting of Brownian motion:

Proof of Nash inequality on R". The proof uses Fourier analysis; we'll use the convention that f & = fRn e~ *Edx.
By Parseval's identity, we can write down ||f]|3 = (2m)~"||||3 and break up the resulting integral into two terms,

within and outside a ball of radius R:

FI2 = —n 22 22
I8 =@mn ([ iferds+ [ ifere)
—n £ 2 |E|2 £ 2 )
O N NG - =IO

—n n 1
< ) lIFIwR" + 5 [ IVF(0Pax

where in the last inequality we bound the integrand by ||f]|? pointwise for the first term, and we use VFf = —2¢F(¢)
and Parseval's theorem again for the second term. But this is true for any choice of R > 0, so we can minimize it as

a function of R — doing the appropriate calculus optimization exactly yields the desired result

n/4
IR < |1F1ls (/ Vf|2dx)

for all f € WE2(R™) N LY(R") (in particular we have C; = 0, so our heat kernel bound is (TC) , which is tight when
x=y). O

It's worth mentioning at this point that the existence of the heat kernel cannot be taken for granted:

Example 71
Consider Brownian motion on the circle T = % (that is, Brownian motion projected down by the quotient map);

this is symmetric with respect to the Haar probability measure on T. We can write down the heat kernel in this

pe(x,¥) = ge(x = y), ge(x) = \/>Z < X+2t7fk)>

kEZ

case:

(the 27 is in the numerator of the square root because our torus is of length 27).

In this one-dimensional example, the heat kernel indeed exists for all time. But now consider the infinite-dimensional

torus T = []72, T and define a Brownian motion on this space via

Y; = (B}

ait

Bé2izt : )

where (a1, az, - -+ ) is some sequence of positive real numbers and Bl B2,.-. are independent Brownian motions on
T. Since everything is independent, we can write down the law as a product of one-dimensional measures, and we can
assume that we start the process at the origin because the process is translation-invariant. So the corresponding law

w: now takes the form

pe(dx) = [ gacCOm(dx);
k=1
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the infinite-dimensional Brownian motion is indeed symmetric with respect to the Haar measure on T, which is
Me = [[4eqy m. We are then curious when this law has a density with respect to the Haar measure — it turns out to

always be absolutely continuous or singular (nothing in between):

Theorem 72 (Kakutani's dichotomy theorem)
With the notation above, u; € m if and only if

1 [ Vortm(ax) >0,
neN’T

and u; L my if and only if the product is zero. It turns out that the product is positive if and only if 7, e7 <

Q.

(By Cauchy-Schwarz each of these integrals is at most 1, so the product definitely exists and we want the limit to
be strictly positive to get a density.) And if we choose the coefficients to be a, = é log(n+ 1) for all n, then it turns

out w is singular with respect to my, if and only if t < a.

Remark 73. There's a conjecture that even if the components of the Brownian motion are not independent but still
correspond to a translation-invariant diffusion, there will still be such a cutoff time (possibly infinite) where we're
singular before and absolutely continuous afterward. But that conjecture is still open, since we can't just compute a
dichotomy of this form and we can't simply diagonalize the covariance matrix because we won't be working with the

standard torus anymore.

On the other hand, do note that it’s not possible for the heat kernel to first exist and then fail to exist later because
of the Markov property: at time t + s we can view things as a shifted version of the law at time t, so it will always

exist.

Example 74
Next, we'll construct the Brownian motion on the Sierpinski gasket. Recall that the definition is as follows: start
with an equilateral triangle and remove the median triangle in the middle, and then continue this process on each

of the three remaining half-side-length triangles.

a1

() as

Let S = {1,2,3}. We'll define the maps f1, >, 3 : R> — R? which are scale-1/2 contractions centered at the three
vertices i, G2, g3 respectively; that is, fj(x) = %(x + q;) for all j € S and x € R?. Formally, the Sierpinski gasket is
then the unique non-empty compact set satisfying the identity

K =Jf(K).

JE€S

We'll now define an inductive set of points

Vo ={a1, @ a5}, Vi =J (Vi)
Jjes
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(so V4 will also include the midpoints of the big triangle, then V5 also all of the intersections between line segments in
the figure shown above, and so on). This is an increasing family of sets, and we can think of these as a sequence of
graphs which approximate the Sierpinski gasket.

Define F; to be the map f; restricted to the Sierpinski gasket K, and let

Whn=S"={wiws - wy:w €5}
be the set of words of length m in the alphabet {1, 2,3}. For any x, y € V,,, we will define the adjacency relation
x~y ifx#yandxye Fn (V1) for some w € W,,,

where F, = F,, o Fy,0---0F, . In other words, we're saying that we started off with two vertices of the big triangle
and then performed some sequence of m contractions, so that x and y are two of the three resulting vertices.
We want to construct Dirichlet forms on these discrete graphs and take a limit to get a Dirichlet form on K. From

a probabilistic point of view, we have a random walk on the graphs V,, and want to take scaling limits. To do this, let

EM(u,v) = % Z (u(x) — u(y))(v(x) — v(y)) for all u,v € RV

X, YEVm
X’T/y
be the unscaled energy corresponding to simple random walk. We now want to rescale this (that is, speed up the

walk), and it turns out we should set
5 m
EM(u,v) = (3) EM(u, v).

The 3™ factor comes from there being roughly 3™ vertices at scale m, and the 5™ came from the explanation of the
first lecture (to travel twice as far, we need to spend 5 times as much time). But we can actually do a computation

of the energies that shows this scaling in another way:

Proposition 75

For any m, suppose we have any function u € RY" at level m and want to extend it to level m+ 1 while minimizing
the energy. Then we have

min  EM (v, v) = %E(m)(u, u).

Ve]Rvm+l
V|vm=u

Thus the rescaled energies satisfy a monotonicity property without any constants.

Proof. First, we claim we can reduce to the case m = 0. Indeed, the energy at level (m+ 1) is the sum of the energies
in the three smaller triangles, each of which is the energy at level m, and thus we can just keep going down until the
smallest level. Suppose we have some boundary conditions for u, and we have to optimize over the three remaining

values:

u(qr) =a

u(g2) = b X u(gs) =c
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We then have
EM(v, v)=%((a—x)2—|—(a—y)2+(Z—y)2—|—(b—z)2+(b—x)2+(x—z)2+(y—x)2+(y—c)2+(x—c)2)

and for fixed a, b, ¢ we want to minimize the result as a function of x, y, z. By completing the squares it turns out the
minimizer is

a+2b+2c 2a+b+2c 2a+2b+c

75 , y = 75 ) zZ = 75 .

(Indeed, the minimizer can be viewed in terms of harmonic measures — if we start at x and do simple random walk

until we hit any of g1, g, g3, the probabilities turn out to be £, 2, 2.) And if we plug these values in we indeed get
that EM (v, v) = 2EO(u, u), as desired. O

Remark 76. We'll see a different probabilistic interpretation in terms of a time-change later on. This is the simplest
example of diffusion on fractals — the Sierpinski carpet is actually much more difficult for many reasons, since we can't
actually compute the rescaling factors very easily.

With this, we'll now make the following natural definition of the limiting Dirichlet form:

Definition 77

Let Vi =52, Vi be the limit of the increasing sets. It turns out Vi = K, and we define
P = {u eR% ¢ lim E™ (uly,. uly,) < oo} .
m—o00

(The limit limy, 00 £™ (uly,,, uly,) always exists because we have a nondecreasing nonnegative sequence, and

we're just asking for it to be finite.) We then define the bilinear form &, via
8(*)(u, v) = lim glm (Ul Viv,)
m—00

for all u, v € F, (via polarization).

It's easy to check that £* is a bilinear, nonnegative definite form on F,.. Notice however that functions in F, are
only defined on a dense subset of K, not all of K itself, and we would like to extend this to the whole space K. It
turns out we can do so in a unique way as a continuous function, but for that we must show that functions in F, are

already uniformly continuous by proving some estimates.

Proposition 78
For all x,y € Vi and all u € F,, we have

|u(x) = u(y)? < 400|x — y|*€®(u, u)

for a = log(5/3)/log(2). In other words, this tells us that the function v is always §-Hoélder continuous, hence

uniformly continuous, and so it admits a unique continuous extension to K = V.

Proof sketch. For neighboring vertices, the claim is easier to prove, and then we'll use a chaining argument after that.

First consider any two vertices y, z € V5; the graph distance d(y, z) is at most 2, so for all y, z € \, there exists some
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vertex g € V4 such that eithery =z=gq, y 2 g=2z,0ry 2 q 2 7. So then in all cases we have the inequality

1/2

v(y) = v(2)| < V2 (Iv(y) = v(@)]? + [v(q) — v(2)]?)
<V2E@ (v, v)1/?

6
< \/?5(2)(% V)2,

If we now consider u € F, and an arbitrary x € V,, meaning that x € V,, for some fixed m and there is some j € S

and some word wyw; - - - wp, € Wi, such that x = F,(g;), we can define
Xk = FW10"'OFWk71(qj)

for all 1 < k < m. Here we take the convention that wy is the empty word so Fg is the identity map, and we can think
of these as the approximations of x by smaller values, since we start from g; and then apply a sequence of contraction

maps. We can then estimate, using the same argument but at a smaller scale as before, that

|U(Xk—1) - U(Xk)| = |U o FW1'“Wk71(sz%nwk,l(xk—l)) —uo FWl"'qu(Fv;quk,l (Xk))|

6
S \/gg@) (U o FWl"'Wk—1|V2' uo FW1"'Wk71|V2)

because xx_1 and xx are adjacent to each other at a smaller level. Applying the rescaling factors by summing over all

cells at this scale, we can bound this as

6 /3\ (-2 [ o (k-1)/2
lu(xk—1) — u(xi)| < \/; (5) <3> > EW(uoF, uoF,)

zeW)_1
6 /3 k-1
=Vs (5) £l o)

using self-similarity and taking limits. Here in the last step we've used the fact that £ (uly,,, uly,) = ()" 2, (U()—

u(y))? and therefore (u(x) — u(y))? < (%)mé’(’”)(um, uly,) < (%)mf,’(*)(u, u). Since |x —y| = 27™*1 for any x, y
neighbors at level m, this therefore means that for any m we have

o) — P  x =y ), o= A

All of this has only been used for the case where x, y are neighbors, but in general we can always zoom in in the gasket
until x and y are in different sub-triangles but we're maximally zoomed in. We can then let g be the common vertex
of those two sub-triangles and use that |u(x) — u(y)| S |u(x) — u(q)| + |u(g) — u(y)|; now we can approximate x by
a series of contractions of g and similarly do the same for g, which gives us convergent geometric series. This yields

the desired result. ]

So the bound
|u(x) — u(y)[? < 400|x — y|*€™)(u, u)

also holds for all x,y € K (not just V). In particular, this bound tells us that the only functions in F, of zero energy
EX)(u, u) are the constant functions (because it forces u(x) = u(y) for all x,y), and so we can define a quadratic
form on functions on the whole gasket

F={uelC(K):uly € F}.

(To show that we have nonconstant functions in this space, we can always start with any values on the outer vertices
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and do the “harmonic measure” idea to extend it to all other points.) Then we define the quadratic form

E(u,v) =EYW(u

Voo Viv).

(€, F) is then a nonnegative definite quadratic form.

Proposition 79
(€, F) satisfies the self-similarity property

F={ueC(K):uoFjeFforall je S}

In other words, restricting to only one of the sub-triangles yields another function, and that is also continuous.

Furthermore, the energy also satisfies

1) = 225(,105,”05.)

JESs

(this is easy to check for the discrete approximations, and then we take limits).

To ensure this is actually a Dirichlet form, we must first check the Markov property. For any u € F, it's clear that
= (0Vu)AleF and that
EM (ily,, dlv,) < E™(uly,, uly,,)

because it's even true in a pointwise sense: (ii(x) — i(y))? < (u(x) — u(y))? for all x,y € K, and we're looking at
sums of expressions of this type. So taking m — oo yields the desired property.

Now we check regularity, and we do so by claiming that F forms an algebra under multiplication; in fact,
uveF = uveF, E(uv,uv) <2||u|lZE(v,v)+2||v|[ZE(u, u).
Indeed, this again comes down to a deterministic pointwise identity

(V) = uy)v(¥))? < 2u()*((v(x) = v(¥))* + 2v(¥)*(u(x) — u(¥))?

and then taking limits. Furthermore, we claim that F separates points, meaning that for any finite subset V C K,
{uly : u € F} =RV (that is, we can always construct a function which restricts to anything on V). Indeed, if |V| =1
then this is clear because the constant functions are all in F, and otherwise we can go to a small enough scale m so
that all of our finite points are in sufficiently different cells of the Sierpinski gasket. Precisely, we can choose m so that

217M < min |x — y,
XF£Y

X, yeVv

which means that for any v, w € W,,, and any x,y € V, such that x € F,(K) and y € F,(K), the cells F,(K) and
Fw(K) are disjoint. Next time, we'll show how to use this to prescribe values of the function and then make use of

the Stone-Weierstrass theorem.

8 June 13, 2025

We've been studying the Dirichlet form on the Sierpinski gasket — recall that we defined points in the set in terms

of contractions at the three outer vertices, and we similarly defined energies £(™ in terms of simple random walk at
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iterative levels and took limits. This yielded a limiting £*) which we can use to define our (€, F).

We saw last time that £ is nonnegative definite and bilinear, and we showed that the domain F is an algebra under
pointwise multiplication. We now need to check the rest of the properties (closed, regular, etc.) — let's review the
construction for showing that we separate points. We actually only need to check this for two points x,y € K with
x # y: we can always pick some sufficiently large m € N and some words u, v € W), so that x € F,(K) and y € F,(K)
but F,(K)N F,(K) =@.

For any prescribed values a, b € R, our goal is now to define a function g € RY satisfying that 9lF, ) = a and
9dlF.(v) = b. Such a function clearly exists (we can pick any of them), and now we can extend it harmonically to level
m+ 1, then m+ 2, and so on — we proved that harmonic extensions don't increase the (rescaled) energy, and thus

there will be some unique f € F (existing at all levels) such that
flv, =9, E(f.F)=E"(g,9),

which is what we wanted. So by Stone-Weierstrass, we prove that F is dense in the continuous functions (C(K), ||-||sup).
and that is half of the regularity condition — we also have to check that we're dense with respect to the inner product.

For this, we have for all x,y € K and all v € F that

<2 (u(y)? + (u(x) = u(y))?)

S|u()? +E(uw) |

because all distances are finite. We'll show that for any Radon measure m with full support (in fact because K is
compact we can assume m(K) = 1) the limit of a Cauchy sequence under £; = & + (-)2() is also in the space F.
But what we do is integrate the boxed inequality over m(dy) and find that

u(x)? < / u(y)’m(dy) + £(u, u) = Ex(u, u),

where we're assuming that we've always chosen the continuous representative so that these functions are pointwise
defined. This implies that for any £;-Cauchy sequence f,, f, converges pointwise to f, and the limit has to be bounded
because sup |f| is finite by our inequality. Furthermore, f, is also a Cauchy sequence in L?(m), so we have f, — f
in L2(m) as well, and it just remains to show that we have convergence with respect to the & -inner product (so the
problem is the & part). For this, it's useful that our energies are defined in terms of discrete energies: since (f,) is an

&-Cauchy sequence, we know that for any € > 0 there is some N such that
EM(fe—fy f— R) S E(f— fy fc — f) <&

for all m and for all k, 2 > N. Now we have a finite sum for fixed m, so we can interchange limits and take k — oo to
get that EM(f — f,, f — f,) < e for all £ > N and all m. Finally, taking m 1 oo yields convergence under the £-inner
product, so we have proved that our form is closed and that we have a regular Dirichlet form on L2(K, m). (Note here
that we need that F is a vector space, so f is in the domain because both f; and f — f; are in the domain.)

But we want to define a diffusion process, not just a general Markov process, so we next want to show that our
Dirichlet form is strongly local. For this, pick f,g € F such that f = ¢ on all of supp(g) (we don't need to worry
about the m-support since we're choosing everything to be pointwise defined here). Disjoint compact sets have a

nonzero distance, so we can pick some n such that

dist(supp(f — clk),supp(g)) >27".
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This implies that if we contract the triangle n times, we can only intersect one of the two sets supp(f — clk), supp(g).
In other words, for all words w € W, the set F,,(K) Nsupp(f — clk) Nsupp(g) is always empty. And now we can use

the self-similarity from Proposition 79:
5 n
&r9=(3) T erorgoh)
Wew,

And each term of this sum is zero. Indeed, either fo F,, or go F,, must be constant for each w, and the Dirichlet form
involves a difference between values of the function and thus all terms in the contribution (f(x) — f(y))(g(x) — g(y))

are always zero. Thus the strongly local property is proved.

Fact 80

The point is that Fukushima's theorem now yields a Markov process with continuous paths on the Sierpinski gasket
for all times, unique up to throwing away exceptional sets. And as an exercise, we can check that in this case any
E-polar set must actually be empty, for example using the Holder continuity estimate Proposition 78 to show that

1-capacity is always strictly positive.

Example 81

We'll now use this to construct the Brownian motion itself. This process was first constructed in the 1980s by
Goldstein, by Kusuoka, and also by Barlow-Perkins (and the last authors also got precise heat kernel bounds for
the diffusion). We won't do the full version, but we'll give some upper bounds near the diagonal and explanation

for the shape of the kernel overall via lower bounds.

Our strategy will be to prove a Nash inequality, though we'll have to use something completely different from RY.

We'll instead use Poincaré inequalities, which we'll need some background to explain.

Fact 82
Strongly local regular Dirichlet forms are of the type

E(F. f) :/Xdr(f, ),

where dl'(f, f) is called the energy measure.

For example for the ordinary Dirichlet form we have E(f, ) = [on [Vf|?dx, where T'(f, f)(A) = [,|Vf[?dx. In
general, the way we construct such a measure is to specify its integrals on various functions.

Definition 83
Let (£, F) be a strongly local regular Dirichlet form on a general space L?(X, m). For all bounded functions

f € Fn L™, there is a unique (nonnegative) measure I'(f, f) on X, called the energy measure, satisfying

[ odrie.n=e(r.f9) - 5e(2 9)

for all g € F N C(X) (this is a dense subset by regularity). For arbitrary functions f € F, we similarly define the
energy measure via truncation — that is, I'(f, f)(A) = limyo0o T((=nV ) A n, (=nV f) A n)(A) (the measures on
the right side converge in total variation so this is well-defined).
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This defines a measure by the Riesz representation theorem — linearity is clear from bilinearity, and nonnegativity
is not so clear but it is indeed true by approximating the Dirichlet form via the semigroup or resolvent (this is due to
Le Jan). And we do have to work with the energy measure to avoid certain issues with singularity in settings like the
Sierpinski gasket.

Note that the energy measure is not the same as the “equilibrium measure” (which we'll introduce later on), though
they have the common feature that they do not give positive mass to polar sets.

Returning to the Sierpinski gasket, the Dirichlet form is defined for any reference measure m. But we'll want to

pick a particular one now:

Proposition 84 (Poincaré inequality)
For the Sierpsinski gasket, for any function f € F, any point x € K, and any r € (0, 1), there is some constant
A > 1 such that

/ 1£(y) = fapen| dm < rdW/ dr(f, )
B(x,r) B(x,Ar)

195 and m the measure satisfying self-similarity

for dW = log?2

m(Fy(K)) =3"" for all m and all w € W,,.

Here we write f4 or f, fdm for the averaged value ﬁ Jafdm.

Note that the measure of any ball B(x, r) satisfies
m(B(x,r)) = r? forall x € K, r € (0,1),

is the Hausdorff dimension of the set.

where df = :ggg

Proof. We want to control the variance of the function f on a ball of radius r. It actually suffices to bound by the

maximum deviation:

/B< (F0) = o) dm(y) < m(B(x ) sup (F¥) = £2))°

v,.z€B(x,r)

By the Holder continuity estimate, we already know how to bound the energy, and we can use self-similarity to relate

that to the following fact about the energy measure (exercise): for all f € F,

[(f, f) = (2) > (Fu)sT(foFu,foF,)

weWn,

We need to control (f(y) — f(2))?; to do this, let n be the largest integer such that there are words v, w € W, with
y € F (K) and z € F,(K) for F,(K)N F,(K) # @. (We can check that this actually implies that we must have

d(y,z) < 27".) Taking a point g in the intersection, we can thus write

< (f(y) = (@) + (f(q) — f(2))?
SE(foF,, foF,)+&(foF,, foF,)

< (2) re AU ARG

(fy) = £(2))

this time by self-similarity of the energy measure. And our constant diy is exactly defined so that this is bounded by

(F(y) = £(2))* < d(y, 2)™ 4T (f, £)(F,(K) U Fu(K)),
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and now F,(K) and F, (K) each have diameter 27", but in fact this implies that for any points x, x’ in that ball we
have d(x,x") < 27"+ r < Ar for some constant A. So plugging this in yields the Poincaré inequality: we end up with
a bound rdv=9 [ (f, f)(B(x, Ar)), which is exactly what we want. O

Next, we'll prove a variant which will look similar to what just proved, except that the ball moves along with the

point:

Proposition 85 (Pseudo-Poincaré inequality)
For all f € F and all r € (0, 1), we have

/ 1F(x) — £0OPdm(x) < rE(F, F),
K

where f, = fg ., fdm.

Proof. We have
/ (%) — £.() Pdm(x) / f 1F(x) — F()Pm(dy) m(dx)

by convexity and hence Jensen's inequality, and now we know by the Poincaré inequality that we have the bound

/ If(x) — f(x)]>dm(x / / F(x) — F(y)*1{d(x,y) < rtm(dy)m(dx) |

We now cover the Sierpinski gasket by balls of radius r — that is, let N be an r-net, meaning that it is an r-separated
subset of K which is maximal with respect to inclusion (the existence follows from Zorn's lemma). By maximality we

have

U B(n,r)=K = Z 1{B(n,n} > 1k,

neN neN
which then further implies that (if x, y are within r, then there must be some point in N within r of x, and then by

the triangle inequality both x,y are at most 2r away from the point n in the net)

> La(nen () 1e(n2n (¥) = Lagy)<r(x.¥).
neN

On the other hand, we also have the simple geometric fact that if A is the constant from our Poincaré inequality, then

for all x we have

Z ]-B(n,2Ar)(X) 5 1

neN
since there are only finitely many points inside B(n, 2Ar) that can all be at least r apart from each other by a volume

estimate. So we can return to the boxed inequality and write it as a sum over balls around points in our net:

/ / (F(x) — F(¥)2m(dy)m(dx).
B(n,2r) J B(n,2r)

and now we use that for any set A we have ﬁ(A) Sa Ja(F(x) = £(¥))?dm = [(f(x) — fa)*>dm (this is the same trick

/K () — 0O Pdm(x) < -

neN

as we saw in the proof of the Harris inequality!), so we can relate this back to something in the Poincaré inequality.
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This yields

/K () — () Pdm(x) £ 3 / (F0) = fisgnan)?dm(x)

nen / B(n.2r)
Sy v / r(f,f)
HGZN B(n,2Ar)

where we've used the ordinary Poincaré inequality in the last step. But by the definition of the energy measure this is
bounded by a constant times r®&(f, f), as desired. O

We'll now use this to prove a Nash inequality:

Theorem 86
We have for all f € F N LY(K, m) (but actually L1(K, m) is a subset of L2(K, m) so this additional condition is
not necessary)

n n/4
NFIE™2 < NIFI (1112 + £CF.F)

__ 2df __ 2log3
for n = dr = Togs

< 2 (we call n the “spectral dimension”).

Once we prove this result, the existence of heat kernel and bounds on the diagonal then follow from our earlier

discussion.
Proof. Just like on Euclidean space, we'll break up the L? norm into two pieces. Let r € (0, 1) and write
IFI13 <2 (IIf = £+ 11£13) -

We can control the first term by the psuedo-Poincaré inequality by rw &(f, f)+||%||3, and now we'll see how to control
the second term. We have
AR A AT

and now we can control the L° norm because |||l < r~%||f||1 (the integral on a ball cannot be larger than the

total integral), meaning we just need to control the L' norm. We have
Il = [ 15COIm(ax)
Sro [ [ 1FmILdy) < rhm(dy)m(dx).
K JK

We can now integrate over x first by Fubini's theorem, but then that cancels out with the r—% factor in front and
thus we find that ||f||1 < ||f||1. Therefore

151122 < 1IE 1l flloo S rmIIF1I3,
and now combining the two estimates of the two terms yields
IFI3 = rw e £) + r=*[|fII7.

Now we want to optimize over r to get the result, but we are constrained to r € (0, 1) and that's why we have the

extra term of ||f||3; otherwise everything is the same as usual. O

From here, we say that Nash implies ultracontractivity and thus existence of the heat kernel; in particular we get
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the bound

€ss supy yex Pe(X. ¥) S 1A t—de/dw

for all t > 0. When x = y we have a matching lower bound, so this is indeed sharp. It turns out that Barlow and

Perkins managed to get a much better bound (we call these sub-Gaussian heat kernel bounds) of

/(dw—1)
C d(x, y)d\ '

< !
Pe(X.Y) S 157 exp( C (t

forall t € (0,1) and all x, y € K, and there is also the corresponding matching lower bound. For diy, = 1 this is exactly

the Gaussian we get on Euclidean space, but instead for the Sierpinski gasket here we have dy = :ggg > 2.

We know that we have a corresponding diffusion (Y;) for the objects we've been analyzing here. What we can

compute from these estimates is that
Ex[d(Ye, Y;)] =< t¥% for all t € (0,1), x € K,

and if we let Tg(x ) be the exit time of a ball of radius r,

1
Ex [Tapon] =< r™ forallx € K, r € (O, 2) :

This explains the name “walk dimension” for the constant d, .

Remark 88. We can always use Cauchy-Schwarz and symmetry of the semigroup to get p:(x,y) = v/ p:(x, X)p: (v, y).

So the maximum value of the heat kernel will always be achieved on the diagonal.

9 June 16, 2025

Last time, we saw how to obtain off-diagonal heat kernel upper bounds for the Sierpinski gasket last time (with scaling
factor tdf%w dependent on the Hausdorff and walk dimension). We'll first explain the exponential term which gives us
matching lower bounds today — usually once we get an upper bound, we show lower bounds for x near y and then for
arbitrary points.
The idea is that “by time t, we've spread out over a ball of roughly radius t/% " So we first try to get near-diagonal
lower bounds of the form
pe(x.y) 2 tdf%l {d(xy) < et/

There's no exponential factor here yet, but it should then be exponentially unlikely to move much farther away than
t1/dw  So what we want to understand is the “most likely mechanism by which we travel a long distance,” and it turns

out the answer is the following: break up the time t into n intervals, and for each interval % we move a distance

roughly (%)l/dw in the same direction.
To make this precise, we'll pick the actual value of n later, and consider a sequence of equally time-spaced points
Xo, "+, Xy With xg = x and x, = y. We choose these points satisfying the following two conditions:
d(x,y)
d(xi, xiy1) < n
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and also (here c is the same constant as in the near-diagonal lower bound)

1/dw
c/t
d(xi, Xit1) S > (n)

)1/dW

for all /. By the triangle inequality, we can then say that if B; is a ball of center x; and radius § (% , then we know

from our lower bound that

1
Pe/n(Yis Yit1) 2 W

for all y; € B;, yi+1 € Bjt1. Therefore what we do is take (this is called the Chapman-Kolmogorov equation)

pt(Xry) :/"’/pt/n(val)pt/n(Xlu)Q)"'pt/n(Xn—lvy)dxldX2"'an—l

and bound it from below by only integrating over the specified balls B, --- , B,_1. It's now not so bad to estimate

dr / dw

the integral from below, since the measure of each ball is roughly (%) and inside the ball we have p;/,(yi, Yit1) ~

(%)ﬂjf/dw. So we end up with an exponential constant exp(—c’n) because we have a (possibly less than 1) constant
dependence for each of the nintegrals, and the polynomial term (%)7df/dw comes from having n terms that we multiply

with this factor and (n — 1) integrals with that factor canceling out. Since the exponential term dominates for large
n we thus see that

pe(x,y) 2 exp(—c"n)t=%/dw,

and now we pick n as small as possible so that the conditions we specified above can still be satisfied. We can check
(d(x,y)dW ) 1/(dV\/_1)
t

process spreads uniformly over a small ball, we just chain the estimate using Chapman-Kolmogorov. (The upper bound

by triangle inequality that we must in fact have n 2 , as desired. So if we know that the diffusion

uses a different kind of chaining argument but similar calculations, using tails of exit times.)

Fact 89

The main geometric feature needed in this argument was that given any pair of points and any n, we can connect
them with some constraints on the distance. This doesn’'t always work — it means our metric space needs to be
close to a geodesic space — but we'll come back to this later on.

So far, we've only used the Nash inequality (which implies ultracontractivity) to derive our bounds. But this property

may not always hold even when the heat kernel does not exist:

Example 90
Consider a Dirichlet form on the space L2(R”, my), where mq(dx) = (1 + |x|?)?/2 is a weighted version of the
Lebesgue measure (o = 0 recovers the original Lebesgue measure). Specifically, take the case n > 2, a € (—n, 00)

(otherwise we fail to be a doubling measure), and the form defined by

E(f, f)=/|Vf(x)\2ma(dx).

We can calculate the generator here by using integration by parts: we have that (here A denotes the Laplacian)

Laf = (14 x)~/2div (1 + x)*/V )
ax-Vf

—Af 42X
M
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So compared to Brownian motion, we have a drift either towards infinity or towards the origin depending on the sign
of a. We can calculate that for all x € R” and all r > 0, the measure of the ball satisfies the bounds

ma(B(x, r)) =< r*(1+ |x| + r)*.

Theorem 91 (Grigor'yan, Saloff-Coste 2005)
We have in the setting above that for all t > 0 and all x, y € R”, we have the heat kernel bounds

- c ,d(x,y)?
)= e 20 ().

Notably, this example does not satisfy ultracontractivity, because if we plug in our estimate for the volume we get
exp <767d(xt’y)2)
t2(1+ |x| + Vi)

So for fixed t, if @ < 0 then we can make the denominator arbitrary large by choosing x far from the origin. Thus

pe(x,y) <

|| Pelliso0 = €55 supy,p:(x,y) = oo even though the heat kernel exists. It turns out that the converse of “Nash
implies ultracontractivity” also holds, and so we would need a different method for heat kernels that may behave
very differently in different parts of the space even if we get a Gaussian bound. We'll now see some methods that do
work.

The main idea is to work with local versions of ultracontractivity instead of global ones. We'll start with Harnack

inequalities:

Theorem 92 (Elliptic Harnack inequality)
Fix some dimension n. There exists some constant C > 1 such that for any x € R”, any r > 0, and any
nonnegative harmonic function h : B(x,2r) — (0, c0), we have

sup h(y) < C inf h(y).
YEB(x,r) yeB(x.r)

Here C depends only on the dimension of the Euclidean space n, though if we want to talk about harmonic functions
with respect to other parameters it could have dependence there as well (for example the a in our example above).
Notice that it's not true if we only have the harmonic function defined on B(x, r), since we could then solve any
Dirichlet problem so that h goes to zero near some point on the boundary and then the sup and inf are no longer

comparable.

Remark 93. Probabilistically, the way to interpret this is that some harmonic functions come from harmonic measures
(for example the probability of a Brownian motion exiting at a subset of its boundary); the idea is then that this

probability is comparable among all points in a smaller ball.

Moser showed in 1964 that this inequality also holds if we replace A with some other uniformly elliptic operator in

divergence form

.5 orf
Af = Z % (a’j(X)@(j)

ij=1

for (a,-j(x))ffj-:l a positive-definite matrix-valued function with eigenvalues uniformly bounded from above and below.
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The elliptic Harnack inequality is not enough on its own to prove bounds, because it only talks about harmonic
functions and not solutions to the heat equation. It turns out this inequality is usually useful for obtaining continuity

estimates which help us get better regularity for solutions instead of just living in L2 or a Sobolev space:

Theorem 94 (Cheng, Yan 1975)
The elliptic Harnack inequality holds on manifolds of nonnegative Ricci curvature. Furthermore, the elliptic Harnack

inequality implies Holder regularity of the solution to the associated operator.

The idea here is called Moser’s oscillation lemma: we define the oscillation oscah = supy h — inf4 h, and for any
harmonic h on B(x, 2r) we can apply the elliptic Harnack inequality to the functions h—infg(, 2,y h and supgx o,y h—h.
This yields

sup h— inf hSC( inf h— inf h)
B(x.r) B(x,2r) B(x,r) B(x,2r)

sup h— inf h<C/| sup h— sup h],
B(x,2r) B(x,2r) B(x,2r) B(x,r)

so if we add the two inequalities together we find that

1
0SCa(x,2r) .

OSCB(x,r) h < Ci—;l

and thus the oscillation actually decreases as we go to smaller balls: for all y;, y» € B(x, r) we have

log (&£7)

) = )| < (S22 e, 0= 22

Notice that such a bound also implies the Liouville property (that is, if we have a function h : R” — R which is
harmonic and bounded, then h must be constant). Indeed, we can fix y1, y» and let r — oo, and the right-hand side
will go to zero.

We've been working with the Laplace operator so far, but now we'll switch to the heat operator. The idea is to

work with spacetime cylinders for the heat equation which have the right spacetime scaling:

Theorem 95 (Parabolic Harnack inequality)
Fix some dimension n. There exists some constant C > 1 such that for any x € R”, any r > 0, and any solution to
the heat equation v : (0, r?) x B(x,2r) — (0, c0) (meaning that 8;u = Au on this domain Q = (0, r?) x B(x, 2r)),

supu < Cinfu,
Q- Q*

where we define the spaces

N

Q = <r4 r22> x B(x, r), <34r2,f2) x B(x,r).

The space-time visualization of the sub-domains is shown below:
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B(x,2r)

Q+

I > time
r r
4

We'll now see how we can use such inequalities — what we have is basically an ultracontractivity statement. Think
of u as a solution to the heat equation, and the left-hand side supg- is some kind of a bound on the L norm but
only on a small part of the space. And we're controlling via the infimum over Q, which is better than controlling
over L1, In words, “supremum in the past is controlled by infimum in the future.”

Everything here is for Euclidean spaces, but we can define an analog using the Dirichlet form (we just need a notion

with nonnegative Ricci curvature.

of balls and of harmonic functions). And Moser showed similarly that parabolic Harnack inequalities hold for uniformly
elliptic operators (so we have stability under perturbation), and Li and Yau showed these inequalities also for manifolds

We want to get a notion of harmonic functions on strongly local regular Dirichlet forms on a metric space — from
PDEs:
Definition 96

now on, we'll also abbreviate this as MMD space. The idea is to use a weak formulation much like when we solve

On an MMD space with Dirichlet form (&, F), we say that a function h € F is harmonic (also £-harmonic) on
an open set U C X if £(h, f) =0 for all f € F N C(X) with support contained in U.

Definition 97

In other words, the generator applied to h should give us zero in a weak sense.

Let /| C R be an open interval. We say that a function u

: | — L2(X, m) is weakly differentiable if for any
function f € L2(X, m), the function t — (u(t), f)2(m) is differentiable on /.

For any weakly differentiable function u and any time tg, there is a unique w € L?(X, m) such that

. u(t) — u(ty) B
i <tto F) =W Dz,
notion of a solution to the heat equation:

So we know how to make sense of the time-derivative and also the Laplacian, and we can combine these to get the
Definition 98

have

Let Q C X be an open set. A function u: | — F is caloric in | x Q if for any f € FNC(2) and any t € /, we

('(t), )+ E(u(t), f)=0.
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(The reason the Dirichlet form is on the left-hand side is that £(u(t), ) is playing the role of —Au.) The parabolic
Harnack inequalities turn out to be localized enough to help us study the heat kernel (because they impose strong
geometric conditions on the measure and so on), and we'll soon see ways to make that precise.

Definition 99
Let (X, d) be a metric space and u a Borel measure on X. We say that u satisfies the volume doubling property
(also VD) if there is some constant Cp such that

0 < u(B(x,2r)) < Cpu(B(x,r))

for all x € X and all r > 0.

Everything we've talked about so far satisfies this property except for m, for & < —n. Indeed, as an exercise, we
can check that (1 + |x|?)®/?dx satisfies the volume doubling property if and only if a > —n.

Proposition 100
As an exercise, we can check that if u satisfies the volume doubling property, then by repeated iterations we have

w(B(x.R)) _ (R)o‘ _logCp

w(B(x,r)) ~\r log 2

forall xe X andall 0 < r < R.

We can also sometimes reverse this inequality and put 2 instead of <:

Definition 101
The measure y satisfies the reverse volume doubling property if there are constants Cy, C, € (1, 00) and some
B > 0 such that

B
u(Bx. R 2 ¢ (%) BGxn)

for0<r<R< 7diamc(2x'd).

Proposition 102

If the metric space (X, d) is connected, then volume doubling implies reverse volume doubling.

Indeed, the intuition is that if we want to compare a small radius r with a large radius 10r, there is some disjoint
ball also of radius r within the large ball, and those neighboring balls have similar volumes by volume doubling.

We're now ready to state the more general heat kernel bounds, modeled on what we saw with the Sierpinski gasket.
We had a spacetime scaling exponent in both that case and in Euclidean space, and in fact we don't necessarily need
to have power-law scaling: if we have something like the triangular lattice with the Sierpinski gasket inside each cell,
we will have something like 1(r) ~ r'°9%2() for r < 1 and 4(r) ~ r? for r > 1, since the behavior is Euclidean globally
but fractal locally.
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Definition 103
A scale function is a homeomorphism 1 : [0,00) — [0, c0) such that there exist constants 1 < 8; < B> < o0

and C > 1 with s s
1 (R\™ _ Y(R) R\"™
(7)) s¥m=<(?)

foral0 < r < R.

Definition 104
An MMD space (X, d, m, £, F) satisfies the elliptic Harnack inequality if there exist some constants C, A > 1

such that for any x € X, any r > 0, and any £-harmonic function h : B(x, Ar) — (0, c0), we have

€ss SUPxep(x.r)h < C ess infyep(x,nh-

We didn't need spacetime scaling for the elliptic Harnack inequality because there is no time-dependence in the

equation Ah = 0. But we'll need one now:

Definition 105
An MMD space (X, d, m, £, F) satisfies the parabolic Harnack inequality with space-time scaling 1 if there exist
some constants C > 1, § € (0,1), 0 < C; < Gy < C3 < C4 such that for any x € X, any r > 0, and any caloric
function u which is nonnegative on (0, C49(r)) x B(x, r), we have

supu < Cinfu

Q- Q*

with @~ and Q™ analogously defined as shown in the diagram below.

space

A

e l I I ? time

I
0 Ciy(r) Cy(r) Cay(r) Cap(r)

Fact 106

Note that parabolic Harnack automatically implies elliptic Harnack, since for any harmonic function h the function
u(t, x) = h(x) is caloric. So in that sense the spacetime scaling doesn't really matter, and so people were curious
whether elliptic Harnack inequalities imply parabolic Harnack inequalities with the usual Gaussian spacetime scaling.

But diffusions on fractals provide the first example where we do get something different, and we can even go from

fractal counterexamples to manifold counterexamples.
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Indeed, take some graphs that approximate the Sierpinski gasket and replace each edge with a cylinder. Gluing
those cylinders together yields a two-dimensional surface whose global geometry is fractal but local geometry is R?,
so we'll get r? scaling at small scales but something weirder at large scales.

We'll see next time how to relate all of these inequalities to heat kernel estimates!

10 June 17, 2025

Last time, we introduced the elliptic and parabolic Harnack inequality on MMD spaces (corresponding to the Laplace
and heat equations, respectively). We mentioned that the parabolic inequality implies some version of contractivity,
which then gets us bounds on the heat kernel. We'll see that in more detail now.

Remark 107. In the definition of a scale function, the lower bound on growth is currently specified to be 31 > 1. It

will turn out when the parabolic Harnack inequality holds, we actually have 31 > 2, and we’ll see that later on.

We want to use the parabolic Harnack inequality at some time t; satisfying c1¥(x) < t1 < c¥(x). We know that
if £ € L2(X, m) is a nonnegative function with ||f||; = 1, then P;f is caloric and nonnegative with ||P.f||; < 1. The
Harnack inequality then tells us that

1
sup Py (f) < C inf Pof < inf Pof S ————
sop) Pall) = Cpf Pl S 000, P = B 1)
(since the infimum is less than the average value on the ball). Since t; < ¥(r), we have r < 1 ~%(t;), and thus we
get ultracontractivity when we look at a small ball

1
sup Py (f) S

for all nonnegative £ € L2 N L with ||f||; = 1,
B(x.6r) m(B(x, ¥=1(t1))) 9 12

and then taking the supremum over all balls yields a heat kernel bound

1
€ss SUPyep(x 6 Pu (Y. 2) S

zex m(B(x, ¥~1(t1)))

Once we know the existence of a heat kernel, we can fix x and consider P;(x,y) as a function of t,y and use the

parabolic Harnack inequality on that function. Bounding inf from below therefore yields a lower bound on the heat

kernel.

Definition 108
We say that an MMD space satisfies sub-Gaussian heat kernel bounds (also written HKE(%) with spacetime

scale function 1 if the following holds. Define

5 1
d(s) =sup | - — ——=
@=2 (7 5)
(so if P(r) = rB, then {d(s) < $F/B=1)) Then (X, d, m, &, F) satisfies HKE(%) if the heat kernel exists and
satisfies the upper bound

pe(x.y) S m(B(x,ip—l(t))) P <_Ct¢ (d(xtv y)>)

for all x,y € X and all t > 0, as well as the near-diagonal lower bound

for all x, y such that d(x,y) < 9%~ (t).

C
P ) 2 o D)
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The form of this expression comes from the same optimization argument we did previously in terms of chaining
balls together, but now no longer with the ordinary Gaussian scaling. We can also ask for bounds for x, y far apart,
but we need to distinguish that because we don't always have this exact lower bound (for example if we use the square

root of the Euclidean metric for Brownian motion on R?).

Definition 109
We say that (X, d, m, &, F) satisfies full sub-Gaussian heat kernel bounds (denoted HKE¢ (%)) if we also have
a lower bound of the form

P V)2 B, L—l(r))) o (‘C/”’ (d(xi y)»

for all x,y € X and for all t > 0.

Theorem 110 (Murugan, 2020)

The following are equivalent:
1. (X,d, m, &, F) satisfies HKE¢ ().
2. (X,d, m, &, F) satisfies HKE(1), the volume doubling property, and the following chain condition on (X, d):

there is some constant C > 1 such that for all n € N and all x,y € X, there is some sequence of points

X0 =X, X1, Xp =y with d(x;, xi11) < % for all i.

In particular, recall that we got a hands-on lower bound via chaining with a sequence of points; this equivalence
says that this is actually essentially a necessary condition.

The proof of this result isn't so difficult by doing a different chaining argument with another metric (defined in
terms of minimum lengths of chains). But we'll focus instead on general conditions for when these inequalities hold on
general spaces. We've already encountered the Nash inequality, and along the way we saw some variants (the Poincaré
inequality and pseudo-Poincaré inequality) which will turn out to be relevant. Poincaré is particularly nice because it is

local and thus we can work on balls instead of the whole space.

Theorem 111 (Poincaré)
(X,d, m, &, F) satisfies the Poincaré inequality (denoted PI(%)) if there are constants C, A > 1 such that

/ (F = fagery)Pdm < C(r) dr (f, f)
B(x,r) B(x,Ar)

forall fe F.xe X, andr>0. T

Geometrically, the idea is that we have a bottleneck through a very thin part of the space, then this creates a
large variance but small energy because the function only changes in a very small part of the space. So the Poincaré
inequality is telling us that there are actually lots of curves between any two points, and we'll make this intuition
precise soon. To understand the relationship between functional inequalities and subgaussian heat kernels, we'll state

the following result:
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Theorem 112 (Grigor'yan and Saloff-Coste, 1992)

For Brownian motion on on a Riemannian manifold, the following are equivalent:
1. The volume doubling property, along with the Poincaré inequality PI(2) with the usual spacetime scaling
()| =r?,
2. The parabolic Harnack inequality PHI(2),

3. The full heat kernel bounds HKF¢(2).

The first of these conditions is useful because it is stable under perturbations. Indeed, if g, § are two different
Riemannian metrics on some manifold M with tangent vectors £ € TM satisfy g(§,§) < G(g,g). And what we're
saying is that if volume-doubling and PI(2) are still preserved, then so is HKE¢(2) and PHI(2).

This result was further extended to the setting of MMD spaces later on, and the question is whether these results

extend beyond Gausian scaling as well. To understand how (3) implies volume doubling, we can use that

m(B(x,2v't)
= /gmm Prixy) 2 B VD)

using that when d(x,y) < 2v/t, we can use our full heat kernel bounds to get p:(x,y) = m for all x,y of
distance at most 2/t apart. And the Poincaré inequalities are harder to see — if we look at the reflected process, we
are uniformly dispersed through a ball of radius R, and we can relate the L? norms of the function along the heat
semigroup using a similar strategy to what we saw in the Nash inequality.

We'll state a version of this stability result for general spacetime scaling now. It turns out we do not just replace

2 with B and we do need another condition going under the name of cutoff energy inequality:

Definition 113
Suppose U, V are open sets with U C V. We say that ¢ € F is a cutoff function for U CV if0< ¢ <1, ¢pis1lon
a neighborhood of U, and supp,,,(¢) C V. An MMD space satisfies the cutoff energy inequality (denoted CS(%)
if there are constants A, Ay, such that for all x,€ X and all 0 < r < %Qx'd), there exists a cutoff function ¢
for B(x, r) C B(x, Air) with

C1

/ F2dr (¢, ¢) < Cl/ dr(f,f) + —— f2dm.
B(x,A1r) B(x.,A1r) P(r) B(x.,A1r)

We often multiply our functions by these cutoffs before applying Sobolev inequalities. In the Euclidean case, these
cutoff functions take a form where they are 1 on a ball B(x, r) and 0 outside a ball B(x, Ar), and the problem was that
it wasn't clear what the analog was for general spacetime scalings. We don't have to remember this exactly, but the
point is that all of these involve integrals of a function over energies, and hence they are stable under perturbations.

Also, notice that if a function ¢ is constant on B(x, A1r), then by strong locality the energy is zero on this set and
we find that we have an upper bound on energy
m(B(x,r))

W(r)

that is, we get an upper bound on capacity between two balls. Poincaré typically gives lower bound on energies — that

£(¢0.¢)

is, Pl(1) gives a matching lower bound of the form for any cutoff function ¢

m(B(x,r))

E(d.0) 2 EETORE
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(because the variance term is of constant order), so this is giving us something in the other direction.

If A, B are disjoint, we can consider the set of cutoff functions
F(A B)={f € F:f=1on aneighborhood of A and 0 on a neighborhood of },

and define the capacity
Cap(A, B) =inf{&(f, ). f € F(A B)}.

We now introduce another condition:

Definition 114
We say that (X, d, m, €, F) satisfies the Cap(4) condition if for all x,y € X and all a < di%z(x), we have

m(B(x, r))

Cap (B(x, 1), B(x, A1r)) = ——pes

Theorem 115 (BB, 2004; BBK, 2006)
The following are equivalent for a space (X, d, m, &, F):

1. The parabolic Harnack inequality PHI(%),
2. Volume doubling along with HKE(%),
3. (Stable characterization) Volume doubling, Poincaré inequalities PI() and cutoff energy inequality CS(%),

4. Volume doubling, the elliptic Harnack inequalities, and the capacity bound Cap(%).

We saw last time that the parabolic Harnack inequality implies the elliptic one, and we now have some kind of
converse: some additional capacity bounds give us the other direction too. It's currently open to show whether
condition (3) can be replaced with volume doubling, PI(1}), and the capacity upper bound(the lower bound is already
implied by Poincaré); in fact there are various situations where it's actually possible to show this weaker condition
but where it's difficult to establish the cutoff energy inequality. So resolving this in the positive would have some
applications!

We'll see some applications of all of this in the next few lectures — it will turn out to be useful to obtain bounds

for transformations of a Dirichlet form (for example reflection or killing at a boundary).

Example 116
First, we'll show how to establish a Poincaré inequality on R”, and it'll turn out to work for a lot more examples

as well.

Proof of Poincaré on R". We saw a proof for the Sierpinski gasket using the self-similarity energy — our proof here will

be more geometric. We wish to show that

/ 1F() — fagenlPdy < Cr2 / VF)PRdy.
B(x,r) B(x,Ar)

We'll use the usual trick about writing variance as an expectation over the product measure
1
)~ fonPly = 5o [ [ (£0) - F(2)Paydz
/ stan) 2m(B(x, r)) B(x,r) J B(x,r)
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We want to control this integrand using the gradient, and the idea is the following pencil of curves argument. For a
pair of points x, y, we join them by some curve. One such example would be a straight line segment, but here we will
think about all possible points w on the perpendicular bisector between y and z, and consider the curve v which draws
a straight line segment from y to w and then w to z, as long as the distance d(w, z) = d(w, y) is at most d(y, z)
(so in other words, a cone of angle 60 degrees of spread from the vertical).

Let v, , be a random such curve with w uniformly among the allowed possibilities.

For any fixed such curve, we have by the fundamental theorem of calculus and the triangle inequality that

fly)—f(z) < / IVf(vy.2(s)|ds,

Vy.z

and so squaring and taking expectation we get

(Fy) — f(2))* <E

( / V1 12(91ds) ]
SE |t [ 197((s)as]

by Cauchy-Schwarz, where the length L(7y) is of order r. Choosing uniformly among the allowed point p along the
curve is then similar to choosing a uniform angle up to constant factors within our allowed region, so we can further

write this as (here note that

(Fy) - F@)P S 7 / V)P — p "+ 1z — pl ") d.

We now plug this back into our expression. By triangle inequality, we know that if y, z are distance r from x, then p

can be at most distance 2r away from them, and thus

/ / (Fy) — F(2) < r / / / VAR — pI™ + |z — p| =) dydzdp
B(x,r) J B(x.r) B(x,3r) JB(x.r) J B(x.,r)

We can now do these integrals in polar coordinates, and we get a bound rr? fB( ) |[Vf|?dm, as desired because the

X,3r

r™ cancels out with the m(B(x, r)) term. O

Our next result talks about what possible joint values of volume-growth and exit time behavior are possible for a

space.

Theorem 117 (Murugan, 2025+)

Let V.9 : [0, 00) — [0, 00) be two homeomorphisms such that 4 is a scale function and V satisfies (this should be
the measure of a ball of radius r) \\//(('f)) < (%)a for all 0 < r < R. Suppose we have an MMD space (X, d, m, &, F)
of infinite diameter satisfying full sub-Gaussian heat kernel bounds HKE¢(%), and we have m(B(X, r)) < V/(r) for

all r > 0. Then V and ¥ must have some mutual constraints; specifically,

(B) 5 20 < BV

r) ~alr) Y V()

(In particular if V(r) = r% and (r) = r%, this implies that 2 < dy, < 1+ dr.) Conversely, if V and 7 satisfy
these mutual constraints, then there is some space (X, d, m, £, F) with full sub-Gaussian heat kernel bounds and

the specified volume growth.

(Barlow previously proved this in the special case of random walks on graphs.) Let's understand where those mutual

constraints come from:
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Proof of upper bound. The reason we require 1/»((5)) hS @‘\//((’f)) is that if ¢ is a cutoff function for B(x, r) C B(x, Ar),

by Poincaré inequality we have
m(B(x,R)) _ V(R)

Y(R) T Y(R)’

and we'll now use a chain of balls By, - -+ , B, at the smaller scale r to get from inside B(x, r) to outside the larger

E(@.0) 2

ball B(x, R). The number of steps we must take is on the order of £ (since having full heat kernel bounds implies
conditions on these chains), and then the average of the function on the chained balls satisfies

2

n—1
= ¢, — ¢85, S |D_(6(B) — $(Bi11))
=0

R n—1

2

ST 2 10e —daul
1=

But now we can enclose both balls B;, Bj41 in a single ball B of order 2r ~ r as well, and by the Poincaré inequality

we thus get an upper bound on this quantity of

R n—1
YR

These balls can overlap with each other but not by much, and thus we can use this last expression to bound something
Y(r) RV(R)
V(r) r ¥(R)

Notice that this bound is tight when we have “only one path from the small ball to the large ball,” but on the other

with the energy of ¢: we get 1\%3 ?5(05, ¢) < , Which is exactly what we wanted. O

hand, the lower bound is exactly what happens in the Euclidean case. So what we're saying is that “all spaces are

somewhere between Euclidean and tree-like!”

11 June 19, 2025

We stated Theorem 117 last time, explaining that a space with the same volume growth around all points must have
spacetime scaling growing at least quadratic (so Gaussian spacetime is an extreme situation) and at most linear times
the volume growth. The idea behind the proof is to use estimates at a smaller scale r to control the larger scale R.

Proof of Theorem 117, lower bound. We know that the sub-Gaussian heat kernel bounds HKE¢(%) imply capacity
bounds (here originally the numerator reads m(B(x, r))

4%
Y(r)

We want to use this at smaller scales to get bounds at larger scales. For this, consider an annulus of inner and outer

Cap(B(x,r), B(x, Ar)°) <

radius R and R + r, respectively; we will show that

m(B(x,R+ )\ B(x,R))

Cap(B(x,R),B(x,R+7r)") < W)

This next point is one of the key ideas in this area: we cover with balls of the smaller scales. Fix an N = A;’—net
of B(x, R) (meaning that we have some maximal A;r—separated subset of B(x, R)); given such a family of points).

Maximality implies that the balls Une,\, B (n, A;r> cover B(x, R). For each such point n, pick a cutoff function %,
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for the annulus between B(n, A;r) and B(n, 5), with energy controlled as

m(B(n, 3))
P(r)

(by the doubling property we can assume that balls of different radii are comparable).

EWn ¥n) S

We can now define the function ¥ = max,en ¥n; this is a cutoff function for B(x, R) which is zero outside of
B(x, R+ g) It's not so clear that this function belongs in the domain of the form or how to estimate its energy, but

a useful fact about the energy measure in terms of the associated process (Y;) is the following:
1
[ 79 (@.8) = tim $Erl000) - 606
X tio t

(here Ef ,, means we have some starting distribution with density f relative to m). Indeed, we can decompose ¢(Y;)
into a martingale and finite-variation part by Ito's formula, with the growth of the quadratic variation part depending
on |V@|2. The left-hand side becomes the energy when f = 1, and if we plug in ¢ = v we can also use

[W(%) = Y0017 < max[9n(Ve) = ¥n(Yo)* < D [9n(Ye) — wa(¥o) %,
" neN
so the energy of the maximum is less than the sum of the energies and we have the same inequality for energy measures.
And this gives us a probabilistic interpretation of the energy measure in terms of the quadratic variation. But the point

is that
F(,9) <> T (Wn, ¥n),

neN
and because 9 is identically equal to 1 on the ball B(x, R) (as the maximum of cutoff functions) we don't have to
worry about energy contributions by strong locality: (), ¢)(B(x, R)) = 0. (Similarly there are no energy contributions
outside B(x, R+ r).) Thus we get the estimate

E(, ) = T(W,W)(B(x. R + )\ B(x, R))
< ST Wn W) (B(x, R+ 1)\ B(x, R)).

neN
Notice also that most of the v,s don't contribute to this sum, because any v, that is not near the boundary will have
support inside the smaller ball. And with the remaining ones we can use our estimate on (v, ¥,), and we know that

the balls will not overlap too much. Thus the result is that we get the bound
(B(x,R+r)\ B(x,R))
Y(r) '
We'll now build a cutoff function at the scale R: if we have balls B(x, R) and B(x, AR), we will break that up into k

concurrent annuli of depth r, meaning that k ~ §. That is, for all 1 < < k, we define balls B; = B(x, R+ ir) and
let 9; be a cutoff function for B(x, R+ ir) C B(x, R+ (i + 1)r) satisfying that previous bound

g ) <

m(B(x,R+ (i +1)r)\ B(x,R+ir
EWi ) < (B( (1+1)r)\ B( )
W(r)
We then average these functions together by defining
k—1
1

Y = P i,

i=0
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which will be a cutoff function for B(x, R) C B(x, AR). Again, we want to estimate the energy, but by bilinearity

k—1

E(W.P) = % S e ) S %M
i=0

Y(r)

because cross-terms are zero (one function is always constant in the support of the other for £(%;, ;) when i # j).

Here in the last inequality we use that by the doubling property, the total sum of all the volumes of the annuli is of the

same order as B(x, R). But this quantity is proportional to (ﬁ)2 \fp((’f))

and therefore what we've proved is that

Cap(B(x, R), B(x, AR)) < (é)

2 V(R)
P(r)’

but also we previously found the lower bound % < Cap(B(x, R), B(x, AR)). So putting these inequalities together

yields the Gaussian lower bound, as desired. O

Working with the capacity makes the calculations simpler here; we could also interpret from the point of view of

exit times from balls, but it's not so clear how to do the appropriate bounds in that case.

Example 118
We'll now give some ideas for how to construct spaces given some specified volume growth V' and spacetime
scaling 1, assuming they satisfy the bounds above. These ideas go under the name Laakso spaces (and they

were constructed in 2000); these spaces are constructed so it's easy to compute the spacetime and volume profile.

Even for relatively simple looking fractals, it can be hard to compute the exponents. Indeed, as we said last time,
we know that the Sierpinski carpet has some exponent which we can estimate numerically, but for which the actual
value is unknown. But the other direction (given exponents, construct a space) is much more manageable.

We'll do the special case 9(r) = r? first. The idea is to glue many copies of the line [0, c0), indexed by a certain
ultrametric space. Define a uniformly bounded function g : Z — N (meaning that 1 < infg < sup g < oo which we
should think of as a gluing function. Define the set of functions

Ulg) = {s 1 Z — Z:s(k) €0,g(k) — 1] for all k and klim s(k) = O} .
—00
So the kth component has g(k) different possibilities, and we're taking products but restricting to eventually-zero

functions so that U(g) can be made into a metric space. Specifically, we can set

du( )(5 t) = oinf{keZ:s(€)=t(¢) for all £k}
g ' - ]

which will always be finite because both sequences are eventually zero. This satisfies a version of the triangle inequality
with sum replaced by maximum, and we now define the Laasko space

U(g) x [0, 0)

~

L(g) =
with ~ the smallest equivalence relation which glues points
(5,x) ~ (8", X) if x=x"= (2k — 1)2" for some k € N, n € Z and s|z\(n} =[Sz, (}-

To explain what's happening, suppose g(n) = 3. Then at every odd multiple of 27, we glue three different copies of
the positive real line together, and otherwise those copies are disjoint. These sets Wy = {(2k — 1)2" : k € N} are

typically called level-n wormholes.
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The metric on £(g) is then the shortest path (geodesic) metric such that each copy of [0, co) has the usual metric.
Since there are wormholes at all scales n (which can be arbitrarily small), they are dense in our space. So our diffusion
will behave like a Brownian motion within each real line, but each time it encounters a wormhole it goes to each of
the branches with equal probability (some version of this is also called the Walsh Brownian motion). But of course
it's hard to visualize this because we always encounter wormholes at arbitrarily small scales.

We get a measure on U(g) x [0, co) by taking the product measure nm,(g) x Leb([0, 00)), and then the pushforward
of this under the quotient map yields a measure on £(g). Here we're defining the measure () to be the restriction

to U(g) of the following measure:

uniform probability measure on [0, g(k) — 1]NZ, k<0,

x| counting measure, k > 0.

So if we fix a function up to some negative scale k and choose the rest uniformly, we can estimate the volume (because

it's uniform after that on some space). We find that

(ITi_, g(k)) ™" 2-t<r<27n<o,

Mu(g) (Bug)(s. 1)) < { 1 1<r<2
[17=1 (k) n>02"1<r<2nm
Defining the function Vj,oy(r) = Z: g(k), the volume growth of the Laasko space is then of order rVj,4)(r) (since

we also have linear growth along the Lebesgue measure part). And we won't write down the Dirichlet form explicitly,
but we can think of it as f(f’)zdmg with ' the derivative along the real line. Indeed, this diffusion has the property
that it becomes the usual Brownian motion if we project down onto [0, o), and we just end up with some additional
randomness about how to jump at each scale.

It turns out that by varying the function g, we can produce any space with the specified Gaussian volume/spacetime
scaling. (Indeed, making g larger essentialy corresponds to having a “higher-dimensional space.”) We do this by proving
a Poincaré inequality (using the “pencil of curves” approach from last lecture), and that's what Laasko does in the

original paper.

Generalizing beyond the Gaussian case, instead of gluing different copies of the real line, we can also glue different
copies of an r-tree. This fixes the spacetime scaling behavior, and then we can choose a similar gluing g to get
the correct volume growth behavior.

Also, recall from some of our afternoon talks that the Heisenberg group doesn’t embed into Euclidean space
in any bilipschitz fashion — the same holds for Laasko spaces.

A probabilistic construction of diffusion on Laasko spaces was first given by Barlow and Evans in 2001, but it was
hard to get heat kernel bounds until these more analytic techniques came in.
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Theorem 120 (Carron and Tewodrose, 2022)
Let (X,d, m, &, F) be an MMD space, and let o € [1,00) be such that the corresponding diffusion process has
Euclidean-like heat kernel (that is, “like Brownian motion on R*")
(x,y) = 1 ex 7d(x,y)2
PeXY) = ort)arz &P 2t
for all x,y € X and all t > 0. Then in fact we have a = n for some n € N, and X = R", d is the Euclidean

metric, and the corresponding process is ordinary Brownian motion.

So the point is that if we restrict ourselves to equality rather than just having upper and lower bounds, we can't
choose any a and in fact we need to be exactly Euclidean. Thus what we have is a result about rigidity of the heat

kernel.

Proof idea. We'll see now why the volume doubling and Poincaré inequality characterization is useful. The proof uses a
result of Colding and Minicozzi from 1997, which states that volume doubling and PI(2) implies the space of harmonic
functions with polynomial growth (meaning that h(x) < (1 + d(0, x))¥) has finite dimension. (For comparison, in
Euclidean space, every harmonic function of polynomial growth is actually polynomial.) So the space of harmonic
functions with linear growth is finite-dimensional; in Euclidean space this dimension is n + 1, so what we can do is

throw out the constant function and use the remaining space to get an isometry to R". O

Remark 121. There is a similar heat kernel rigidity result for the n-sphere which has also been proved. The analogous

result for hyperbolic space is conjectured but still open.

Example 122

In the rest of this lecture and the next, we'll see some more applications of characterizations of heat kernel
bounds. The theme from now on is transformations, getting new things from old things — we'll study reflection,
killing/absorbing, and time change. The idea is that once we reach the boundary of our domain, we want to either

be able to kill the process or send it back inside.

We'll begin with reflected diffusions. For reflected Brownian motion on R”, one strategy is the SDE approach
(also called the Skorokhod equation), where we define a process via the equation

Y(t) =Y(0) + B(t) +/ﬁ(Y(s))dL5,

where 7 is the inward-point normal vector and L is called the boundary local time (we'll come back to this next
week). And the other strategy (due to Fukushima) is to use Dirichlet forms directly:

1
Ep(f.f)= f/ |V F(x)|?dx,
2 J/p
where the domain here is the set of functions
F=W"(D)={feL?*D):|VfleL*D)}.

These approaches yield the same result if D is a smooth domain and we want an “ordinary” reflection. But the
first method can also handle oblique reflections at some other angle (the second cannot because we no longer get a
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symmetric process and thus Dirichlet forms do not apply), while the second can also handle non-smooth domains (the
first can do so with an approximation via smooth domains, but that takes more work to do).

Example 123
We can understand the construction above in the simple one-dimensional case where the domain is D = [0, 00).

In this case, we should actually have that Y; = |B;| for B; an ordinary one-dimensional Brownian motion.

In this case, we can write down the heat kernel explicitly: we have

ptD(X:Y) = pe(x,¥) + pe(x, —y)

for p; the ordinary heat kernel. So we know the heat semigroup, meaning that we can calculate the Dirichlet form by
taking limits of that semigroup; it's a good exercise to check that we end up getting the same £p as above.

If we now move to more general spaces, we need to make sense of the condition that “|Vf| is in L2." In general,
the form (£p, W12(D)) that we construct will not be a regular Dirichlet form on L?(D):

Example 124

Consider the space R? \ (—o0, 0] x {0}), which is the plane with a slit. Defining a reflected Brownian motion on
this space means we cannot take the space to be L?(R?), because it would mean a single point on the negative
real line has to correspond to two points in the state space.

To get around this, Fukushima defines a Dirichlet form on a certain abstract closure of D, called the Martin-

Kuramochi compactification:

Definition 125
Let (X,d,m, &, F) be an MMD space, and let U C X be a domain (here we mean a nonempty open proper
connected subset of X). Define the function space Fioc(U) to be the m-equivalence class of functions f on U,

such that for every relatively compact subset V' of U, we have f1y, = ff1, for some f! € F. We then define

FU) = {f € Fioc(U) : / f2dm+/ Fu(f. f) < oo},
u ]
where ['y(f, ) is the energy measure for Fioc(U) which restricts to any V via

Fu(f, Oy, = T M), .

The distribution of the gradient only depends on the local behavior of the functions, so it makes sense that this
may yield a sensible Dirichlet form. We have to check (via strong locality) that even though there are multiple different
fis that we can take, [y(f, f) is still well-defined.

Remark 126. We need to be able to pick different f's for different relatively compact subsets V/, because otherwise
we would be specifying that f extends to a single global function in W2 ; that turns out to be a strictly smaller space
in general. For example we may want to allow functions f which are 1 on one side of the slit plane and 0 on the other.

We thus get a bilinear form (&y, F(U)) which will correspond to reflected diffusion by setting Ey(f, f) = Ty (f, £)(U).
And next time, we'll see some conditions to get us a regular Dirichlet form on U.
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12  June 20, 2025

We discussed two approaches last time for discussing reflection at a domain — let’s continue elaborating on the Dirichlet
form approach today. Since the form is strongly local, we can define an energy measure for any function in Fiec(U)

(this is kind of like “agreeing on charts for manifolds”), and the questions we're interested in are the following:
« When is (£y, F(U)) a regular Dirichlet form on the closure L2(U, m)?

+ When does the corresponding reflected diffusion inherit behavior of diffusion on the ambient space? (For example,

can we get sub-Gaussian heat kernel bounds for the reflected diffusion as well?)

We'll be able to give a positive answer for a certain class of domains:

Definition 127
A uniform domain is a domain D such that there is a constant A where the following condition holds: for any

pair of points x, y € U, we can connect them with a curve v, such that
. . 1
diam(vy) < Ad(x,y), dist(z,U%) > Z(d(X' zZ)ANd(z,y)) forall z € 7, .

In other words, our curve does not stray too far from x and y, and we can avoid getting too close to the boundary

of the domain.

Generally domains that do not satisfy these conditions have certain (outward or inward) cusps or slits, but for
example the graph of a Lipschitz function will be the boundary of a uniform domain. And even things like the

snowflake domain are uniform even though they are very fractal.

Theorem 128 (Rajala)

Consider a metric space (X, d) satisfying the doubling property (so every ball of radius r can be covered by some
constant N number of balls of radius r/2) and such that there exists some C > 1 such that for all x,y € X there
is a curve yx, whose length is at most Cd(x,y). Then for any bounded domain €2 of X and any € > 0, there
exist uniform domains Q;, 2, (“inside” and “outside™) such that Q; € Q C €, but if we take e-neighborhoods we
have Q, C Q° and Qf C €.

So any bounded domain can be approximated by uniform domains from inside and outside.

Theorem 129 (Murugan, 2024)

Suppose (X, d, m, &, F) satisfies HKE (1) heat kernel bounds for some scale function ¢ and has volume doubling.
Then (£y, F(U)) is a regular, strongly local Dirichlet form on L2(U, m), and the corresponding reflected diffusion
also satisfies HKE(%).

The case where 9(r) = r? was already known (and due to Gyrya and Saloff-Coste from 2011), and in fact it was
proven more generally for inner uniform domains U (that is, uniform with respect to the intrinsic metric). But the
proof here for more general scale functions doesn't work for inner uniform domains, and it's natural to conjecture that
the theorem should also be true for inner uniform domains as well (but now using the intrinsic metric).

To understand why Gaussian and sub-Gaussian cases can be rather different, consider the following:
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Theorem 130 (Kajino, Murugan 2020)
Suppose that (X, d, m, &, F) is an MMD space that satisfies HKE(%) with ¥(r) = r® for some dy > 2.

1. If dw = 2, then we have absolute continuity I'(f, f) < m for all f € F, and additionally m < I'(f, f) for a
dense set of functions f € F.

2. However, if dy > 2, then the measures are singular: '(f,f) L m for all f € F.

Proof idea of Theorem 129. The main idea is to use an extension of functions in F(U) to F; the original idea is due
to Jones (in 1981), where it's shown that £ € W*P(U) can be extended to W P(R"). (So already this part of the

proof will not work for inner regular domains.) The generalization is the following:

Theorem 131
Let (X,d, m,&E,F) be as in the previous theorem, and let U be a uniform domain. Let (£y, F(U)) denote the
quadratic form corresponding to reflected diffusion. Then there is an extension map E : F(U) — F, such that
E(f)ly = f for all f. Furthermore, there exist constants C, K € (1,00) such that we get the boundedness
properties for the energy

F(E(f), E(F))(B(x,r)) < CTy(f, f)(UN B(x, Kr))

for all 0 < r < ¢ diam(U), and we also bound the L2 norms via

/ |E(F)Pdm < c/ f2dm
B(x,r) UnB(x,Kr)

for all r > 0.

In particular, taking r — oo, this implies that

2 2 1
/X|E(f)\ dm < C/Uf dm, E(E(f),E(f)) < C<5U(f, f) + EPTIO) /fdm>,

and these kinds of global bounds are what Jones was originally interested in (extending continuously to a function on
the whole space). But we have to care about local inequalities and thus we need extension properties at various scales.

We'd like to get pointwise bounds on things like the gradient, but because the energy measure is singular with
respect to the reference measure there isn't much hope of doing that. Even in the Euclidean setting, this is an
interesting question: for some function £ € W12(R"), can we estimate [ |Vf|?dx without any pointwise estimates on
|[Vf|? The answer (due to Korevaar and Schoen in 1993) is the following:

A function f € L2(R") belongs to W2(R") if and only if the quantity

Iimsup/n]i( )Wdydx<oo,

rl0 r

and in such a setting the left-hand side is asymptotic to [ |V f|?dx.

More generally if we have HKE(%) estimates, we can then extend this naturally (this is due to Grigor'yan, Hu, and
Lau) by replacing dydx by m(dy)m(dx), replacing r? with 2(r), integrating over the metric space instead of R”, and
replacing f |VF|?dx with £. So up to a constant factor, we can characterize purely off the metric space structure!
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Remark 133. The extension map itself is constructed using Whitney covers. The definition is as follows: for any
e € (0,3) and any open set U, a collection of balls {B(x;,r;) : x; € U,r; > 0} is called an e-Whitney cover if (1)
the balls are pairwise disjoint, (2) r; = 1%Edist(x,-, U*) (so the radius is essentially proportional to the distance to the
boundary), and (3) slight dilations cover the space in the sense that | J;c; B(xi,2(1 4+ ¢€)r;) = U.

So now to explain the construction, for simplicity assume U and U¢ are unbounded domains (for example if our
domain is above the graph of a Lipschitz function) and construct Whitney covers W(U), W(V) for U and (U¢)°. We
then construct some map Q : W(V) — W(U) so that diam(Q(B)) < diam(B) =< dist(xg, xq(s)). For a function f
only defined on U, we can then define

E(f)=rflu+ Y, fas¥®
Bew(V)
where fo(g) Is the average of the function f on the image Q(B), and {48} is a partition of unity of V = (U°)° (so
that Y8 = 1y); we can think of those as basically being cutoff functions except that they should have small energy:

E(B YB) < Tp((lf)) for r = r(B).

To see now why the extension theorem should imply good heat kernel bounds for the reflected diffusion, first we'll

see why it defines a regular Dirichlet form.

+ To show that it is closed, first pick a Cauchy sequence (f,) under (£y)1. Then the extended functions (E(f,))
also form a Cauchy sequence (by the energy and L2 bounds in our extension theorem), which will converge to
some f which we can restrict on U. In fact, this tells us that for uniform domains F(U) can be viewed simply as

{fy : f € F}, and that is not always true for things like slit domains.

+ To show that it is regular, we must further use the fact that £ maps continuous functions C(U) to continuous
functions C(X) (where continuous means existence of a continuous representative). Indeed, any function on the
whole space can be approximated by continuous functions, and so every function on the local space is the limit

of continuous functions with compact support.

From here, Poincaré inequalities turn out to be easy to prove from the extension property as well. Pick some f € F(U),

and bound the variance via the integral on the whole space:

| i~ fongn [ dm=inf [ faPdm
UnB(x,r) & JUnB(x.r)

< inf/ |E(f) — af*dm.
B(x,r)

a

Now using the Poincaré inequality for the original diffusion and then using one of the bounds from the extension map
yields the result: we can bound by (r) fB(x,Ar) T(E(F), E(F)du < ¢(r) fUmB(X'KAr) I'(f,f). This is only true up to
order of the diameter, but then a covering argument gets us the rest. ]

From a probabilistic perspective, it is a bit unnatural to have to look outside U to do the proof, so it'd be nice to

have a strategy which avoids this.

If we knew that HKE(4) is equivalent to volume doubling, PI(1) and Cap(%), then we would be able to obtain
heat kernel bounds HKE(%) for reflected diffusions as well. Indeed, capacity bounds are easy to show for the

reflected diffusion, but cutoff energy inequalities are more difficult.
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Example 135

We'll now turn to diffusions that are killed upon exiting; first we need to explain how to define the Dirichlet form.
Let Y; be a process corresponding to (X, d, m, &, F), and let Ty be the first time the process goes outside U. our
goal is to define the killed or absorbing diffusion

Yi t<Ty,

vy =
A T>TY,

where recall that A is the cemetery state.

Much like with reflected diffusions, the general characterization of using functional inequalities like Poincaré and
cutoff energy is very useful, but there is an additional step involved here. By standard convention we know that we
tend to take functions to be zero on the cemetery state, or more precisely we set P f(x) = E, [f(Y:)1{t < (}]. Thus
we can define the class of functions which are “zero outside U:"

FU)={feF:f=0¢&qe on X\U}

(Indeed, this is the right definition to make — if we're just removing a single point from something like 3D Brownian
motion, we shouldn’'t end up with anything different because almost surely we won't visit that point.) We can thus

define (note the tricky notation here, with £ meaning reflected and £Y meaning killed)

EY = &l pwyxrow).

which yields a regular Dirichlet form (€Y, FO(U)) in L2(U, m) which corresponds to Y;V. So no additional conditions
on the domain are necessary — we can just define the Dirichlet form in this straightforward way.
The main idea for analyzing this is to use the Doob h-transform — for this, we need to introduce boundary

conditions for functions only defined on U.

Definition 136
Let V C U be two open sets. Define the “functions on V' with zero boundary conditions with respect to U"
F2.(U,V) as follows: it is the set of m-equivalence classes of functions f such that for every set A where A is

open, A is compact, and ANU\ V = @, we have f = f! m-a.e. on A for some ! € FO(U).

In our previous definitions of this kind, we always looked at compact subsets of V/, but now we're also allowing

boundary conditions as long as they're fully inside V. So F2_(U, V) is some strictly smaller subset of the Fioc(V) we

defined before.

Fact 137
We'll restrict to unbounded uniform domains U (though with some modifications things also work for the bounded

case). Then up to constants, there exists a unique harmonic function h > 0 on U, such that h € F2_(U, U).

Example 138

If we consider Brownian motion on R” and U is the “first orthant” (0, 00)”, then the harmonic function turns out
to just be h(xy, -+, xn) = [1/; X And if U= {x € R": |x| > 1}, then we instead have h(x) = log |x| for n =2
and h(x) =1 — |x|>=" for n > 3 (for n = 1 our domain is no longer connected).
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So in any of these domains, a Brownian motion is almost surely going to exit the domain. Doob wanted to condition
on the Brownian motion to not exit for a very long time, and that’s the idea of the h-transform — we can describe the
process in a very nice way.

Definition 139

Let M, be the multiplication-by-h operator L2(U, h?>m) — L2(U, m); with our definition this operator is unitary.
The semigroup we get from conditioning is the following: let PY be the semigroup corresponding to the process
killed upon exiting. We can then define a new semigroup via conjugation

PUM = Mt o PY o My,

We can check that this is also a strongly continuous contractive semigroup on L?(U, h?> - m), and (because h is

harmonic) that the Markov property holds. Indeed, PtU'hl = PfTUh, and now this is less than 1 by harmonicity. So now

if p%’(-, -) is the heat kernel of the killed semigroup PtU, then the heat kernels are also related via conjugation relations
pe (x,y) = h(x)h(y)p¢"(x, ¥).

Thus estimating the heat kernel of the original group is more or less the same as estimating the h-transform semigroup.

Example 140

Consider Brownian motion on the half-line U = (0, 0o) exited at 0. We know that h(x) = x, h?(x)dx = x°dx, so

the h-transformed process takes the form
EUN(F, ) = / (F(x))*xdx,
0

which is the familiar three-dimensional Bessel process.

Once we know the Dirichlet form, we can compute
EUN(F, F) = E(My(F), Mp(F)) for all £ € FUK = MY (FO(U)).

Whenever we have Gaussian or sub-Gaussian heat kernel bounds and a uniform domain whose complement is big
enough, this h-transform process has infinite lifetime and will not be killed. So we have a relation between the
h-transform semigroup and the ordinary semigroup; instead of trying to directly estimate our heat kernel we can
estimate PtU'h(X,y) instead. To do this, we have the following:

Theorem 141 (Gyrya, Saloff-Coste 2011, Lierl 2021)
Let U be uniform and unbounded. Then if the MMD space (X, d, m, &, F) satisfies HKE(%), then (€Y7, FY") on
L2(U, h? - m) satisfies HKE(%).

Remark 142. In the bounded case, instead of looking at the harmonic functions, we can similarly define the h-transform
using the first eigenvector even though it's not harmonic. This then yields an extra exponential term in the estimates

coming from the nonzero eigenvalue.

The proof proceeds by showing Pl(1)) and CS(%) for (£ FUMY on L2(U, h? - m). The idea is that we stay far
enough away from the boundary that we can prove Poincaré using balls in a Whitney cover using Harnack inequalities,

and then with covering we can get it for everything.
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Fact 143
To understand the relationship between the heat kernel p; for the whole space and p¥Y for the whole process,

clearly p; > pY but we want to know “by how much.” We have the Dynkin-Hunt formula

pr(x,¥) = pd(x,¥) + Ex [pr—r, (Yo, ¥)1{Ty < t}]

corresponding to the exit time being larger and smaller time t, respectively, but this isn’t very useful for estimating
compared to the h-transform techniques mentioned before.

13 June 23, 2025

In the last two lectures, we saw how characterizations of the heat kernel can be used to analyze reflected and killed
diffusions. We mentioned in particular the h-transform process, but we didn't mention how we actually obtain the

function h. It turns out to be not so explicit, coming out of a subsequential limit construction:

Example 144

We've been looking at MMD spaces (X, d, m, €, F) satisfying HKE(%) and looking at what happens when we Kkill
our process outside a uniform domain U. We'll now restrict our attention to R” for simplicity, and we'll assume
that the killed process (YY) is transient. (If it's recurrent, then the complement of U is a polar set and thus the

heat kernel will be the same as Y; itself.)

In this setting, the Green’s function is the function gy such that Agy(x, ) = —dx for all x € U and gy(x,:) =0
on AU (we can think of this as the occupation density for the associated process). We see that gy(x,y) = gu(y, x)
is nonnegative for all x,y € U.

We're assuming that U is unbounded (otherwise things depend on the first Dirichlet eigenfunction), so we can pick

some sequence of points x, 1 oo and fix some base point xg € U. Normalize the function and define

h(-) = gu(xn, *) _

gu(Xn, X0)
By the elliptic Harnack inequality and Moser's oscillation lemma, the functions h, are uniformly bounded and equicon-
tinuous on compact subsets of U (since they all have value 1 at xp and then we can use the Harnack inequality on a
chain of balls to any other point), so by Arzela-Ascoli we can pass to a subsequence to get a limit h = limy_oo hp,
which is uniformly convergent on compact subsets. We can check that h is harmonic everywhere (because each gy
is harmonic except at a single point x, but those points are going to infinity) and that it is zero on the boundary; in
particular we find that h € F2_(U).

This isn't so satisfactory if we want a concrete estimate (since everything in the Doob h-transform has estimates
dependent on h), and it's an interesting question to see how we might do this on a specific domain.

To show uniqueness, we need the boundary Harnack principle, which will play an important role when talking

about time-changes later.
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Definition 145

Let (X,d, m, &, F) be an MMD space and U an open subset of X. We say that U satisfies the boundary Harnack
principle (BHP) if there are constants Ag, A1, c1 € (1, 00) such that for any point £ € AU, any r € (0, di%l(u)),
and any pair of nonnegative £-harmonic functions u, v on UN B(€, Agr) with zero boundary conditions relative to
U (thatis, u,v € F2 (U, UN B(&, Arr))), we have

sup 2<c; inf 2
B(&,r)nU v B, r)nU v

This estimate controls how the harmonic function (which is zero at the boundary) decays near the boundary, and
it says that two such functions always decay at the same rate. This particular definition is due to Aikawa in 2001,
though there's been lots of work in more specific settings before that.

This kind of fact helps to prove uniqueness of harmonic functions with zero boundary conditions, since one way to
think about uniqueness of a nonnegative harmonic function is a Liouville property for ratios. In the Harnack inequality
case, we saw that Moser’s oscillation lemma implies Holder regularity, which was enough to show the Liouville property.
A similar argument works here — we have uniqueness of h up to a positive multiplicative constant, since in this case

the oscillation lemma tells us that for u, v nonnegative on B(£, R) N U and zero along AU, we have

u r\ u
0SCa(&nnUT, <C (E) 0SCa(¢, RNV -

Indeed, as R — oo we see that the oscillation of |/ approaches zero.

Remark 146. The rate at which we decay can still depend on the particular boundary point on the domain, though.
For example if U has a sharp 90-degree corner, conformal mapping techniques tell us that near most points on the

boundary we decay as dist(x, U°), but at the corner point we decay instead as dist(x, U¢)2.

The resulting h-transform semigroup is exactly the same no matter what this multiplicative constant is, so everything
we care about is still unique. And we'll see more applications of this soon as we move now into time-changes. We'll
begin this last topic of the course with an example of finite Markov chains:

Example 147
Recall Example 8 of the state space X = {1,2,---, n} equipped with a conductance matrix ¢ : X x X — [0, c0),
which defines a discrete-time Markov chain with transition probabilities

cxy) _ _cxy)
m(x) X, clxy)

We also defined a function A : X — (0, oo) which governs the jump rate by specifying an exponential wait time

P(x,y) =

at x with rate A(x). This then gets us a continuous-time process.

As we saw in the first week, it's generally not so easy to write down the semigroup, but it's easy to write down the

generator (we'll keep the A in the notation now)

PO~ () _

m A = Q)F (),

LM (x) = i

where Q is the operator such that Qf(x) = >, P(x, y)f(y). Indeed, if X is high we jump out of the state faster and

thus the derivative will be larger. This generator L* is then M*-symmetric, where we define m*(x) = ﬁm(x). We
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can then compute the Dirichlet form
1
E(FF) = (=L F) gy = 5 D_(F(X) = F(1))Pe(x.y),
X,y

and in particular this Dirichlet form doesn’t depend on X at all. Indeed, ) is just specifying the time parameterization,
and other than that the process behaves exactly the same way. So we can express all of these processes (Y;)) in terms
of one where X is identically 1: we'll drop X from the notation in that case and just write (Y;). For this, we'd like to

A*—/t L ds
! o MYs)

This is an increasing process which starts at zero at time 0, and it is piecewise linear. Each of those pieces has (time)

define a “clock”

length independently distributed as Exp(1), and the slope of those pieces depends on the value of A at the current

state (so if A is small, the process is quite large).

A
Exp(A(x2))
H---------- !
Exp(A(x1)) T
= | : 3
Exp(A(x0)) 3 i |

! v N ? t

state xo© xi | xp |

each Exp(1) length

But the point now is that the value gained on each interval for A} is Exp(A\(x))-distributed, and those amounts

are again independent! Thus if we define
T} = right-continuous inverse of A} = inf {s > 0: As > t}

(in this case it's continuous because we have an increasing process), the description above tells us that (YT?) is a
Markov process with generator L*. So we can get from Y; to Y;* by reparametrizing using this function A;. The key

properties of A; are the following: let (F;) be the filtration and (6;) the time-shift operators corresponding to (Y%).
- (A}) is [0, oo-valued, non-decreasing, and (F;)-adapted with Ay = 0.

» The process is additive with respect to the shift operators, meaning that

Atps(w) = AR (W) + A2 (8 (w)).

Example 148

Now suppose we slightly change our setting so that we now allow X to be co-valued (meaning that we spend zero
time at some particular states, since we automatically jump away at infinite rate). We should then not consider
those states as part of the state space anymore. An example is if we have a 4 x 4 grid of vertices in a lattice,
where the jump rates in the middle 2 x 2 grid are infinite. The point is then that we can now form new edges

between states that weren't already there, and it's not so clear how we compute those rates.
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In the graph of A} above, some of those piecewise linear segments can now be horizontally flat, which means
that the right-continuous inverse will make a jump. For this part, now suppose that the support of Mm* is now some
nonempty proper subset F of X, and also assume that (Y;) is irreducible. Define

Te=inf{t>0:Y; € F},
and now for any function g : F — R, define the harmonic extension H¢(g) : X — R via

HE(9)(x) = Ex [9(Y7,)] -

Proposition 149
Let X, c, A be as above, and consider any function g : F — R with extension § : X — R. Then we have the

following equivalent characterizations:
1. Harmonicity in the sense above; that is, §(x) = He(g(x)) = Ex[g(Y7.)],
2. LG(x) =0o0n X\ F, for £ a variant of the Laplacian,
3. (Weak formulation of the point above) £(g, ¢) = 0 for all ¢ : X — R with support contained in X \ F.

4. (Harmonic functions are energy minimizers) £(§, §) = Minp. xR extension of g € (A, h).

From here, we'll just do the same computation as we did before. F will be the state space of the new time-changed
process, so for x € F we have

PRg(x) = Ex(9(Y))
— e MWtg(x) + (1 - efMX)f) D Pxy)gy)+ Y PO, y)HE(9)(y) | + o(t?).
y€EF yeFe

This is basically the same logic as usual, where we make either zero jumps, one jump, or more with vanishingly small
probability as t | 0. But for the one-jump case, we have to separate into possibilities of whether we get to another
state in F or something else, and in the latter case we need to use the harmonic extension to get the probabilities of
ending up at various states. Remembering now that the function g is exactly Hrg for any x € F, so we can actually

write this more simply as
P g(x) = e AtHeg(x) + (1 - e’*(x)t) P(x,y)HLg(y) + o(t?),

meaning that the generator is

L2 g(x) = =A(x)(] = Q)HE(9)(x)
for all functions g : F — R and all x € F. And again, we can now write down an inner product to compute the
Dirichlet form (notably on the space F, not on the space X)

£(9.9) = (L9, 9) sy

we can write this out using that g = Hrg on F and noting that again the factors of A cancel out between the generator

and the measure to get
(I = Q)HE(9), HE(9)) 12(my = E(HE(9), HE(9)).

A similar story will occur in general now beyond finite state spaces, and the Dirichlet form of the time-change will
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now typically be defined on some subset of the whole state space.

Definition 150

Let (£, F) be a regular Dirichlet form on L2(X, m), (Y;) the corresponding process, (F;) the filtration, and (68;)
the time-shifts. A positive continuous additive functional (PCAF) is a collection of random variables (A:¢)¢>0
satisfying the following properties:

+ (At) is (Ft)-adapted.

« There exists some A € F,, and a properly exceptional set N' C X for (Y;), such that Py (A) = 1 for all
x € X\ V. Furthermore, 6;(A) C A for all t € (0, c0).

« For all points w € A in this “almost-sure set,” the function t — A;(w) is a continuous function from [0, co]
to [0, 0o], such that Ag(w) = 0, Ax(w) < oo for all t < {(w), Al(w) = A¢wy(w) for all t > ((w) (the
process stops doing anything after the lifetime ends), and Aris(w) = A(w) + As(0:(w)) for all s, t > 0.

We call A the defining set for the PCAF, and we call N the exceptional set. We also further say that (A:) is a
PCAF in the strict sense if ' = &. The support of A is then defined by

F={xeX\N:P(R=0)=1},

where R =inf{t >0: A; > 0}.

The F here should be thought of as the same F as in our finite state space case.

Theorem 151 (Revuz correspondence, special case)

For any PCAF A, there is a unique Borel measure pu on X, called the Revuz measure of A, such that

o1 t
/X fols = lim 1B [ /0 f(vs)dAs]

where the right-hand side is defined via the Stieltjes integral. This measure further satisfies (A) = 0 for any
E-polar set A. Conversely, for any Radon measure u which assigns zero mass to polar sets, there is some PCAF

whose Revuz measure is (.

We can verify that /m from before plays the role here of w, and the idea is that we should not be able to see sets

that were originally negligible before the time-change.

Example 152
Suppose p(dx) = g(x)m(dx), where g : X — (0, 00) is a “nice function” so that u is a Radon measure. Then

the associated PCAF has an explicit description in the same way as in the discrete space case, with

t
A= / g(¥e)ds.
0

It turns out that every Revuz measure of every PCAF can be approximated (in some sense) by measures of this
form; this is actually one of the steps in the proof of the correspondence.
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Example 153
Now specialize to the case of 1-dimensional Brownian motion. In this case, looking at the measure yu = dx (the

Dirac mass at x), the associated PCAF A is the local time at x

1 t
LY =lim— 1{Bs € (x —e,x +¢€)}ds.
g LA !
For a more general Radon measure . on R, we then get an averaged combination of these local times

At = | Lin(ax).
R

This description doesn’t make sense in high dimensions (because local time isn't defined), but it's still giving us
some intuition about what's going on.

If we now consider a PCAF A with Revuz measure u, and we let F be the support of that PCAF, it's typically the
case that F will be the topological support of w, but there are some counterexamples. Either way, we can define the

time-changed process corresponding to A

Yt = YTt! Tt — inf{s 2 0: AS > t}

The process (Y;) is then a u-symmetric process on F with Dirichlet form (&, F) given by (similar proof but more

technical, in fact given by resolvents)
F={flr:feF. Fflrel*Fu}.

To explain where these “quasi-continuous versions” come from, we'll be curious about things like reflected Brownian
motion, and it doesn't make sense to restrict f to be zero on the boundary (of measure zero) unless we impose

quasi-continuity. And unsurprisingly we have, for any u € F,
E(u, u) = E(He (), He (@0));
where the harmonic extension is given by
HE(i(x)) = Ex [a(Yr:)1{TF < oo}]

(it's possible for the time-changed process to have finite lifetime if the hitting time is infinite).

Example 154
Consider (€, F) the Dirichlet form for two-dimensional Brownian motion on L?(R?, m = Leb). Consider the

time-change formally defined by
M = exp(yX)dx, X a Gaussian free field.

For v € (0,2) this is an LQG measure defined via rescaling, and it turns out that M defines a PCAF A in the
strict sense, and it has full support R%. The corresponding time-changed process is called the Liouville Brownian

motion.

Recall that in a previous mini-course, it was stated as an exercise that conformality can be characterized by

invariance of Brownian motion. We'll see how to prove that now:
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Example 155

We'll begin by showing how we can compute an “image process’ given a bijection between two spaces. Let
(€, F) be a regular Dirichlet form on L?(U,m) and ® : U — V be a bijection, and suppose (Y;) is the process
corresponding to the given Dirichlet form (&, F). We would like to compute the Dirichlet form of the process
i/t = q)(yt)-

The reference measure to look at must be the pushforward of the measure m — that is, m = ®,(m) — and we'll

try to compute the semigroup. We have, for any function f € L?(V, M) and any y € V, that

Pef(y) =K, [f(V2)]
= By [f((v))]
=Eo-1y) [(F 0 ®)(Y2)]
= Pe(f o ®)(®71()).

So then taking limits as t | 0 lets us compute the Dirichlet form. There are two things that are easy to check, namely
that (1) (P,) is an m-symmetric Markovian semigroup on L2(V, ), and that (2) the corresponding Dirichlet form
(€, F) on L2(V. m) is given by

F={fel?(V,Mm): fode F},

E(f.f)=E(fod, fod) forall feF.

Next time, we'll restrict to the case where @ is a nice C! map and use that to get from reflected or killed Brownian
motion to ordinary Brownian motion. And we'll further characterize when this image process corresponds to a time-
change of a diffusion generated by a uniform elliptic operator (rather than just Brownian motion) — that's given by

what are called quasi-conformal maps.

14 June 24, 2025

We started talking about time-change of symmetric Markov processes last time — we take a PCAF A with Revuz
measure &, and we look at the right-continuous inverse of (A;). This defines a time-change process which will be
symmetric on the support F, and its Dirichlet form can be defined in terms of quasi-continuous versions and harmonic
extensions.

We were in the middle of an example last time where we start with a process Y; on a state space U and want to
look at the image process under some bijection ® : U — V. We computed the semigroup and got a description for
the new Dirichlet form E(f, f) = E(f o &, f o ®).

Example 156
We will specialize now to the case where U,V are domains in R and ® : U — V is a C!-diffeomorphism which
is orientation-preserving (meaning det(D®) > 0 on U). Consider the case where (&, F) is reflected or killed

Brownian motion on U (we won't worry too much about the boundary conditions).
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0P 9Py
In coordinates, we can write ® = (1, P5) and DP = ggll gglz . The Dirichlet form is then
Bxo  Oxo

E(f.f) = / |V(F o ®)|?dx = / VF(x)TAX)VF(x)dx
v U
by a change of variable and the chain rule, where A is the matrix
A(x) = det(DdD(dfl(x)))’lDdD(dD’l(x))TDd)(dD’l(x)).

(it's some 2 x 2 matrix which is always positive definite, so we have an elliptic operator). Then asking when we get
Brownian motion is the same as asking for this matrix to be the identity matrix, and that's the same as saying that
we have a rotation matrix for & — But that’s exactly the same as requiring the Cauchy-Riemann equations to hold, so

A(x) = |, <= & is a conformal map,

and A(x) is a uniformly elliptic operator if and only if the singular values are uniformly bounded from above or
equivalently from below (because the determinant of A is always 1, no matter what the derivative is — indeed, the

constant det(D®(®~1(x)))~! will be squared when we evaluate the determinant). Thus
A(x) uniformly elliptic <= [|D®(x)||? < K det(Dd(x)) for all x

for some constant K. Geometrically, conformal maps map infinitesimal circles to infinitesimal circles, and A maps
infinitesimal circles to infinitesimal ellipses of eccentricity at most K — we say that ® is K-quasiconformal in such a

case.
It turns out it's possible to construct uniformly elliptic operators even on the upper half-space so that the associated

harmonic measure is singular:

Fact 157 (Caffarelli, Fabes, Kenig '81)

For any smooth domain D, there exists a uniformly elliptic operator whose corresponding diffusion has singular
harmonic measure with respect to the surface measure on D. For example, we can map the half-space to itself
in a way that is continuous on the boundary, such that we can make the pushforward of the Lebesgue measure

singular on the real line boundary.

The point, though, is that the image of a conformal or quasiconformal map will be the timechange of a Brownian

motion or a diffusion generated by a uniformly elliptic operator.

Example 158 (Kigami '06)

Let K be the Sierpinski gasket and m the corresponding normalized Hausdorff measure. Let (£, F) be the Dirichlet
form corresponding to Brownian motion on the Sierpinski gasket; we can construct a time-change via the Kusuoka
measure v = [(hy, hy) + I'(ho, ho), where hy, hy are the functions with boundary condition g(l, -1, —%) and
%(O, 1,—1) on the outer three vertices. We can check that the total energy is 1 and that the cross-energy
E(h1, hy) = 0, so we're choosing some kind of orthonormal basis. (What we said turns out to still be true if we

just pick only one harmonic function as well, but we'll stick to our current example.)

Letting v be a Revuz measure for the PCAF A, this functional will have full support and thus the time-change is also

a diffusion process. We've proven previously that with respect to the Euclidean metric, the original Brownian motion
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(€, F) on L?(K, m) satisfies heat kernel bounds HKE (:233) But the time-changed process (€, F) on L?(K, v) will

actually satisfy Gaussian heat kernel bounds HKE(2) with respect to the metric

dint(x,y) = sup{f(x)r(y) : f € FNC(K)}.

which generates the same topology as the Euclidean topology. (And this is not just about the choice of metric —
because of singularities, we can't change the metric for the original Brownian motion on the Sierpinski gasket to get
Gaussian heat kernel bounds.) So things can be pretty complicated under time-change!

So far in all of our examples, we started with processes which were already diffusions. But we can also end up with
processes that go into a smaller space:

Example 159 (Boundary trace of reflected diffusions)

Suppose we have a reflected diffusion Y; on a nice domain D. Let A be a PCAF whose support is the boundary
0D, so the timechange will live on the boundary only. We can think of this as having a reflected Brownian motion
which jumps around from point to point, and we want to calculate the Dirichlet form of the resulting jump process.
To do this, we start with the simple situation of a smooth bounded domain and reflected Brownian motion,

and we'll talk about extensions afterward.

Let U C R” be such a domain; the Green’s function can be defined via the equation

Aygu(x,y)=—06x, yeU
gu(x,y) =0, x € du.

We'll come back to the probabilistic interpretation of this when we work on more general domains later, but for now
the idea is that we start with a boundary function, extend it harmonically, and compute the Dirichlet energy on the
interior to get the trace Dirichlet form on the boundary. Given some compactly supported smooth f : OU — R, we
need to compute the harmonic extension Hpy(f) : U — R (meaning that we're harmonic in U with boundary condition
f on OU). By Green's formula, when we have smooth domains we can use the Green's identity (basically integration
by parts)

aVQ 8v1
/U(V2AV1 — i Awp) = /au (Vl(g)aﬁg(g) - Vz(ﬁ)aﬁs> do,

where do is surface measure on AU and i is the inward-pointing normal derivative. We apply this to
vi = Hau(f), va=gu(x,),

to get
Hau(f)(x)z/ fMdo.

ou O
and thus we get an expression for the harmonic measure of the domain U: for the Brownian motion started at x, we
have the classical expression
U _ dgu(x, )
w

< = Tﬁ,{do’

We now want to get a formula for the Dirichlet energy expressed in terms of the boundary values (since that's what
we started with). Again we use integration by parts via the identity

/Vvl'szdx:—/ levz—/ vlé—‘?a(dﬁ).
U U ou O
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Taking vq, v to both be the harmonic extension Hay(f), we thus have

[ wHanPax=- [ f(@aHaU() (de),
) au

and now we can interchange the integral and derivative and plug in our expression of Hay(f) from above to get a

second derivative

2
[ ivrannpac=— [ [ sorm g otnalde).

We can rewrite this in a form more familiar to us from the Beurling-Deny decomposition as

2 [ @ - o0 Z o anyaae)

(Indeed, the point is that the cross-terms give us what we want, and the non-cross-terms are the derivative of a

constant [, aga(;f)o(dg) =1, hence zero.) So what this tells us is that both the diffusion and the killing part are

zero in that Beurling-Deny decomposition, and so we do have a pure jump process.

This calculation actually tells us something nice — the jump measure is just the second derivative aagn“a’,’f o(dn)o(d§),

which we will express in terms of the harmonic measure — fixing some xp € U, we can write it as

0%gu(n. &) (99u(x0.€)\ " (B9u(x0. M)
oo, ( i ) ( o, ) o (A)wg ().
Definition 160 (Naim kernel, '57)
Define
@f{o(x,y) = u(x.y) for x #y e U

gu(x0. X)gu(x0, ¥)
Naim showed that ©{ admits a continuous extension to (U \ {x}) x (U x {xo}) \ diag, where U is something
called the Martin compactification and we have continuity in the “fine topology,” which is finer than the usual

Euclidean topology.

The point is that the blue part in the expression above looks a lot like the Naim kernel, and indeed Doob wrote

down the following formula:

Proposition 161 (Doob, '62)

We have for Brownian motion that the jump process satisfies

J(d¢, dn) = ©Y (€, mw (dé)wl (dn).

The nice thing here is that every term on the right-hand side has a probabilistic interpretation (in contrast to
something like the surface measure, which doesn’t necessarily have such an interpretation). We'd like to extend this
to arbitrary diffusions and metric spaces, but first we'll give one more example of a boundary trace process which has

been quite influential:

Definition 162

The fractional Laplacian operator with parameter o € (0, 2) is the operator —(—A)*/2,

We can make sense of this using the spectral theorem, since —A is a nonnegative self-adjoint operator. And we
restrict to this particular range of values of a because larger @ makes the corresponding quadratic form no longer a
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Dirichlet form (it fails the Markov property). There are also some other definitions: we can think of it in the Fourier
transform sense via
(—R)/2f = [€[*F (),

or we can also define it via the singular integral

fly) —f(x)
Tyl

(-8 = lim cra |

R7\B(x,r) Ix —
These definitions are all equivalent, though it does take some work to show that. And the point is that —(—A)%/? is

the generator of a symmetric a-stable Lévy process, with jump kernel given by

1
J(x,y) = Cn,aW~

There's some work talking about regularity of solutions even for these non-local operators:

Example 163
Molchanov and Ostrowski showed in 1969 that a-stable processes can be viewed as the boundary trace process
of the following process: let (B;) be a Brownian motion on R”, and let Z; be an independent (2 — a)-dimensional

Bessel process on [0, o0), and define (B¢, Z;). We then get the Dirichlet form
ewo)= [ [ IVuxnPlydyax
r Jo

on L?(H""!, m), and the boundary trace is an a-stable process.

This was also independently rediscovered by Caffarelli and Silvestre in 2007, who found a harmonic extension on
the upper half-space and computed a Dirichlet energy in terms of the boundary conditions. The reason they were
interested in this procedure is that the generator is (via integration-by-parts) A, + 9, + 1_To‘6y (we can think of this
as a weighted Laplacian). They were then able to obtain things like Harnack inequalities for the fractional Laplace
operator using the corresponding properties for the local operator, and this led to lots of other results in regularity
theory.

We'll show part of those calculations now. Let f : R"” — R be some boundary condition (viewed as the boundary

of the upper half-space in R"1); our goal is to solve the equation

Au+

u, + uyy, = 0.

When a = 1 this is very easy to solve, but when a # 1 it's best to convert this using the Fourier transform in the

x-direction only: we thus look at
acg. y) :/U(X,y)e"xfdxv

and we end up with
l1—«a

*|£|20(51J/)+ 0y(€-Y)+0yy(5:Y):O.

with boundary condition (€, 0) = f(£), which is an ODE that was can solve. For fixed ¢ this is linear in y, and it

suffices for us to solve
l—«a
-+

¢, + ¢y, = 0 on (0,00), where ¢()) = 1.

This is called the Bessel differential equation, and it has a unique solution with limy,_,. ¢(y) = 0 (we want this
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because the function should be in L?). The solution to the original problem is then

a(¢.y) = F(©)o(Ely),

and we're interested in computing the energy now. Absorbing all multiplicative constants involving gamma functions,

we find by Parseval in the x-coordinate and then a change of variables that

/ / Vu(x, y)Ply [ dydx
R"JO

C/O‘OO /]Rn (|£|2|0(£Y)|2 + |ﬁy(£’y)‘2) yiadedy
B C/ / EPIFE ((1€ly)* + (@' (1€]y))?) y*~*dEdy
0 R

C’/ / E1%IF ()P (d(2)* + ¢ (2)?)| 2| *dédz.
o Jrr
We can now do the integral in the z-coordinate, which yields
" [ leriFpde,
R/‘l

which again by Parseval can be viewed as ((—A)*/?f, f),>. So that proves the result and explains the appearance of
the a-stable process.

Example 164

What we want to explain now is that everything we're seeing is a special case of the Doob-Naim formula (even
when the diffusion is not a Brownian motion). And we can think about Brownian motion on something like the
Sierpinski carpet — even in a complicated setting like that, Doob-Naim does give us a jump measure. For this, we

need to introduce some assumptions.

Return now to the setting of an MMD space (X, d, m, &, F), and assume this space satisfies sub-Gaussian heat
kernel bounds HKE¢(%). Further assume (X, d) is a geodesic space (just to simplify things, though it's not needed),
and that U is a uniform domain satisfying the capacity density condition

Cap(B(&, r) \ U, B(£,2r)°) < Cap(B(¢, ), B(§, 2r)°)

for all £ € OU and all r < diam(U). (For example, removing a line from three-dimensional Brownian motion will not

do anything and thus we won't get an interesting trace process, so we want to exclude that case.) Such a condition

ensures good behavior of the harmonic measure, and the fact that this condition can be used to get good estimates
d(x0.8)

was discovered by Aikawa and Hirata in 2007: as long as 0 < r < =, we have that

wie (B(€,1),0U) < gu(x0. &) Cap(B(£, 1), B(€,2r) ),

so we almost have the same formula as for the Green's function. Here £, € U is some point such that d(§,&,) < r <
dist(&,, UC) (it doesn't matter exactly which point we choose because of the Harnack inequalities). This result also
applies to a more general setting than just Brownian motion. And that explains why we deal with this class of domains
(which in particular includes all Lipschitz domains and also some domains with fractal boundaries).

In particular, these estimates on the harmonic measure imply that the support of wijo is OU, and wf{o defines a PCAF
A whose support is in U (technical detail here that it may be smaller than the support of the corresponding Veruz
measure). We want to introduce the Naim kernel in this context, but we first need to state the Green's function and

its properties.
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Definition 165
Consider a metric measure space with sub-Gaussian heat kernel bounds, and suppose we have a transient domain
D (meaning that the process killed on exit is transient). Then there is some Green’s function gp : Dx D — [0, co]

such that the following properties are true:
+ (Symmetry) We have gp(x,y) = gp(y, x) for all x,y € D.
+ (Continuity, which is natural from the Harnack inequalities) gp(-,-) is [0, c0)-valued and continous on D x
D\ diag.

« (Harmonicity) We have gp(x,-) € F2_(D, D\ {x}) and that gp is £-harmonic except at x — think of this

loc

as saying that gp(x, -) is zero on the boundary.

+ (Occupation density) Let Y; be the corresponding diffusion process. Then for any nonnegative measurable

function, we have

E, [ I f<vs>ds} — [ g0l )rtyimay)

for all x € D\ NV (outside some properly exceptional set).

We will use this last property to define the Green operator GPf(x); if f is a nonnegative function which satisfies

[ FGP(f)dm < oo, then GP(f) € FO(D). lives in some space on which we have the energy
E(GP(F), GP(f)) = / fFGP(f)dm < .

We then have £(GP(f),v) = [ fvdm for all v € F°(D)e, which justifies the Green operator and Laplacian being
inverses. We now would like to write the harmonic measure in terms of the Green's function so that we can generalize

the equation

99(x. §)

U _

Wy, = o7 do(§).

One way to understand the connection is that the Laplacian of the Green's function satisfies A, g(x, -) = —dx inside

the domain. But if we try to compute the same quantity on the boundary, it turns out we get the harmonic measure,
and thus we can instead specify
Ayg(x, ) =—0x+ w?.

This then has hope of being generalized, and this is the result we will prove next time:

Lemma 166
For all x € U and all functions u € F(U) N L>=(U), such that x is not in the support of u, the reflected Dirichlet
form satisfies

Eulgu(x, ), u) = — /a du,

where { is again the quasicontinuous version of u so that we have things well-defined up to sets of harmonic

measure zero.

We'll make use of this in our generalization of Doob's formula soon!
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15 June 26, 2025

We'll continue discussing today a generalization of the Doob-Naim formula (this is Professor Murugan's joint work
with Kajino). We saw last time that Doob-Naim gives an expression for the jump kernel of the boundary trace process
by starting with a boundary function, extending it harmonically inside, and then computing the Dirichlet formula in
terms of the boundary values via integration by parts. But in general integration by parts is not useful because the
harmonic measure may be singular with respect to the surface measure, and we should end up with something absolutely
continuous to the product of the harmonic measure with itself.

So we need to first show how to define the Naim kernel in our setting — last time we gave a definition which uses
things like the fine topology, but we'd like to avoid that. We previously defined the Green's function and Green operator
on a transient domain D — recall that the Green operator can be viewed as the inverse of the generator, meaning that
GPf is in the extended Dirichlet space corresponding to the killed diffusion F°(D), for any f : D — [0, 00) where
[ fGP(f)dm is finite.

Example 167
The setup we have is the following: (X, d, m, &, F) satisfies full sub-Gaussian heat kernel estimates HKE¢ (1), d
is geodesic (though this isn't strictly necessary), and U is a uniform domain satisfying the bound

Cap(B(&. )\ U, B(§,2r)9) < Cap(B(&, r), B(£,2r))

for all £ € AU and all r < diam(U).

Lemma 168
For all x € U and all u € F(U) N Llinfty(U) with x & supp,,(u), we have

Bl ) = /B i,

(This should be thought of as an analog of how the harmonic measure w! is given by %ﬁ?g)dm more generally

we should think of Agy(x, ) = —8x + wY as having a Dirac mass inside and a harmonic measure on the boundary.)

Proof. The idea is that the complement has positive capacity, so the process killed upon exit will be transient. So using
the semigroup definition of transience, we know that for any positive function f; € L1(U, m) such that GY(f,) < co m-
almost-everywhere, we can replace it with a better-behaved function f = ﬁ which satisfies that [ fGY(f)dm < oo.
Replacing f with the function f1g(, ) which is supported on a small ball, we see that supp,,(f) and supp,,(u) do not
intersect. We can now further normalize f so that [ fdm = 1.

The point is that after all of this, GY(f) € F°(U). by the property of the Green's function. Now we claim that
Eu(GY(F), u) = Ey(GY(F), u) — Ey(GY(F), Hou )

(that is, the last term is zero), where Hpy (i) is the harmonic extension — indeed, GY(f) has zero boundary conditions
on U. But now we can apply the characterizing formula for the Green's function since u — Hpy({) has zero boundary
conditions: we find that

Eu(GY(F), u— Hay(ii)) :/fudm—/fHaU(U)dm.
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Now the first term is always zero because we have disjoint supports f, u, and we can take r | 0 (approaching a Dirac

mass at x) so that the second term approaches Ey(gu(x, ), h) = — [ Gdw?, as desired. O

The next lemma concerns “classical objects” of equilibrium measures:

Lemma 169

Suppose A, B C X are disjoint closed sets such that A and B¢ are compact. (The picture to have in mind is
that A is a small ball and B is the complement of a larger ball containing it.) Let eag € Fe N L such that the
quasicontinuous version satisfies a5 = 1 g-a.e. on A and éag = 0 g-a.e. on B and is harmonic on (AU B)¢.
Then there are finite Borel measures A} 5 and A 5 supported on A and 8B, respectively, with the same total

mass
Aaa(X) =20 5(X) =E(eas. eas).
and such that

E(eas u) :/adA}A,B—/adAg,B.

Furthermore, A} 5 and X g do not charge polar sets (so everything here is indeed well-defined) — that is, the

measure of any polar set is zero, so these measures can be Revuz measures for PCAFs.

In the classical case, we would have Aeas = —X} 5 + A% g, and we're just doing a weak formulation of that
here because. (The flipped signs are because the Dirichlet form involves the negative Laplacian.) We won't need this
probabilistic interpretation, but 4 g(x) can be thought of as the probability of hitting A before B when started at x.

Proof sketch. The idea is that ex g is an energy minimizer for the class of functions
Lag={f€FB):f>1gae onA}.

Then (F°(B°)., £) is a Hilbert space and L4 5 is a closed convex subset of it, so there is a unique energy minimizer
on L4 g and we can compute it with Euler-Lagrange type arguments. For any nonnegative v € C.(B) N F, we see
that ea g + tv belongs in La g as well (since we're only increasing the function on A), and so the minimizer should
satisfy

Eleap+tv,eap+tv)>E(eans. easn).

Expanding out both sides and taking t — 0 shows that £(eag,v) > 0, so v — E(ean, v) is a nonnegative linear
functional on C.(B€). Riesz representation then tells us that this must be of the form [ vdA}, g, which gives us the
positive part. And for the negative part we do something similar but perturb with negative functions on the other
boundary. The reason they should be supported on the boundary is strong locality — if we perturb by some function in
the interior of A, then we should have the exact same energy. And they should have the same mass because we can

plug in a function v which is constant within the regions we care about. ]

We next define the Naim kernel. This actually has a predecessor called the Martin kernel, which we will introduce
first:
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Definition 170

Define the Martin kernel
gu(x.£) x,EeUx+#¢
KUY (X E) _ ) w(x.8) ! ' !
X0 b

limy_¢ yeu % x e U €ecodu

(The limit in the second case is defined due to the boundary Harnack principle, along with a version of Moser's

oscillation lemma.)

(This is actually slightly different from Martin's original definition from 1941 — he defined an ‘ideal boundary,”
which is an abstract compactification which allows us to account for all possible limits of ratios. But in our case the
Martin boundary will be the same as the topological boundary because of boundary Harnack.)

We saw the definition of the Naim kernel in Definition 160 last time, but now we'll do it not in the fine topology:

Definition 171 (Naim kernel, revisited)
For x,y € (U\ {x0}) x (U\ {x}) \ diag, define

qu(x,y)
gu(x0. x)gu(x0, ¥)

Y (x,y) =

and extend it continuously using the boundary Harnack principle. In fact, the interesting case for us will be where

X,y are both on the boundary.

This is a more symmetric definition than the Martin kernel, and we need to explain now why we can do this: the
boundary Harnack principle should only look at two harmonic functions, not three. But for fixed x we have a ratio
of harmonic functions in y and vice versa, so we can use boundary Harnack in the two different coordinates and run
a two-variable version of Moser's oscillation lemma, and we can still show that we get a jointly continuous extension
away from the diagonal.

Another way to define the Martin kernel is to have it be the density of the harmonic measure at x with respect
to the harmonic measure started at xp — in some papers that is what is used. But when we define things in terms
of densities, we lose the ability to talk about finer properties like continuity. Nevertheless, we can see that these two

notions are equivalent in the following way:

Proposition 172

For all xp, x € U, we have (With our definition)

U
X
TR
X0

Kié(x, D=

dw
dw

Indeed, we know that both of the measures on the right-hand side are absolutely continuous with respect to the

09(x.£)/01k)

surface measure in the smooth case, and so we should formally think of this as B9(x0.E)/0m.) "

Proof. Consider the sets A = 0UNB(&, r) and B¢ = UNB(&, 2r), where we choose r small enough so that 2r < d(&, x)
(so we have a small set on the boundary and then a large set away from it inside the domain containing x). We want

to look at some kind of capacity bound and integrate that against the harmonic measure. We have, because the
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harmonic measure has full support, that
0< [ enedut = ~Eulaulx. ). eas)

- / G0, ¥) AN 5(¥)
S(€.2r)

where we've applied our equilibrium measure lemma and used that when the equilibrium potential is 1, the Green's
function is zero so the Ai\,s term goes away. We also have a similar type of expression for xq as well:

O</¢§A,BdwgO =/ gu(Xo,Y)dAOA,B(Y)-
S(¢.2r)

Taking r | 0, we see that the ratio f?ﬂ

A‘Bdwyo

continuous). More carefully, we can express gy(x, y) as KY (x, y)gu(xo, ¥) and then take limits of that equation; then

approaches the Martin kernel KY(x,&) (since the Martn kernel is

we need a version of the Lebesgue differentiation theorem to conclude that in fact this implies 5 d“’* = KU (x,€) as
well. 0

We'll use a very similar argument for getting the Doob-Naim formula, though we'll need two variables instead. The
idea is to get the jump kernel of the trace process via the Beurling-Deny decomposition, and whenever we want such
a kernel we want to plug in functions with disjoint supports. Indeed, we have by definition of the trace Dirichlet form
that

E(u,v) = Eu(Hau(u), Hou(v)).

and if u, v have disjoint support then the strongly local and killing part of £y will vanish and we just get the jump part.
Specifically we will have two points 7, £ on the boundary and let u = Hayea g around £ (as in the proof above) and
v similar around 1. We will end up with an expression of the form ffuvdU, which is just like how we plugged in
u=14 and v = 15 for disjoint A, B back when we introduced Beurling-Deny.

d(E n)

Let’s do those computations in detail now. For distinct points £, n € OU and any r < , we will pick

A=B(& r)noU, B=B(2r°nU,
and choose
V=eaB c< .7'—0(86)

and u to be any function in F(U) N C.(U) satisfying 1em.r) < U < 1g(m2r). We will compute the energy of the trace
process in two ways, using the harmonic measure expression and the Beurling-Deny decomposition. On the one hand,
we have

Eu(Hau(u), Hou(€ag)) = Eu(Hau(u), éa ),

since the difference between €4 and its harmonic extension is zero on the boundary (so we're using the same
orthogonality property as before). But now we can use the properties of the equilibrium measure to rewrite this

expression as
/ Hou(u)dX} g — / Hau(u)dXS g
A s(.2r)

The first term is actually just zero — u has zero value on A because the support of Ai\,B is some region close to v on

the boundary, which is far away. So we're just left with

- / Hou(u)dXS, 5 = — / / u(2)dw? (2)dN% 5 ().
S(¢.2r) S(¢.2r) Jou
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Now we want to normalize everything in terms of one base point, which we do using the Martin kernel: we end up with
@k Dl D 50,
se2r) Jau

But this should also be equal to — [ u(x)éa g(y)J(dx, dy) by the Beurling-Deny decomposition of the trace Dirichlet
form (only the cross-terms matter because we have disjoint support). Our goal is to show, much like Doob did for

Brownian motion in Proposition 161, that
J(dx, dy) = ©7 (&, n)dwy, (§)dwy, (n).
We have a good expression for the jump kernel, so what we should try to do now is get

—&uy(Hou(u), Hau(éag)) :/U(X)éA,B()/)dJ(XvY)
—&y(Hou(u), Hau(éag)) Ju(x)éas(y)dJ(x,y)

Ju(x)dw¥ (x) [Eas(y)dwl(y) [ u(x)dwl(x) [Eas(y)dwl(y)’

so that we can take r — 0 on the right-hand side and use Lebesgue differentiation to conclude much like before.

Indeed, the left-hand side can be rewritten (numerator by our calculation above) as

f5(g,2r) Jou u(2)Kx (v, Z)dw% (Z)dAE\,B(Y)
/ udw ng(XO)vy)dA%,B(y)

where we use the same formula as before to replace the second term in the denominator. The blue and red parts

now “cancel out” (by Lebesgue differentiation details), and the point now is that the ratio of Martin kernel to Green's

function left p
(V. 2) guly, z) _o(y.2)

gu(x0. ") B gu(xo, 2)gu(x0, ¥) B
is exactly the Naim kernell So as the radius approaches zero, we will have y — 1 and z — &, and continuity in all

arguments means we're looking at convergence to the correct boundary points. This completes the idea of the proof.
(We also have to compute the other two parts of the decomposition, which turn out to be zero — we'll skip that part

of the computation.)

Remark 173. Again, the point to remember is that harmonic measure is the right thing to use instead of surface
measure even on smooth domains, since diffusions on the upper half-space can still be singular with respect to the

surface measure.

Example 174
We now want to understand how to choose the time parameterization of the boundary trace process (or equiva-
lently, the Revuz measure) — the most natural probabilistic choice to use is the harmonic measure, but that still

has a choice of base point that needs to be made.

For bounded domains it doesn't really matter — any xp € U with dist(x, U¢) =< diam(U) will have comparable
harmonic measure to any other one by the elliptic Harnack inequality. But for unbounded domains, this is no longer
true — far-away points can have very different harmonic measures, and so we want to pick a “harmonic measure from
infinity.” We'll explain that procedure now.

The hint comes from the formula

Eu(gu(x0, ). ) = / Gdel if xo ¢ Suppm(u).
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We know that the ratio % should converge as x, — oo to some specific function h%(-); recall that this is how

we constructed the function for the Doob h-transform, which we found is unique by boundary Harnack. So what we
should do is consider the sequence of rescaled harmonic measures

U

Xn

9(x0. xn)’

w

which should converge to some limit which we call the elliptic measure at infinity uﬁé(-). We actually get something
even better than the bounded case, in that the thing we end up with is just defined up to a constant regardless of xg.

That is, we get the characterization
Eu(hY, v) :—/E/du%,

and we don't even have to worry about support — this formula is true for all u € F(U) N L™ in the reflected form,
since the singularity of the Green's function goes to infinity now. (That is, we have AhLJO = U)l(J with no Dirac mass).

We also get the doubling property (due to Aikawa-Hirata).

Fact 175
Once we have a good understanding of all three parts of the Beurling-Deny decomposition, characterization of
stable-like heat kernels yields good heat kernel bounds as well. Chen, Kumagai, and Wang obtained (in 2018)

characterizations of stable-like heat kernel bounds

t
tn/o A |X _y|n+a’

pe(x,y) <

corresponding to a space-time scaling where by time t we travel distance approximately t/®. One can compute

the spacetime scaling for the boundary trace process, but we'll skip those details now.

Another approach due to Cao and Chen estimates these kinds of heat kernels for boundary trace processes, but
they do not exactly calculate the jump kernel and just get estimates — that turns out to be enough for the estimates of
Chen, Kumagai, and Wang. The Doob-Naim formula is more direct and implies the necessary estimates while getting
the jump kernel exactly.

Example 176

One more small caveat here is that we can also apply these results if we have the weak capacity density condition,
where instead of having Cap(B(&,r) \ U, B(&,2r)¢) < Cap(B(&,r), B(€,2r)¢) for all 0 < r < diam(U) and all
&€ € dU, it’s also okay to just have 0 < r < diam(8U) (for example if the domain is unbounded but the boundary
is bounded). The Doob-Naim formula still works, but the killing measure now might be nonzero if the reflected

diffusion is transient.

It's not so difficult to understand what's happening probabilistically here — the complement of a bounded set in
Euclidean space is a uniform domain satisfying this condition, so reflected Brownian motion in the complement of a
ball will hit the boundary of the ball some number of times and then exit to infinity. The PCAF will then only increase
when we hit the boundary and then after a while approach some limit A, which is finite. Thus the inverse function
Ta,, = 00, so the time-change process will go to infinity in finite time, which is the same as killing.

To actually compute this, recall that we interpreted the killing measure by letting one of our functions be the

constant function 1. We have the nice probabilistic interpretation

1 — Hau(1) = Px(Tay = o0)
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(that is, the probability that our process started at x doesn't hit the boundary at all). But the left-hand side is
harmonic on U and has zero boundary conditions on AU, and there's a unique such function where this works: it's
exactly Py, (Tou = 0o)h¥ (-), where h is the function we used for the Doob h-transform. So plugging in, we find after

some calculation that

£(Hou(u), Hou(1)) = / udk, [r=Py(Tou = 0ol |
ou

giving us an exact equality which in particular implies various heat kernel estimates.

16 June 27, 2025

We discussed the boundary trace process last time as an instance of timechange — we found that we were able to
calculate the Dirichlet form in an explicit way using the Beurling-Deny decomposition, which let us analyze the jump
kernel. We'll now go back to time-changes that are diffusion processes, seeing how we can relate elliptic and parabolic
Harnack inequalities.

The idea is that elliptic Harnack inequalities are preserved under (1) timechange by admissible measures (we'll
explain what this means later) and (2) quasisymmetric change of metric. The symmetric measure doesn't actually
play a role in the sense that timechange still yields the same family of harmonic functions (since the extended Dirichlet

space doesn't vary).

Definition 177
For an MMD space (X, d, m, €, F), an admissible measure is a measure p such that u is a Revuz measure for
some PCAF A which has full support.

(Examples that we've already defined include the Kusuoka measure for the Sierpinski gasket or the Liouville measure
for the Brownian motion.) The associated time-changed Dirichlet form (E#, F#) is then given by

FH=FenL%(u), EX(f ) =E(F f),

In particular, Fo = (F*).. In some sense the process doesn't change very much, so we won't have a situation
where a diffusion process becomes a jump process. Furthermore because the extended Dirichlet space doesn’t change,
(X,d,m & F) and (X, d, u, E¥*, F*) have the same family of harmonic functions, and thus the elliptic Harnack in-
equality must be invariant.

The second family of transformations comes from trying to extend the notion of conformal maps to arbitrary metric

spaces:

Definition 178
A homeomorphism f : (X1, d1) — (X2, d2) between two metric spaces is a quasisymmetry (QS) if there exists a
homeomorphism 7 : [0, c0) — [0, o) such that distances are controlled in the fashion

d(f(x), f(y)) di(x,y)
(), F(2)) = (ch(xz))

for any three points x, y, z € X with x # z.

We can think of n as typically being something like n(t) = t* A t®2. This tells us that, for example, if di(x,y) =
di(x, z) then we can't have db(f(x), f(y)) and do(f(x), f(z)) very far apart; thus circles must be taken to at most

ellipses of some specified eccentricity n(1).
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Definition 179
Two metrics d, p on a space X are quasisymmetric if the identity map id : (X, d) — (X, p) are quasisymmetric.

(In particular, both metrics must have the same topology.)

The notion of quasisymmetry is an equivalence relation (symmetry holds because we can always invert the home-

omorphism). And there's a relation between the global quasisymmetry relation and something more infinitesimal:

Definition 180
A homeomorphism f : (X1, d1) — (Xo, db) is k-quasiconformal (k-QC) if we have the infinitesimal eccentricity

condition
lim sup sup{da(f(x), f(y)) : di(x,y) < r}

rso inf {da(F(x), F(y)) - du(x,y) >r} =

for all x € X;. (We can think of the numerator as the major axis and the denominator as the minor axis.)

Clearly every quasisymmetric map is quasiconformal by taking k = n(1), and we also have a local-to-global property

which explains why this is the right generalization:

Theorem 181 (Gehring, '60s)
Fix some n > 2. If f : R” — R" is a k-quasiconformal map, then it is m-quasisymmetric for some 7 : [0, ) —

[0, 00) depending only on k.

We do in fact need n > 2 here — n = 1 is false, and we can check that f(x) = x + e* is a quasiconformal map
which is not quasisymmetric. This result was generalized to a large class of spaces in the 1990s (for example we know
that it also holds on the Heisenberg group).

This next fact is a simple consequence of the definition:

Lemma 182
Ifid : (X, d1) = (X, do) is an n-quasisymmetric map, then for any A > 1, any center x € X, and any radius r > 0,
there is some other radius s > 0 such that (letting By, B> be the balls under dy, d>

Bx(x,s) C Bi(x, r) C Bi(x, Ar) C Ba(x,n(A)s).

The picture is that if we have a ball of radius r and of Ar in the first metric, then we can have a ball of radius s
inside the small ball and a ball of radius n(A)s outside the big ball in the second metric. And we can swap the roles

of the two metrics to find that for all A, x, r, there is some s = s(r) such that
Bl(X, I’) C BQ(X, S) C BQ(X, AS) C Bl(X, Alr),

where A; = W. The point is that Harnack inequalities only care about these kinds of annuli, and so because the

shapes are preserved up to constants we get the following:

Lemma 183 (Kigami)
Suppose (X, dy, m, &, F) and (X, d», m, €, F) are such that di, d» are quasisymmetric. Then if (X, dy, m, &, F)
satisfies the elliptic Harnack inequality, so does (X, d>, m, &, F).
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Proof. This follows immediately from the estimates discussed above. Suppose that for any nonnegative harmonic

function h, we know that

sup h<C inf h.
Bi(x,r) B1(x,Ar)

By our inclusions, we thus have

sup h< sup h<C inf h<C inf_ h.
Ba(x,s) Bi(x,r) Bi(x,Ar) Ba(x,n(A)s)

Example 184

We can in fact build some fractal surfaces with this idea, which we call snowballs (they are generalizations of
the Koch snowflake). We start with the surface of a three-dimensional cube, divide each face into nine parts,
and remove the middle part and add a bump also of height % (This turns a single square into a surface with 13
squares of side length %.) We then iterate this repeatedly: at level n we will have a polygonal surface with 6 x 13"

faces, which are all squares of side length 37",

The resulting surface S,, called the level-n snowball, is homeomorphic to S? and comes with the geodesic metric
d, (the idea is that we have lots of “small bumps” and thus the shortest path can have many parts). It turns out that

we have convergence in the Gromov-Hausdorff sense

(Sn. dn) (S, ds)

log13
log3 -

for a surface which we call the snowball; it has Hausdorff dimension

Every polygonal surface can also be viewed as a Riemann surface (a manifold, but the change of coordinates must
be holomorphic — we just need to worry about the “corner bump vertices” at which there are three or five right angles.
At those points we need to make things flat and thus we need a map z — z*/° or z — z*/3 instead. But the point
is that by the uniformization theorem, we get something conformally equivalent to S® and thus unique up to Mdbius
transformations, and then we need to do an appropriate normalization (for example sending the three corners of a

square to 0, 1, oo for consistency of the scaling limit) to get something well-defined.

Theorem 185 (Meyer '01)

Let ds» denote the round metric on S?. There is a sequence of conformal maps f, : (S, d,) — (S?, ds), as well
as amap f : (S,ds) — (S? ds), such that we have the following. Letting p, be the metric on S? such that
fn - (Sn. dn) — (S?, pn) is now an isometry. Then p, converges pointwise on S? x S? to some function p, which

is itself a metric on S?, and p is quasisymmetric to the round metric dse.

In particular, this means that the pushforward of Brownian motion on the snowball should converge to ordinary

Brownian motion but just appropriately time-changed.

Theorem 186

If we let u, be the uniform surface area measure on (S, d,), then w, converges to the normalized Hausdorff
measure on (S, ds). Furthermore, if Y}, is the canonical diffusion on S,, then (with f, defined in the theorem
above) f,(Y;) is the timechange of Brownian motion on S? with the Revuz measure (f,)«i4,. Then the limiting

object f,(u) is an admissible measure for Brownian motion on S?.
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We'd like to understand everything with respect to the original measure, such as the heat kernel. Since elliptic
Harnack inequalities are preserved under both of these operations that we've performed, we see that we still have the
elliptic Harnack inequality for the diffusion on (S, ds, 1) (via pullback of the timechange).

Notice that we have capacity across annuli of constant order in two dimensions:

di
Cap(B(x,r), B(x,An)¢) <1 for r < Ii .

log 13
log3 -

Thus we actually get two-sided capacity bounds of order equal to the volume growth: (r) = r for df =
Volume doubling is also preserved under these operations, so putting everything together we actually get sub-Gaussian
heat kernel bounds for the snowball with dy = df.

It turns out that in any situation like we have where dy, = dr and we have all of these other conditions, the
limiting metric is quasisymmetric to the 2-sphere metric. Interestingly, we get a phenomenon with dy, > 2 even in
a deterministic setting! This is somehow kind of a toy model for Liouville Brownian motion, though it is not useful
because the LQG measure is not doubling and the metric is not quasisymmetric to the Euclidean one (it fails to satisfy

the metric doubling property).

Remark 187. If we try to do this same story with the snowball but with a 5 x 5 grid and put two bumps instead of
one, the limit actually is not quasisymmetric anymore! So we do need some amount of symmetry for this argument
to work; we need the Brownian motion to not be obstructed in some dimensions more than others. It's possible that
there’s some weaker version of quasisymmetric which yields distortion bounds only at most scales at most points rather

than all scales at all points, which still gives connections to heat kernel bounds.

So we have two transformations that preserve the elliptic Harnack inequality, and now we want to optimize them in
some way, finding the best possible metric to express the diffusion process. This leads to the following notion (which
is helping us get a converse of the form “elliptic Harnack implying parabolic Harnack,” which is not true in general

because we don't have doubling measures):

Definition 188
Let (X,d,m, &, F) be an MMD space. The conformal walk dimension, denoted dcy, is defined as follows:

define the conformal gauge
J(X,d)={p: pis a metric on X quasisymmetric to d}
and set
dew = inf {5 > 0 : there is some admissible u and metric p € J(X, d) s.t. (X, p, u, E¥, F*) satisfies PHI(ﬁ)},

where PHI(B) means the parabolic Harnack inequality with the function (r) = rP.

Observe that if the elliptic Harnack inequality were to fail to hold for some space (X, d, m, £, F), then the conformal
walk dimension must be infinite (since no timechange will make the parabolic Harnack inequality hold, since that would
have to imply the elliptic Harnack inequality which is preserved under change of admissible measure). Also, we know
that ﬁ((f)) > (5)2 and thus in fact we always have dew > 2.

We will also need a weak condition on the metric, where any two points should be connected by a good curve:
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Definition 189
We say that (X, d) is quasi-arc-connected if there is some homeomorphism 7 : [0, c0) — [0, c0) such that for

any x # y € X, there is some curve 7, : [0, 1] = X with 7y, a quasisymmetry between [0, 1] and ., ([0, 1]).

In other words, any pair of points is connected by an arc with not too much distortion — in particular for a geodesic
space we can take the function to be linear. And if we replace the metric d with d® for some a € (0, 1), we still have
a metric and we still preserve the quasi-arc-connected property. But this replacement turns PHI(G) into PHI(B/a), so
it's easy to increase the conformal walk dimension as much as we want (we'll indeed stay within the conformal gauge)

— what we're really curious about is what the minimum possible conformal walk dimension is.

Theorem 190

Assume that (X, d, m, &, F) is an MMD space where d is quasi-arc-connected. Then the following are equivalent:

1. The metric space (X, d, m, &, F) satisfies the elliptic Harnack inequality,
2. The conformal walk dimension dcyy is finite,

3. The conformal walk dimension is equal to 2.

The equivalence between the first two properties was shown for geodesic spaces by Barlow, Chen, and Professor
Murugan, and the equivalence between the latter two was obtained by Kajino and Professor Murugan. The implications
(3) implies (2) implies (1) are immediate from what we've already said, and what's difficult is to go in reverse.

Example 191

One question we may ask is whether the infimum in the definition of dcw is actually attained, and in fact it
need not be. One such example is actually the snowball from before, but another one which is illustrative is the
following. Recall Kigami's Gaussian heat kernel bound on the two-dimensional Sierpinski gasket with respect to

the intrinsic metric (which we've also already shown)
dine(x,y) =sup{u(x) —u(y) :ue C(X)NF,T(u,u) <u}, uthe Kusuoka measure.

We in fact have dnt € J(K, deyc), and so we can attain the infimum for the conformal walk dimension in this case.
However, Kajino and Professor Murugan showed that Brownian motion on the n-dimensional Sierpinski gasket for
n > 3 does not attain the infimum of dcw. (And everything is rather case-by-case here — it's not well understood
what happens on the Sierpinski carpet instead of the Sierpinski gasket.)

One motivation for obtaining these results above is the following fact:

Corollary 192
The elliptic Harnack inequality is stable under perturbations. More concretely, the Laplace-Beltrami operator on
a Riemaninan manifold satisfies elliptic Harnack inequalities if and only if any uniformly elliptic operator does.

So this is a generalization of Moser's theorem to all manifolds, and it comes from the previously-known stability of

the parabolic Harnack inequality.

Heuristics for why dey finite implies deyw = 2. Assume that (X, d, m, £, F) satisfies the parabolic Harnack inequality
for some y. We wish to get «y down to 2+¢, and we do so by “optimistically” trying to construct an admissible measure
w and a metric 6 € J(X, d) such that the time-changed space (X, 8, u, E#, F*) satisfies PHI(2).
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The basic idea is to view this metric space at different scales: consider an annulus at scale (r, 2r) and discretize at
a much finer mesh scale s than r. That is, choose an s-net N for the metric space X (that is, a maximal s-separated
subset), and view N as a graph where two points x;, x» € N are adjacent if By(x1, As) N By(x2, As) is nonempty (for
some parameter X). We'll only look at balls of radius s centered at the points in our net (which cover X but do not

overlap too much); we now define the “relative diameter”

N diamg(Bg(v, s))

ov) = ————==.
diamg(By(x, r))

That is, we look at a ball of scale s in the original metric and see how much it's distorted under the new metric. This

function satisfies the property of no shortcuts, meaning that for any path < in the graph (think of this as a sequence

of balls) with first vertex v satisfying Bg(v,s) C Bq(x,r), last vertex w satisfying Bg(w,s) C Bq4(x,2r)¢, and all

> )21

uey

other vertices contained in By(x, 2r), we have

This turns out to be true because if we enlarge distances by a factor we should still get the same order for the diameter,

and so if we add up the diameters along the path

Z diamg(B4(u, s)) Z diamg(Bg(u, As)) Z dist(Bg(x, r), Ba(x,2r)c)
dlame(Bd(x 2r)) diamg(Bq(x, 2r)) ~ diamg(Bg(x, 2r)

and quasisymmetry roughly preserves ratios of distances so if this quantity was of order 1 in d then it also will under 6.
The other condition (which actually uses that parabolic Harnack PHI(2) is satisfied) is called a mass estimate on

. We know by the doubling property that

u(Ba(x,r)) =< p(Ba(x,2r)) < > u(Ba(v,s))
veN(Bq4(x,2r)):B(v,s)NB(
since the balls roughly don't intersect. Balls in the two metrics are approximately the same, so we can replace this with
Bg(v, diamg(Bg(v, s)), and the measure of such balls can be related to the capacity and spacetime scaling: capacity

across an annulus is roughly the volume divided by the spacetime scaling, so

w(Ba(x,r)) = Z diamg(Ba(v, 5))*Cap(Ba(v, s), Ba(v, 25)°).
vEN(By(v,2r))
But if we've seen the notion of “extremal length” on graphs, that's exactly the admissibility condition we have: the
function v will end up being the optimal equilibrium potential (energy minimizer) for the capacity between Bgy(x, 2r)
and Bg(x,2r)¢. We want g(v) to be roughly the same as a discrete gradient Y., ’de(v,s) udm — de(W‘S) udm‘.
This satisfies both properties we mentioned above (using the Poincaré inequality). Thus somehow using the gradient
of energy minimizers is the right way to construct optimal metrics and measures, much like in the Riemann mapping

theorem. 0
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