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1 June 2, 2025
This course will be about heat kernels and Harnack inequalities – we’ll start with a general overview.

Definition 1

The heat kernel is the fundamental solution to the heat equation ∂tu = 1
2∆u, which is

pt(x, y) =
1

(2πt)n/2
exp

(
−
|x − y |2

2t

)
(the density of Brownian motion at time t started at x).

What this actually means is that u(t, ·) = pt(x, ·) satisfies the heat equation for any fixed x , and as t ↓ 0 this

solution approximates the Dirac mass δx . In particular, this means that for any smooth function f ∈ C∞(Rn),

u(t, x) =

ˆ
pt(x, y)f (y)dy

will solve the heat equation with initial condition f at time 0.

This object also has a probabilistic interpretation: we can do this procedure with any Markov process instead of

the Brownian motion, and we’ll be curious how information on one side (geometry) relates to information about the

other (probability). The most basic relation is due to Varadhan – Varadhan’s asymptotic says that for

∂tu =
1

2
∆u

for ∆ the Laplace-Beltrami operator, we have that

lim
t↓0
2t log pt(x, y) = −d(x, y)2

for any x, y on our manifold. (So the heat kernel determines, or is at least closely related to, the geometry on our

space.) Manifolds are locally Euclidean, so this short-time behavior is perhaps not surprising. In contrast, the long-time

behavior can look very different: if we work on hyperbolic 3-space, we instead have

pt(x, y) =
1

(2πt)n/2
d(x, y)

sinh d(x, y))
exp

(
−
t

2
−
d(x, y)2

2t

)
,
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and in particular we can derive that the expected distance we travel grows linearly in time instead of scaling as
√
t.

The factor of distance2
time reflects the “spacetime scaling,” and it’s natural to ask whether there are other possible scalings

as well.

Example 2

A symmetric α-stable process is a Levy process Yt with jump increments given by the Laplace transform

E
[
e iξ·(Yt+s−Yt)

]
= exp (−t|ξ|α)

for some α ∈ (0, 2)

We don’t have an exact formula for the heat kernel except for α = 1< but we do have asymptotics – we know that

pt(x, y) ≍ min
(
t−n/α,

t

|x − y |n+α

)
.

In particular, the spacetime scaling is now given by distanceα
time for some α < 2. And it turns out to be possible to do

α > 2 as well:

Example 3

It is possible to define Brownian motion on the Sierpinski gasket (the fractal object formed by iteratively

removing the median triangles of an equilateral triangle) as the limit of random walks on the approximating

shapes.

The heat kernel then turns out to satisfy (due to Barlow and Perkins)

pt(x, y) ≍
C

tdf /dw
exp

(
−C′

(
|x − y |dw

t

)1/(dw−1))
,

where df = log2 3 (Hausdorff dimension) and w = log2 5 (walk dimension), for all x, y and 0 < t < 1. And the point

in this case is that we get distancedw
time . So our goal is to understand how these different scalings can be captured by the

geometry of our underlying space, and when we’ll get heat kernel estimates of each of the different types.

Remark 4. To convince us that the walk dimension can be greater than 2 even though we’re inside a two-dimensional

space, consider simple random walk on the graph . Consider the expectation for how long it takes to hit another

outer vertex when started from an outer vertex; this turns out to be 5. But if we ask the same question for hitting the

inner triangle (scaled down by 2), the answer is just 1. This turns out to be a rather general picture: there is always

a fractal with specified dimensions with 2 ≤ dw ≤ df + 1.

We’ll make use of the following boundary trace process as a useful tool. Suppose we have Brownian motion in

the upper half-space Rn+1 × [0,∞) reflected on the boundary, and then we erase the actual path and only look at the

hitting points on the boundary. This can then be interpreted as a jump process on Rn; what remains turns out (due to

Spitzer) to exactly be like the symmetric α-stable process with α = 1. This can then be generalized to any other α as

well: Molchanov and Ostrovskii showed that symmetric α-stable processes on Rn can be viewed as boundary traces of

some reflected diffusion processes on Hn+1 = Rn × [0,∞). (For the Brownian motion case we didn’t actually have to

do this reflection because of symmetry, but in general the reflection does matter.) So an interesting question to ask is

the converse one of when boundary processes behave like symmetric α-stable processes; there will be lots of domains

where this behavior occurs.
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A good framework to study all of this is the theory of Dirichlet forms, and we’ll make use of them throughout

the course. We’ll mostly study symmetric processes, and there are four objects that are more or less equivalent (but

it’s useful for us to see how they’re related): (1) the semigroup, (2) the resolvent, (3) the generator, and (4) the

Dirichlet form.

For the semigroup, the idea is as follows. Given a Markov process (Yt) and a “nice function” f , define

Pt f = Ex [f (Yt)]

(where this notation means that Y0 = x). We then have by the Markov property that

Pt+s f = Ex [f (Yt+s)] = Ex [Ex [f (Yt+s)|Ft ]] = Ex [EYt [f (Ys)]] ,

which is Ex [(Ps f )(Yt)] = PtPs f . So we get the property that Pt+s = PtPs :

Definition 5

Let H be a Hilbert space over R with inner product denoted ⟨·, ·⟩ and norm || · ||. A family of operators {Tt : H →
H}t≥0 is a semigroup if the following properties hold:

1. (Symmetry) Tt is symmetric for all t, meaning that ⟨Tt f , g⟩ = ⟨f , Tf g⟩ for all f , g. (Not all Markov

semigroups have this property, but many do.)

2. (Semigroup property) Tt+s = Tt ◦ Ts for all t, s ≥ 0.

3. (Contraction) ||Tt || ≤ 1 for all t > 0, meaning that ||Tt(u)|| ≤ ||u|| for all u ∈ H.

4. (Strong continuity) Tt approaches the identity as an operator in the sense that limt↓0 ||Tt(u) − u|| = 0 for

all u ∈ H.

Such Markov processes have right-continuous paths, so the idea is that this comes from the dominated convergence

theorem. (In contrast, “weak continuity” would ask that ⟨Tt(u), v⟩ → ⟨u, v⟩ for all u, v , but this is actually equivalent

here.)

Example 6

The Brownian semigroup or heat semigroup is a family of operators Pt : L2(Rn)→ L2(Rn) defined by

pt f (x) =

ˆ
1

(2πt)n/2
exp

(
−
|x − y |2

2t

)
f (y)dy.

This is the expected value under Brownian motion started at x , and we can check that this satisfies all four

properties.

Example 7

The Ornstein-Uhlenbeck semigroup is defined as follows: let γn(dx) = 1
(2π)n/2

exp
(
− ||x ||

2

2

)
dx be the standard

Gaussian density, and defining Pt : L2(Rn, γn)→ L2(Rn, γn) via the stochastic differential equation

dXt = −Xtdt +
√
2dBt =⇒ Xt = e

−tX0 + e
−tBe2t−1,

where Bt is standard Brownian motion in Rn.
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Note that being symmetric with respect to this L2 space is not the same as being symmetric with respect to the

usual L2. And this time we have

Pt f (x) =

ˆ
Rn
f (e−tx +

√
1− e−2ty)γn(dy),

where we’ve used the Brownian scaling for the square root term.

Example 8

For a discrete state space example, consider X = {1, · · · , n} and define a conductance matrix c : X×X → [0,∞),
which we assume to be symmetric. Letting m(x) =

∑
y∈X c(x, y), we can then define a discrete time random

walk via the transition matrix P (x, y) = c(x,y)
m(x) ; this yields

Qf (x) = Ex [f (Z1)] =
∑
y∈X

P (x, y)f (y) =⇒ Qk f (x) = Ex [f (Zk)].

We can make such a chain continuous by waiting an Exp(1) amount of time between jumps and then going from

x to y with probability P (x, y). Then Yt = ZN(t) for N(t) an independent Poisson process of rate 1, and now we have

Pt f (x) = Ex [f (Yt)] = Ex [f (ZN(t))],

and we just sum over the possibilities for how many jumps we take:

Pt f (x) =

∞∑
k=0

P(N(t) = k)Ex [f (Zk)] =
∞∑
k=0

e−ttk

k!
Qk f (x).

Again, we can verify that this semigroup on L2(X,m) (with m the function defined above) satisfies all four properties

mentioned above.

Remark 9. For an example of a process which is not symmetric, suppose Xt = X0+ t. This is clearly a (deterministic)

Markov process, so Pt f (x) = f (x + t). This does not satisfy the symmetry property, but it does the other three for

L2(R).

The next object is basically the Laplace transform of the semigroup:

Definition 10

A resolvent on H is a family of operators {Gα : H → H}α>0 satisfying the following properties (paralleling the

four above):

1. (Symmetry) ⟨Gα(f ), g⟩ = ⟨f , Gα(g)⟩ for all f , g ∈ H.

2. (Resolvent equation) for all α, β > 0, we have

Gα − Gβ + (α− β)GαGβ = 0.

(In particular this makes Gα and Gβ commute.)

3. (Contraction) ||αGα|| ≤ 1 for all α > 0, meaning that ||αGα(u)|| ≤ ||u|| for all u ∈ H.

4. (Strong continuity) limα→∞ ||αGα(u)− u|| = 0 for all U ∈ H.

Notice that we take α→∞ instead of α→ 0; this is typical when studying Laplace transforms.
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Proposition 11

For any semigroup {Tt : t > 0}, define its Laplace transform

Gα(u) =

ˆ ∞
0

e−αtTt(u)dt.

Then {Gα(u)} is a resolvent.

There are various ways to define this integral – one is that by strong continuity we can view Tt as a continuous

function and so it makes sense to take Riemann sums. But since we’re in a Hilbert space, we can do something better:

Definition 12

Let I ⊆ R be any interval. We say that a function f : I → H is weakly measurable if the following hold:

• the map t 7→ ||f (t)|| is measurable,

• for any v ∈ H, the function t 7→ ⟨f (t), v⟩ is also measurable.

We further call a weakly measurable f integrable if
´
I ||f (t)||dt <∞.

In such a case, ||⟨f (t), v⟩|| is also finite and integrable by Cauchy-Schwarz. So if f is weakly measurable and

integrable, we can define
´
I f (t)dt via its inner product with an arbitrary vector〈ˆ

I

f (t)dt, v

〉
=

ˆ
I

⟨f (t), v⟩dt.

Indeed Tt(u) satisfies both conditions, and then from there it’s easy to check that we satisfy the four resolvent

properties.

Example 13

In the simple case where Tt = I for all t > 0 (meaning that we don’t move around at all), Gα(u) =
´∞
0 e−αtdt =

1
α I. In particular, this indeed solves the resolvent equation.

It may not be clear what the motivation for this is at the moment, but the resolvent turns out to be easier to

work with in this theory. And indeed Laplace transforms are injections, so the inverse Laplace transform yields the

semigroup (but we’ll come back to this later).

Our next object is basically the derivative of the semigroup at time t = 0, but we need to be precise because we’re

now no longer going to have a bounded operator (in fact, it isn’t defined on all of H):

Definition 14

Let {Tt : H → H}t>0 be a semigroup. The generator of the semigroup is

A(u) = lim
t↓0

Tt(u)− u
t

defined on the domain D(A) of H for which this limit exists.

It’s easy to check that the domain is a subspace, and we may ask why we would want to work with generators

instead of the objects above. The idea is that they are closer to the description of the Markov process and thus easier

to compute:
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Example 15

Recall the notation of the discrete Example 8, in particular the transition probabilities P (x, y). Instead of waiting

an Exp(1) amount of time at each state before jumping, we can specify arbitrary values λ : X → (0,∞) and wait

at state x with parameter Exp (λ(x))) (so larger λ means we wait a shorter amount of time) before jumping with

probability P (x, y).

In the case where all λs are 1, it’s easy to compute the semigroup because we have an easy expression for the

number of jumps. But now the number of jumps depends on the path that we take, and it will turn out to be easier to

compute the generator (which is local): we only need the semigroup up to linear terms in t. As t ↓ 0, it’s very likely

that we will make only zero or one jump in total (terms with two jumps scale as t2), so

Pt f (x) = Ex [f (Yt)] = e−λ(x)t f (x) + (1− e−λ(x)t)
∑
y

P (x, y)f (y) +O(t2),

and subtracting off f (x), dividing by t, and taking the limit yields the generator

Lf (x) = −λ(x)f (x) + λ(x)
∑
y

P (x, y)f (y).

Furthermore, this computation tells us the measure with which we are symmetric, and we’ll see that next time.

2 June 3, 2025
We saw some relations between the semigroup, generator, and resolvent last time; we mentioned that these notions

end up being equivalent but that different objects will be useful in different contexts (for example, the resolvent is

easier to work with, and the generator is easier to compute). In Example 15 we previously computed the generator

of a continuous-time Markov chain with specified jump rates, finding that Lf (x) = limt→0
Pt f (x)−f (x)

t = −λ(x)f (x) +
λ(x)

∑
y P (x, y)f (y). Our goal is to calculate the symmetrizing measure, and we’ll do so by rewriting

Lf (x) = λ(x)(I −Q)f (x),

where Q is the operator defined by Qf (x) =
∑

y∈X P (x, y)f (y) (this corresponds to the discrete-time chain). By the

symmetry assumption on our conductance matrix,

m(x)P (x, y) = c(x, y) = c(y , x) = m(y)P (y , x),

and therefore we can check that

⟨f , Q(g)⟩L2(m) = ⟨Q(f ), g⟩L2(m).

So we know that (I −Q) is symmetric with respect to m as well, but we need to make a correction for the λ(x) term:

if we define a new measure m̃ via m̃(x) = m(x)
λ(x) , then we will indeed find that

⟨f , Lg⟩L2(m̃) = ⟨f , (I −Q)g⟩L2(m) = ⟨(I −Q)f , g⟩L2(m) = ⟨Lf , g⟩L2(m̃).

So the measure m̃ makes our generator symmetric, and it will turn out to imply that the transition semigroup generates

a Markov process which will also be symmetric under this same measure.

We can interpret m̃ in a nice probabilistic way as well. Suppose that the corresponding discrete-time chain (Zn) is

irreducible; we know that after we run this chain for a long time, the discrete time chain will have occupation times
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proportional to m(x). But since we wait at x for a total time Exp(λ(x)) at each step, we should have

lim
t→∞

1

t
1{Yt = y}dt =

m̃(y)∑
z∈X m̃(z)

,

and this is true Px -almost-surely (that is, no matter where we start within an irreducible component).

We’re now ready to write out the relations between these general objects more carefully. The definition of the

generator tells us that A(u) = limt↓0
Tt(u)−u

t , but we can also think about this as a function f (t) = Tt(u) and

differentiate at nonzero times as well. We can rewrite that expression in two different ways:

lim
h↓0

Tt+h(u)− Tt(u)
h

= lim
h↓0
Tt ◦

(
Th(u)− u

h

)
= lim

h↓0

Th(Tt(u))− Tt(u)
h

.

So now if u is in the domain of the generator, the limit in the middle expression exists because Tt is a bounded operator,

and thus the limit in the latter expression should also exist, and we find that

Tt(A(u)) = A(Tt(u))

for any u ∈ D(A). And we can rewrite this as a differential equation

df (t)

dt
= A(f (t))

for some possibly unbounded operator A. If A were bounded (like it is in our finite-dimensional example above), we

would have f (t) = etA(u), so in other words the semigroup is Tt = etA and the resolvent “should be”

Gα(u) =

ˆ
e−tαTt(u) =

ˆ
e−tαetA(u)dt = (α− A)−1(u).

So we’d like to say that the generator A determines the semigroup and the resolvent via those two formulas above, but

to do this we need to show that the generator is a self-adjoint operator. So we’ll spend some time trying to develop

that theory now.

One issue we see is that this integral may not converge if A has positive spectrum, and so that’s the first thing

we’ll resolve:

Lemma 16

For any generator A, D(A) is a subspace of H, and the function A : D(A)→ H is a linear map. Furthermore, A

is nonpositive definite, meaning that

⟨A(u), u⟩ ≤ 0 for all u ∈ D(A).

Proof. The first sentence follows directly from the definitions (limits interact nicely with linear maps and linear com-

binations). Thus we just need to prove the last fact, and we can look at the difference quotients. But〈
Tt(u)− u

t
, u

〉
=
1

t
(⟨Tt(u), u⟩ − ⟨u, u⟩)

=
1

t

(
||Tt(u)|| · ||u|| − ||u||2

)
≤ 0

by Cauchy-Schwarz and the fact that we have a contraction (so ||Tt || ≤ 1). So by continuity of the inner product, the

limiting quantity must also be nonpositive as well.
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Next, we’ll see some properties of Gα. If A is nonpositive definite, then −A is nonnegative definite and thus the

resolvent should also be nonnegative definite. We’ll prove that now (though note that we don’t know yet that every

resolvent comes from a semigroup):

Lemma 17

Let {Gα : α > 0} be a resolvent. Then for all α > 0, Gα is nonnegative definite, meaning that ⟨Gα(u), u⟩ ≥ 0 for

all u.

Proof. Fix some u. The function

f (α) = ⟨u, Gα(u)⟩

turns out to be differentiable in α, because by the resolvent identity

f (α)− f (β)
α− β =

〈
u,
Gα(u)− Gβ(u)

α− β

〉
= −⟨u, GαGβ(u)⟩ = −⟨Gαu, Gβu⟩

since each Gα is a symmetric operator. So as α → β, we have Gα → Gβ, and taking the limit yields that f ′(α) =

−⟨Gα(u), Gα(u)⟩ ≤ 0. On the other hand, we know that

lim
α→∞

αf (α) = lim
α→∞
⟨u, αGα(u)⟩ = ⟨u, u⟩ ≥ 0

by the strong continuity property. Thus f is nonnegative for all α, proving nonnegative definiteness as desired.

If we have Gα = (α−A)−1 formally, then we can solve for A and find that we should get the generator A = α−G−1α
from the resolvent. For this to make sense, we must first show that the resolvent is invertible.

Lemma 18

For any resolvent, Gα is injective for all α > 0.

Proof. Since Gα is a linear map, we just need to check that the kernel is trivial. Suppose that Gα(u) = 0; the resolvent

identity (multiplied by β) tells us that

βGα(u) = βGβ(u) + β(β − α)Gβ(Gα(u)),

but now plugging in Gα(u) = 0 shows that βGβ(u) = 0 for any arbitrary β. Thus by strong continuity this implies

that u = 0 as well, which is what we wanted.

We thus use that formula above to make our definition:

Definition 19

Let {Gα : α > 0} be a resolvent on H. The generator of the resolvent is defined by setting the domain to be

D(A) = Gα(H) (that is, the range of Gα), and defining

A(u) = αu − G−1α (u)

for all u ∈ D(A).

As an exercise, we can check from the resolvent identity that α−G−1α does not actually depend on α, and similarly

we can check that the range does not depend on α, so this generator is in fact well-defined.

8



Remark 20. It’s clear from strong continuity that the domain of the generator of a resolvent is dense, since D(A) is

the range of Gα, but αGα(u) (which is in the domain) converges to u as α→∞.

We haven’t checked yet that “all of our operations commute:” if we take a Laplace transform of the semigroup (to

get the resolvent) and then find the generator of that, it should be the same as the generator of the original semigroup,

but it’s not so clear that this is true yet. Before doing that, we’ll first detour to the concept of self-adjointness:

Definition 21

Let H be a Hilbert space, and let T be a densely-defined operator on H (that is, it is an operator D(T ) → H
where D(T ) = H). The adjoint of T , denoted T ∗, is defined on the subspace of H

D(T ∗) = {x ∈ H : the map y 7→ ⟨T (y), x⟩ is bounded on D(T )} .

The idea is that Hahn-Banach allows us to extend a bounded functional to the whole space, and then Riesz

representation lets us represent that result as an inner product with some other element of H. Thus, for all

x ∈ D(T ∗), there is some unique vector (which we define to be T ∗(x)) such that ⟨T (y), x⟩ = ⟨y , T ∗(x)⟩ for all

y ∈ D(T ).

Note that as stated right now, it’s not clear that D(T ∗) is dense in the Hilbert space, and in fact we do need

additional assumptions in general for that to be case. Being self-adjoint will require an additional condition:

Definition 22

For any Hilbert space H, H×H is also a Hilbert space with inner product ⟨(x1, y1), (x2, y2)⟩ = ⟨x1, x2⟩+ ⟨y1, y2⟩.
For a linear operator T : D(T )→ H, we let G(T ) be the graph of T – that is, the set of points (x, T (x)) ∈ H×H
for x ∈ D(T ). We say that T is closed if G(T ) is closed in H×H.

We may recall from ordinary functional analysis that if the domain is the whole H, then being closed is the same

as being bounded. But it turns out that for densely defined operators, being closed is the right generalization.

Definition 23

An operator T : D(T )→ H is symmetric if ⟨T (x), y⟩ = ⟨x, T (y)⟩ for all x, y ∈ D(T ).

From the definition of T ∗, we see that T is symmetric if and only if T ∗ is an extension of T . So the domain of T ∗

might be strictly larger than the domain of T , but we don’t want that to be the case for self-adjoint operators:

Definition 24

An operator T : D(T ) → H is self-adjoint if T = T ∗, meaning that T is symmetric and D(T ∗) coincides with

D(T ).

This is a property that will be satisfied by generators and resolvents of semigroups, and the reason it’s so useful

is that we understand exactly how they behave (up to some transformations). Notice also that symmetric operators

defined on the whole space are automatically self-adjoint (because the domain of the adjoint can only be bigger), and

by the closed graph theorem they are also continuous.

We’ll first rephrase the relationship between an operator and its adjoint in terms of graphs:
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Definition 25

Suppose M is a subspace of H (or H×H). Write M⊥ for the set of vectors u ∈ H with ⟨u,m⟩ = 0 for all m ∈ M.

Notice that M⊥ is always closed even if M is not (since this set is closed for any fixed m and the intersection of

closed sets is closed).

Lemma 26

Suppose T : D(T ) → H is densely defined, and let V : H × H → H × H be the map (x, y) 7→ (y ,−x) (which

preserves the inner product). Then the graphs satisfy

G(T ∗) = V (G(T ))⊥;

in particular this means the graph of T ∗ is closed, so T ∗ is always closed.

Proof. Saying that (x, y) ∈ G(T ∗) is the same as saying that ⟨T (u), x⟩ = ⟨u, y⟩ for all u ∈ D(T ). But this is further

equivalent to

⟨V (u, T (u)), (x, y)⟩H×H = 0 for all u ∈ D(T ),

which is exactly the definition of the space on the right-hand side.

Corollary 27

Let T : D(T )→ H be injective and self-adjoint, and let R(T ) be the range of T . Then the map T−1 : R(T )→ H
is a densely-defined, self-adjoint operator.

Proof. First we prove that R(T ) is dense in H, or equivalently that R(T )⊥ = {0}. For any y ∈ R(T )⊥, we know

that (y , 0) ∈ V (G(T ))⊥ (because a vector in V (G(T )) looks like V (x, T (x)) = (T (x),−x) for some x ∈ D(T ), and

the inner product of this with (y , 0) is always zero). By our previous lemma, this means that (y , 0) ∈ G(T ∗). But

G(T ∗) = G(T ), so because T is one-to-one that must mean y = 0, as desired.

From here, we wish to prove self-adjointness. The graph of the inverse of a function and of a function are just

related by swapping the coordinates, so let S : H×H → H×H be the map S(x, y) = (y , x). We have, again by the

previous lemma and then our swap map operation, that

G((T−1)∗) = V (G(T−1))⊥ = V (S(G(T ))⊥.

Now V and S commute up to a negative sign, but since we look at orthogonal complements that means this is the

same as S(V (G(T ))⊥. We now want to move the ⊥ from outside to inside the S; to justify that step we observe that

S also preserves the inner product and thus orthogonal complements. Thus this space is also (using our lemma once

again, and also using that T is self-adjoint)

S(V (G(T )⊥) = S(G(T ∗)) = S(G(T )) = G(T−1) .

So equating the boxed expressions, the adjoint of T−1 is indeed T−1 itself, completing the proof.
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Example 28

Let (Ω, µ) be a measure space, and let H = L2(Ω, µ). Let λ : Ω→ R be a measurable function, not necessarily

bounded. We can then define the “multiplication operator” Mλ : D(Mλ)→ H via

Mλ(f ) = λ(·)f (·)

with domain exactly the set of functions f ∈ H such that Mλ(f ) ∈ H (that is, such that λf ∈ L2(Ω, µ)).

We claim that Mλ is a self-adjoint operator – this is a simple exercise using Cauchy-Schwarz. Specifically, it’s clear

that this is symmetric, but we need to prove that the domain of M∗λ is not larger than the domain of Mλ.

It turns out that every self-adjoint operator is essentially a multiplication operator:

Theorem 29 (Spectral theorem)

Let A be a densely-defined self-adjoint operator on a Hilbert space H. Then there is a measure space (Ω, µ),

a measurable real-valued function λ : (Ω, µ) → R, and a unitary bijection U : L2(Ω, µ) → H (meaning inner

products are conserved) such that UAU−1 = Mλ, and the domain D(A) is exactly {U(f ) : f ∈ D(Mλ)}.

We’ve probably seen a version of the spectral theorem in our linear algebra course (viewing symmetric matrices as

diagonal matrices in some orthonormal basis); this is an infinite-dimensional version. This theorem will be useful for

us because it allows us to manipulate self-adjoint operators as if they are numbers, like in the heuristic integral we did

earlier.

Remark 30. There’s a more complicated statement of the spectral theorem using projection-valued measures which

is more canonical, but we can still work with the version that we have here because we have uniqueness up to unitary

transformations.

Definition 31 (Functional calculus)

Let A be a (densely-defined) self-adjoint operator on H, and let A be nonpositive definite. For any Borel function

f : (−∞, 0] → R, define the operator f (A) : D(f (A)) → H as follows. Expressing A via the equation U−1AU =

Mλ, the domain of f (A) is

D(f (A)) =
{
U(g) : g ∈ D(Mf (λ(·)))

}
,

and the operator is defined via U−1f (A)U = Mf (λ(·)).

This is basically the analog of taking powers of matrices, where we first diagonalize and then apply the powers

componentwise to each diagonal element. And we can check that this definition is independent of our specific choice

of U.

Proposition 32

Let {Tt}t>0 be a semigroup, and let {Gα}α>0 be the associated resolvent Gα(u) =
´∞
0 e−αtTt(u)dt for all u ∈ H.

Let As and Ar be the generators of {Tt} and {Gα}, respectively. Then As = Ar , and the generator is a nonpositive

definite operator.

The non-positivity part we’ve already proved from taking a limit in the semigroup interpretation, and the self-adjoint

part we’ve proved from the resolvent interpretation. But if we show that they coincide, then we get both of those

properties for free!
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3 June 5, 2025
We’ve now made connections between the semigroup, resolvent, and generator, and we used the spectral theorem to

do some of the relevant manipulations. One important detail is that if our self-adjoint operator A is also nonpositive

definite, then in fact λ ≤ 0 µ-almost everywhere.

Proof of Proposition 32. To check that Ar = As , we need to also check that the domains of the two operators are

the same, and it’s equivalent to prove that each is a restriction of the other.

First suppose that u ∈ D(Ar ); this means that u is in the range of Gα and thus we can write u = Gα(v) for some

v ∈ H (and in fact a unique v). We want to prove that u also belongs to D(As), which is checking differentiability.

Specifically, we’ll check differentiability of e−αtTt(u) instead of Tt(u) itself, since the two facts are equivalent. We

have
1

t

(
e−αtTt(u)− u

)
=
1

t

(
e−αtTt

(ˆ ∞
0

e−αsTs(v)dv

)
−
ˆ ∞
0

e−αsTs(v)dv

)
We can now interchange integrals with Tt and then shift the inner integral to [t,∞) instead of [0,∞); the result is

that most of the integral cancels and we’re left with

−
1

t

ˆ t

0

e−αsTs(v)ds,

and using right-continuity this approaches v as t ↓ 0. So the point is that

1

t
(Tt(u)− u) =

1

t
Tt(u)(1− e−αt) +

1

t

(
e−αtTt(u)− u

)
,

and then as t ↓ 0 this converges to αu−v . So u indeed belongs to the semigroup with As(u) = αu−v = αu−G−1α (u),
and that is exactly the definition of Ar (u) from Definition 19. Therefore Ar is an extension of As .

For the other direction, we basically do the same computation. Since we’ve already shown that

v = − lim
t↓0

1

t

(
e−αtTt(u)− u

)
for some u ∈ D(As), by the same argument as before this limit exists (since in the boxed expression we know the first

two terms have limits) this approaches −As(u) + αu. We expect u = Gα(v), so we define w = u − Gα(v) (we want

to show this is zero) and compute

lim
t↓0

1

t

(
e−αtTt(w)− w

)
= (−v)− lim

t↓0

1

t

(
e−αtTt(Gα(v))− Gα(v)

)
= (−v) + v = 0,

so indeed Gα(v) = u and thus u ∈ Gα(H), which we know to be the domain of the resolvent. And as mentioned

before, we already did the work of showing the other properties of the operators (self-adjoint, nonpositive definite)

through either Ar or As .

We thus have the following operators between the generator A, resolvent Gα, and semigroup Tt , and the arrows

commute:

A

Tt GαLaplace transform

limt↓0
Tt−I
t α−G−1α
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Our goal is now to fill in some of the reverse arrows to complete the picture. Specifically, we’ll try to go backwards

from the generator to the other objects:

Proposition 33

Let H be a Hilbert space and A : D(A) → H a nonpositive definite self-adjoint operator. Then we can define

{Tt = exp(tA)}t>0 via the functional calculus, and similarly we can define {Gα = (α−A)−1}α>0; these are exactly

the semigroup and resolvent corresponding to A, respectively., and {Gα} is the resolvent corresponding to {Tt}.
Furthermore, there is a unique semigroup and resolvent corresponding to any A (so everything here is a bijection

between the set of objects of interest).

Proof sketch. By the spectral theorem, we can essentially assume A is a multiplication operator. Specifically, let

U : L2(Ω, µ) → H and λ : Ω → R come from the spectral theorem, so that UAU−1 = Mλ. Then by definition we

must have

U−1TtU = Mexp(tλ(·)), U−1GαU = M(α−λ(·))−1 .

(Notice that we never divide by zero since α > 0.) Then Tt is indeed a contraction because exp(tλ(x)) is always

nonpositive, and

⟨Tt(f ), g⟩H = ⟨Mexp(tλ(·))(U−1(f )), U−1(g)⟩L2(Ω,µ)

at which point we can move the multiplication operator to the other argument to get symmetry. Furthermore, the

domain of each Tt is always all of H, because Mexp(tλ(·)) is always multiplying “component-wise” by something in

[0, 1] and thus sends L2 functions to L2 functions. The other semigroup properties are also similarly easy to check:

multiplying by etλ(·) and then esλ(·) is the same as multiplying by e(t+s)λ(·), so we get the semigroup property. And for

strong continuity we have

||Tt(f )− f || = ||etλ(·))(U−1(f ))− U−1(f )||L2(Ω,µ);

now by dominated convergence theorem this goes to 0 because the inner thing is (etλ(·) − 1)U−1(f ), which has norm

at most 2.

The arguments for checking resolvent properties are similar, and we’ll omit them here. To check that the resolvent

corresponds to the semigroup as well, we can just notice that
ˆ
e−αtMexp(tλ(·))dt = M(α−λ(·))−1 ,

since for any constant µ < 0 we have
´∞
0 e−αt+µtdt = (α− µ)−1, so the multiplication operator (and then applying

U to get back to the original operator) yields the desired result.

Finally, to get uniqueness, we just need to check that the maps we’ve defined are one-to-one. We’ll just do this

for the resolvent: assume that {Gα} and {G′α} both correspond to the same generator A. We wish to show that

the resolvents are the same – to do this, consider the quantity w = Gα(f ) − G′α(f ) for an arbitrary f ∈ H. By the

definition of the generator corresponding to a resolvent, we know that A = α− G−1α = α− (G′α)−1 implies that

(α− A)Gα = (α− A)G′α = Id =⇒ (α− A)w = f − f = 0.

But now A is nonpositive, so

0 = ⟨(α− A)w,w⟩ ≥ α⟨w,w⟩

and the right-hand side is nonnegative, hence must be zero and thus w = 0 as desired. And the injectivity of the

Laplace transform also tells us that the map from generators to resolvent is also one-to-one (alternatively, we can also

do this directly via some differential inequalities).

13



We can thus fill in the rest of our diagram now as well:

A

Tt Gα

etA
(α−A)−1

Gα=
´
e−αtTtdt

limt↓0
Tt−I
t α−G−1α

Inverse Laplace transform

It’s left as an exercise for us to check (via the spectral theorem) that the following inverse Laplace transform is

correct:

Proposition 34

For a resolvent {Gα}, we can recover the corresponding semigroup via the formula

Tt(f ) = lim
α→∞

e−tα
∞∑
n=0

(tα)n

n!
(αGα)

n(f ),

where Gnα means the repeated composition of Gα with itself n times.

In particular, this tells us that if the resolvent is a contraction, then the semigroup is a contraction as well (by

taking operator norms).

We’ll next introduce a quadratic form which essentially encodes all of this information as well, but instead of

describing “global behavior” (like the resolvent and semigroup) it will be more similar to “local behavior” (like the

generator).

Definition 35

Let H be a Hilbert space with inner product ⟨·, ·⟩. A quadratic form is a map E : F ×F → R, where F is a dense

subspace of H, satisfying the following properties:

1. (Bilinearity) E(a1f1 + a2f2, g) = a1E(f1, g) + E(f2, g) for all f1, f2, g ∈ H and a1, a2 ∈ R.

2. (Symmetry) E(f , g) = E(g, f ) for all f , g ∈ H.

3. (Nonnegative definiteness) E(f , f ) ≥ 0 for all f ∈ F . (This is the main difference with inner products – we

do not require that equality only holds for the zero vector.)

We usually write the quadratic form as (E ,F). Such a quadratic form is closed if F is a Hilbert space with respect

to the inner product E1(f , g) = E(f , g) + ⟨f , g⟩.

If we’re familiar with the theory of Sobolev spaces, this is similar to how we have inner products along with a

gradient term. And the point is that closed quadratic forms corresponding to nonpositive self-adjoint operators,
so we can think of them as equivalent to generators. The following is an exercise:

Proposition 36

We have a “Cauchy-Schwarz inequality” |E(u, v)| ≤ E(u, u)1/2E(v , v)1/2 for all u, v ∈ F , and also a “triangle

inequality” E(f + g, f + g)1/2 ≤ E(f , f )1/2 + E(g, g)1/2.
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Theorem 37

Let A be a nonpositive definite, self-adjoint operator on a Hilbert space H. Define a quadratic form on F =
D(
√
−A) via

E(f , g) =
〈√
−Af ,

√
−Ag

〉
.

Then (E ,F) is a closed quadratic form. Conversely, any closed quadratic form arises in this way from some

nonpositive definite self-adjoint A.

Proof. The proof actually makes use of the resolvent construction; somehow getting from quadratic forms to resolvents

is much easier than making connections in other ways. (But once we understand this basic theory, we’ll typically just

work with the quadratic forms directly.) From the definitions, it is clear that (F , E1) is an inner product space (recalling

that E1(·, ·) = E(·, ·) + ⟨·, ·⟩), and all that’s left is to check completeness.

This basically comes down to the fact that
√
−A is a nonnegative definite self-adjoint operator, because

√
−λ is

always defined and nonnegative. Indeed, for any Cauchy sequence (fn) in (F , E1), we can equivalently formulate this

as saying that the ordered pair (fn,
√
−Afn) is a Cauchy sequence in H×H (by the definition of the inner product in a

product Hilbert space). This is a sequence of points in the graph G(
√
−A) of the operator

√
−A, and the graph of a

self-adjoint operator (in fact any adjoint operator) is always closed. Therefore (fn,
√
−Afn) converges to some point

(f ,
√
−Af ) also on the graph, and that’s equivalent to saying that fn → f in the E1-inner product, proving closedness.

For the other direction, we define a generalization of E1 for all α > 0

Eα(f , g) = E(f , g) + α⟨f , g⟩.

Each Eα is comparable to each other one, meaning that (F , Eα) is a Hilbert space for all α > 0. Now the map

v 7→ ⟨u, v⟩ is a bounded linear functional on H; it is also a bounded linear functional on (F , Eα) for each α, so by the

Riesz representation theorem it must be of the form Eα(Gα(u), v) for some unique Gα(u) ∈ F . We claim that this is

actually the resolvent we are looking for.

1. First, we check symmetry – we use the equation above with the roles of u, v swapped to get

⟨Gα(u), v⟩ = Eα(Gα(u), Gα(v)),

but by the symmetry of Eα that means this is also equal to ⟨u, Gα(v)⟩.

2. Next, we check the resolvent identity. For any u ∈ H and any v ∈ F , we compute

Eα (Gβ(u)− (α− β)GαGβ(u), v) = Eα (Gβ(u), v)− (α− β)Eα (GαGβ(u), v)

= Eα (Gβ(u), v)− (α− β)⟨Gβ(u), v⟩

by our definition of Gα. And now Eα and Eβ differ exactly by the latter term, so this expression simplifies to

Eβ(⟨Gβ(u), v⟩) = ⟨u, v⟩ = Eα(Gα(u), v) .

Equating the boxed expressions and noting that this holds for all v in a Hilbert space, we must have that

Gβ(u)− (α− β)GαGβ(u) = Gα(u), which is what we want.

3. Next, to check contractivity, we write

||αGα(u)|| · ||Gα(u)|| = ⟨αGα(u), Gα(u)⟩ ≤ Eα(Gα(u), Gα(u))
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because the inner product is only one of the terms of Eα. But now by definition of Gα this is ⟨u, Gα(u)⟩ ≤
||u|| · ||Gα(u)|| , and so the boxed parts tell us that ||αGα(u)|| ≤ ||u|| as desired.

4. Finally, strong continuity is a “long but easy computation.” We wish to show that αGαu → u; we have

α||αGα(u)− u||2 = ⟨αGα(u)− u, αGα(u)− u⟩

≤ Eα(αGα(u)− u, αGα(u)− u)

= α2⟨u, Gαu⟩ − 2α⟨u, u⟩+ Eα(u, u)⟩

= α2⟨u, Gα(u)⟩+ E(u, u).

(We used the definition of Gα to simplify the first two terms in the expansion of Eα.) By Cauchy-Schwarz and

the fact that αGα is a contraction, this is bounded from above by α⟨u, u⟩ − α⟨u, u⟩+ E(u, u). But this means

α||αGα(u)− u||2 ≤ E(u, u)

and the right-hand side does not depend on α, so indeed as α→∞ we must have ||αGα(u)−u|| → 0 as desired.

So {Gα} is a resolvent, and we can let A be its generator. Let E ′ be the closed quadratic form corresponding to

A; this means that

E ′(u, v) =
〈√
−Au,

√
−Av

〉
for all u, v ∈ D(

√
−A). We can then define E ′α by adding an α⟨·, ·⟩ term to E ′; we find that

E ′α(Gα(u), Gα(v)) =
〈√
−A(α− A)−1u,

√
−A(α− A)−1v

〉
+ α⟨u, v⟩.

Moving the
√
−A from one argument to the other and then using the definition of Gα again reduces this to ⟨Gα(u), v⟩ =

Eα(Gα(u), Gα(v)). Since this was true for all u, v ∈ H and Gα has dense range, this means E and E ′ coincide on a

dense set and thus agree everywhere.

Next time, we’ll see when a generator corresponds to a Markov process, and that will lead us to the theory of

Dirichlet forms.

4 June 6, 2025

To start, let’s look at the commutative diagram from last time (now complete with more arrows) and fill in a few

remaining parts:

A (E ,F)

Tt Gα

etA
(α−A)−1

E(u,v)=⟨
√
−Au,

√
−Av⟩

Eα(Gα(u),v)=⟨u,v⟩
Gα=

´
e−αtTtdt

limt↓0
Tt−I
t α−G−1α

Tt=limα→∞ e−αt
∑∞

n=0
(αt)n

n!
(αGα)n

First, let’s give a more probabilistic heuristic for why the inverse Laplace transform (marked in red) should be true.

The expression

αGα =

ˆ
αe−αtTtdt
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involves the density of an exponential random variable, and thus we can think of this as an expected semigroup E[Tξα ]
for ξα distributed as Exp(α). So we can think of the expression in red as sampling N from Poisson(αt) and finding

the expectation

E [Tξ1+···+ξN ] , where ξi ∼ Exp(α).

But we expect a sum of such independent exponentials ξ1 + · · ·+ ξN to converge to t for large α, and so indeed this

will converge to the semigroup Tt . (And with this perspective, we can in fact also use properties about exponential

random variables to use this to prove the resolvent identity.)

Proposition 38

As an exercise, we can use the spectral theorem to show that we can go from the semigroup to the quadratic

form by setting

E(f , f ) = lim
t↓0

1

t
⟨(I − Tt)f , f ⟩ ,

where the expression inside the limit is nonincreasing in t and thus the limit will exist. We’ll thus define E to have

domain the set of all f ∈ F where this limit is finite, and then this defines the quadratic form by the polarization

identity.

Proposition 39

Similarly, starting from the resolvent, we can get an expression for the quadratic form by considering the map

α 7→ α⟨(I−αGα)f , f ⟩. This expression is nondecreasing in α (by thinking of I−αGα as a multiplication operator

with entries 1− α
α−λ(·)), and thus we can define

E(f , f ) = lim
α→∞

α⟨(I − αGα)f , f ⟩

where again f is the set of all vectors where this limit is finite.

The notion of semigroups we’ve introduced so far is far too general, though, and we want to restrict ourselves

to semigroups that are actually associated with Markov processes. That’s what we’ll do today – suppose we want to

have a semigroup Pt which takes the form

Pt f (x) = Ex [f (Yt)]

for some Markov process Yt . Notice that this implies that nonnegative functions should be sent to nonnegative

functions and that bounded functions are sent to bounded functions:

Definition 40

A bounded linear map T : L2(X,m) → L2(X,m) is Markovian if the following is true: for any function f

satisfying 0 ≤ f ≤ 1 m-almost everywhere, we also have 0 ≤ T (f ) ≤ 1 m-almost everywhere. A semigroup {Tt}
is Markovian if each Tt satisfies this property, and similarly a resolvent {Gα} is Markovian if each αGα satisfies

this property.

It’s easy to check using the Laplace transform formulas that for an associated semigroup and resolvent, one is

Markovian if and only if the other one is. And so now we want to ask whether we can make a similar definition for the

other objects.
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Definition 41

Let (X,M, m) be a σ-finite measure space. A Dirichlet form on L2(X,m) is a closed quadratic form E : F×F →
R satisfying the following Markov property. Let a ∨ b = max(a, b) and a ∧ b = min(a, b). Then for any function

f ∈ F , we also have 0 ∨ (f ∧ 1) ∈ F , and

E(0 ∨ (f ∧ 1), 0 ∨ (f ∧ 1)) ≤ E(f , f ).

This definition (due to Beurling and Deny) may be a bit hard to immediately interpret, but it turns out to be

equivalent to the ones we saw before under our correspondence. To prove this, we’ll need a technical lemma. Since

we’re working in a σ-finite measure space, it’ll typically suffices to consider simple functions:

Lemma 42

Let P : L2(X,m)→ L2(X,m) be a bounded, linear, m-symmetric Markovian operator, and let F be a 1-Lipschitz

function R→ R (in other words, a contraction) such that F (0) = 0. Then we have the following:

1. For any n ∈ N and any pairwise disjoint measurable sets A1, · · · , An in X such that m(Ai) are all finite, and

for all a1, · · · , an ∈ R, define the function f =
∑n

i=1 ai1{Ai}. Then

⟨(I − P )f , f ⟩ =
n∑
i=1

µia
2
i +
1

2

∑
1≤i<j≤n

αi j(ai − aj)2

for nonnegative coefficients αi j = ⟨1{Ai}, P1{Aj}⟩ and µi = m(Ai)−
∑n

k=1 αi ,k .

2. For any g ∈ L2(X,m), g̃ = F (g) satisfies the contraction property, meaning that

⟨(I − P )g̃, g̃⟩L2 ≤ ⟨(I − P )f , f ⟩L2 .

In particular, F (t) = 0∨ (t ∧1) satisfies this property in the statement, and the idea is that we’ll prove the Markov

property for a Dirichlet form by first doing so for an expression of the form ⟨(I − P )f , f ⟩, then taking the limit in

Proposition 38 or Proposition 39.

Proof. First note that (1) immediately implies (2). Indeed, for the case where g is a simple function, g̃ is also a simple

function with values on its intervals contracted toward the origin, so we see that every term on the right-hand side of

the equation in (1) gets smaller (since a2i and (ai − aj)2 are both nonincreasing). Then we can use density of simple

functions to get the result for all of L2. (Indeed in general g̃ is in L2 if g is in L2 because |g̃(t)| ≤ |g(t)| pointwise.)

Thus, we just need to do the computation and prove (1). We have

⟨(I − P )f , f ⟩ =
n∑
i=1

n∑
j=1

aiaj⟨(I − P )1{Ai}, 1{Aj}⟩

=

n∑
i=1

a2i µ(Ai)−
n∑
i=1

n∑
j=1

aiaj⟨1{Ai}, P1{Aj}⟩

=

n∑
i=1

a2i µ(Ai)−
n∑
i=1

n∑
j=1

aiajαi j

by separating out the I and P parts and noting that the Ais are disjoint. We now just need to do a bit of rearrangement:

this simplifies to
n∑
i=1

a2i µi +

n∑
i=1

n∑
i=1

(a2i αi j − aiajαi j),
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and now using the symmetry αi j = αj i we can sum over only half the terms in the latter term; we end up summing

over i < j of (a2i + a
2
j − 2aiaj)αi j , and that is exactly what we want. What remains to be shown is that each µi is

positive – indeed,

µi = m(Ai)−
∑
k

αi ,k = ⟨1{Ai}, 1{Ai}⟩ −

〈
1{Ai}, P

N∑
k=1

1{Ak}

〉
.

But the function
∑N

k=1 1{Ak} is bounded between 0 and 1, so the same is true for P
∑N

k=1 1{Ak}; in particular

µi ≥ ⟨1Ai , 1Ai ⟩ − ⟨1Ai , 1X⟩ ≥ 0,

so we have nonnegativity as desired.

Theorem 43

Let (E ,F) be a closed quadratic form on L2(X,m) for some σ-finite measure space (X,m). Let {Tt}, {Gα},
and A : D(A) → L2(X,m) be the corresponding semigroup, resolvent, and generator. Then the following are

equivalent:

1. The semigroup {Tt} is Markovian,

2. The resolvent {Gα} is Markovian (that is, αGα is Markovian for all α > 0),

3. For all functions f ∈ D(A), we have ⟨A(f ), (f − 1) ∨ 0⟩ ≤ 0,

4. The quadratic form is a Dirichlet form (that is, for all u ∈ F , ũ = 0∨u∧1 is also in F and E(ũ, ũ) = E(u, u)).

(It turns out that Markovian semigroups will correspond to Markov processes, but we’ll need some additional

conditions and we’ll see that next time.) To prove this correspondence, we’ll need another technical result (which is

left as an exercise):

Lemma 44

Let T : L2(X,m)→ L2(X,m) be a bounded linear operator. Then the following two conditions are equivalent:

1. If 0 ≤ f ≤ 1 m-almost-everywhere, then 0 ≤ T f ≤ 1 m-almost-everywhere.

2. If f ≤ 1 m-almost-everywhere, then T (f ) ≤ 1 m-almost-everywhere.

The main idea is that we can get a two-sided bound by considering −f instead of f , and often it’s more convenient

to use the latter one-sided condition.

Part of proof. First of all, the equivalence of (1) and (2) follows from looking at the the Laplace and inverse Laplace

transforms. To show that (1) or (2) imply (4), we’re considering quadratic forms of the type

E(f , f ) = lim
t↓0

1

t
⟨(I − Tt)f , f ⟩.

We know that 1t ⟨(I − Tt)f , f ⟩ satisfy the Markov property for quadratic forms by our previous lemma; in fact, we get

something stronger, because we know that for any 1-Lipschitz F with F (0) = 0 and any f ∈ F , we have F ◦ f ∈ F
and E(F ◦ f , F ◦ f ) ≤ E(f , f ). So we just need to plug in our particular choice of function F (t) = 0∨ (t ∧ 1) and then

take the limit t ↓ 0 (or in the case of resolvent use the other approximation).
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For (1) or (2) implies (3), we instead apply the inequality to the function F (t) = t ∧1. This implies that f ∧1 ∈ F
and

E(f ∧ 1, f ∧ 1) ≤ E(f , f ),

and now if we write f as a sum of two functions (f − 1)+ + (f ∧ 1) (indeed (f − 1)+ is also in the domain of the

form), we can substitute in f − (f − 1)+ into the left-hand side to get

−2E(f , (f − 1)+) ≤ E((f − 1)+, (f − 1)+) ≤ 0.

So for any f ∈ D(A), we have

−E(f , (f − 1)+) = −⟨
√
−Af ,

√
−A(f − 1)+⟩ = ⟨Af , (f − 1)+⟩,

which we’ve indeed shown is nonpositive. (Here we used that it’s okay to move
√
−A from one side to the other,

because if f ∈ D(A), then
√
−Af ∈ D(

√
−A).

Out of the remaining implications, it’s most important to get from (4) to (1) and (2). To get to the resolvent,

recall that we already have the characterization Eα(Gα(u), v) = ⟨u, v⟩L2 for all u ∈ L2(X,m) and all v ∈ F (recall

that Eα = E + α⟨·, ·⟩L2). We’ll state another characterization now: consider the function ψ : F → R defined by

ψ(w) = E(w,w) + α⟨w − α−1u, w − α−1u⟩.

This expression turns out to have a unique minimizer ψu, and we claim that ψu = Gα(u). Indeed, it’s enough to show

that

ψ(w)− ψ(Gα(u)) = Eα(Gα(u)− w,Gα(u)− w) ≥ 0

by some kind of completing-the-square argument (or equivalently solving some kind of Euler-Lagrange equation to show

that we end up characterizing with the same equation for Gα as above). Thus for (4) implies (2), we need to show that

if 0 ≤ u ≤ 1 m-almost-everywhere, then 0 ≤ αGα(u) ≤ 1 m-almost-everywhere, which is equivalent to saying that

truncating at 0 and 1 does not change the function. That’s equivalent to the statement that v = 0 ∨ (Gα(u) ∧ α−1)
is exactly equal to Gα. Since 0 ≤ u ≤ 1 everywhere and Gα minimizes the given functional ψ, it’s enough to show

that ψ(v) ≤ ψ(Gα(u)) (because then v is also the minimizer). We’ll worry about one term at a time: for the first

term, clearly E(v , v) ≤ E(Gα(u), Gα(u)) by assumption (4) (since we can use bilinearity of the quadratic form to scale

[0, 1] to any interval [0, α−1]). And for the second term, we know that 0 ≤ α−1u ≤ α−1, and therefore we also have

pointwise that

|v − α−1(u)| ≤ |Gα(u)− α−1(u)| m-almost everywhere

(because α−1u is inside the interval of truncation, so when we truncate Gα(u) to v that either does nothing or gets

us closer). Thus the inner product with v is also smaller than with Gα(u), as desired. (And then the inverse Laplace

transform gets us to the semigroup equivalence as well.)

Later on we’ll want to show existence of the heat kernel, and it’ll be useful to understand operators not just in L1

but also in a general Lp.

• By the Markov property of a semigroup, we know that

f ∈ L2(X,m) ∩ L∞(X,m) =⇒ ||Tt(f )||∞ ≤ ||f ||∞,

and we’ve also assumed by definition that Tt is also a contraction in L2. So now we’ll take our σ-finite measure

space and approximate it by a countable union of increasing sets X =
⋃
An, where An ↑ X but m(An) <∞ for
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all n. Then for any f ∈ L∞, the function f 1{An} is always in L2 ∩ L∞, and so it makes sense to define

Tt f = lim
n→∞

Tt(f 1{An})

for f ∈ L∞(X,m) nonnegative m-almost everywhere. (This definition turns out to be independent of the choice

of An that we make, for example by taking a common refinement.) From there, we can then split up a general

f into f+ and f− and define Tt f = Tt(f+)− Tt(f−); taking limits of the property above shows that Tt is also a
contraction on L∞.

• Now note that L1 ∩ L∞ is dense in L1, so we claim that Tt : L1(X,m)→ L1(X,m) will be a contraction for all

t > 0 as well. Indeed, by density it suffices to prove control on the L1 norm for any f ∈ L1 ∩L∞. But by duality

between L1 and L∞,

||Tt f ||1 = sup
g∈L∞∩L2,||g||∞=1

ˆ
Tt(f )g dm,

where the key is that by approximating any function in L∞ by functions of our type we can now move the Tt
from one side to the other (because we’re in L2):

||Tt f ||1 = sup
g∈L∞∩L2,||g||∞=1

ˆ
f Tt(g) dm ≤ ||f ||1,

since ||Ttg||∞ ≤ 1. Being a contraction on a dense subspace implies that we’re a contraction on the whole

space.

• Finally, from here we can use Riesz-Thorin interpolation and duality to get the same contraction result for the

semigroup for any general p ∈ [1,∞] and any t > 0.

5 June 9, 2025
We’ll begin by clarifying a few points from the end of last lecture. First of all, here is a useful counterexample to keep

in mind:

Example 45

Let X = {1, 2} with m the counting measure, and define the quadratic form

E(f , f ) = (f (1)− f (2))2 + f (1)2 + λ(f (1)2 + f (2)2)

for some parameter λ.

We can check the following facts by computing eigenvalues of a 2× 2 matrix:

• E is a nonnegative-definite, closed quadratic form on L2(X,m) if and only if λ ≥
√
5−3
2 .

• But E is a Markovian such form if and only if λ ≥ 0. Thus there’s some range of values λ for which we are not

Markovian.

We typically mostly talk about defining the semigroup on L2, L1, L∞ and not so much on the intermediate ps, but

let’s work through the reasoning in more detail. For any f ∈ L1 ∩ L2, we have (all statements m-almost-everywhere)

−|f | ≤ f ≤ |F | =⇒ −Tt(|f |) ≤ Tt(f ) ≤ Tt(|f |) =⇒ |Tt(f )| ≤ Tt(|f |).
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Thus for any sequence of subsets An ↑ X with m(An) <∞, we show contraction in L1 via

||Tt(f )|| = lim
n→∞

ˆ
1{An}|Tt(f )|dm ≤ lim

N→∞
1{An}Tt |f |dm

(using the triangle inequality), and now interchanging the limit and the integral shows that this is equal to

lim
n→∞

Tt(1{An})|f |dm ≤
ˆ
|f |dm,

where we’ve used that 1{An} always takes on values in [0, 1] and thus so must Tt(1{An}). So we are a contraction

on L1, and since we also know that we are a contraction on L2 we get a contraction for all p ∈ (1, 2) as well. But for

our purposes going forward, what we’ve shown is already good enough.

We’ll now talk about the construction of Markov processes from the semigroup. There are basically two issues

that might come up:

1. Letting 1 be the constant function, we may have that Tt1(x) < 1, meaning that the Markov process started

at x yields a sub-probability measure instead of a probability measure. In such a case, we need to add an extra

absorbing state called the cemetery, such that once the Markov process reaches that state, it stays there forever,

and the mass is exactly the amount needed to give us a probability measure.

2. Note however that since we’re only defining the semigroup on L2, the left-hand side Tt1(x) (and functions in

general) is not even pointwise defined, so we need to be careful. We’ll need to deal with a finer notion of

continuity, and to define a process associated with such a semigroup (just like in the space of Lp spaces) we

need to throw away some “small sets” to make our construction unique.

We want to get something which is right-continuous with left limits, and we’ll have to make some topological

assumptions on X rather than just having a measure space.

Definition 46

Let (X,M, m) be a σ-finite measure space and let (E ,F) be a Dirichlet form on L2(X,m). We call (E ,F) a

regular Dirichlet form if it satisfies the following conditions:

1. X is a locally compact, separable, metrizable space (that is, X is Polish) withM its Borel σ-algebra and m

a Radon measure with full support (that is, a Borel measure which is finite on compact sets and nonzero

on all nonempty open subsets).

2. “There are lots of continuous functions,” meaning that the vector space F ∩ Cc(X) is dense in (F , E1)
(which we know to be a Hilbert space) and also dense in (Cc(X), || · ||sup). This is for example a property

of Sobolev spaces.

We’re now ready to state a fundamental basic result in this area:
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Theorem 47 (Fukushima ’71)

Let (E ,F) be a regular Dirichlet form on L2(X,m) and let B be the Borel σ-algebra on X. Let X∆ = X ∪
{∆} be the one-point compactification of X (so if X is compact this adds an isolated point) and define B∆ =
B ∪ {B ∪ {∆} : B ∈ B}, a σ-field on X∆. Then for all x ∈ X∆, there is an X∆-valued stochastic process(
Ω, (Ft)t≥0, (Yt)t∈[0,∞], (Px)x∈X∆

)
, which satisfies the following properties:

• The filtration (Ft)t≥0 is right-continuous (to ensure that certain hitting times are stopping times), and the

process (Yt)t≥0 is adapted to the filtration.

• For all E ∈ B∆ and all t > 0, the function x 7→ Px(Yt ∈ E) is a measurable function of x on (X∆,B∆).

• (Markov property) For all x ∈ X, E ∈ B∆, and t, s ≥ 0,

Px (Yt+s ∈ E|Ft) = PYt (Ys ∈ E).

• (Normality) Px(Y0 = x) = 1 for all x , meaning that Px indeed “starts our process at x .”

• (Cemetery is absorbing) We have Y∞(ω) = ∆ for all ω ∈ Ω, and we have Px(Yt(ω) = ∆) = 1 for all

t ≥ ζ(w), where ζ(w) = inf{t ≥ 0 : Yt(ω) = ∆} is called the lifetime of the process (and can be infinite).

• (Càdlàg paths) The map t 7→ Yt(ω) is right-continuous on [0,∞) and has left limits on (0,∞).

• (Strong Markov property) For any probability measure µ on X∆ and for any stopping time T , we have for

all s ≥ 0 that

Pµ (YT+s |FT ) = PYT (Ys ∈ E),

where Pµ(·) =
´
Px(·)µ(dx) means that the distribution of the starting state is given by µ. (Every deter-

ministic time is a stopping time, so this is strictly stronger than the Markov property.)

Furthermore, we assume that our process has a law which is absolutely continuous with respect to the reference

measure, then we can also show that (via some version of the strong Feller property) we do have uniqueness.

Otherwise (see proof ideas below) we need to make some modifications.

Note that it’s okay to set Y∞(ω) = ∆ even if we have a recurrent process which never actually gets absorbed – it’s

not that we’re taking the limit of Yt(ω) as t →∞. Indeed, we’re not requiring left-continuity at infinity here with the

càdlàg condition. And the point is that we need regularity to make this construction work.

We won’t do the full proof here, but we’ll give a sense of why it’s true and why regularity is required. This has

to do with the fact that since we can approximate every function in the domain of our form F with continuous

functions, the semigroup maps any function in L2 to F (this is a consequence of the spectral theorem) – the result

is quasi-continuous rather than continuous, so we’re almost pointwise defined. Then positivity allows us to represent

something like Riesz representation for nonnegative functions (outside a negligible set). And the price we have to pay

for applying Hilbert space methods is the loss of uniqueness.

To explain further, let
(
Ω, (Ft)t≥0, (Yt)t∈[0,∞], (Px)x∈X∆

)
be as above. We call a subset N ⊂ X properly excep-

tional for {Yt}t∈[0,∞] if N is a Borel set with m(N ) = 0 which is also negligible from the point of view of the process,

meaning that

Px ({ω ∈ Ω| for all t, Yt(ω) ∈ X∆ \ N and Yt−(ω) ∈ X∆ \ N}) = 1.

In other words, if we start outside N , we almost surely never see N , so it shouldn’t affect the semigroup and Dirichlet

form. We then have uniqueness in the following sense: for any two processes (Yt) and (Ỹt) corresponding to the

23



same regular Dirichlet form, there is a common properly exceptional set N (meaning that it is exceptional for both

processes) such that Px(Yt ∈ ·) and P̃x(Ỹt ∈ ·) for all t ≥ 0 and all x ∈ X \ N . Here to be completely precise, we say

that (Yt) corresponds to the Dirichlet form (E ,F) if the semigroup P Yt defined by

P Yt f (x) = Ex [f (Yt)1{t < ζ}]

is exactly equal to Tt , the Markovian semigroup associated with the Dirichlet form in the way discussed last lecture.

(The reason for the indicator is 1{t < ζ} is that we don’t know the value of f on the cemetery state; this is equivalent

to just extending the function f via f (∆) = 0.) The following result is important for the proof, which involves

modifications of quasi-continuous functions:

Definition 48

The 1-capacity of a set A ⊂ X is defined by

Cap1(A) = inf {E1(f , f )|f ∈ F , f ≥ 1 m-almost-everywhere on a neighborhood of A} .

We call N E-polar if Cap1(A) = 0.

In particular, just the L2 inner product term in E1(f , f ) ensures that Cap1(A) ≥ m(A) for all Borel sets, since

⟨f , f ⟩ ≥ m(A) =⇒ E1(f , f ) ≥ m(A). We might ask whether this is equivalent to the notion above, and we’ll get to

that soon.

Example 49

An example of a set with zero measure but nonzero capacity would be a line segment from (0, 0) to (1, 0) in

R2, which has zero Lebesgue measure but positive capacity with respect to the usual Dirichlet form E(f , f ) =
1
2

´
|∇f |2dm.

Definition 50

We say that a statement S(x) (dependent on x ∈ X) holds quasi-everywhere (sometimes written q.e.) on a

subset A ⊂ X if it holds for all A \ N for some E-polar set N . A function f ∈ L2(X,m) is quasi-continuous
if, taking any representative of the equivalence class so that we are pointwise defined, there exists f̃ : X → R
with f̃ = f m-almost everywhere, such that for all ε > 0 there is some open set G with Cap1(G) < ε, and f̃ is

continuous on the closed set X \ G.

Do note however that we cannot actually get continuity outside an E-polar set – we have to take this “nest” of

approximations with smaller and smaller capacity, and that’s one of the annoying aspects of this theory. This notion

of almost-continuity is exactly what’s used in the proof of Fukushima’s theorem:

Theorem 51

Let (E ,F) be a regular Dirichlet form on L2(X,m). Then every function f ∈ F admits a quasi-continuous

modification f̃ : X → R (in particular, this implies f̃ = f m-almost-everywhere), and any two quasi-continuous

modifications are equal quasi-almost-everywhere.

We can now discuss the relationship between our E-polar and properly exceptional sets N . It turns out they are

more or less the same thing:
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Fact 52

Any properly exceptional set is E-polar, and any E-polar set is contained in some properly exceptional set.

We’ll state some more results without proofs in the remainder of this lecture and discuss how to think about them.

Many properties of our processes can be read off from properties of the Dirichlet form (which is useful because it is

much more infinitesimal than the semigroup), and we also have some control over the sample paths (which we know

are càdlàg, but perhaps we want a diffusion where the paths are actually continuous):

Definition 53

Let (E ,F) be a regular Dirichlet form on L2(X,m). We say that (E ,F) is strongly local if for all f , g ∈ F where

• suppm(f ), suppm(g) are compact (here suppm(f ) = supp(f ·m)), and

• there exists some real number a ∈ R such that suppm(f − a) ∩ suppm(g) = ∅,

we have E(f , g) = 0. Similarly, we say that E(f , g) is local if whenever suppm(f ), suppm(g) are compact and

suppm(f ) ∩ suppm(g) = ∅, we have E(f , g) + 0.

Example 54

Let E(f , g) = 1
2

´
∇f · ∇gdm be the usual Dirichlet form. This is strongly local because whenever f is constant

(equal to 1) on each region where g is supported, the integral evaluates to 0. On the other hand, E(f , g) =
⟨f , g⟩L2(m) is local but not strongly local.

Proposition 55

If (E ,F) is strongly local, then {Yt} satisfies that – here consider t ∈ [0,∞) –

Px (t 7→ Yt(ω) ∈ X∆ is continuous) = 1.

Meanwhile if (E ,F) is only local, then we instead have that statement but only considering t ∈ [0, ζ).

From a probabilistic point of view, the latter implication is saying that we’re allowed to make jumps but only to

the cemetery state. If we’re familiar with Lévy processes, we might have seen a decomposition of those processes into

simpler parts, and there is also a nice one here for Dirichlet forms:
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Theorem 56 (Beurling-Deny decomposition)

For any regular Dirichlet form (E ,F) on L2(X,m), we have a unique triple (E(c), J, κ) (these three parts correspond

to “strongly local,” “jump,” and “killing”) where E(c) is a strongly local nonnegative definite bilinear form on F ×F ,

J is a symmetric Radon measure on X × X \ diagX (symmetric meaning that the measure is invariant under

swapping the two coordinates), and κ is a Radon measure on X, such that

J(X ×N \ diagX) = 0, κ(N ) = 0

for any E-polar set N , and we can write down our Dirichlet form as a sum of three parts

E(u, v) = E(c)(u, v) +
¨
X×X\diagX

(ũ(x)− ũ(y))(ṽ(x)− ṽ(y))J(dxdy) +
ˆ
X

ũ(x)ṽ(x)κ(dx),

where ũ, ṽ are the quasi-continuous versions of u and v (everything is well-defined here because of our assumptions

on J and κ).

We call J the jumping measure and κ the killing measure; we can in fact think of the last integral here as

(ũ(x) − ũ(∆))(ṽ(x) − ṽ(∆)) to match with the J integral, except that we can only jump from x to ∆ and not vice

versa. So an interpretation at the probabilistic process can be made as follows: if we assume that 1A is in F for any

Borel set A (this is true for example for finite state spaces), we can let A,B be two disjoint Borel sets and compute

that

J(A× B) = −E(1A, 1B)

(because we get contributions from x ∈ A, y ∈ B or vice versa), and the correspondence with semigroups yields that

this expression is exactly

− lim
t↓0

⟨(I − Tt)1B, 1A⟩
t

= lim
t↓0

⟨Tt1B, 1A⟩
t

= lim
t↓0

1

t

ˆ
A

Px(Yt ∈ B)m(dx).

So this indeed captures the jumping intensity from A to B. And similarly taking B to be the whole set X, we can

derive a similar interpretation for the killing measure as the jumping intensity into the cemetery state.

6 June 10, 2025

Last time, we saw the decomposition of a regular Dirichlet form E into three parts (E(c), J, κ), a strongly local diffusion

part, a jump part, and a killing (jump to the cemetery) part. We’ll saw that under the assumption that indicators 1A
are always quasi-continuous (strictly speaking these aren’t necessary because we can use approximations), the jump

part is indeed giving the measure of the jump intensity by considering disjoint sets A,B and letting u = 1A and v = 1B.

But now if we let u = 1A and b be the constant function 1, we have

E(1A, 1X) =
ˆ
1Aκ(dx) = κ(A).

(Indeed, the diffusion term goes away by the strongly local property, and the jump term is zero because ṽ(x)−ṽ(y) = 0.)
But now by the properties of the Dirichlet form we have that

κ(A) = lim
t↓0

1

t
⟨1A, (I − Tt)1X⟩ = lim

t↓0

1

t

ˆ
A

Px (Yt = ∆) dm(x),

and thus the killing measure is indeed the rate of jumps to the cemetery state.
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It turns out that E(c) is a bit harder to describe because we can have various (sometimes fractal) constructions of

diffusions on various spaces, and we’ll see some examples of those later on.

We’ll next see how to write probabilistic properties in terms of the associated Dirichlet forms of the Markov

processes.

Definition 57

Let (E ,F) be a regular Dirichlet form. We say that a Borel set A ⊂ X is E-invariant if for any f ∈ F , 1Af ∈ F
(thus 1Ac f ∈ F as well by linearity), and

E(f , f ) = E(1Af , 1Af ) + E(1Ac f , 1Ac f ).

In other words, there is no interaction between energies in A and Ac .

This property turns out to be equivalent to the following condition on the semigroup (Pt):

Pt(1Af ) = 1APt(f ) m − almost-everywhere for all f ∈ L2(X,m).

That is, the evolution of the semigroup is contained in A, and probabilistically if our process starts in A (resp. Ac) it

never leaves A (resp. Ac). So this definition relates to the concept of irreducibility of a Markov process:

Definition 58

We say that (E ,F) is irreducible if for every E-invariant set, either m(A) = 0 or m(Ac) = 0.

Definition 59

Let (E ,F) be a Dirichlet form on L2(X,m). The extended Dirichlet space Fe is defined as

Fe =
{
f : f is m-a.e. the limit f = lim

n→∞
fn, where fn ∈ F satisfy E(fn − fm, fn − fm)

m,n→∞→ 0
}
.

We then define E(f , f ) = limN→∞ E(fn, fn) for all f ; this turns out to be well-defined.

So we’re completing the space with respect to E rather than an inner product. This turns out to be related to

recurrence and transience of the underlying process.

Definition 60

A Markov semigroup (Pt) is transient if for any m-almost-everywhere-nonnegative function f ∈ L1(X,m) ∩
L∞(X,m), the Green operator

Gf (x) = lim
N→∞

ˆ N

0

Pt f (x)dt

is finite m-almost-everywhere.

For example if f is the indicator of some set of finite measure, we’re saying that for a transient semigroup, the

amount of time spent in that set is finite in expectation. We can generally think of this as a weighted occupation time.
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Definition 61

A Dirichlet form (E ,F) is transient if there is some function m-almost-everywhere-positive f ∈ L1(X,m) ∩
L∞(X,m) such that ˆ

X

|u|f dm ≤
√
E(u, u)

for all u ∈ F .

Theorem 62

The following are equivalent:

1. (Pt) is transient,

2. (E ,F) is transient,

3. the extended Dirichlet space (Fc , E) is a Hilbert space (in particular, no nonzero functions have zero energy)

(2) implies (3) is easy to see, because by the definition of transience for (E ,F) we have a Cauchy sequence for

f dm, and we produce a limit via some subsequence. And for the converse, we show that the Green’s function is in

the domain of the form and use Cauchy-Schwarz and the fact that the Laplacian and Green’s function are inverses.

But we won’t go into the proof much beyond that.

We have a similar condition for recurrence:

Definition 63

A semigroup (Pt) is recurrent if for all nonnegative functions f ∈ L1(X,m) ∩ L∞(X,m), the Green operator

Gf (x) = limN→∞
´ N
0 Pt f dt takes on value either 0 or ∞ m-almost-everywhere. A Dirichlet form (E ,F) is

recurrent if 1X ∈ F and E(1X , 1X) = 0.

Theorem 64

(Pt) is recurrent if and only if (E ,F) is recurrent.

In fact, an irreducible Markov process is always recurrent or transient.

Example 65

Consider the measure m(dx) = xn−1dx on (0,∞) (the symmetric measure for the n-dimensional Bessel process).

The Dirichlet form for that process then takes the form E(f , g) =
´
X f
′(x)g′(x)mdx on L2(X,m). The Bessel

process is recurrent for n = 1, 2 and transient otherwise; we can indeed show (exercise) that (E ,F) is irreducible,

and it is recurrent if n ∈ (0, 2] and transient if n ∈ (2,∞).

We can also obtain a description in terms of the associated process Yt .
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Theorem 66

Let Yt be the associated process to (E ,F). For any Borel set B ⊂ X, let TB = inf{t > 0 : Yt ∈ B}. Then if (E ,F)
is irreducible and B is a non-polar Borel set, then “the process does see the set” in the sense that Px(TB <∞) > 0
for q-almost-every starting point x ∈ X.

Furthermore if (E ,F) is recurrent, then for any non-polar Borel set B we have

Px (TB ◦ θn <∞ for all n ∈ N) = 1,

where θn is the “time-shift by n” operator (Yt ◦ θs = Yt+s), for q-almost-every x ∈ X. On the other hand if (E ,F)
is transient, then the process is either killed or escapes to infinity in the sense that

Px
(
ζ =∞, lim

t→∞
Yt = ∆

)
= Px(ζ =∞)

(lim Yt = ∆ meaning that we escape every compact set) for q-almost-every x ∈ X.

The main takeaway is thus that we can deduce global properties (long-time behavior) from an infinitesimal de-

scription at time t = 0. Everything here is qualitative, but we’ll see now that we can do the same with quantitative

properties such as the heat kernel.

Definition 67

Let (E ,F) be a Dirichlet form on L2(X,m) and (Pt) its corresponding semigroup. Consider a family (pt)t>0 of

Borel measurable functions on X ×X such that for any f ∈ L2(X,m), we have

Pt f (x) =

ˆ
X

pt(x, y)f (y)m(dy).

If such a family exists, it is called a heat kernel.

We can think of pt(x, y)m(dy) as the law of Yt given Y0 = x (at least up to quasi-almost-everywhere considerations)

– indeed if f is an indicator, this tells us probabilities of being in a particular set at time t. Heat kernels do not always

exist, for example if the Dirichlet form is just zero and thus we would need pt to be the Dirac mass.

The point is that if we know something about pt , then we have a way of measuring how the process evolves. The

following is a measure-theoretic result:

Proposition 68

Suppose (X,M, m) is a σ-finite separable measure space, and T : L1(X,m)→ L∞(X,m) is a bounded operator.

Then there exists a jointly measurable function K : X×X → R which is bounded (that is, K ∈ L∞(X×X,m⊗m))
with ||T ||1→∞ = ||K||∞, and such that

T f (x) =

ˆ
K(x, y)f (y)m(dy).

If we already know T is of this integral kernel form, then the bound is easy because we can approximate f by a

Dirac mass at the maximum of K. So if we can show that the heat operator is a bounded operator from L1 to L∞,

it will show the existence of pt and in fact give us a bound on how large it is. We will call such a bounded operator

from L1 to L∞ ultracontractive – the idea is that this also smooths out the operator, since L1 functions can in fact

be very spiky. So the question now is how we would prove such a bound for Pt . (Note that it’s possible for the heat
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kernel to only exist after some cutoff time, or for the heat kernel to exist even without ultracontractivity. But we’re

starting with the simplest case.)

Remark 69. The theory of regular Dirichlet forms assumes that we have a locally compact space. This precludes

infinite-dimensional systems of interest, but there is also a theory of quasi-regular Dirichlet forms where we can

construct processes similar to Fukushima’s theorem.

Proposition 70

Let (E ,F) be a Dirichlet form on L2(X,m), and let (Pt) be the associated semigroup. Assume that we have

constants C1 ≥ 0, C2 > 0, n ≥ 1 (all real numbers) such that the following Nash inequality holds for all

f ∈ L1(X,m) ∩ F :

||f ||1+n/22 ≤ ||f ||1
(
C1||f ||22 + C2E(f , f )

)n/4
.

Then (Pt) admits a heat kernel (pt) satisfying the bound

ess supx,y∈Xpt(x, y) ≤ max
(
2C1,

nC2
t

)n/2
.

In particular if C1 = 0, then this tells us a bound of the form t−n/2 as t → 0.

(It’s always good to check that multiplying f by a constant in functional inequalities like the Nash inequality above

doesn’t change the statement.) This inequality was proven in the 1950s for the Dirichlet form of Brownian motion

with C1 = 0 and n the dimension of the Brownian motion; we’ll see Nash’s proof later on. And in fact this fact applies

to all three examples we saw in the first lecture (Brownian motion, Brownian motion on the Sierpinski gasket, and

α-stable processes) and is sharp up to constants.

Proof. We wish to show that ||Pt ||1→∞ ≤ max
(
2C1,

nC2
t

)n/2
, so that we can apply Proposition 68. Instead of showing

this bound, we’ll first show a bound from L1 to L2 and then use duality (since we then also get a bound from L2

to L∞ for the adjoint and then compose them together).

Our first goal is to show

||Pt(f )||2 ≤ max
(
2C1,

nC2
2t

)n/4
||f ||1

for all t > 0 and f ∈ L1(X,m). Indeed, without loss of generality (by scaling by constants) we can assume that

||f ||1 = 1 and we want to understand how the L2 norm evolves over time. One way to do this is to find a differential

inequality: we have

d

dt
||Pt f ||22 =

ˆ
2 (Pt f )

d

dt
(Pt f ) dm,

and now we can justify this next step via the spectral theorem, since Pt = etA =⇒ d
dtPt = Ae

tA: the above expression

becomes

−2
ˆ
(Pt f )(−A)(Pt f )dm = −2E(Pt f , Pt f ).

In particular, this tells us that the Dirichlet energy captures the rate of decrease of the L2 norm of the contracted

Pt f . Defining ψ(t) = ||Pt f ||22, we’ve shown that

ψ′(t) = −2E(Pt f , Pt f ).
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Now applying the Nash inequality to Pt f , we have

||Pt f ||1+2/n2 ≤ ||Pt(f )||1
(
C1||Pt f ||22 + C2E(Pt f , Pt f )

)n/4
≤
(
C1||Pt f ||22 + C2E(Pt f , Pt f )

)n/4
=⇒ ψ(t)(1+n/2)/2 ≤

(
C1ψ(t)− C2

ψ′(t)

2

)n/4
by plugging in our expression for ψ′ and using that Pt is also a contraction in L1. Raising both sides to the power of

4/n yields

ψ(t)1+2/n ≤ C1ψ(t)−
C2
2
ψ′(t).

Now if ψ(t) ≤ (2C1)n/2 the boxed inequality is already true; otherwise if ψ(t) ≥ (2C1)n/2 we have

−
C2
2
ψ′(t) ≥ ψ(t)1+2/n − C1ψ(t)

≥ ψ(t)
(
ψ(t)2/n − C1

)
≥ ψ(t)

(
ψ(t)2/n −

1

2
ψ(t)2/n

)
=
1

2
ψ(t)1+2/n,

and therefore we have ψ(t)1+2/n ≤ −C1ψ′(t) as long as ψ(t) ≥ (2C1)n/2. Solving this differential inequality yields

d

dt
(ψ(t)−2/n) ≥

2

nC2
,

which, after integrating and rearranging, is the boxed inequality that we wanted. And finally to get the theorem from

the boxed inequality, we have

||Pt ||1→∞ = ||Pt/2 ◦ Pt/2||1→∞ ≤ ||Pt/2||1→2||Pt/2||2→∞,

and now since everything is self-adjoint Pt : L2 →∞ is the adjoint of the operator Pt : L1 → L2. Thus both terms on

the right-hand side are max
(
2C1,

nC2
2(t/2)

)n/4
, which is what we wanted.

So the overall message is that because the Dirichlet energy tells us about the norm of the semigroup, we can

encode that via differential inequalities to get ultracontractive bounds and thus existence of the heat kernel. It may

seem weird why Nash did all of this when we already know the exact formulas for the heat kernel of Brownian motion,

but the point is that this method is robust to perturbations as well: if we have

E(f , f ) =
ˆ
∇f (x)TA(x)∇f (x)dx

for A : Rn → Mn×n a positive definite, measurable, symmetric, matrix-valued function, and we have some Λ such that

Λ−1||ξ||2 ≤ ξTA(x)ξ ≤ Λ||ξ||2

(so A is almost constant but we can have shears and various speeds in different places), we can think of having a

perturbation of Brownian motion, but still getting comparable Nash inequalities and thus comparable bounds on the

heat kernel.
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7 June 12, 2025

Last time, we discussed Fukushima’s theorem (which lets us construct processes) and found ways to connect properties

of the Dirichlet form to properties of the process. We then also saw a quantitative result in the form of getting bounds on

the heat kernel from the (functional) Nash inequality and commented on the stability of the result under perturbations.

Today, we’ll see a proof of the Nash inequality for the setting of Brownian motion:

Proof of Nash inequality on Rn. The proof uses Fourier analysis; we’ll use the convention that f̂ (ξ) =
´
Rn f (x)e

−ix ·ξdx .

By Parseval’s identity, we can write down ||f ||22 = (2π)−n||f̂ ||22 and break up the resulting integral into two terms,

within and outside a ball of radius R:

||f ||22 = (2π)−n
(ˆ

BR(0)

|f̂ (ξ)|2dξ +
ˆ
BR(0)c

|f̂ (ξ)|2dξ
)

≤ (2π)−n
(ˆ

BR(0)

|f̂ (ξ)|2dξ +
ˆ
BR(0)c

|ξ|2

cR2
|f̂ (ξ)|2dξ

)
≤ (2π)−n||F ||21wnRn +

1

R2

ˆ
|∇f (x)|2dx

where in the last inequality we bound the integrand by ||f ||21 pointwise for the first term, and we use ∇̂f = −2ξf̂ (ξ)
and Parseval’s theorem again for the second term. But this is true for any choice of R > 0, so we can minimize it as

a function of R – doing the appropriate calculus optimization exactly yields the desired result

||f ||1+n/22 ≤ ||f ||1
(ˆ
|∇f |2dx

)n/4
for all f ∈ W 1,2(Rn)∩ L1(Rn) (in particular we have C1 = 0, so our heat kernel bound is

(
nC
t

)n/2
, which is tight when

x = y).

It’s worth mentioning at this point that the existence of the heat kernel cannot be taken for granted:

Example 71

Consider Brownian motion on the circle T = R
2πZ (that is, Brownian motion projected down by the quotient map);

this is symmetric with respect to the Haar probability measure on T. We can write down the heat kernel in this

case:

pt(x, y) = gt(x − y), gt(x) =
√
2π

t

∑
k∈Z
exp

(
−
(x + 2πk)2

2t

)
(the 2π is in the numerator of the square root because our torus is of length 2π).

In this one-dimensional example, the heat kernel indeed exists for all time. But now consider the infinite-dimensional

torus T∞ =
∏∞
k=1 T and define a Brownian motion on this space via

Yt = (B
1
a1t , B

2
a2t , · · · )

where (a1, a2, · · · ) is some sequence of positive real numbers and B1, B2, · · · are independent Brownian motions on

T. Since everything is independent, we can write down the law as a product of one-dimensional measures, and we can

assume that we start the process at the origin because the process is translation-invariant. So the corresponding law

µt now takes the form

µt(dx) =

∞∏
k=1

gak t(x)m(dx);
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the infinite-dimensional Brownian motion is indeed symmetric with respect to the Haar measure on T∞, which is

m∞ =
∏∞
k=1m. We are then curious when this law has a density with respect to the Haar measure – it turns out to

always be absolutely continuous or singular (nothing in between):

Theorem 72 (Kakutani’s dichotomy theorem)

With the notation above, µt ≪ m∞ if and only if∏
n∈N

ˆ
T

√
gant(x)m(dx) > 0,

and µt ⊥ m∞ if and only if the product is zero. It turns out that the product is positive if and only if
∑∞

n=1 e
−tan <

∞.

(By Cauchy-Schwarz each of these integrals is at most 1, so the product definitely exists and we want the limit to

be strictly positive to get a density.) And if we choose the coefficients to be an = 1
α log(n + 1) for all n, then it turns

out µt is singular with respect to m∞ if and only if t ≤ α.

Remark 73. There’s a conjecture that even if the components of the Brownian motion are not independent but still

correspond to a translation-invariant diffusion, there will still be such a cutoff time (possibly infinite) where we’re

singular before and absolutely continuous afterward. But that conjecture is still open, since we can’t just compute a

dichotomy of this form and we can’t simply diagonalize the covariance matrix because we won’t be working with the

standard torus anymore.

On the other hand, do note that it’s not possible for the heat kernel to first exist and then fail to exist later because

of the Markov property: at time t + s we can view things as a shifted version of the law at time t, so it will always

exist.

Example 74

Next, we’ll construct the Brownian motion on the Sierpinski gasket. Recall that the definition is as follows: start

with an equilateral triangle and remove the median triangle in the middle, and then continue this process on each

of the three remaining half-side-length triangles.

q3q2

q1

Let S = {1, 2, 3}. We’ll define the maps f1, f2, f3 : R2 → R2 which are scale-1/2 contractions centered at the three

vertices q1, q2, q3 respectively; that is, fj(x) = 1
2(x + qj) for all j ∈ S and x ∈ R2. Formally, the Sierpinski gasket is

then the unique non-empty compact set satisfying the identity

K =
⋃
j∈S

fj(K).

We’ll now define an inductive set of points

V0 = {q1, q2, q3}, Vm =
⋃
j∈S

fj(Vm−1)
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(so V1 will also include the midpoints of the big triangle, then V2 also all of the intersections between line segments in

the figure shown above, and so on). This is an increasing family of sets, and we can think of these as a sequence of

graphs which approximate the Sierpinski gasket.

Define Fj to be the map fj restricted to the Sierpinski gasket K, and let

Wm = S
m = {w1w2 · · ·wm : wi ∈ S}

be the set of words of length m in the alphabet {1, 2, 3}. For any x, y ∈ Vm, we will define the adjacency relation

x
m∼ y if x ̸= y and x, y ∈ Fw (V1) for some w ∈ Wm,

where Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm . In other words, we’re saying that we started off with two vertices of the big triangle

and then performed some sequence of m contractions, so that x and y are two of the three resulting vertices.

We want to construct Dirichlet forms on these discrete graphs and take a limit to get a Dirichlet form on K. From

a probabilistic point of view, we have a random walk on the graphs Vm and want to take scaling limits. To do this, let

E(m)(u, v) =
1

2

∑
x,y∈Vm
x
m∼y

(u(x)− u(y))(v(x)− v(y)) for all u, v ∈ RVm .

be the unscaled energy corresponding to simple random walk. We now want to rescale this (that is, speed up the

walk), and it turns out we should set

E(m)(u, v) =
(
5

3

)m
E(m)(u, v).

The 3m factor comes from there being roughly 3m vertices at scale m, and the 5m came from the explanation of the

first lecture (to travel twice as far, we need to spend 5 times as much time). But we can actually do a computation

of the energies that shows this scaling in another way:

Proposition 75

For any m, suppose we have any function u ∈ RVm at level m and want to extend it to level m+1 while minimizing

the energy. Then we have

min
v∈RVm+1
v |Vm=u

E(m+1)(v , v) =
3

5
E(m)(u, u).

Thus the rescaled energies satisfy a monotonicity property without any constants.

Proof. First, we claim we can reduce to the case m = 0. Indeed, the energy at level (m+1) is the sum of the energies

in the three smaller triangles, each of which is the energy at level m, and thus we can just keep going down until the

smallest level. Suppose we have some boundary conditions for u, and we have to optimize over the three remaining

values:

u(q3) = cu(q2) = b

u(q1) = a

x

yz
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We then have

E(1)(v , v) =
1

2

(
(a − x)2 + (a − y)2 + (z − y)2 + (b − z)2 + (b − x)2 + (x − z)2 + (y − x)2 + (y − c)2 + (x − c)2

)
and for fixed a, b, c we want to minimize the result as a function of x, y , z . By completing the squares it turns out the

minimizer is

x =
a + 2b + 2c

5
, y =

2a + b + 2c

5
, z =

2a + 2b + c

5
.

(Indeed, the minimizer can be viewed in terms of harmonic measures – if we start at x and do simple random walk

until we hit any of q1, q2, q3, the probabilities turn out to be 1
5 ,
2
5 ,
2
5 .) And if we plug these values in we indeed get

that E(1)(v , v) = 3
5E
(0)(u, u), as desired.

Remark 76. We’ll see a different probabilistic interpretation in terms of a time-change later on. This is the simplest

example of diffusion on fractals – the Sierpinski carpet is actually much more difficult for many reasons, since we can’t

actually compute the rescaling factors very easily.

With this, we’ll now make the following natural definition of the limiting Dirichlet form:

Definition 77

Let V∗ =
⋃∞
n=1 Vn be the limit of the increasing sets. It turns out V∗ = K, and we define

F∗ =
{
u ∈ RV∗ : lim

m→∞
E(m) (u|Vm , u|Vm) <∞

}
.

(The limit limm→∞ E(m) (u|Vm , u|Vm) always exists because we have a nondecreasing nonnegative sequence, and

we’re just asking for it to be finite.) We then define the bilinear form E∗ via

E(∗)(u, v) = lim
m→∞

E(m) (u|Vm , v |Vm)

for all u, v ∈ F∗ (via polarization).

It’s easy to check that E∗ is a bilinear, nonnegative definite form on F∗. Notice however that functions in F∗ are

only defined on a dense subset of K, not all of K itself, and we would like to extend this to the whole space K. It

turns out we can do so in a unique way as a continuous function, but for that we must show that functions in F∗ are

already uniformly continuous by proving some estimates.

Proposition 78

For all x, y ∈ V∗ and all u ∈ F∗, we have

|u(x)− u(y)|2 ≤ 400|x − y |αE(∗)(u, u)

for α = log(5/3)/ log(2). In other words, this tells us that the function u is always α
2 -Hölder continuous, hence

uniformly continuous, and so it admits a unique continuous extension to K = V∗.

Proof sketch. For neighboring vertices, the claim is easier to prove, and then we’ll use a chaining argument after that.

First consider any two vertices y , z ∈ V2; the graph distance d(y , z) is at most 2, so for all y , z ∈ V2 there exists some
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vertex q ∈ V1 such that either y = z = q, y 2∼ q = z , or y 2∼ q 2∼ z . So then in all cases we have the inequality

|v(y)− v(z)| ≤
√
2
(
|v(y)− v(q)|2 + |v(q)− v(z)|2

)1/2
≤
√
2E(2)(v , v)1/2

≤
√
6

5
E(2)(v , v)1/2.

If we now consider u ∈ F∗ and an arbitrary x ∈ V∗, meaning that x ∈ Vm for some fixed m and there is some j ∈ S
and some word w1w2 · · ·wm ∈ Wm such that x = Fw (qj), we can define

xk = Fw1 ◦ · · · ◦ Fwk−1(qj)

for all 1 ≤ k ≤ m. Here we take the convention that w0 is the empty word so F0 is the identity map, and we can think

of these as the approximations of x by smaller values, since we start from qj and then apply a sequence of contraction

maps. We can then estimate, using the same argument but at a smaller scale as before, that

|u(xk−1)− u(xk)| =
∣∣u ◦ Fw1···wk−1(F−1w1···wk−1(xk−1))− u ◦ Fw1···wk−1(F−1w1···wk−1(xk))∣∣

≤
√
6

5
E(2)

(
u ◦ Fw1···wk−1 |V2 , u ◦ Fw1···wk−1 |V2

)
because xk−1 and xk are adjacent to each other at a smaller level. Applying the rescaling factors by summing over all

cells at this scale, we can bound this as

|u(xk−1)− u(xk)| ≤
√
6

5

(
3

5

)(k−1)/2(5
3

)(k−1)/2 ∑
z∈Wk−1

E(∗)(u ◦ Fz , u ◦ Fz)


≤
√
6

5

(
3

5

)k−1
E∗(u, u)1/2

using self-similarity and taking limits. Here in the last step we’ve used the fact that E(m)(u|Vm , u|Vm) =
(
5
3

)m∑
x
m∼y (u(x)−

u(y))2 and therefore (u(x) − u(y))2 ≤
(
3
5

)m E(m)(u|Vm , u|Vm) ≤ ( 35)m E(∗)(u, u). Since |x − y | = 2−m+1 for any x, y

neighbors at level m, this therefore means that for any m we have

|u(x)− u(y)|2 ≲ |x − y |αE(∗)(u, u), α =
log(5/3)

log 2
.

All of this has only been used for the case where x, y are neighbors, but in general we can always zoom in in the gasket

until x and y are in different sub-triangles but we’re maximally zoomed in. We can then let q be the common vertex

of those two sub-triangles and use that |u(x)− u(y)| ≲ |u(x)− u(q)|+ |u(q)− u(y)|; now we can approximate x by

a series of contractions of q and similarly do the same for q, which gives us convergent geometric series. This yields

the desired result.

So the bound

|u(x)− u(y)|2 ≤ 400|x − y |αE(∗)(u, u)

also holds for all x, y ∈ K (not just V∗). In particular, this bound tells us that the only functions in F∗ of zero energy

E(∗)(u, u) are the constant functions (because it forces u(x) = u(y) for all x, y), and so we can define a quadratic

form on functions on the whole gasket

F = {u ∈ C(K) : u|V∗ ∈ F∗} .

(To show that we have nonconstant functions in this space, we can always start with any values on the outer vertices
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and do the “harmonic measure” idea to extend it to all other points.) Then we define the quadratic form

E(u, v) = E(∗)(u|V∗ , v |V∗).

(E ,F) is then a nonnegative definite quadratic form.

Proposition 79

(E ,F) satisfies the self-similarity property

F = {u ∈ C(K) : u ◦ Fj ∈ F for all j ∈ S}.

In other words, restricting to only one of the sub-triangles yields another function, and that is also continuous.

Furthermore, the energy also satisfies

E(u, u) =
5

3

∑
j∈S
E(u ◦ Fj , u ◦ Fj)

(this is easy to check for the discrete approximations, and then we take limits).

To ensure this is actually a Dirichlet form, we must first check the Markov property. For any u ∈ F , it’s clear that

ũ = (0 ∨ u) ∧ 1 ∈ F and that

E(m)(ũ|Vm , ũ|Vm) ≤ E(m)(u|Vm , u|Vm)

because it’s even true in a pointwise sense: (ũ(x) − ũ(y))2 ≤ (u(x) − u(y))2 for all x, y ∈ K, and we’re looking at

sums of expressions of this type. So taking m →∞ yields the desired property.

Now we check regularity, and we do so by claiming that F forms an algebra under multiplication; in fact,

u, v ∈ F =⇒ uv ∈ F , E(uv, uv) ≤ 2||u||2∞E(v , v) + 2||v ||2∞E(u, u).

Indeed, this again comes down to a deterministic pointwise identity

(u(x)v(x)− u(y)v(y))2 ≤ 2u(x)2((v(x)− v(y))2 + 2v(y)2(u(x)− u(y))2

and then taking limits. Furthermore, we claim that F separates points, meaning that for any finite subset V ⊂ K,

{u|V : u ∈ F} = RV (that is, we can always construct a function which restricts to anything on V ). Indeed, if |V | = 1
then this is clear because the constant functions are all in F , and otherwise we can go to a small enough scale m so

that all of our finite points are in sufficiently different cells of the Sierpinski gasket. Precisely, we can choose m so that

21−m < min
x ̸=y
x,y∈V

|x − y |,

which means that for any v , w ∈ Wm and any x, y ∈ V , such that x ∈ Fv (K) and y ∈ Fw (K), the cells Fv (K) and

Fw (K) are disjoint. Next time, we’ll show how to use this to prescribe values of the function and then make use of

the Stone-Weierstrass theorem.

8 June 13, 2025
We’ve been studying the Dirichlet form on the Sierpinski gasket – recall that we defined points in the set in terms

of contractions at the three outer vertices, and we similarly defined energies E(m) in terms of simple random walk at
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iterative levels and took limits. This yielded a limiting E(∗) which we can use to define our (E ,F).
We saw last time that E is nonnegative definite and bilinear, and we showed that the domain F is an algebra under

pointwise multiplication. We now need to check the rest of the properties (closed, regular, etc.) – let’s review the

construction for showing that we separate points. We actually only need to check this for two points x, y ∈ K with

x ̸= y : we can always pick some sufficiently large m ∈ N and some words u, v ∈ Wm so that x ∈ Fu(K) and y ∈ Fv (K)
but Fu(K) ∩ Fv (K) = ∅.

For any prescribed values a, b ∈ R, our goal is now to define a function g ∈ RVm satisfying that g|Fu(V0) = a and

g|Fu(V0) = b. Such a function clearly exists (we can pick any of them), and now we can extend it harmonically to level

m + 1, then m + 2, and so on – we proved that harmonic extensions don’t increase the (rescaled) energy, and thus

there will be some unique f ∈ F (existing at all levels) such that

f |Vm = g, E(f , f ) = E(m)(g, g),

which is what we wanted. So by Stone-Weierstrass, we prove that F is dense in the continuous functions (C(K), ||·||sup),

and that is half of the regularity condition – we also have to check that we’re dense with respect to the inner product.

For this, we have for all x, y ∈ K and all u ∈ F that

u(x)2 ≤ 2
(
u(y)2 + (u(x)− u(y))2

)
≲ u(y)2 + E(u, u)

because all distances are finite. We’ll show that for any Radon measure m with full support (in fact because K is

compact we can assume m(K) = 1) the limit of a Cauchy sequence under E1 = E + ⟨·⟩L2(m) is also in the space F .

But what we do is integrate the boxed inequality over m(dy) and find that

u(x)2 ≲

ˆ
u(y)2m(dy) + E(u, u) = E1(u, u),

where we’re assuming that we’ve always chosen the continuous representative so that these functions are pointwise

defined. This implies that for any E1-Cauchy sequence fn, fn converges pointwise to f , and the limit has to be bounded

because sup |f | is finite by our inequality. Furthermore, fn is also a Cauchy sequence in L2(m), so we have fn → f

in L2(m) as well, and it just remains to show that we have convergence with respect to the E1-inner product (so the

problem is the E part). For this, it’s useful that our energies are defined in terms of discrete energies: since (fn) is an

E-Cauchy sequence, we know that for any ε > 0 there is some N such that

E(m)(fk − fℓ, fk − fℓ) ≤ E(fk − fℓ, fK − fℓ) < ε

for all m and for all k, ℓ ≥ N. Now we have a finite sum for fixed m, so we can interchange limits and take k →∞ to

get that E(m)(f − fℓ, f − fℓ) ≤ ε for all ℓ ≥ N and all m. Finally, taking m ↑ ∞ yields convergence under the E-inner

product, so we have proved that our form is closed and that we have a regular Dirichlet form on L2(K,m). (Note here

that we need that F is a vector space, so f is in the domain because both fℓ and f − fℓ are in the domain.)

But we want to define a diffusion process, not just a general Markov process, so we next want to show that our

Dirichlet form is strongly local. For this, pick f , g ∈ F such that f = c on all of supp(g) (we don’t need to worry

about the m-support since we’re choosing everything to be pointwise defined here). Disjoint compact sets have a

nonzero distance, so we can pick some n such that

dist(supp(f − c1K), supp(g)) > 2−n.
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This implies that if we contract the triangle n times, we can only intersect one of the two sets supp(f −c1K), supp(g).

In other words, for all words w ∈ Wn, the set Fw (K)∩ supp(f − c1K)∩ supp(g) is always empty. And now we can use

the self-similarity from Proposition 79:

E(f , g) =
(
5

3

)n ∑
W∈Wn

E(f ◦ Fw , g ◦ Fw ).

And each term of this sum is zero. Indeed, either f ◦Fw or g ◦Fw must be constant for each w , and the Dirichlet form

involves a difference between values of the function and thus all terms in the contribution (f (x)− f (y))(g(x)− g(y))
are always zero. Thus the strongly local property is proved.

Fact 80

The point is that Fukushima’s theorem now yields a Markov process with continuous paths on the Sierpinski gasket

for all times, unique up to throwing away exceptional sets. And as an exercise, we can check that in this case any

E-polar set must actually be empty, for example using the Hölder continuity estimate Proposition 78 to show that

1-capacity is always strictly positive.

Example 81

We’ll now use this to construct the Brownian motion itself. This process was first constructed in the 1980s by

Goldstein, by Kusuoka, and also by Barlow-Perkins (and the last authors also got precise heat kernel bounds for

the diffusion). We won’t do the full version, but we’ll give some upper bounds near the diagonal and explanation

for the shape of the kernel overall via lower bounds.

Our strategy will be to prove a Nash inequality, though we’ll have to use something completely different from Rd .
We’ll instead use Poincaré inequalities, which we’ll need some background to explain.

Fact 82

Strongly local regular Dirichlet forms are of the type

E(f , f ) =
ˆ
X

dΓ(f , f ),

where dΓ(f , f ) is called the energy measure.

For example for the ordinary Dirichlet form we have E(f , f ) =
´
RN |∇f |

2dx , where Γ(f , f )(A) =
´
A |∇f |

2dx . In

general, the way we construct such a measure is to specify its integrals on various functions.

Definition 83

Let (E ,F) be a strongly local regular Dirichlet form on a general space L2(X,m). For all bounded functions

f ∈ F ∩ L∞, there is a unique (nonnegative) measure Γ(f , f ) on X, called the energy measure, satisfying
ˆ
gdΓ(f , f ) = E(f , f g)−

1

2
E(f 2, g)

for all g ∈ F ∩ Cc(X) (this is a dense subset by regularity). For arbitrary functions f ∈ F , we similarly define the

energy measure via truncation – that is, Γ(f , f )(A) = limn→∞ Γ((−n ∨ f )∧ n, (−n ∨ f )∧ n)(A) (the measures on

the right side converge in total variation so this is well-defined).
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This defines a measure by the Riesz representation theorem – linearity is clear from bilinearity, and nonnegativity

is not so clear but it is indeed true by approximating the Dirichlet form via the semigroup or resolvent (this is due to

Le Jan). And we do have to work with the energy measure to avoid certain issues with singularity in settings like the

Sierpinski gasket.

Note that the energy measure is not the same as the “equilibrium measure” (which we’ll introduce later on), though

they have the common feature that they do not give positive mass to polar sets.

Returning to the Sierpinski gasket, the Dirichlet form is defined for any reference measure m. But we’ll want to

pick a particular one now:

Proposition 84 (Poincaré inequality)

For the Sierpsinski gasket, for any function f ∈ F , any point x ∈ K, and any r ∈ (0, 1), there is some constant

A > 1 such that ˆ
B(x,r)

∣∣f (y)− fB(x,r)∣∣2 dm ≲ rdW ˆ
B(x,Ar)

dΓ(f , f )

for dW =
log 5
log 2 and m the measure satisfying self-similarity

m(Fw (K)) = 3
−m for all m and all w ∈ Wm.

Here we write fA or
ffl
A f dm for the averaged value 1

m(A)

´
A f dm.

Note that the measure of any ball B(x, r) satisfies

m(B(x, r)) ≍ rdf for all x ∈ K, r ∈ (0, 1),

where df =
log 3
log 2 is the Hausdorff dimension of the set.

Proof. We want to control the variance of the function f on a ball of radius r . It actually suffices to bound by the

maximum deviation:
ˆ
B(x,r)

(
f (y)− fB(x,r)

)2
dm(y) ≤ m(B(x, r)) sup

y,z∈B(x,r)

(
f (y)− f(z)

)2
By the Hölder continuity estimate, we already know how to bound the energy, and we can use self-similarity to relate

that to the following fact about the energy measure (exercise): for all f ∈ F ,

Γ(f , f ) =

(
5

3

)m ∑
w∈Wm

(Fw )∗Γ(f ◦ Fw , f ◦ Fw )

We need to control (f (y)− f (z))2; to do this, let n be the largest integer such that there are words v , w ∈ Wn with

y ∈ Fv (K) and z ∈ Fw (K) for Fv (K) ∩ Fw (K) ̸= ∅. (We can check that this actually implies that we must have

d(y , z) ≍ 2−n.) Taking a point q in the intersection, we can thus write

(f (y)− f (z))2 ≤ (f (y)− f (q))2 + (f (q)− f (z))2

≲ E(f ◦ Fv , f ◦ Fv ) + E(f ◦ Fw , f ◦ Fw )

≤
(
3

5

)n
Γ(f , f )(Fv (K) ∪ Fw (K))

this time by self-similarity of the energy measure. And our constant dW is exactly defined so that this is bounded by

(f (y)− f (z))2 ≤ d(y , z)dW−df Γ(f , f )(Fv (K) ∪ Fw (K)),
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and now Fv (K) and Fw (K) each have diameter 2−n, but in fact this implies that for any points x, x ′ in that ball we

have d(x, x ′) ≤ 2−n + r ≤ Ar for some constant A. So plugging this in yields the Poincaré inequality: we end up with

a bound rdW−df Γ(f , f )(B(x, Ar)), which is exactly what we want.

Next, we’ll prove a variant which will look similar to what just proved, except that the ball moves along with the

point:

Proposition 85 (Pseudo-Poincaré inequality)

For all f ∈ F and all r ∈ (0, 1), we have
ˆ
K

|f (x)− fr (x)|2dm(x) ≲ rdW E(f , f ),

where fr =
ffl
B(x,r) f dm.

Proof. We have ˆ
K

|f (x)− fr (x)|2dm(x) ≤
ˆ
K

 
B(x,r)

|f (x)− f (y)|2m(dy)m(dx)

by convexity and hence Jensen’s inequality, and now we know by the Poincaré inequality that we have the bound

ˆ
K

|f (x)− fr (x)|2dm(x) ≲ r−df
ˆ
K

ˆ
K

(f (x)− f (y))21{d(x, y) ≤ r}m(dy)m(dx) .

We now cover the Sierpinski gasket by balls of radius r – that is, let N be an r -net, meaning that it is an r -separated

subset of K which is maximal with respect to inclusion (the existence follows from Zorn’s lemma). By maximality we

have ⋃
n∈N

B(n, r) = K =⇒
∑
n∈N
1{B(n, r)} ≥ 1K ,

which then further implies that (if x, y are within r , then there must be some point in N within r of x , and then by

the triangle inequality both x, y are at most 2r away from the point n in the net)∑
n∈N
1B(n,2r)(x)1B(n,2r)(y) ≥ 1d(x,y)<r (x, y).

On the other hand, we also have the simple geometric fact that if A is the constant from our Poincaré inequality, then

for all x we have ∑
n∈N
1B(n,2Ar)(x) ≲ 1

since there are only finitely many points inside B(n, 2Ar) that can all be at least r apart from each other by a volume

estimate. So we can return to the boxed inequality and write it as a sum over balls around points in our net:
ˆ
K

|f (x)− fr (x)|2dm(x) ≲ r−df
∑
n∈N

ˆ
B(n,2r)

ˆ
B(n,2r)

(f (x)− f (y))2m(dy)m(dx),

and now we use that for any set A we have 1
2m(A)

´
A

´
A(f (x)− f (y))

2dm =
´
(f (x)− fA)2dm (this is the same trick

as we saw in the proof of the Harris inequality!), so we can relate this back to something in the Poincaré inequality.
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This yields
ˆ
K

|f (x)− fr (x)|2dm(x) ≲
∑
n∈N

ˆ
B(n,2r)

(f (x)− fB(n,2r))2dm(x)

≲
∑
n∈N

rdW
ˆ
B(n,2Ar)

Γ(f , f )

where we’ve used the ordinary Poincaré inequality in the last step. But by the definition of the energy measure this is

bounded by a constant times rdW E(f , f ), as desired.

We’ll now use this to prove a Nash inequality:

Theorem 86

We have for all f ∈ F ∩ L1(K,m) (but actually L1(K,m) is a subset of L2(K,m) so this additional condition is

not necessary)

||f ||1+n/22 ≲ ||f ||1
(
||f ||22 + E(f , f )

)n/4
for n = 2df

dW
= 2 log 3

log 5 < 2 (we call n the “spectral dimension”).

Once we prove this result, the existence of heat kernel and bounds on the diagonal then follow from our earlier

discussion.

Proof. Just like on Euclidean space, we’ll break up the L2 norm into two pieces. Let r ∈ (0, 1) and write

||f ||22 ≤ 2
(
||f − fr ||22 + ||fr ||22

)
.

We can control the first term by the psuedo-Poincaré inequality by rdW E(f , f )+ ||fr ||22, and now we’ll see how to control

the second term. We have

||fr ||22 ≤ ||fr ||1||fr ||∞,

and now we can control the L∞ norm because ||fr ||∞ ≲ r−df ||f ||1 (the integral on a ball cannot be larger than the

total integral), meaning we just need to control the L1 norm. We have

||fr ||1 =
ˆ
|fr (x)|m(dx)

≲ r−df
ˆ
K

ˆ
K

|f (y)|1{d(x, y) < r}m(dy)m(dx).

We can now integrate over x first by Fubini’s theorem, but then that cancels out with the r−df factor in front and

thus we find that ||fr ||1 ≲ ||f ||1. Therefore

||fr ||22 ≤ ||fr ||1||fr ||∞ ≲ r−df ||f ||21,

and now combining the two estimates of the two terms yields

||f ||22 = rdW E(f , f ) + r−df ||f ||21.

Now we want to optimize over r to get the result, but we are constrained to r ∈ (0, 1) and that’s why we have the

extra term of ||f ||22; otherwise everything is the same as usual.

From here, we say that Nash implies ultracontractivity and thus existence of the heat kernel; in particular we get
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the bound

ess supx,y∈Kpt(x, y) ≲ 1 ∧ t−df /dW

for all t > 0. When x = y we have a matching lower bound, so this is indeed sharp. It turns out that Barlow and

Perkins managed to get a much better bound (we call these sub-Gaussian heat kernel bounds) of

pt(x, y) ≲
C

tdf /dW
exp

(
−C′

(
d(x, y)dW

t

)1/(dW−1))

for all t ∈ (0, 1) and all x, y ∈ K, and there is also the corresponding matching lower bound. For dW = 1 this is exactly

the Gaussian we get on Euclidean space, but instead for the Sierpinski gasket here we have dW =
log 5
log 2 > 2.

Fact 87

We know that we have a corresponding diffusion (Yt) for the objects we’ve been analyzing here. What we can

compute from these estimates is that

Ex [d(Y0, Yt)] ≍ t1/dW for all t ∈ (0, 1), x ∈ K,

and if we let τB(x,r) be the exit time of a ball of radius r ,

Ex
[
τB(x,r)

]
≍ rdW for all x ∈ K, r ∈

(
0,
1

2

)
.

This explains the name “walk dimension” for the constant dW .

Remark 88. We can always use Cauchy-Schwarz and symmetry of the semigroup to get pt(x, y) =
√
pt(x, x)pt(y , y).

So the maximum value of the heat kernel will always be achieved on the diagonal.

9 June 16, 2025

Last time, we saw how to obtain off-diagonal heat kernel upper bounds for the Sierpinski gasket last time (with scaling

factor 1
tdf /dW

dependent on the Hausdorff and walk dimension). We’ll first explain the exponential term which gives us

matching lower bounds today – usually once we get an upper bound, we show lower bounds for x near y and then for

arbitrary points.

The idea is that “by time t, we’ve spread out over a ball of roughly radius t1/dW .” So we first try to get near-diagonal
lower bounds of the form

pt(x, y) ≳
1

tdf /dW
1
{
d(x, y) ≤ ct1/dW

}
.

There’s no exponential factor here yet, but it should then be exponentially unlikely to move much farther away than

t1/dW . So what we want to understand is the “most likely mechanism by which we travel a long distance,” and it turns

out the answer is the following: break up the time t into n intervals, and for each interval t
n we move a distance

roughly
(
t
n

)1/dW in the same direction.

To make this precise, we’ll pick the actual value of n later, and consider a sequence of equally time-spaced points

x0, · · · , xn with x0 = x and xn = y . We choose these points satisfying the following two conditions:

d(xi , xi+1) ≍
d(x, y)

n
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and also (here c is the same constant as in the near-diagonal lower bound)

d(xi , xi+1) ≲
c

2

(
t

n

)1/dW
for all i . By the triangle inequality, we can then say that if Bi is a ball of center xi and radius c

4

(
t
n

)1/dW , then we know

from our lower bound that

pt/n(yi , yi+1) ≳
1

(t/n)df /dW

for all yi ∈ Bi , yi+1 ∈ Bi+1. Therefore what we do is take (this is called the Chapman-Kolmogorov equation)

pt(x, y) =

ˆ
· · ·

ˆ
pt/n(x, x1)pt/n(x1, x2) · · · pt/n(xn−1, y)dx1dx2 · · · dxn−1

and bound it from below by only integrating over the specified balls B1, · · · , Bn−1. It’s now not so bad to estimate

the integral from below, since the measure of each ball is roughly
(
t
n

)df /dW and inside the ball we have pt/n(yi , yi+1) ∼(
t
n

)−df /dW . So we end up with an exponential constant exp(−c ′n) because we have a (possibly less than 1) constant

dependence for each of the n integrals, and the polynomial term
(
t
n

)−df /dW comes from having n terms that we multiply

with this factor and (n − 1) integrals with that factor canceling out. Since the exponential term dominates for large

n we thus see that

pt(x, y) ≳ exp(−c ′′n)t−df /dW ,

and now we pick n as small as possible so that the conditions we specified above can still be satisfied. We can check

by triangle inequality that we must in fact have n ≳
(
d(x,y)dW

t

)1/(dW−1)
, as desired. So if we know that the diffusion

process spreads uniformly over a small ball, we just chain the estimate using Chapman-Kolmogorov. (The upper bound

uses a different kind of chaining argument but similar calculations, using tails of exit times.)

Fact 89

The main geometric feature needed in this argument was that given any pair of points and any n, we can connect

them with some constraints on the distance. This doesn’t always work – it means our metric space needs to be

close to a geodesic space – but we’ll come back to this later on.

So far, we’ve only used the Nash inequality (which implies ultracontractivity) to derive our bounds. But this property

may not always hold even when the heat kernel does not exist:

Example 90

Consider a Dirichlet form on the space L2(Rn, mα), where mα(dx) = (1 + |x |2)α/2 is a weighted version of the

Lebesgue measure (α = 0 recovers the original Lebesgue measure). Specifically, take the case n ≥ 2, α ∈ (−n,∞)
(otherwise we fail to be a doubling measure), and the form defined by

E(f , f ) =
ˆ
|∇f (x)|2mα(dx).

We can calculate the generator here by using integration by parts: we have that (here ∆ denotes the Laplacian)

Lαf = (1 + |x |2)−α/2div
(
(1 + |x |2)α/2∇f

)
= ∆f +

αx · ∇f
1 + |x |2
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So compared to Brownian motion, we have a drift either towards infinity or towards the origin depending on the sign

of α. We can calculate that for all x ∈ Rn and all r > 0, the measure of the ball satisfies the bounds

mα(B(x, r)) ≍ rα(1 + |x |+ r)α.

Theorem 91 (Grigor’yan, Saloff-Coste 2005)

We have in the setting above that for all t > 0 and all x, y ∈ Rn, we have the heat kernel bounds

pt(x, y) ≍
c

mα(B(x,
√
t))
exp

(
−c ′

d(x, y)2

t

)
.

Notably, this example does not satisfy ultracontractivity, because if we plug in our estimate for the volume we get

pt(x, y) ≍
exp

(
−c d(x,y)

2

t

)
tn/2(1 + |x |+

√
t)α

.

So for fixed t, if α < 0 then we can make the denominator arbitrary large by choosing x far from the origin. Thus

||Pt ||1→∞ = ess supx,ypt(x, y) = ∞ even though the heat kernel exists. It turns out that the converse of “Nash
implies ultracontractivity” also holds, and so we would need a different method for heat kernels that may behave

very differently in different parts of the space even if we get a Gaussian bound. We’ll now see some methods that do

work.

The main idea is to work with local versions of ultracontractivity instead of global ones. We’ll start with Harnack
inequalities:

Theorem 92 (Elliptic Harnack inequality)

Fix some dimension n. There exists some constant C ≥ 1 such that for any x ∈ Rn, any r > 0, and any

nonnegative harmonic function h : B(x, 2r)→ (0,∞), we have

sup
y∈B(x,r)

h(y) ≤ C inf
y∈B(x,r)

h(y).

Here C depends only on the dimension of the Euclidean space n, though if we want to talk about harmonic functions

with respect to other parameters it could have dependence there as well (for example the α in our example above).

Notice that it’s not true if we only have the harmonic function defined on B(x, r), since we could then solve any

Dirichlet problem so that h goes to zero near some point on the boundary and then the sup and inf are no longer

comparable.

Remark 93. Probabilistically, the way to interpret this is that some harmonic functions come from harmonic measures

(for example the probability of a Brownian motion exiting at a subset of its boundary); the idea is then that this

probability is comparable among all points in a smaller ball.

Moser showed in 1964 that this inequality also holds if we replace ∆ with some other uniformly elliptic operator in

divergence form

Af =
n∑

i ,j=1

∂

∂xi

(
ai j(x)

∂f

∂xj

)
for (ai j(x))ni,j=1 a positive-definite matrix-valued function with eigenvalues uniformly bounded from above and below.
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The elliptic Harnack inequality is not enough on its own to prove bounds, because it only talks about harmonic

functions and not solutions to the heat equation. It turns out this inequality is usually useful for obtaining continuity

estimates which help us get better regularity for solutions instead of just living in L2 or a Sobolev space:

Theorem 94 (Cheng, Yan 1975)

The elliptic Harnack inequality holds on manifolds of nonnegative Ricci curvature. Furthermore, the elliptic Harnack

inequality implies Hölder regularity of the solution to the associated operator.

The idea here is called Moser’s oscillation lemma: we define the oscillation oscAh = supA h− infA h, and for any

harmonic h on B(x, 2r) we can apply the elliptic Harnack inequality to the functions h− infB(x,2r) h and supB(x,2r) h−h.
This yields

sup
B(x,r)

h − inf
B(x,2r)

h ≤ C
(
inf
B(x,r)

h − inf
B(x,2r)

h

)

sup
B(x,2r)

h − inf
B(x,2r)

h ≤ C

(
sup

B(x,2r)

h − sup
B(x,r)

h

)
,

so if we add the two inequalities together we find that

oscB(x,r)h ≤
C − 1
C + 1

oscB(x,2r)h.

and thus the oscillation actually decreases as we go to smaller balls: for all y1, y2 ∈ B(x, r) we have

|h(y1)− h(y2)| ≲
(
d(y1, y2)

r

)α
||h||∞, α =

log
(
C+1
C−1

)
log 2

.

Notice that such a bound also implies the Liouville property (that is, if we have a function h : Rn → R which is

harmonic and bounded, then h must be constant). Indeed, we can fix y1, y2 and let r → ∞, and the right-hand side

will go to zero.

We’ve been working with the Laplace operator so far, but now we’ll switch to the heat operator. The idea is to

work with spacetime cylinders for the heat equation which have the right spacetime scaling:

Theorem 95 (Parabolic Harnack inequality)

Fix some dimension n. There exists some constant C ≥ 1 such that for any x ∈ Rn, any r > 0, and any solution to

the heat equation u : (0, r2)×B(x, 2r)→ (0,∞) (meaning that ∂tu = ∆u on this domain Q = (0, r2)×B(x, 2r)),

sup
Q−

u ≤ C inf
Q+
u,

where we define the spaces

Q− =

(
r2

4
,
r2

2

)
× B(x, r),

(
3r2

4
, r2
)
× B(x, r).

The space-time visualization of the sub-domains is shown below:
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time

space

B(x, r)B(x, 2r)

0 r2

4
r2

2
3r2

4 r2

Q− Q+

We’ll now see how we can use such inequalities – what we have is basically an ultracontractivity statement. Think

of u as a solution to the heat equation, and the left-hand side supQ− is some kind of a bound on the L∞ norm but

only on a small part of the space. And we’re controlling via the infimum over Q+, which is better than controlling

over L1. In words, “supremum in the past is controlled by infimum in the future.”

Everything here is for Euclidean spaces, but we can define an analog using the Dirichlet form (we just need a notion

of balls and of harmonic functions). And Moser showed similarly that parabolic Harnack inequalities hold for uniformly

elliptic operators (so we have stability under perturbation), and Li and Yau showed these inequalities also for manifolds

with nonnegative Ricci curvature.

We want to get a notion of harmonic functions on strongly local regular Dirichlet forms on a metric space – from

now on, we’ll also abbreviate this as MMD space. The idea is to use a weak formulation much like when we solve

PDEs:

Definition 96

On an MMD space with Dirichlet form (E ,F), we say that a function h ∈ F is harmonic (also E-harmonic) on

an open set U ⊂ X if E(h, f ) = 0 for all f ∈ F ∩ Cc(X) with support contained in U.

In other words, the generator applied to h should give us zero in a weak sense.

Definition 97

Let I ⊂ R be an open interval. We say that a function u : I → L2(X,m) is weakly differentiable if for any

function f ∈ L2(X,m), the function t 7→ ⟨u(t), f ⟩L2(m) is differentiable on I.

For any weakly differentiable function u and any time t0, there is a unique w ∈ L2(X,m) such that

lim
t→t0

〈
u(t)− u(t0)
t − t0

, f

〉
= ⟨w, f ⟩L2(m).

So we know how to make sense of the time-derivative and also the Laplacian, and we can combine these to get the

notion of a solution to the heat equation:

Definition 98

Let Ω ⊂ X be an open set. A function u : I → F is caloric in I ×Ω if for any f ∈ F ∩ Cc(Ω) and any t ∈ I, we

have

⟨u′(t), f ⟩+ E(u(t), f ) = 0.
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(The reason the Dirichlet form is on the left-hand side is that E(u(t), f ) is playing the role of −∆u.) The parabolic

Harnack inequalities turn out to be localized enough to help us study the heat kernel (because they impose strong

geometric conditions on the measure and so on), and we’ll soon see ways to make that precise.

Definition 99

Let (X, d) be a metric space and µ a Borel measure on X. We say that µ satisfies the volume doubling property
(also VD) if there is some constant CD such that

0 < µ(B(x, 2r)) ≤ CDµ(B(x, r))

for all x ∈ X and all r > 0.

Everything we’ve talked about so far satisfies this property except for mα for α < −n. Indeed, as an exercise, we

can check that (1 + |x |2)α/2dx satisfies the volume doubling property if and only if α > −n.

Proposition 100

As an exercise, we can check that if µ satisfies the volume doubling property, then by repeated iterations we have

µ(B(x,R))

µ(B(x, r))
≲

(
R

r

)α
, α =

logCD
log 2

for all x ∈ X and all 0 < r < R.

We can also sometimes reverse this inequality and put ≳ instead of ≲:

Definition 101

The measure µ satisfies the reverse volume doubling property if there are constants C1, C2 ∈ (1,∞) and some

β > 0 such that

µ(B(x, R)) ≳ C−11

(
R

r

)β
B(x, r)

for 0 < r < R < diam(X,d)
C2

.

Proposition 102

If the metric space (X, d) is connected, then volume doubling implies reverse volume doubling.

Indeed, the intuition is that if we want to compare a small radius r with a large radius 10r , there is some disjoint

ball also of radius r within the large ball, and those neighboring balls have similar volumes by volume doubling.

We’re now ready to state the more general heat kernel bounds, modeled on what we saw with the Sierpinski gasket.

We had a spacetime scaling exponent in both that case and in Euclidean space, and in fact we don’t necessarily need

to have power-law scaling: if we have something like the triangular lattice with the Sierpinski gasket inside each cell,

we will have something like ψ(r) ∼ r log2(5) for r ≤ 1 and ψ(r) ∼ r2 for r ≥ 1, since the behavior is Euclidean globally

but fractal locally.
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Definition 103

A scale function is a homeomorphism ψ : [0,∞) → [0,∞) such that there exist constants 1 < β1 < β2 < ∞
and C > 1 with

C−1
(
R

r

)β1
≲
ψ(R)

ψ(r)
≲ C

(
R

r

)β2
for all 0 < r < R.

Definition 104

An MMD space (X, d,m, E ,F) satisfies the elliptic Harnack inequality if there exist some constants C,A > 1

such that for any x ∈ X, any r > 0, and any E-harmonic function h : B(x, Ar)→ (0,∞), we have

ess supx∈B(x,r)h ≤ C ess infx∈B(x,r)h.

We didn’t need spacetime scaling for the elliptic Harnack inequality because there is no time-dependence in the

equation ∆h = 0. But we’ll need one now:

Definition 105

An MMD space (X, d,m, E ,F) satisfies the parabolic Harnack inequality with space-time scaling ψ if there exist

some constants C > 1, δ ∈ (0, 1), 0 < C1 < C2 < C3 < C4 such that for any x ∈ X, any r > 0, and any caloric

function u which is nonnegative on (0, C4ψ(r))× B(x, r), we have

sup
Q−

u ≤ C inf
Q+
u

with Q− and Q+ analogously defined as shown in the diagram below.

time

space

δrr

0 C1ψ(r) C2ψ(r) C3ψ(r) C4ψ(r)

Q− Q+

Fact 106

Note that parabolic Harnack automatically implies elliptic Harnack, since for any harmonic function h the function

u(t, x) = h(x) is caloric. So in that sense the spacetime scaling doesn’t really matter, and so people were curious

whether elliptic Harnack inequalities imply parabolic Harnack inequalities with the usual Gaussian spacetime scaling.

But diffusions on fractals provide the first example where we do get something different, and we can even go from

fractal counterexamples to manifold counterexamples.
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Indeed, take some graphs that approximate the Sierpinski gasket and replace each edge with a cylinder. Gluing

those cylinders together yields a two-dimensional surface whose global geometry is fractal but local geometry is R2,
so we’ll get r2 scaling at small scales but something weirder at large scales.

We’ll see next time how to relate all of these inequalities to heat kernel estimates!

10 June 17, 2025

Last time, we introduced the elliptic and parabolic Harnack inequality on MMD spaces (corresponding to the Laplace

and heat equations, respectively). We mentioned that the parabolic inequality implies some version of contractivity,

which then gets us bounds on the heat kernel. We’ll see that in more detail now.

Remark 107. In the definition of a scale function, the lower bound on growth is currently specified to be β1 > 1. It

will turn out when the parabolic Harnack inequality holds, we actually have β1 ≥ 2, and we’ll see that later on.

We want to use the parabolic Harnack inequality at some time t1 satisfying c1ψ(x) < t1 < c2ψ(x). We know that

if f ∈ L2(X,m) is a nonnegative function with ||f ||1 = 1, then Pt f is caloric and nonnegative with ||Pt f ||1 ≤ 1. The

Harnack inequality then tells us that

sup
B(x,δr)

Pt1(f ) ≤ C inf
B(x,r)

Pt1 f ≲ inf
B(x,δr)

Pt2 f ≲
1

m(B(x, r))

(since the infimum is less than the average value on the ball). Since t1 ≍ ψ(r), we have r ≍ ψ−1(t1), and thus we

get ultracontractivity when we look at a small ball

sup
B(x,δr)

Pt1(f ) ≲
1

m(B(x, ψ−1(t1)))
for all nonnegative f ∈ L2 ∩ L∞ with ||f ||1 = 1,

and then taking the supremum over all balls yields a heat kernel bound

ess supy∈B(x,δr)
z∈X

pt1(y , z) ≲
1

m(B(x, ψ−1(t1)))
.

Once we know the existence of a heat kernel, we can fix x and consider Pt(x, y) as a function of t, y and use the

parabolic Harnack inequality on that function. Bounding inf from below therefore yields a lower bound on the heat

kernel.

Definition 108

We say that an MMD space satisfies sub-Gaussian heat kernel bounds (also written HKE(ψ) with spacetime

scale function ψ if the following holds. Define

Φ(s) = sup
r>0

(
s

r
−
1

ψ(r)

)
(so if ψ(r) = rβ, then {Φ(s) ≍ sβ/(β−1)). Then (X, d,m, E ,F) satisfies HKE(ψ) if the heat kernel exists and

satisfies the upper bound

pt(x, y) ≲
1

m(B(x, ψ−1(t)))
exp

(
−ctΦ

(
d(x, y)

t

))
for all x, y ∈ X and all t > 0, as well as the near-diagonal lower bound

pt(x, y) ≳
c

m(B(x, ψ−1(t)))
for all x, y such that d(x, y) ≤ δψ−1(t).
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The form of this expression comes from the same optimization argument we did previously in terms of chaining

balls together, but now no longer with the ordinary Gaussian scaling. We can also ask for bounds for x, y far apart,

but we need to distinguish that because we don’t always have this exact lower bound (for example if we use the square

root of the Euclidean metric for Brownian motion on Rd).

Definition 109

We say that (X, d,m, E ,F) satisfies full sub-Gaussian heat kernel bounds (denoted HKEf (ψ)) if we also have

a lower bound of the form

pt(x, y) ≳
1

m(B(x, ψ−1(t)))
exp

(
−c ′tΦ

(
d(x, y)

t

))
for all x, y ∈ X and for all t > 0.

Theorem 110 (Murugan, 2020)

The following are equivalent:

1. (X, d,m, E ,F) satisfies HKEf (ψ).

2. (X, d,m, E ,F) satisfies HKE(ψ), the volume doubling property, and the following chain condition on (X, d):

there is some constant C ≥ 1 such that for all n ∈ N and all x, y ∈ X, there is some sequence of points

x0 = x, x1, · · · , xn = y with d(xi , xi+1) ≤ Cd(x,y)
n for all i .

In particular, recall that we got a hands-on lower bound via chaining with a sequence of points; this equivalence

says that this is actually essentially a necessary condition.

The proof of this result isn’t so difficult by doing a different chaining argument with another metric (defined in

terms of minimum lengths of chains). But we’ll focus instead on general conditions for when these inequalities hold on

general spaces. We’ve already encountered the Nash inequality, and along the way we saw some variants (the Poincaré

inequality and pseudo-Poincaré inequality) which will turn out to be relevant. Poincaré is particularly nice because it is

local and thus we can work on balls instead of the whole space.

Theorem 111 (Poincaré)

(X, d,m, E ,F) satisfies the Poincaré inequality (denoted PI(ψ)) if there are constants C,A ≥ 1 such that
ˆ
B(x,r)

(f − fB(x,r))2dm ≤ Cψ(r)
ˆ
B(x,Ar)

dΓ(f , f )

for all f ∈ F , x ∈ X, and r > 0. T

Geometrically, the idea is that we have a bottleneck through a very thin part of the space, then this creates a

large variance but small energy because the function only changes in a very small part of the space. So the Poincaré

inequality is telling us that there are actually lots of curves between any two points, and we’ll make this intuition

precise soon. To understand the relationship between functional inequalities and subgaussian heat kernels, we’ll state

the following result:
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Theorem 112 (Grigor’yan and Saloff-Coste, 1992)

For Brownian motion on on a Riemannian manifold, the following are equivalent:

1. The volume doubling property, along with the Poincaré inequality PI(2) with the usual spacetime scaling

|ψ(r)| = r2,

2. The parabolic Harnack inequality PHI(2),

3. The full heat kernel bounds HKFf (2).

The first of these conditions is useful because it is stable under perturbations. Indeed, if g, g̃ are two different

Riemannian metrics on some manifold M with tangent vectors ξ ∈ TM satisfy g(ξ, ξ) ≍ G̃(ξ, ξ). And what we’re

saying is that if volume-doubling and PI(2) are still preserved, then so is HKEf (2) and PHI(2).

This result was further extended to the setting of MMD spaces later on, and the question is whether these results

extend beyond Gausian scaling as well. To understand how (3) implies volume doubling, we can use that

1 ≥
ˆ
B(x,2

√
t)

pT (x, y) ≥
m(B(x, 2

√
t)

m(B(x,
√
t))

,

using that when d(x, y) ≤ 2
√
t, we can use our full heat kernel bounds to get pt(x, y) ≳ 1

m(B(x,
√
t))

for all x, y of

distance at most 2
√
t apart. And the Poincaré inequalities are harder to see – if we look at the reflected process, we

are uniformly dispersed through a ball of radius R, and we can relate the L2 norms of the function along the heat

semigroup using a similar strategy to what we saw in the Nash inequality.

We’ll state a version of this stability result for general spacetime scaling now. It turns out we do not just replace

2 with β and we do need another condition going under the name of cutoff energy inequality:

Definition 113

Suppose U, V are open sets with U ⊂ V . We say that φ ∈ F is a cutoff function for U ⊂ V if 0 ≤ φ ≤ 1, φ is 1 on

a neighborhood of U, and suppm(φ) ⊂ V . An MMD space satisfies the cutoff energy inequality (denoted CS(ψ)
if there are constants A1, A2, such that for all x,∈ X and all 0 < r < diam(X,d)

A2
, there exists a cutoff function φ

for B(x, r) ⊂ B(x, A1r) with
ˆ
B(x,A1r)

f̃ 2dΓ(φ, φ) ≲ C1

ˆ
B(x,A1r)

dΓ(f , f ) +
C1
ψ(r)

ˆ
B(x,A1r)

f 2dm.

We often multiply our functions by these cutoffs before applying Sobolev inequalities. In the Euclidean case, these

cutoff functions take a form where they are 1 on a ball B(x, r) and 0 outside a ball B(x, Ar), and the problem was that

it wasn’t clear what the analog was for general spacetime scalings. We don’t have to remember this exactly, but the

point is that all of these involve integrals of a function over energies, and hence they are stable under perturbations.

Also, notice that if a function φ is constant on B(x, A1r), then by strong locality the energy is zero on this set and

we find that we have an upper bound on energy

E(φ, φ) ≲
m(B(x, r))

ψ(r)

that is, we get an upper bound on capacity between two balls. Poincaré typically gives lower bound on energies – that

is, PI(ψ) gives a matching lower bound of the form for any cutoff function φ

E(φ, φ) ≳
m(B(x, r))

ψ(r)
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(because the variance term is of constant order), so this is giving us something in the other direction.

If A,B are disjoint, we can consider the set of cutoff functions

F(A,B) = {f ∈ F : f = 1 on a neighborhood of A and 0 on a neighborhood of } ,

and define the capacity
Cap(A,B) = inf {E(f , f ) : f ∈ F(A,B)} .

We now introduce another condition:

Definition 114

We say that (X, d,m, E ,F) satisfies the Cap(ψ) condition if for all x, y ∈ X and all α < diam(X)
A2

, we have

Cap (B(x, r), B(x, A1r)c) ≍
m(B(x, r))

ψ(r)
.

Theorem 115 (BB, 2004; BBK, 2006)

The following are equivalent for a space (X, d,m, E ,F):

1. The parabolic Harnack inequality PHI(ψ),

2. Volume doubling along with HKE(ψ),

3. (Stable characterization) Volume doubling, Poincaré inequalities PI(ψ) and cutoff energy inequality CS(ψ),

4. Volume doubling, the elliptic Harnack inequalities, and the capacity bound Cap(ψ).

We saw last time that the parabolic Harnack inequality implies the elliptic one, and we now have some kind of

converse: some additional capacity bounds give us the other direction too. It’s currently open to show whether

condition (3) can be replaced with volume doubling, PI(ψ), and the capacity upper bound(the lower bound is already

implied by Poincaré); in fact there are various situations where it’s actually possible to show this weaker condition

but where it’s difficult to establish the cutoff energy inequality. So resolving this in the positive would have some

applications!

We’ll see some applications of all of this in the next few lectures – it will turn out to be useful to obtain bounds

for transformations of a Dirichlet form (for example reflection or killing at a boundary).

Example 116

First, we’ll show how to establish a Poincaré inequality on Rn, and it’ll turn out to work for a lot more examples

as well.

Proof of Poincaré on Rn. We saw a proof for the Sierpinski gasket using the self-similarity energy – our proof here will

be more geometric. We wish to show that
ˆ
B(x,r)

|f (y)− fB(x,r)|2dy ≤ Cr2
ˆ
B(x,Ar)

|∇f (y)|2dy.

We’ll use the usual trick about writing variance as an expectation over the product measure
ˆ
|f (y)− fB(x,r)|2dy =

1

2m(B(x, r))

ˆ
B(x,r)

ˆ
B(x,r)

(f (y)− f (z))2dydz.
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We want to control this integrand using the gradient, and the idea is the following pencil of curves argument. For a

pair of points x, y , we join them by some curve. One such example would be a straight line segment, but here we will

think about all possible points w on the perpendicular bisector between y and z , and consider the curve γ which draws

a straight line segment from y to w and then w to z , as long as the distance d(w, z) = d(w, y) is at most d(y , z)

(so in other words, a cone of angle 60 degrees of spread from the vertical).

Let γy,z be a random such curve with w uniformly among the allowed possibilities.

For any fixed such curve, we have by the fundamental theorem of calculus and the triangle inequality that

f (y)− f (z) ≤
ˆ
γy,z

|∇f (γy,z(s)|ds,

and so squaring and taking expectation we get

(f (y)− f (z))2 ≤ E

[(ˆ
γy,z

|∇f (γy,z(s)|ds
)2]

≲ E
[
L(γ)

ˆ
|∇f (γ(s))|2ds

]
by Cauchy-Schwarz, where the length L(γ) is of order r . Choosing uniformly among the allowed point p along the

curve is then similar to choosing a uniform angle up to constant factors within our allowed region, so we can further

write this as (here note that

(f (y)− f (z))2 ≲ r
ˆ
|∇f (p)|2(|y − p|−n+1 + |z − p|−n+1)dp.

We now plug this back into our expression. By triangle inequality, we know that if y , z are distance r from x , then p

can be at most distance 2r away from them, and thus
ˆ
B(x,r)

ˆ
B(x,r)

(f (y)− f (z))2 ≲ r
ˆ
B(x,3r)

ˆ
B(x,r)

ˆ
B(x,r)

|∇f (p)|2(|y − p|−n+1 + |z − p|−n+1)dydzdp

We can now do these integrals in polar coordinates, and we get a bound rnr2
´
B(x,3r) |∇f |

2dm, as desired because the

rn cancels out with the m(B(x, r)) term.

Our next result talks about what possible joint values of volume-growth and exit time behavior are possible for a

space.

Theorem 117 (Murugan, 2025+)

Let V, ψ : [0,∞)→ [0,∞) be two homeomorphisms such that ψ is a scale function and V satisfies (this should be

the measure of a ball of radius r) V (R)
V (r) ≲

(
R
r

)α
for all 0 < r < R. Suppose we have an MMD space (X, d,m, E ,F)

of infinite diameter satisfying full sub-Gaussian heat kernel bounds HKEf (ψ), and we have m(B(X, r)) ≍ V (r) for

all r > 0. Then V and ψ must have some mutual constraints; specifically,(
R

r

)2
≲
ψ(R)

ψ(r)
≲
R

r
·
V (R)

V (r)
.

(In particular if V (r) = rdf and ψ(r) = rdW , this implies that 2 ≤ dW ≤ 1 + df .) Conversely, if V and ψ satisfy

these mutual constraints, then there is some space (X, d,m, E ,F) with full sub-Gaussian heat kernel bounds and

the specified volume growth.

(Barlow previously proved this in the special case of random walks on graphs.) Let’s understand where those mutual

constraints come from:
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Proof of upper bound. The reason we require ψ(R)
ψ(r) ≲

R
r
V (R)
V (r) is that if φ is a cutoff function for B(x, r) ⊂ B(x, Ar),

by Poincaré inequality we have

E(φ, φ) ≳
m(B(x, R))

ψ(R)
≍
V (R)

ψ(R)
,

and we’ll now use a chain of balls B0, · · · , Bn at the smaller scale r to get from inside B(x, r) to outside the larger

ball B(x,R). The number of steps we must take is on the order of R
r (since having full heat kernel bounds implies

conditions on these chains), and then the average of the function on the chained balls satisfies

|1− 0| = |φB0 − φBn | ≲

∣∣∣∣∣
n−1∑
i=0

(φ(Bi)− φ(Bi+1))

∣∣∣∣∣
2

≲
R

r

n−1∑
i=0

|φBi − φBi+1 |2.

But now we can enclose both balls Bi , Bi+1 in a single ball B′i of order 2r ∼ r as well, and by the Poincaré inequality

we thus get an upper bound on this quantity of

R

r

n−1∑
i=0

ˆ
AB′i

dΓ(φ, φ)

These balls can overlap with each other but not by much, and thus we can use this last expression to bound something

with the energy of φ: we get ψ(r)
V (r)

R
r E(φ, φ) ≤

ψ(r)

V (r)

R

r

V (R)

ψ(R)
, which is exactly what we wanted.

Notice that this bound is tight when we have “only one path from the small ball to the large ball,” but on the other

hand, the lower bound is exactly what happens in the Euclidean case. So what we’re saying is that “all spaces are

somewhere between Euclidean and tree-like!”

11 June 19, 2025
We stated Theorem 117 last time, explaining that a space with the same volume growth around all points must have

spacetime scaling growing at least quadratic (so Gaussian spacetime is an extreme situation) and at most linear times

the volume growth. The idea behind the proof is to use estimates at a smaller scale r to control the larger scale R.

Proof of Theorem 117, lower bound. We know that the sub-Gaussian heat kernel bounds HKEf (ψ) imply capacity

bounds (here originally the numerator reads m(B(x, r))

Cap(B(x, r), B(x, Ar)c) ≍
V (r)

ψ(r)
.

We want to use this at smaller scales to get bounds at larger scales. For this, consider an annulus of inner and outer

radius R and R + r , respectively; we will show that

Cap(B(x,R), B(x, R + r)c) ≲
m(B(x,R + r) \ B(x, R))

ψ(r)
.

This next point is one of the key ideas in this area: we cover with balls of the smaller scales. Fix an N = A−1r
2 -net

of B(x,R) (meaning that we have some maximal A
−1r
2 -separated subset of B(x,R)); given such a family of points).

Maximality implies that the balls
⋃
n∈N B

(
n, A

−1r
2

)
cover B(x, R). For each such point n, pick a cutoff function ψn
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for the annulus between B(n, A
−1r
2 ) and B(n, r2), with energy controlled as

E(ψn, ψn) ≲
m(B(n, r2))

ψ(r)
.

(by the doubling property we can assume that balls of different radii are comparable).

We can now define the function ψ = maxn∈N ψn; this is a cutoff function for B(x, R) which is zero outside of

B(x, R+ r
2). It’s not so clear that this function belongs in the domain of the form or how to estimate its energy, but

a useful fact about the energy measure in terms of the associated process (Yt) is the following:
ˆ
X

f dΓ(φ, φ) = lim
t↓0

1

t
Ef ,m[φ(Yt)− φ(Y0)]

(here Ef ,m means we have some starting distribution with density f relative to m). Indeed, we can decompose φ(Yt)

into a martingale and finite-variation part by Ito’s formula, with the growth of the quadratic variation part depending

on |∇φ|2. The left-hand side becomes the energy when f = 1, and if we plug in φ = ψ we can also use

|ψ(Yt)− ψ(Y0)|2 ≤ max
n∈N
|ψn(Yt)− ψn(Y0)|2 ≤

∑
n∈N
|ψn(Yt)− ψn(Y0)|2,

so the energy of the maximum is less than the sum of the energies and we have the same inequality for energy measures.

And this gives us a probabilistic interpretation of the energy measure in terms of the quadratic variation. But the point

is that

Γ(ψ,ψ) ≤
∑
n∈N
Γ(ψn, ψn),

and because ψ is identically equal to 1 on the ball B(x,R) (as the maximum of cutoff functions) we don’t have to

worry about energy contributions by strong locality: Γ(ψ,ψ)(B(x, R)) = 0. (Similarly there are no energy contributions

outside B(x,R + r).) Thus we get the estimate

E(ψ,ψ) = Γ(ψ,ψ)(B(x,R + r) \ B(x, R))

≤
∑
n∈N
Γ(ψn, ψn)(B(x, R + r) \ B(x, R)).

Notice also that most of the ψns don’t contribute to this sum, because any ψn that is not near the boundary will have

support inside the smaller ball. And with the remaining ones we can use our estimate on E(ψn, ψn), and we know that

the balls will not overlap too much. Thus the result is that we get the bound

E(ψ,ψ) ≲
m(B(x, R + r) \ B(x, R))

ψ(r)
.

We’ll now build a cutoff function at the scale R: if we have balls B(x, R) and B(x, AR), we will break that up into k

concurrent annuli of depth r , meaning that k ∼ R
r . That is, for all 1 ≤ i ≤ k , we define balls Bi = B (x,R + i r) and

let ψi be a cutoff function for B(x, R + i r) ⊂ B(x, R + (i + 1)r) satisfying that previous bound

E(ψi , ψi) ≲
m(B(x, R + (i + 1)r) \ B(x,R + i r))

ψ(r)
.

We then average these functions together by defining

ψk =
1

k

k−1∑
i=0

ψi ,
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which will be a cutoff function for B(x, R) ⊂ B(x, AR). Again, we want to estimate the energy, but by bilinearity

E(ψ,ψ) =
1

k2

k−1∑
i=0

E(ψi , ψi) ≲
1

k2
m(B(x, R))

ψ(r)

because cross-terms are zero (one function is always constant in the support of the other for E(ψi , ψj) when i ̸= j).
Here in the last inequality we use that by the doubling property, the total sum of all the volumes of the annuli is of the

same order as B(x, R). But this quantity is proportional to
(
r
R

)2 V (R)
ψ(r) , and therefore what we’ve proved is that

Cap(B(x,R), B(x, AR)c) ≲
( r
R

)2 V (R)
ψ(r)

,

but also we previously found the lower bound V (R)
ψ(R) ≲ Cap(B(x,R), B(x, AR)c). So putting these inequalities together

yields the Gaussian lower bound, as desired.

Working with the capacity makes the calculations simpler here; we could also interpret from the point of view of

exit times from balls, but it’s not so clear how to do the appropriate bounds in that case.

Example 118

We’ll now give some ideas for how to construct spaces given some specified volume growth V and spacetime

scaling ψ, assuming they satisfy the bounds above. These ideas go under the name Laakso spaces (and they

were constructed in 2000); these spaces are constructed so it’s easy to compute the spacetime and volume profile.

Even for relatively simple looking fractals, it can be hard to compute the exponents. Indeed, as we said last time,

we know that the Sierpinski carpet has some exponent which we can estimate numerically, but for which the actual

value is unknown. But the other direction (given exponents, construct a space) is much more manageable.

We’ll do the special case ψ(r) = r2 first. The idea is to glue many copies of the line [0,∞), indexed by a certain

ultrametric space. Define a uniformly bounded function g : Z → N (meaning that 1 ≤ inf g ≤ sup g ≤ ∞ which we

should think of as a gluing function. Define the set of functions

U(g) =
{
s : Z→ Z : s(k) ∈ [0, g(k)− 1] for all k and lim

k→∞
s(k) = 0

}
.

So the kth component has g(k) different possibilities, and we’re taking products but restricting to eventually-zero

functions so that U(g) can be made into a metric space. Specifically, we can set

dU(g)(s, t) = 2
inf{k∈Z:s(ℓ)=t(ℓ) for all ℓ≥k},

which will always be finite because both sequences are eventually zero. This satisfies a version of the triangle inequality

with sum replaced by maximum, and we now define the Laasko space

L(g) =
U(g)× [0,∞)

∼ ,

with ∼ the smallest equivalence relation which glues points

(s, x) ∼ (s ′, x ′) if x = x ′ = (2k − 1)2n for some k ∈ N, n ∈ Z and s|Z\{n} = |s ′Z\{n}.

To explain what’s happening, suppose g(n) = 3. Then at every odd multiple of 2n, we glue three different copies of

the positive real line together, and otherwise those copies are disjoint. These sets Wk = {(2k − 1)2n : k ∈ N} are

typically called level-n wormholes.
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The metric on L(g) is then the shortest path (geodesic) metric such that each copy of [0,∞) has the usual metric.

Since there are wormholes at all scales n (which can be arbitrarily small), they are dense in our space. So our diffusion

will behave like a Brownian motion within each real line, but each time it encounters a wormhole it goes to each of

the branches with equal probability (some version of this is also called the Walsh Brownian motion). But of course

it’s hard to visualize this because we always encounter wormholes at arbitrarily small scales.

We get a measure on U(g)× [0,∞) by taking the product measure mU(g)×Leb([0,∞)), and then the pushforward

of this under the quotient map yields a measure on L(g). Here we’re defining the measure mU(g) to be the restriction

to U(g) of the following measure:

∏
k

uniform probability measure on [0, g(k)− 1] ∩ Z, k ≤ 0,

counting measure, k > 0.

So if we fix a function up to some negative scale k and choose the rest uniformly, we can estimate the volume (because

it’s uniform after that on some space). We find that

mU(g)
(
BU(g)(s, r)

)
≍


(∏n

k=1 g(k)
)−1

2n−1 ≤ r ≤ 2n, n ≤ 0,

1 1 ≤ r ≤ 2,∏n−1
k=1 g(k) n > 0, 2n−1 ≤ r < 2n.

Defining the function VU(g)(r) =
∏n−1
k=1 g(k), the volume growth of the Laasko space is then of order rVU(g)(r) (since

we also have linear growth along the Lebesgue measure part). And we won’t write down the Dirichlet form explicitly,

but we can think of it as
´
(f ′)2dmL with f ′ the derivative along the real line. Indeed, this diffusion has the property

that it becomes the usual Brownian motion if we project down onto [0,∞), and we just end up with some additional

randomness about how to jump at each scale.

It turns out that by varying the function g, we can produce any space with the specified Gaussian volume/spacetime

scaling. (Indeed, making g larger essentialy corresponds to having a “higher-dimensional space.”) We do this by proving

a Poincaré inequality (using the “pencil of curves” approach from last lecture), and that’s what Laasko does in the

original paper.

Fact 119

Generalizing beyond the Gaussian case, instead of gluing different copies of the real line, we can also glue different

copies of an r -tree. This fixes the spacetime scaling behavior, and then we can choose a similar gluing g to get

the correct volume growth behavior.

Also, recall from some of our afternoon talks that the Heisenberg group doesn’t embed into Euclidean space

in any bilipschitz fashion – the same holds for Laasko spaces.

A probabilistic construction of diffusion on Laasko spaces was first given by Barlow and Evans in 2001, but it was

hard to get heat kernel bounds until these more analytic techniques came in.
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Theorem 120 (Carron and Tewodrose, 2022)

Let (X, d,m, E ,F) be an MMD space, and let α ∈ [1,∞) be such that the corresponding diffusion process has

Euclidean-like heat kernel (that is, “like Brownian motion on Rα”)

pt(x, y) =
1

(2πt)α/2
exp

(
−
d(x, y)2

2t

)
for all x, y ∈ X and all t > 0. Then in fact we have α = n for some n ∈ N, and X = Rn, d is the Euclidean

metric, and the corresponding process is ordinary Brownian motion.

So the point is that if we restrict ourselves to equality rather than just having upper and lower bounds, we can’t

choose any α and in fact we need to be exactly Euclidean. Thus what we have is a result about rigidity of the heat
kernel.

Proof idea. We’ll see now why the volume doubling and Poincaré inequality characterization is useful. The proof uses a

result of Colding and Minicozzi from 1997, which states that volume doubling and PI(2) implies the space of harmonic

functions with polynomial growth (meaning that h(x) ≲ (1 + d(0, x))k) has finite dimension. (For comparison, in

Euclidean space, every harmonic function of polynomial growth is actually polynomial.) So the space of harmonic

functions with linear growth is finite-dimensional; in Euclidean space this dimension is n + 1, so what we can do is

throw out the constant function and use the remaining space to get an isometry to Rn.

Remark 121. There is a similar heat kernel rigidity result for the n-sphere which has also been proved. The analogous

result for hyperbolic space is conjectured but still open.

Example 122

In the rest of this lecture and the next, we’ll see some more applications of characterizations of heat kernel

bounds. The theme from now on is transformations, getting new things from old things – we’ll study reflection,

killing/absorbing, and time change. The idea is that once we reach the boundary of our domain, we want to either

be able to kill the process or send it back inside.

We’ll begin with reflected diffusions. For reflected Brownian motion on Rn, one strategy is the SDE approach

(also called the Skorokhod equation), where we define a process via the equation

Y (t) = Y (0) + B(t) +

ˆ
n⃗(Y (s))dLs ,

where n⃗ is the inward-point normal vector and Ls is called the boundary local time (we’ll come back to this next

week). And the other strategy (due to Fukushima) is to use Dirichlet forms directly:

ED(f , f ) =
1

2

ˆ
D

|∇f (x)|2dx,

where the domain here is the set of functions

F = W 1,2(D) =
{
f ∈ L2(D) : |∇f | ∈ L2(D)

}
.

These approaches yield the same result if D is a smooth domain and we want an “ordinary” reflection. But the

first method can also handle oblique reflections at some other angle (the second cannot because we no longer get a
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symmetric process and thus Dirichlet forms do not apply), while the second can also handle non-smooth domains (the

first can do so with an approximation via smooth domains, but that takes more work to do).

Example 123

We can understand the construction above in the simple one-dimensional case where the domain is D = [0,∞).
In this case, we should actually have that Yt = |Bt | for Bt an ordinary one-dimensional Brownian motion.

In this case, we can write down the heat kernel explicitly: we have

pDt (x, y) = pt(x, y) + pt(x,−y)

for pt the ordinary heat kernel. So we know the heat semigroup, meaning that we can calculate the Dirichlet form by

taking limits of that semigroup; it’s a good exercise to check that we end up getting the same ED as above.

If we now move to more general spaces, we need to make sense of the condition that “ |∇f | is in L2.” In general,

the form (ED,W 1,2(D)) that we construct will not be a regular Dirichlet form on L2(D):

Example 124

Consider the space R2 \ (−∞, 0]× {0}), which is the plane with a slit. Defining a reflected Brownian motion on

this space means we cannot take the space to be L2(R2), because it would mean a single point on the negative

real line has to correspond to two points in the state space.

To get around this, Fukushima defines a Dirichlet form on a certain abstract closure of D, called the Martin-
Kuramochi compactification:

Definition 125

Let (X, d,m, E ,F) be an MMD space, and let U ⊂ X be a domain (here we mean a nonempty open proper

connected subset of X). Define the function space Floc(U) to be the m-equivalence class of functions f on U,

such that for every relatively compact subset V of U, we have f 1V = f ♯f 1V for some f ♯ ∈ F . We then define

F(U) =
{
f ∈ Floc(U) :

ˆ
U

f 2dm +

ˆ
U

ΓU(f , f ) <∞
}
,

where ΓU(f , f ) is the energy measure for Floc(U) which restricts to any V via

ΓU(f , f )|V = Γ(f ♯, f ♯)
∣∣
V
.

The distribution of the gradient only depends on the local behavior of the functions, so it makes sense that this

may yield a sensible Dirichlet form. We have to check (via strong locality) that even though there are multiple different

f ♯s that we can take, ΓU(f , f ) is still well-defined.

Remark 126. We need to be able to pick different f ♯s for different relatively compact subsets V , because otherwise

we would be specifying that f extends to a single global function in W 1,2; that turns out to be a strictly smaller space

in general. For example we may want to allow functions f which are 1 on one side of the slit plane and 0 on the other.

We thus get a bilinear form (EU ,F(U)) which will correspond to reflected diffusion by setting EU(f , f ) = ΓU(f , f )(U).
And next time, we’ll see some conditions to get us a regular Dirichlet form on U.
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12 June 20, 2025
We discussed two approaches last time for discussing reflection at a domain – let’s continue elaborating on the Dirichlet

form approach today. Since the form is strongly local, we can define an energy measure for any function in Floc(U)

(this is kind of like “agreeing on charts for manifolds”), and the questions we’re interested in are the following:

• When is (EU ,F(U)) a regular Dirichlet form on the closure L2(U,m)?

• When does the corresponding reflected diffusion inherit behavior of diffusion on the ambient space? (For example,

can we get sub-Gaussian heat kernel bounds for the reflected diffusion as well?)

We’ll be able to give a positive answer for a certain class of domains:

Definition 127

A uniform domain is a domain D such that there is a constant A where the following condition holds: for any

pair of points x, y ∈ U, we can connect them with a curve γx,y such that

diam(γ) ≲ Ad(x, y), dist(z, Uc) ≥
1

A
(d(x, z) ∧ d(z, y)) for all z ∈ γx,y .

In other words, our curve does not stray too far from x and y , and we can avoid getting too close to the boundary

of the domain.

Generally domains that do not satisfy these conditions have certain (outward or inward) cusps or slits, but for

example the graph of a Lipschitz function will be the boundary of a uniform domain. And even things like the

snowflake domain are uniform even though they are very fractal.

Theorem 128 (Rajala)

Consider a metric space (X, d) satisfying the doubling property (so every ball of radius r can be covered by some

constant N number of balls of radius r/2) and such that there exists some C ≥ 1 such that for all x, y ∈ X there

is a curve γx,y whose length is at most Cd(x, y). Then for any bounded domain Ω of X and any ε > 0, there

exist uniform domains Ωi ,Ωo (“inside” and “outside”) such that Ωi ⊂ Ω ⊂ Ωo , but if we take ε-neighborhoods we

have Ωo ⊂ Ωε and Ωci ⊂ Ωcε .

So any bounded domain can be approximated by uniform domains from inside and outside.

Theorem 129 (Murugan, 2024)

Suppose (X, d,m, E ,F) satisfies HKE(ψ) heat kernel bounds for some scale function ψ and has volume doubling.

Then (EU ,F(U)) is a regular, strongly local Dirichlet form on L2(U,m), and the corresponding reflected diffusion

also satisfies HKE(ψ).

The case where ψ(r) = r2 was already known (and due to Gyrya and Saloff-Coste from 2011), and in fact it was

proven more generally for inner uniform domains U (that is, uniform with respect to the intrinsic metric). But the

proof here for more general scale functions doesn’t work for inner uniform domains, and it’s natural to conjecture that

the theorem should also be true for inner uniform domains as well (but now using the intrinsic metric).

To understand why Gaussian and sub-Gaussian cases can be rather different, consider the following:
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Theorem 130 (Kajino, Murugan 2020)

Suppose that (X, d,m, E ,F) is an MMD space that satisfies HKE(ψ) with ψ(r) = rdW for some dW ≥ 2.

1. If dW = 2, then we have absolute continuity Γ(f , f )≪ m for all f ∈ F , and additionally m ≪ Γ(f , f ) for a

dense set of functions f ∈ F .

2. However, if dW > 2, then the measures are singular: Γ(f , f ) ⊥ m for all f ∈ F .

Proof idea of Theorem 129. The main idea is to use an extension of functions in F(U) to F ; the original idea is due

to Jones (in 1981), where it’s shown that f ∈ W k,p(U) can be extended to W k,p(Rn). (So already this part of the

proof will not work for inner regular domains.) The generalization is the following:

Theorem 131

Let (X, d,m, E ,F) be as in the previous theorem, and let U be a uniform domain. Let (EU ,F(U)) denote the

quadratic form corresponding to reflected diffusion. Then there is an extension map E : F(U) → F , such that

E(f )|U = f for all f . Furthermore, there exist constants C,K ∈ (1,∞) such that we get the boundedness

properties for the energy

Γ(E(f ), E(f ))(B(x, r)) ≤ CΓU(f , f )(U ∩ B(x,Kr))

for all 0 < r < c diam(U), and we also bound the L2 norms via
ˆ
B(x,r)

|E(f )|2dm ≤ C
ˆ
U∩B(x,Kr)

f 2dm

for all r > 0.

In particular, taking r →∞, this implies that
ˆ
X

|E(f )|2dm ≤ C
ˆ
U

f 2dm, E(E(f ), E(f )) ≤ C
(
EU(f , f ) +

1

ψ(diam(U))

ˆ
f dm

)
,

and these kinds of global bounds are what Jones was originally interested in (extending continuously to a function on

the whole space). But we have to care about local inequalities and thus we need extension properties at various scales.

We’d like to get pointwise bounds on things like the gradient, but because the energy measure is singular with

respect to the reference measure there isn’t much hope of doing that. Even in the Euclidean setting, this is an

interesting question: for some function f ∈ W 1,2(Rn), can we estimate
´
|∇f |2dx without any pointwise estimates on

|∇f |? The answer (due to Korevaar and Schoen in 1993) is the following:

Fact 132

A function f ∈ L2(Rn) belongs to W 1,2(Rn) if and only if the quantity

lim sup
r↓0

ˆ
Rn

 
B(x,r)

(f (x)− f (y))2

r2
dydx <∞,

and in such a setting the left-hand side is asymptotic to
´
|∇f |2dx .

More generally if we have HKE(ψ) estimates, we can then extend this naturally (this is due to Grigor’yan, Hu, and

Lau) by replacing dydx by m(dy)m(dx), replacing r2 with ψ(r), integrating over the metric space instead of Rn, and

replacing
´
|∇f |2dx with E . So up to a constant factor, we can characterize purely off the metric space structure!
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Remark 133. The extension map itself is constructed using Whitney covers. The definition is as follows: for any

ε ∈ (0, 12) and any open set U, a collection of balls {B(xi , ri) : xi ∈ U, ri > 0} is called an ε-Whitney cover if (1)

the balls are pairwise disjoint, (2) ri = ε
1+εdist(xi , Uc) (so the radius is essentially proportional to the distance to the

boundary), and (3) slight dilations cover the space in the sense that
⋃
i∈I B(xi , 2(1 + ε)ri) = U.

So now to explain the construction, for simplicity assume U and Uc are unbounded domains (for example if our

domain is above the graph of a Lipschitz function) and construct Whitney covers W(U),W(V ) for U and (Uc)◦. We

then construct some map Q : W(V ) → W(U) so that diam(Q(B)) ≍ diam(B) ≍ dist(xB, xQ(B)). For a function f

only defined on U, we can then define

E(f ) = f 1U +
∑

B∈W(V )

fQ(B)ψ
B,

where fQ(B) is the average of the function f on the image Q(B), and {ψB} is a partition of unity of V = (Uc)◦ (so

that
∑
ψB = 1V ); we can think of those as basically being cutoff functions except that they should have small energy:

E(ψB, ψB) ≍ m(B)
ψ(r) for r = r(B).

To see now why the extension theorem should imply good heat kernel bounds for the reflected diffusion, first we’ll

see why it defines a regular Dirichlet form.

• To show that it is closed, first pick a Cauchy sequence (fn) under (EU)1. Then the extended functions (E(fn))

also form a Cauchy sequence (by the energy and L2 bounds in our extension theorem), which will converge to

some f which we can restrict on U. In fact, this tells us that for uniform domains F(U) can be viewed simply as

{fU : f ∈ F}, and that is not always true for things like slit domains.

• To show that it is regular, we must further use the fact that E maps continuous functions C(U) to continuous

functions C(X) (where continuous means existence of a continuous representative). Indeed, any function on the

whole space can be approximated by continuous functions, and so every function on the local space is the limit

of continuous functions with compact support.

From here, Poincaré inequalities turn out to be easy to prove from the extension property as well. Pick some f ∈ F(U),
and bound the variance via the integral on the whole space:

ˆ
U∩B(x,r)

∣∣f − fU∩B(x,r)∣∣2 dm = inf
α

ˆ
U∩B(x,r)

|f − α|2dm

≤ inf
α

ˆ
B(x,r)

|E(f )− α|2dm.

Now using the Poincaré inequality for the original diffusion and then using one of the bounds from the extension map

yields the result: we can bound by ψ(r)
´
B(x,Ar) Γ(E(f ), E(f ))dµ ≲ ψ(r)

´
U∩B(x,KAr) Γ(f , f ). This is only true up to

order of the diameter, but then a covering argument gets us the rest.

From a probabilistic perspective, it is a bit unnatural to have to look outside U to do the proof, so it’d be nice to

have a strategy which avoids this.

Fact 134

If we knew that HKE(ψ) is equivalent to volume doubling, PI(ψ) and Cap(ψ), then we would be able to obtain

heat kernel bounds HKE(ψ) for reflected diffusions as well. Indeed, capacity bounds are easy to show for the

reflected diffusion, but cutoff energy inequalities are more difficult.
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Example 135

We’ll now turn to diffusions that are killed upon exiting; first we need to explain how to define the Dirichlet form.

Let Yt be a process corresponding to (X, d,m, E ,F), and let τU be the first time the process goes outside U. our

goal is to define the killed or absorbing diffusion

Y Ut =

Yt t < τU ,

∆ τ ≥ τU ,

where recall that ∆ is the cemetery state.

Much like with reflected diffusions, the general characterization of using functional inequalities like Poincaré and

cutoff energy is very useful, but there is an additional step involved here. By standard convention we know that we

tend to take functions to be zero on the cemetery state, or more precisely we set Pt f (x) = Ex [f (Yt)1{t < ζ}]. Thus

we can define the class of functions which are “zero outside U:”

F0(U) =
{
f ∈ F : f̃ = 0 E-q.e. on X \ U

}
(Indeed, this is the right definition to make – if we’re just removing a single point from something like 3D Brownian

motion, we shouldn’t end up with anything different because almost surely we won’t visit that point.) We can thus

define (note the tricky notation here, with EU meaning reflected and EU meaning killed)

EU = E|F0(U)×F0(U),

which yields a regular Dirichlet form (EU ,F0(U)) in L2(U,m) which corresponds to Y Ut . So no additional conditions

on the domain are necessary – we can just define the Dirichlet form in this straightforward way.

The main idea for analyzing this is to use the Doob h-transform – for this, we need to introduce boundary

conditions for functions only defined on U.

Definition 136

Let V ⊂ U be two open sets. Define the “functions on V with zero boundary conditions with respect to U”

F0loc(U, V ) as follows: it is the set of m-equivalence classes of functions f such that for every set A where A is

open, A is compact, and A ∩ U \ V = ∅, we have f = f ♯ m-a.e. on A for some f ♯ ∈ F0(U).

In our previous definitions of this kind, we always looked at compact subsets of V , but now we’re also allowing

boundary conditions as long as they’re fully inside V . So F0loc(U, V ) is some strictly smaller subset of the Floc(V ) we

defined before.

Fact 137

We’ll restrict to unbounded uniform domains U (though with some modifications things also work for the bounded

case). Then up to constants, there exists a unique harmonic function h > 0 on U, such that h ∈ F0loc(U,U).

Example 138

If we consider Brownian motion on Rn and U is the “first orthant” (0,∞)n, then the harmonic function turns out

to just be h(x1, · · · , xn) =
∏n
i=1 xi . And if U = {x ∈ Rn : |x | > 1}, then we instead have h(x) = log |x | for n = 2

and h(x) = 1− |x |2−n for n ≥ 3 (for n = 1 our domain is no longer connected).
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So in any of these domains, a Brownian motion is almost surely going to exit the domain. Doob wanted to condition

on the Brownian motion to not exit for a very long time, and that’s the idea of the h-transform – we can describe the

process in a very nice way.

Definition 139

Let Mh be the multiplication-by-h operator L2(U, h2ṁ) → L2(U,m); with our definition this operator is unitary.

The semigroup we get from conditioning is the following: let P Ut be the semigroup corresponding to the process

killed upon exiting. We can then define a new semigroup via conjugation

P U,ht = M−1h ◦ P
U
t ◦Mh.

We can check that this is also a strongly continuous contractive semigroup on L2(U, h2 · m), and (because h is

harmonic) that the Markov property holds. Indeed, P U,ht 1 =
P Ut h
h , and now this is less than 1 by harmonicity. So now

if pUt (·, ·) is the heat kernel of the killed semigroup P Ut , then the heat kernels are also related via conjugation relations

pUt (x, y) = h(x)h(y)p
U,h
t (x, y).

Thus estimating the heat kernel of the original group is more or less the same as estimating the h-transform semigroup.

Example 140

Consider Brownian motion on the half-line U = (0,∞) exited at 0. We know that h(x) = x, h2(x)dx = x2dx , so

the h-transformed process takes the form

E(U,h)(f , f ) =
ˆ ∞
0

(f ′(x))2x2dx,

which is the familiar three-dimensional Bessel process.

Once we know the Dirichlet form, we can compute

EU,h(f , f ) = E(Mh(f ),Mh(f )) for all f ∈ FU,k = M−1H (F
(0)(U)).

Whenever we have Gaussian or sub-Gaussian heat kernel bounds and a uniform domain whose complement is big

enough, this h-transform process has infinite lifetime and will not be killed. So we have a relation between the

h-transform semigroup and the ordinary semigroup; instead of trying to directly estimate our heat kernel we can
estimate P U,ht (x, y) instead. To do this, we have the following:

Theorem 141 (Gyrya, Saloff-Coste 2011, Lierl 2021)

Let U be uniform and unbounded. Then if the MMD space (X, d,m, E ,F) satisfies HKE(ψ), then (EU,h,FU,h) on

L2(U, h2 ·m) satisfies HKE(ψ).

Remark 142. In the bounded case, instead of looking at the harmonic functions, we can similarly define the h-transform

using the first eigenvector even though it’s not harmonic. This then yields an extra exponential term in the estimates

coming from the nonzero eigenvalue.

The proof proceeds by showing PI(ψ) and CS(ψ) for (E(U,h),F (U,h)) on L2(U, h2 ·m). The idea is that we stay far

enough away from the boundary that we can prove Poincaré using balls in a Whitney cover using Harnack inequalities,

and then with covering we can get it for everything.
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Fact 143

To understand the relationship between the heat kernel pt for the whole space and pUt for the whole process,

clearly pt ≥ pUt but we want to know “by how much.” We have the Dynkin-Hunt formula

pT (x, y) = p
0
t (x, y) + Ex [pt−τu (Yτu , y)1{τu < t}]

corresponding to the exit time being larger and smaller time t, respectively, but this isn’t very useful for estimating

compared to the h-transform techniques mentioned before.

13 June 23, 2025
In the last two lectures, we saw how characterizations of the heat kernel can be used to analyze reflected and killed

diffusions. We mentioned in particular the h-transform process, but we didn’t mention how we actually obtain the

function h. It turns out to be not so explicit, coming out of a subsequential limit construction:

Example 144

We’ve been looking at MMD spaces (X, d,m, E ,F) satisfying HKE(ψ) and looking at what happens when we kill

our process outside a uniform domain U. We’ll now restrict our attention to Rn for simplicity, and we’ll assume

that the killed process (Y Ut ) is transient. (If it’s recurrent, then the complement of U is a polar set and thus the

heat kernel will be the same as Yt itself.)

In this setting, the Green’s function is the function gU such that ∆gU(x, ·) = −δx for all x ∈ U and gU(x, ·) = 0
on ∂U (we can think of this as the occupation density for the associated process). We see that gU(x, y) = gU(y , x)

is nonnegative for all x, y ∈ U.

We’re assuming that U is unbounded (otherwise things depend on the first Dirichlet eigenfunction), so we can pick

some sequence of points xn ↑ ∞ and fix some base point x0 ∈ U. Normalize the function and define

hn(·) =
gU(xn, ·)
gU(xn, x0)

.

By the elliptic Harnack inequality and Moser’s oscillation lemma, the functions hn are uniformly bounded and equicon-

tinuous on compact subsets of U (since they all have value 1 at x0 and then we can use the Harnack inequality on a

chain of balls to any other point), so by Arzela-Ascoli we can pass to a subsequence to get a limit h = limk→∞ hnk
which is uniformly convergent on compact subsets. We can check that h is harmonic everywhere (because each gU
is harmonic except at a single point x , but those points are going to infinity) and that it is zero on the boundary; in

particular we find that h ∈ F0loc(U).

This isn’t so satisfactory if we want a concrete estimate (since everything in the Doob h-transform has estimates

dependent on h), and it’s an interesting question to see how we might do this on a specific domain.

To show uniqueness, we need the boundary Harnack principle, which will play an important role when talking

about time-changes later.
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Definition 145

Let (X, d,m, E ,F) be an MMD space and U an open subset of X. We say that U satisfies the boundary Harnack
principle (BHP) if there are constants A0, A1, c1 ∈ (1,∞) such that for any point ξ ∈ ∂U, any r ∈ (0, diam(U)

A1
),

and any pair of nonnegative E-harmonic functions u, v on U ∩B(ξ, A0r) with zero boundary conditions relative to

U (that is, u, v ∈ F0loc(U,U ∩ B(ξ, A1r))), we have

sup
B(ξ,r)∩U

u

v
≤ C1 inf

B(ξ,r)∩U

u

v
.

This estimate controls how the harmonic function (which is zero at the boundary) decays near the boundary, and

it says that two such functions always decay at the same rate. This particular definition is due to Aikawa in 2001,

though there’s been lots of work in more specific settings before that.

This kind of fact helps to prove uniqueness of harmonic functions with zero boundary conditions, since one way to

think about uniqueness of a nonnegative harmonic function is a Liouville property for ratios. In the Harnack inequality

case, we saw that Moser’s oscillation lemma implies Hölder regularity, which was enough to show the Liouville property.

A similar argument works here – we have uniqueness of h up to a positive multiplicative constant, since in this case

the oscillation lemma tells us that for u, v nonnegative on B(ξ, R) ∩ U and zero along ∂U, we have

oscB(ξ,r)∩U
u

v
≤ C

( r
R

)α
oscB(ξ,R)∩U

u

v
.

Indeed, as R→∞ we see that the oscillation of u
v approaches zero.

Remark 146. The rate at which we decay can still depend on the particular boundary point on the domain, though.

For example if U has a sharp 90-degree corner, conformal mapping techniques tell us that near most points on the

boundary we decay as dist(x, Uc), but at the corner point we decay instead as dist(x, Uc)2.

The resulting h-transform semigroup is exactly the same no matter what this multiplicative constant is, so everything

we care about is still unique. And we’ll see more applications of this soon as we move now into time-changes. We’ll

begin this last topic of the course with an example of finite Markov chains:

Example 147

Recall Example 8 of the state space X = {1, 2, · · · , n} equipped with a conductance matrix c : X ×X → [0,∞),
which defines a discrete-time Markov chain with transition probabilities

P (x, y) =
c(x, y)

m(x)
=

c(x, y)∑
y c(x, y)

.

We also defined a function λ : X → (0,∞) which governs the jump rate by specifying an exponential wait time

at x with rate λ(x). This then gets us a continuous-time process.

As we saw in the first week, it’s generally not so easy to write down the semigroup, but it’s easy to write down the

generator (we’ll keep the λ in the notation now)

Lλf (x) = lim
t↓0

P λt f (x)− f (x)
t

= −λ(x)(I −Q)f (x),

where Q is the operator such that Qf (x) =
∑

y P (x, y)f (y). Indeed, if λ is high we jump out of the state faster and

thus the derivative will be larger. This generator Lλ is then m̃λ-symmetric, where we define m̃λ(x) = 1
λ(x)m(x). We
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can then compute the Dirichlet form

E(f , f ) =
〈
−Lλf , f

〉
L2(m̃λ)

=
1

2

∑
x,y

(f (x)− f (y))2c(x, y),

and in particular this Dirichlet form doesn’t depend on λ at all. Indeed, λ is just specifying the time parameterization,

and other than that the process behaves exactly the same way. So we can express all of these processes (Y λt ) in terms

of one where λ is identically 1: we’ll drop λ from the notation in that case and just write (Yt). For this, we’d like to

define a “clock”

Aλt =

ˆ t

0

1

λ(Ys)
ds.

This is an increasing process which starts at zero at time 0, and it is piecewise linear. Each of those pieces has (time)

length independently distributed as Exp(1), and the slope of those pieces depends on the value of λ at the current

state (so if λ is small, the process is quite large).

t

Aλt

state x0 x1 x2
each Exp(1) length

Exp(λ(x0))

Exp(λ(x1))

Exp(λ(x2))

But the point now is that the value gained on each interval for Aλt is Exp(λ(x))-distributed, and those amounts

are again independent! Thus if we define

τλt = right-continuous inverse of Aλt = inf {s ≥ 0 : As > t}

(in this case it’s continuous because we have an increasing process), the description above tells us that (Yτλt ) is a

Markov process with generator Lλ. So we can get from Yt to Y λt by reparametrizing using this function At . The key

properties of At are the following: let (Ft) be the filtration and (θt) the time-shift operators corresponding to (Yt).

• (Aλt ) is [0,∞-valued, non-decreasing, and (Ft)-adapted with A0 = 0.

• The process is additive with respect to the shift operators, meaning that

Aλt+s(w) = A
λ
t (w) + A

λ
s (θt(w)).

Example 148

Now suppose we slightly change our setting so that we now allow λ to be∞-valued (meaning that we spend zero

time at some particular states, since we automatically jump away at infinite rate). We should then not consider

those states as part of the state space anymore. An example is if we have a 4 × 4 grid of vertices in a lattice,

where the jump rates in the middle 2 × 2 grid are infinite. The point is then that we can now form new edges

between states that weren’t already there, and it’s not so clear how we compute those rates.
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In the graph of Aλt above, some of those piecewise linear segments can now be horizontally flat, which means

that the right-continuous inverse will make a jump. For this part, now suppose that the support of m̃λ is now some

nonempty proper subset F of X, and also assume that (Yt) is irreducible. Define

TF = inf{t ≥ 0 : Yt ∈ F},

and now for any function g : F → R, define the harmonic extension Hf (g) : X → R via

HF (g)(x) = Ex [g(YTF )] .

Proposition 149

Let X, c, λ be as above, and consider any function g : F → R with extension g̃ : X → R. Then we have the

following equivalent characterizations:

1. Harmonicity in the sense above; that is, g̃(x) = HF (g(x)) = Ex [g(YTF )],

2. Lg̃(x) = 0 on X \ F , for L a variant of the Laplacian,

3. (Weak formulation of the point above) E(g̃, φ) = 0 for all φ : X → R with support contained in X \ F .

4. (Harmonic functions are energy minimizers) E(g̃, g̃) = minh:X→R extension of g E(h, h).

From here, we’ll just do the same computation as we did before. F will be the state space of the new time-changed

process, so for x ∈ F we have

P λt g(x) = Ex(g(Y λt ))

= e−λ(x)tg(x) +
(
1− e−λ(x)t

)∑
y∈F

P (x, y)g(y) +
∑
y∈F c

P (x, y)HF (g)(y)

+ o(t2).
This is basically the same logic as usual, where we make either zero jumps, one jump, or more with vanishingly small

probability as t ↓ 0. But for the one-jump case, we have to separate into possibilities of whether we get to another

state in F or something else, and in the latter case we need to use the harmonic extension to get the probabilities of

ending up at various states. Remembering now that the function g is exactly HF g for any x ∈ F , so we can actually

write this more simply as

P λt g(x) = e
−λ(x)tHF g(x) +

(
1− e−λ(x)t

)
P (x, y)HgF g(y) + o(t

2),

meaning that the generator is

Lλg(x) = −λ(x)(I −Q)HF (g)(x)

for all functions g : F → R and all x ∈ F . And again, we can now write down an inner product to compute the

Dirichlet form (notably on the space F , not on the space X)

Ẽ(g, g) =
〈
−Lλg, g

〉
L2(m̃λ)

;

we can write this out using that g = HF g on F and noting that again the factors of λ cancel out between the generator

and the measure to get

⟨(I −Q)HF (g), HF (g)⟩L2(m) = E(HF (g), HF (g)).

A similar story will occur in general now beyond finite state spaces, and the Dirichlet form of the time-change will
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now typically be defined on some subset of the whole state space.

Definition 150

Let (E ,F) be a regular Dirichlet form on L2(X,m), (Yt) the corresponding process, (Ft) the filtration, and (θt)

the time-shifts. A positive continuous additive functional (PCAF) is a collection of random variables (At)t≥0
satisfying the following properties:

• (At) is (Ft)-adapted.

• There exists some Λ ∈ F∞ and a properly exceptional set N ⊂ X for (Yt), such that Px(Λ) = 1 for all

x ∈ X \ N . Furthermore, θt(Λ) ⊂ Λ for all t ∈ (0,∞).

• For all points w ∈ Λ in this “almost-sure set,” the function t 7→ At(w) is a continuous function from [0,∞]
to [0,∞], such that A0(w) = 0, At(w) < ∞ for all t < ζ(w), At(w) = Aζ(w)(w) for all t ≥ ζ(w) (the

process stops doing anything after the lifetime ends), and At+s(w) = At(w) + As(θt(w)) for all s, t > 0.

We call Λ the defining set for the PCAF, and we call N the exceptional set. We also further say that (At) is a

PCAF in the strict sense if N = ∅. The support of A is then defined by

F = {x ∈ X \ N : Px(R = 0) = 1} ,

where R = inf{t ≥ 0 : At > 0}.

The F here should be thought of as the same F as in our finite state space case.

Theorem 151 (Revuz correspondence, special case)

For any PCAF A, there is a unique Borel measure µ on X, called the Revuz measure of A, such that
ˆ
X

f dµ = lim
t↓0

1

t
Em
[ˆ t

0

f (Ys)dAs

]
,

where the right-hand side is defined via the Stieltjes integral. This measure further satisfies µ(A) = 0 for any

E-polar set A. Conversely, for any Radon measure µ which assigns zero mass to polar sets, there is some PCAF

whose Revuz measure is µ.

We can verify that m̃ from before plays the role here of µ, and the idea is that we should not be able to see sets

that were originally negligible before the time-change.

Example 152

Suppose µ(dx) = g(x)m(dx), where g : X → (0,∞) is a “nice function” so that µ is a Radon measure. Then

the associated PCAF has an explicit description in the same way as in the discrete space case, with

At =

ˆ t

0

g(Ys)ds.

It turns out that every Revuz measure of every PCAF can be approximated (in some sense) by measures of this

form; this is actually one of the steps in the proof of the correspondence.
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Example 153

Now specialize to the case of 1-dimensional Brownian motion. In this case, looking at the measure µ = δx (the

Dirac mass at x), the associated PCAF Aµt is the local time at x

Lxt = lim
ε↓0

1

2ε

ˆ t

0

1{Bs ∈ (x − ε, x + ε)}ds.

For a more general Radon measure µ on R, we then get an averaged combination of these local times

Aµt =

ˆ
R
Lxtµ(dx).

This description doesn’t make sense in high dimensions (because local time isn’t defined), but it’s still giving us

some intuition about what’s going on.

If we now consider a PCAF A with Revuz measure µ, and we let F be the support of that PCAF, it’s typically the

case that F will be the topological support of µ, but there are some counterexamples. Either way, we can define the

time-changed process corresponding to A

Y̌t = Yτt , τt = inf{s ≥ 0 : As > t}.

The process (Y̌t) is then a µ-symmetric process on F with Dirichlet form (Ě , F̌) given by (similar proof but more

technical, in fact given by resolvents)

F̌ =
{
f̃ |F : f ∈ Fe , f̃ |F ∈ L2(F, µ)

}
.

To explain where these “quasi-continuous versions” come from, we’ll be curious about things like reflected Brownian

motion, and it doesn’t make sense to restrict f to be zero on the boundary (of measure zero) unless we impose

quasi-continuity. And unsurprisingly we have, for any u ∈ F̌ ,

Ě(u, u) = E(Hf (ũ), Hf (ũ));

where the harmonic extension is given by

HF (ũ(x)) = Ex [ũ(YTF )1{TF <∞}]

(it’s possible for the time-changed process to have finite lifetime if the hitting time is infinite).

Example 154

Consider (E ,F) the Dirichlet form for two-dimensional Brownian motion on L2(R2, m = Leb). Consider the

time-change formally defined by

M = exp(γX)dx, X a Gaussian free field.

For γ ∈ (0, 2) this is an LQG measure defined via rescaling, and it turns out that M defines a PCAF A in the

strict sense, and it has full support R2. The corresponding time-changed process is called the Liouville Brownian
motion.

Recall that in a previous mini-course, it was stated as an exercise that conformality can be characterized by

invariance of Brownian motion. We’ll see how to prove that now:
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Example 155

We’ll begin by showing how we can compute an “image process” given a bijection between two spaces. Let

(E ,F) be a regular Dirichlet form on L2(U,m) and Φ : U → V be a bijection, and suppose (Yt) is the process

corresponding to the given Dirichlet form (E ,F). We would like to compute the Dirichlet form of the process

Ỹt = Φ(Yt).

The reference measure to look at must be the pushforward of the measure m – that is, m̃ = Φ∗(m) – and we’ll

try to compute the semigroup. We have, for any function f ∈ L2(V, m̃) and any y ∈ V , that

P̃t f (y) = Ẽy
[
f (Ỹt)

]
= Ẽy [f (Φ(Yt))]

= EΦ−1(y) [(f ◦Φ)(Yt)]

= Pt(f ◦Φ)(Φ−1(y)).

So then taking limits as t ↓ 0 lets us compute the Dirichlet form. There are two things that are easy to check, namely

that (1) (P̃t) is an m̃-symmetric Markovian semigroup on L2(V, m̃), and that (2) the corresponding Dirichlet form

(Ẽ , F̃) on L2(V, m̃) is given by

F̃ = {f ∈ L2(V, m̃) : f ◦Φ ∈ F},

Ẽ(f , f ) = E(f ◦Φ, f ◦Φ) for all f ∈ F̃ .

Next time, we’ll restrict to the case where Φ is a nice C1 map and use that to get from reflected or killed Brownian

motion to ordinary Brownian motion. And we’ll further characterize when this image process corresponds to a time-

change of a diffusion generated by a uniform elliptic operator (rather than just Brownian motion) – that’s given by

what are called quasi-conformal maps.

14 June 24, 2025
We started talking about time-change of symmetric Markov processes last time – we take a PCAF A with Revuz

measure µ, and we look at the right-continuous inverse of (At). This defines a time-change process which will be

symmetric on the support F , and its Dirichlet form can be defined in terms of quasi-continuous versions and harmonic

extensions.

We were in the middle of an example last time where we start with a process Yt on a state space U and want to

look at the image process under some bijection Φ : U → V . We computed the semigroup and got a description for

the new Dirichlet form Ẽ(f , f ) = E(f ◦Φ, f ◦Φ).

Example 156

We will specialize now to the case where U, V are domains in R2 and Φ : U → V is a C1-diffeomorphism which

is orientation-preserving (meaning det(DΦ) > 0 on U). Consider the case where (E ,F) is reflected or killed

Brownian motion on U (we won’t worry too much about the boundary conditions).
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In coordinates, we can write Φ = (Φ1,Φ2) and DΦ =

[
∂Φ1
∂x1

∂Φ2
∂x1

∂Φ1
∂x2

∂Φ2
∂x2

]
. The Dirichlet form is then

Ẽ(f , f ) =
ˆ
V

|∇(F ◦Φ)|2dx =
ˆ
U

∇f (x)TA(x)∇f (x)dx

by a change of variable and the chain rule, where A is the matrix

A(x) = det(DΦ(Φ−1(x)))−1DΦ(Φ−1(x))TDΦ(Φ−1(x)).

(it’s some 2 × 2 matrix which is always positive definite, so we have an elliptic operator). Then asking when we get

Brownian motion is the same as asking for this matrix to be the identity matrix, and that’s the same as saying that

we have a rotation matrix for Φ – But that’s exactly the same as requiring the Cauchy-Riemann equations to hold, so

A(x) = I2 ⇐⇒ Φ is a conformal map,

and A(x) is a uniformly elliptic operator if and only if the singular values are uniformly bounded from above or

equivalently from below (because the determinant of A is always 1, no matter what the derivative is – indeed, the

constant det(DΦ(Φ−1(x)))−1 will be squared when we evaluate the determinant). Thus

A(x) uniformly elliptic ⇐⇒ ||DΦ(x)||2 ≤ K det(DΦ(x)) for all x

for some constant K. Geometrically, conformal maps map infinitesimal circles to infinitesimal circles, and A maps

infinitesimal circles to infinitesimal ellipses of eccentricity at most K – we say that Φ is K-quasiconformal in such a

case.

It turns out it’s possible to construct uniformly elliptic operators even on the upper half-space so that the associated

harmonic measure is singular:

Fact 157 (Caffarelli, Fabes, Kenig ’81)

For any smooth domain D, there exists a uniformly elliptic operator whose corresponding diffusion has singular

harmonic measure with respect to the surface measure on D. For example, we can map the half-space to itself

in a way that is continuous on the boundary, such that we can make the pushforward of the Lebesgue measure

singular on the real line boundary.

The point, though, is that the image of a conformal or quasiconformal map will be the timechange of a Brownian

motion or a diffusion generated by a uniformly elliptic operator.

Example 158 (Kigami ’06)

Let K be the Sierpinski gasket and m the corresponding normalized Hausdorff measure. Let (E ,F) be the Dirichlet

form corresponding to Brownian motion on the Sierpinski gasket; we can construct a time-change via the Kusuoka
measure ν = Γ(h1, h1) + Γ(h2, h2), where h1, h2 are the functions with boundary condition

√
2
3 (1,−

1
2 ,−

1
2) and

1√
6
(0, 1,−1) on the outer three vertices. We can check that the total energy is 1 and that the cross-energy

E(h1, h2) = 0, so we’re choosing some kind of orthonormal basis. (What we said turns out to still be true if we

just pick only one harmonic function as well, but we’ll stick to our current example.)

Letting ν be a Revuz measure for the PCAF A, this functional will have full support and thus the time-change is also

a diffusion process. We’ve proven previously that with respect to the Euclidean metric, the original Brownian motion
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(E ,F) on L2(K,m) satisfies heat kernel bounds HKE
(
log 5
log 2

)
. But the time-changed process (E ,F) on L2(K, ν) will

actually satisfy Gaussian heat kernel bounds HKE(2) with respect to the metric

dint(x, y) = sup{f (x)f (y) : f ∈ F ∩ C(K)}.

which generates the same topology as the Euclidean topology. (And this is not just about the choice of metric –

because of singularities, we can’t change the metric for the original Brownian motion on the Sierpinski gasket to get

Gaussian heat kernel bounds.) So things can be pretty complicated under time-change!

So far in all of our examples, we started with processes which were already diffusions. But we can also end up with

processes that go into a smaller space:

Example 159 (Boundary trace of reflected diffusions)

Suppose we have a reflected diffusion Yt on a nice domain D. Let A be a PCAF whose support is the boundary

∂D, so the timechange will live on the boundary only. We can think of this as having a reflected Brownian motion

which jumps around from point to point, and we want to calculate the Dirichlet form of the resulting jump process.

To do this, we start with the simple situation of a smooth bounded domain and reflected Brownian motion,

and we’ll talk about extensions afterward.

Let U ⊂ Rn be such a domain; the Green’s function can be defined via the equation∆ygU(x, y) = −δx , y ∈ U

gU(x, y) = 0, x ∈ ∂u.

We’ll come back to the probabilistic interpretation of this when we work on more general domains later, but for now

the idea is that we start with a boundary function, extend it harmonically, and compute the Dirichlet energy on the

interior to get the trace Dirichlet form on the boundary. Given some compactly supported smooth f : ∂U → R, we

need to compute the harmonic extension H∂U(f ) : U → R (meaning that we’re harmonic in U with boundary condition

f on ∂U). By Green’s formula, when we have smooth domains we can use the Green’s identity (basically integration

by parts) ˆ
U

(v2∆v1 − u1∆u2) =
ˆ
∂U

(
v1(ξ)

∂v2
∂n⃗ξ
(ξ)− v2(ξ)

∂v1
∂n⃗ξ

)
dσ,

where dσ is surface measure on ∂U and n⃗ is the inward-pointing normal derivative. We apply this to

v1 = H∂U(f ), v2 = gU(x, ·),

to get

H∂U(f )(x) =

ˆ
∂U

f
∂gU(x, ξ)

∂n⃗ξ
dσ,

and thus we get an expression for the harmonic measure of the domain U: for the Brownian motion started at x , we

have the classical expression

ωUx =
∂gU(x, ξ)

∂n⃗ξ
dσ.

We now want to get a formula for the Dirichlet energy expressed in terms of the boundary values (since that’s what

we started with). Again we use integration by parts via the identity
ˆ
U

∇v1 · ∇v2dx = −
ˆ
U

v1∆v2 −
ˆ
∂U

v1
∂v2
∂n⃗ξ

σ(dξ).
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Taking v1, v2 to both be the harmonic extension H∂U(f ), we thus have
ˆ
U

|∇H∂U(f )|2dx = −
ˆ
∂U

f (ξ)
∂H∂U(f )

∂n⃗ξ
σ(dξ),

and now we can interchange the integral and derivative and plug in our expression of H∂U(f ) from above to get a

second derivative ˆ
U

|∇H∂U(f )|2dx = −
ˆ
∂U

ˆ
∂U

f (ξ)f (η)
∂2gU(η, ξ)

∂n⃗ξ∂n⃗η
σ(dη)σ(dξ).

We can rewrite this in a form more familiar to us from the Beurling-Deny decomposition as

1

2

ˆ
∂U

ˆ
∂U

(f (ξ)− f (η))2
∂2gU(η, ξ)

∂n⃗ξ∂n⃗η
σ(dη)σ(dξ).

(Indeed, the point is that the cross-terms give us what we want, and the non-cross-terms are the derivative of a

constant
´
∂U

∂g(x,ξ)
∂n⃗ξ

σ(dξ) = 1, hence zero.) So what this tells us is that both the diffusion and the killing part are

zero in that Beurling-Deny decomposition, and so we do have a pure jump process.

This calculation actually tells us something nice – the jump measure is just the second derivative ∂2gU(η,ξ)
∂n⃗ξ∂n⃗η

σ(dη)σ(dξ),

which we will express in terms of the harmonic measure – fixing some x0 ∈ U, we can write it as

∂2gU(η, ξ)

∂n⃗ξ∂n⃗η

(
∂gU(x0, ξ)

∂n⃗ξ

)−1(
∂gU(x0, η)

∂n⃗η

)−1
ωUx0(dξ)ω

U
x0(dη).

Definition 160 (Naim kernel, ’57)

Define

ΘUx0(x, y) =
gU(x, y)

gU(x0, x)gU(x0, y)
for x ̸= y ∈ U.

Naim showed that ΘUx0 admits a continuous extension to (U \ {x0}) × (U × {x0}) \ diag, where U is something

called the Martin compactification and we have continuity in the “fine topology,” which is finer than the usual

Euclidean topology.

The point is that the blue part in the expression above looks a lot like the Naim kernel, and indeed Doob wrote

down the following formula:

Proposition 161 (Doob, ’62)

We have for Brownian motion that the jump process satisfies

J(dξ, dη) = ΘUx0(ξ, η)ω
U
x0(dξ)ω

U
x0(dη).

The nice thing here is that every term on the right-hand side has a probabilistic interpretation (in contrast to

something like the surface measure, which doesn’t necessarily have such an interpretation). We’d like to extend this

to arbitrary diffusions and metric spaces, but first we’ll give one more example of a boundary trace process which has

been quite influential:

Definition 162

The fractional Laplacian operator with parameter α ∈ (0, 2) is the operator −(−∆)α/2.

We can make sense of this using the spectral theorem, since −∆ is a nonnegative self-adjoint operator. And we

restrict to this particular range of values of α because larger α makes the corresponding quadratic form no longer a
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Dirichlet form (it fails the Markov property). There are also some other definitions: we can think of it in the Fourier

transform sense via
̂(−∆)α/2f = |ξ|α f̂ (ξ),

or we can also define it via the singular integral

−(−∆)α/2f (x) = lim
r↓0
cn,α

ˆ
Rn\B(x,r)

f (y)− f (x)
|x − y |n+α dy.

These definitions are all equivalent, though it does take some work to show that. And the point is that −(−∆)α/2 is

the generator of a symmetric α-stable Lévy process, with jump kernel given by

J(x, y) = cn,α
1

||x − y ||n+α .

There’s some work talking about regularity of solutions even for these non-local operators:

Example 163

Molchanov and Ostrowski showed in 1969 that α-stable processes can be viewed as the boundary trace process

of the following process: let (Bt) be a Brownian motion on Rn, and let Zt be an independent (2−α)-dimensional

Bessel process on [0,∞), and define (Bt , Zt). We then get the Dirichlet form

E(u, u) =
ˆ
Rn

ˆ ∞
0

|∇u(x, y)|2|y |1−αdydx

on L2(Hn+1, m), and the boundary trace is an α-stable process.

This was also independently rediscovered by Caffarelli and Silvestre in 2007, who found a harmonic extension on

the upper half-space and computed a Dirichlet energy in terms of the boundary conditions. The reason they were

interested in this procedure is that the generator is (via integration-by-parts) ∆x + ∂yy + 1−αy ∂y (we can think of this

as a weighted Laplacian). They were then able to obtain things like Harnack inequalities for the fractional Laplace

operator using the corresponding properties for the local operator, and this led to lots of other results in regularity

theory.

We’ll show part of those calculations now. Let f : Rn → R be some boundary condition (viewed as the boundary

of the upper half-space in Rn+1); our goal is to solve the equation

∆xu +
1− α
y

uy + uyy = 0.

When α = 1 this is very easy to solve, but when α ̸= 1 it’s best to convert this using the Fourier transform in the

x-direction only: we thus look at

û(ξ, y) =

ˆ
u(x, y)e−ix ·ξdx,

and we end up with

−|ξ|2û(ξ, y) +
1− α
y

ûy (ξ, y) + ûyy (ξ, y) = 0,

with boundary condition û(ξ, 0) = f̂ (ξ), which is an ODE that was can solve. For fixed ξ this is linear in y , and it

suffices for us to solve

−φ+
1− α
y

φy + φyy = 0 on (0,∞), where φ()) = 1.

This is called the Bessel differential equation, and it has a unique solution with limy→∞ φ(y) = 0 (we want this
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because the function should be in L2). The solution to the original problem is then

û(ξ, y) = f̂ (ξ)φ(|ξ|y),

and we’re interested in computing the energy now. Absorbing all multiplicative constants involving gamma functions,

we find by Parseval in the x-coordinate and then a change of variables that
ˆ
Rn

ˆ ∞
0

|∇u(x, y)|2|y |1−αdydx = c
ˆ ∞
0

ˆ
Rn

(
|ξ|2|û(ξ, y)|2 + |ûy (ξ, y)|2

)
y1−αdξdy

= c

ˆ ∞
0

ˆ
Rn
|ξ|2|f̂ (ξ)|2

(
φ(|ξ|y)2 + (φ′(|ξ|y))2

)
y1−αdξdy

= c ′
ˆ ∞
0

ˆ
Rn
|ξ|α|f̂ (ξ)|2(φ(z)2 + φ′(z)2)|z |1−αdξdz.

We can now do the integral in the z-coordinate, which yields

c ′′
ˆ
Rn
|ξ|α|f̂ (ξ)|2dξ,

which again by Parseval can be viewed as ⟨(−∆)α/2f , f ⟩L2 . So that proves the result and explains the appearance of

the α-stable process.

Example 164

What we want to explain now is that everything we’re seeing is a special case of the Doob-Naim formula (even

when the diffusion is not a Brownian motion). And we can think about Brownian motion on something like the

Sierpinski carpet – even in a complicated setting like that, Doob-Naim does give us a jump measure. For this, we

need to introduce some assumptions.

Return now to the setting of an MMD space (X, d,m, E ,F), and assume this space satisfies sub-Gaussian heat

kernel bounds HKEf (ψ). Further assume (X, d) is a geodesic space (just to simplify things, though it’s not needed),

and that U is a uniform domain satisfying the capacity density condition

Cap(B(ξ, r) \ U,B(ξ, 2r)c) ≲ Cap(B(ξ, r), B(ξ, 2r)c)

for all ξ ∈ ∂U and all r ≲ diam(U). (For example, removing a line from three-dimensional Brownian motion will not

do anything and thus we won’t get an interesting trace process, so we want to exclude that case.) Such a condition

ensures good behavior of the harmonic measure, and the fact that this condition can be used to get good estimates

was discovered by Aikawa and Hirata in 2007: as long as 0 < r < d(x0,ξ)
A , we have that

ωUx0(B(ξ, r), ∂U) ≍ gU(x0, ξr )Cap(B(ξ, r), B(ξ, 2r)c),

so we almost have the same formula as for the Green’s function. Here ξr ∈ U is some point such that d(ξ, ξr ) ≍ r ≍
dist(ξr , Uc) (it doesn’t matter exactly which point we choose because of the Harnack inequalities). This result also

applies to a more general setting than just Brownian motion. And that explains why we deal with this class of domains

(which in particular includes all Lipschitz domains and also some domains with fractal boundaries).

In particular, these estimates on the harmonic measure imply that the support of ωUx0 is ∂U, and ωUx0 defines a PCAF

A whose support is in ∂U (technical detail here that it may be smaller than the support of the corresponding Veruz

measure). We want to introduce the Naim kernel in this context, but we first need to state the Green’s function and

its properties.
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Definition 165

Consider a metric measure space with sub-Gaussian heat kernel bounds, and suppose we have a transient domain
D (meaning that the process killed on exit is transient). Then there is some Green’s function gD : D×D → [0,∞]
such that the following properties are true:

• (Symmetry) We have gD(x, y) = gD(y , x) for all x, y ∈ D.

• (Continuity, which is natural from the Harnack inequalities) gD(·, ·) is [0,∞)-valued and continous on D ×
D \ diag.

• (Harmonicity) We have gD(x, ·) ∈ F0loc(D,D \ {x}) and that gD is E-harmonic except at x – think of this

as saying that gD(x, ·) is zero on the boundary.

• (Occupation density) Let Yt be the corresponding diffusion process. Then for any nonnegative measurable

function, we have

Ex
[ˆ τD

0

f (Ys)ds

]
=

ˆ
D

gD(x, y)f (y)m(dy)

for all x ∈ D \ N (outside some properly exceptional set).

We will use this last property to define the Green operator GDf (x); if f is a nonnegative function which satisfies´
f GD(f )dm <∞, then GD(f ) ∈ F0(D)e lives in some space on which we have the energy

E(GD(f ), GD(f )) =
ˆ
f GD(f )dm <∞.

We then have E(GD(f ), v) =
´
f vdm for all v ∈ F0(D)e , which justifies the Green operator and Laplacian being

inverses. We now would like to write the harmonic measure in terms of the Green’s function so that we can generalize

the equation

ωUx0 =
∂g(x, ξ)

∂n⃗ξ
dσ(ξ).

One way to understand the connection is that the Laplacian of the Green’s function satisfies ∆yg(x, ·) = −δx inside

the domain. But if we try to compute the same quantity on the boundary, it turns out we get the harmonic measure,

and thus we can instead specify

∆yg(x, ·) = −δx + ωUx .

This then has hope of being generalized, and this is the result we will prove next time:

Lemma 166

For all x ∈ U and all functions u ∈ F(U) ∩ L∞(U), such that x is not in the support of u, the reflected Dirichlet

form satisfies

EU(gU(x, ·), u) = −
ˆ
∂U

ũdωUx ,

where ũ is again the quasicontinuous version of u so that we have things well-defined up to sets of harmonic

measure zero.

We’ll make use of this in our generalization of Doob’s formula soon!
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15 June 26, 2025

We’ll continue discussing today a generalization of the Doob-Naim formula (this is Professor Murugan’s joint work

with Kajino). We saw last time that Doob-Naim gives an expression for the jump kernel of the boundary trace process

by starting with a boundary function, extending it harmonically inside, and then computing the Dirichlet formula in

terms of the boundary values via integration by parts. But in general integration by parts is not useful because the

harmonic measure may be singular with respect to the surface measure, and we should end up with something absolutely

continuous to the product of the harmonic measure with itself.

So we need to first show how to define the Naim kernel in our setting – last time we gave a definition which uses

things like the fine topology, but we’d like to avoid that. We previously defined the Green’s function and Green operator

on a transient domain D – recall that the Green operator can be viewed as the inverse of the generator, meaning that

GDf is in the extended Dirichlet space corresponding to the killed diffusion F0(D)e for any f : D → [0,∞) where´
f GD(f )dm is finite.

Example 167

The setup we have is the following: (X, d,m, E ,F) satisfies full sub-Gaussian heat kernel estimates HKEf (ψ), d

is geodesic (though this isn’t strictly necessary), and U is a uniform domain satisfying the bound

Cap(B(ξ, r) \ U,B(ξ, 2r)c) ≲ Cap(B(ξ, r), B(ξ, 2r)c)

for all ξ ∈ ∂U and all r ≲ diam(U).

Lemma 168

For all x ∈ U and all u ∈ F(U) ∩ L|inf ty(U) with x ̸∈ suppm(u), we have

EU(gU(x, ·), u) = −
ˆ
∂U

ũdωUx .

(This should be thought of as an analog of how the harmonic measure ωUx is given by ∂gU(x,ξ)
∂n⃗ξ

dσ; more generally

we should think of ∆gU(x, ·) = −δx + ωUx as having a Dirac mass inside and a harmonic measure on the boundary.)

Proof. The idea is that the complement has positive capacity, so the process killed upon exit will be transient. So using

the semigroup definition of transience, we know that for any positive function f1 ∈ L1(U,m) such that GU(f1) <∞ m-

almost-everywhere, we can replace it with a better-behaved function f = f1
G(f1)∨1 which satisfies that

´
f GU(f )dm <∞.

Replacing f with the function f 1B(x,r) which is supported on a small ball, we see that suppm(f ) and suppm(u) do not

intersect. We can now further normalize f so that
´
f dm = 1.

The point is that after all of this, GU(f ) ∈ F0(U)e by the property of the Green’s function. Now we claim that

EU(GU(f ), u) = EU(GU(f ), u)− EU(GU(f ), H∂U ũ)

(that is, the last term is zero), where H∂U(ũ) is the harmonic extension – indeed, GU(f ) has zero boundary conditions

on U. But now we can apply the characterizing formula for the Green’s function since u −H∂U(ũ) has zero boundary

conditions: we find that

EU(GU(f ), u −H∂U(ũ)) =
ˆ
f udm −

ˆ
f H∂U(ũ)dm.
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Now the first term is always zero because we have disjoint supports f , u, and we can take r ↓ 0 (approaching a Dirac

mass at x) so that the second term approaches EU(gU(x, ·), h) = −
´
ũdωUx , as desired.

The next lemma concerns “classical objects” of equilibrium measures:

Lemma 169

Suppose A,B ⊂ X are disjoint closed sets such that A and Bc are compact. (The picture to have in mind is

that A is a small ball and B is the complement of a larger ball containing it.) Let eA,B ∈ Fe ∩ L∞ such that the

quasicontinuous version satisfies ẽA,B = 1 q-a.e. on A and ẽA,B = 0 q-a.e. on B and is harmonic on (A ∪ B)c .
Then there are finite Borel measures λ1A,B and λ0A,B supported on ∂A and ∂B, respectively, with the same total

mass

λ1A,B(X) = λ
0
A,B(X) = E(eA,B, eA,B),

and such that

E(eA,B, u) =
ˆ
ũdλ1A,B −

ˆ
ũdλ0A,B.

Furthermore, λ1A,B and λ0A,B do not charge polar sets (so everything here is indeed well-defined) – that is, the

measure of any polar set is zero, so these measures can be Revuz measures for PCAFs.

In the classical case, we would have ∆eA,B = −λ1A,B + λ0A,B, and we’re just doing a weak formulation of that

here because. (The flipped signs are because the Dirichlet form involves the negative Laplacian.) We won’t need this

probabilistic interpretation, but ẽA,B(x) can be thought of as the probability of hitting A before B when started at x .

Proof sketch. The idea is that eA,B is an energy minimizer for the class of functions

LA,B =
{
f ∈ F0(B)e : f̃ ≥ 1 q-a.e. on A

}
.

Then (F0(Bc)e , E) is a Hilbert space and LA,B is a closed convex subset of it, so there is a unique energy minimizer

on LA,B and we can compute it with Euler-Lagrange type arguments. For any nonnegative v ∈ Cc(Bc) ∩ F , we see

that eA,B + tv belongs in LA,B as well (since we’re only increasing the function on A), and so the minimizer should

satisfy

E(eA,B + tv , eA,B + tv) ≥ E(eA,B, eA,B).

Expanding out both sides and taking t → 0 shows that E(eA,B, v) ≥ 0, so v 7→ E(eA,B, v) is a nonnegative linear

functional on Cc(Bc). Riesz representation then tells us that this must be of the form
´
vdλ1A,B, which gives us the

positive part. And for the negative part we do something similar but perturb with negative functions on the other

boundary. The reason they should be supported on the boundary is strong locality – if we perturb by some function in

the interior of A, then we should have the exact same energy. And they should have the same mass because we can

plug in a function u which is constant within the regions we care about.

We next define the Naim kernel. This actually has a predecessor called the Martin kernel, which we will introduce

first:
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Definition 170

Define the Martin kernel

KUx0(x, ξ) =


gU(x,ξ)
gU(x0,ξ)

x, ξ ∈ U, x ̸= ξ,

limy→ξ,y∈U
gU(x,y)
gU(x0,y)

x ∈ U, ξ ∈ ∂U.

(The limit in the second case is defined due to the boundary Harnack principle, along with a version of Moser’s

oscillation lemma.)

(This is actually slightly different from Martin’s original definition from 1941 – he defined an ‘ideal boundary,”

which is an abstract compactification which allows us to account for all possible limits of ratios. But in our case the

Martin boundary will be the same as the topological boundary because of boundary Harnack.)

We saw the definition of the Naim kernel in Definition 160 last time, but now we’ll do it not in the fine topology:

Definition 171 (Naim kernel, revisited)

For x, y ∈ (U \ {x0})× (U \ {x0}) \ diag, define

ΘUx0(x, y) =
gU(x, y)

gU(x0, x)gU(x0, y)

and extend it continuously using the boundary Harnack principle. In fact, the interesting case for us will be where

x, y are both on the boundary.

This is a more symmetric definition than the Martin kernel, and we need to explain now why we can do this: the

boundary Harnack principle should only look at two harmonic functions, not three. But for fixed x we have a ratio

of harmonic functions in y and vice versa, so we can use boundary Harnack in the two different coordinates and run

a two-variable version of Moser’s oscillation lemma, and we can still show that we get a jointly continuous extension

away from the diagonal.

Another way to define the Martin kernel is to have it be the density of the harmonic measure at x with respect

to the harmonic measure started at x0 – in some papers that is what is used. But when we define things in terms

of densities, we lose the ability to talk about finer properties like continuity. Nevertheless, we can see that these two

notions are equivalent in the following way:

Proposition 172

For all x0, x ∈ U, we have (With our definition)

KUx0(x, ·) =
dωUx
dωUx0

.

Indeed, we know that both of the measures on the right-hand side are absolutely continuous with respect to the

surface measure in the smooth case, and so we should formally think of this as ∂g(x,ξ)/∂n⃗ξ)
∂g(x0,ξ)/∂n⃗ξ)

.

Proof. Consider the sets A = ∂U∩B(ξ, r) and Bc = U∩B(ξ, 2r), where we choose r small enough so that 2r < d(ξ, x)

(so we have a small set on the boundary and then a large set away from it inside the domain containing x). We want

to look at some kind of capacity bound and integrate that against the harmonic measure. We have, because the
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harmonic measure has full support, that

0 <

ˆ
ẽA,Bdω

U
x = −EU(gU(x, ·), eA,B)

=

ˆ
S(ξ,2r)

gU(x, y)dλ
0
A,B(y)

where we’ve applied our equilibrium measure lemma and used that when the equilibrium potential is 1, the Green’s

function is zero so the λ1A,B term goes away. We also have a similar type of expression for x0 as well:

0 <

ˆ
ẽA,Bdω

U
x0 =

ˆ
S(ξ,2r)

gU(x0, y)dλ
0
A,B(y).

Taking r ↓ 0, we see that the ratio
´
ẽA,Bdω

U
x´

ẽA,BdωUx0
approaches the Martin kernel KUx0(x, ξ) (since the Martn kernel is

continuous). More carefully, we can express gU(x, y) as KUx0(x, y)gU(x0, y) and then take limits of that equation; then

we need a version of the Lebesgue differentiation theorem to conclude that in fact this implies dωUx
dωUx0

= KUx0(x, ξ) as

well.

We’ll use a very similar argument for getting the Doob-Naim formula, though we’ll need two variables instead. The

idea is to get the jump kernel of the trace process via the Beurling-Deny decomposition, and whenever we want such

a kernel we want to plug in functions with disjoint supports. Indeed, we have by definition of the trace Dirichlet form

that

Ě(u, v) = EU(H∂U(u), H∂U(v)),

and if u, v have disjoint support then the strongly local and killing part of EU will vanish and we just get the jump part.

Specifically we will have two points η, ξ on the boundary and let u = H∂UeA,B around ξ (as in the proof above) and

v similar around η. We will end up with an expression of the form −
´
uvdU, which is just like how we plugged in

u = 1A and v = 1B for disjoint A,B back when we introduced Beurling-Deny.

Let’s do those computations in detail now. For distinct points ξ, η ∈ ∂U and any r < d(ξ,η)
4 , we will pick

A = B(ξ, r) ∩ ∂U, B = B(ξ, 2r)c ∩ U,

and choose

v = eA,B ∈ F0(Bc)

and u to be any function in F(U) ∩ Cc(U) satisfying 1B(η,r) ≤ u ≤ 1B(η,2r). We will compute the energy of the trace

process in two ways, using the harmonic measure expression and the Beurling-Deny decomposition. On the one hand,

we have

EU(H∂U(u), H∂U(ẽA,B)) = EU(H∂U(u), ẽA,B),

since the difference between ẽA,B and its harmonic extension is zero on the boundary (so we’re using the same

orthogonality property as before). But now we can use the properties of the equilibrium measure to rewrite this

expression as ˆ
A

H∂U(u)dλ
1
A,B −

ˆ
S(ξ,2r)

H∂U(u)dλ
0
A,B.

The first term is actually just zero – u has zero value on A because the support of λ1A,B is some region close to v on

the boundary, which is far away. So we’re just left with

−
ˆ
S(ξ,2r)

H∂U(u)dλ
0
A,B = −

ˆ
S(ξ,2r)

ˆ
∂U

u(z)dωUy (z)dλ
0
A,B(y).
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Now we want to normalize everything in terms of one base point, which we do using the Martin kernel: we end up with

−
ˆ
S(ξ,2r)

ˆ
∂U

u(z)Kx0(y , z)dω
U
x0(z)dλ

0
A,B(y).

But this should also be equal to −
´
u(x)ẽA,B(y)J(dx, dy) by the Beurling-Deny decomposition of the trace Dirichlet

form (only the cross-terms matter because we have disjoint support). Our goal is to show, much like Doob did for

Brownian motion in Proposition 161, that

J(dx, dy) = ΘUx (ξ, η)dω
U
x0(ξ)dω

U
x0(η).

We have a good expression for the jump kernel, so what we should try to do now is get

−EU(H∂U(u), H∂U(ẽA,B)) =
ˆ
u(x)ẽA,B(y)dJ(x, y)

=⇒
−EU(H∂U(u), H∂U(ẽA,B))´
u(x)dωUx0(x)

´
ẽA,B(y)dωUx0(y)

=

´
u(x)ẽA,B(y)dJ(x, y)´

u(x)dωUx0(x)
´
ẽA,B(y)dωUx0(y)

,

so that we can take r → 0 on the right-hand side and use Lebesgue differentiation to conclude much like before.

Indeed, the left-hand side can be rewritten (numerator by our calculation above) as
´
S(ξ,2r)

´
∂U u(z)Kx0(y , z)dω

U
x0(z)dλ

0
A,B(y)´

udωUx0
´
gU(x0), y)dλ

0
A,B(y)

where we use the same formula as before to replace the second term in the denominator. The blue and red parts

now “cancel out” (by Lebesgue differentiation details), and the point now is that the ratio of Martin kernel to Green’s

function left
Kx0(y , z)

gU(x0, ·)
=

gU(y , z)

gU(x0, z)gU(x0, y)
= Θ(y , z)

is exactly the Naim kernel! So as the radius approaches zero, we will have y → η and z → ξ, and continuity in all

arguments means we’re looking at convergence to the correct boundary points. This completes the idea of the proof.

(We also have to compute the other two parts of the decomposition, which turn out to be zero – we’ll skip that part

of the computation.)

Remark 173. Again, the point to remember is that harmonic measure is the right thing to use instead of surface

measure even on smooth domains, since diffusions on the upper half-space can still be singular with respect to the

surface measure.

Example 174

We now want to understand how to choose the time parameterization of the boundary trace process (or equiva-

lently, the Revuz measure) – the most natural probabilistic choice to use is the harmonic measure, but that still

has a choice of base point that needs to be made.

For bounded domains it doesn’t really matter – any x0 ∈ U with dist(x, Uc) ≍ diam(U) will have comparable

harmonic measure to any other one by the elliptic Harnack inequality. But for unbounded domains, this is no longer

true – far-away points can have very different harmonic measures, and so we want to pick a “harmonic measure from

infinity.” We’ll explain that procedure now.

The hint comes from the formula

EU(gU(x0, ·), u) = −
ˆ
ũdωUx0 if x0 ̸∈ suppm(u).
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We know that the ratio gU(xn,·)
gu(x0,·) should converge as xn → ∞ to some specific function hUx0(·); recall that this is how

we constructed the function for the Doob h-transform, which we found is unique by boundary Harnack. So what we

should do is consider the sequence of rescaled harmonic measures

ωUxn
g(x0, xN)

,

which should converge to some limit which we call the elliptic measure at infinity νUx0(·). We actually get something

even better than the bounded case, in that the thing we end up with is just defined up to a constant regardless of x0.

That is, we get the characterization

EU(hUx , u) = −
ˆ
ũdνUx0 ,

and we don’t even have to worry about support – this formula is true for all u ∈ F(U) ∩ L∞ in the reflected form,

since the singularity of the Green’s function goes to infinity now. (That is, we have ∆hUx0 = ν
U
x with no Dirac mass).

We also get the doubling property (due to Aikawa-Hirata).

Fact 175

Once we have a good understanding of all three parts of the Beurling-Deny decomposition, characterization of

stable-like heat kernels yields good heat kernel bounds as well. Chen, Kumagai, and Wang obtained (in 2018)

characterizations of stable-like heat kernel bounds

pt(x, y) ≍
1

tn/α
∧

t

|x − y |n+α ,

corresponding to a space-time scaling where by time t we travel distance approximately t1/α. One can compute

the spacetime scaling for the boundary trace process, but we’ll skip those details now.

Another approach due to Cao and Chen estimates these kinds of heat kernels for boundary trace processes, but

they do not exactly calculate the jump kernel and just get estimates – that turns out to be enough for the estimates of

Chen, Kumagai, and Wang. The Doob-Naim formula is more direct and implies the necessary estimates while getting

the jump kernel exactly.

Example 176

One more small caveat here is that we can also apply these results if we have the weak capacity density condition,

where instead of having Cap(B(ξ, r) \ U,B(ξ, 2r)c) ≲ Cap(B(ξ, r), B(ξ, 2r)c) for all 0 < r ≤ diam(U) and all

ξ ∈ ∂U, it’s also okay to just have 0 < r < diam(∂U) (for example if the domain is unbounded but the boundary

is bounded). The Doob-Naim formula still works, but the killing measure now might be nonzero if the reflected

diffusion is transient.

It’s not so difficult to understand what’s happening probabilistically here – the complement of a bounded set in

Euclidean space is a uniform domain satisfying this condition, so reflected Brownian motion in the complement of a

ball will hit the boundary of the ball some number of times and then exit to infinity. The PCAF will then only increase

when we hit the boundary and then after a while approach some limit A∞ which is finite. Thus the inverse function

τA∞ =∞, so the time-change process will go to infinity in finite time, which is the same as killing.

To actually compute this, recall that we interpreted the killing measure by letting one of our functions be the

constant function 1. We have the nice probabilistic interpretation

1−H∂U(1) = Px(T∂U =∞)

84



(that is, the probability that our process started at x doesn’t hit the boundary at all). But the left-hand side is

harmonic on U and has zero boundary conditions on ∂U, and there’s a unique such function where this works: it’s

exactly Px0(T∂U =∞)hUx0(·), where h is the function we used for the Doob h-transform. So plugging in, we find after

some calculation that

E(H∂U(u), H∂U(1)) =
ˆ
∂U

udκ, κ = Px0(T∂U =∞)νUx0 ,

giving us an exact equality which in particular implies various heat kernel estimates.

16 June 27, 2025
We discussed the boundary trace process last time as an instance of timechange – we found that we were able to

calculate the Dirichlet form in an explicit way using the Beurling-Deny decomposition, which let us analyze the jump

kernel. We’ll now go back to time-changes that are diffusion processes, seeing how we can relate elliptic and parabolic
Harnack inequalities.

The idea is that elliptic Harnack inequalities are preserved under (1) timechange by admissible measures (we’ll

explain what this means later) and (2) quasisymmetric change of metric. The symmetric measure doesn’t actually

play a role in the sense that timechange still yields the same family of harmonic functions (since the extended Dirichlet

space doesn’t vary).

Definition 177

For an MMD space (X, d,m, E ,F), an admissible measure is a measure µ such that µ is a Revuz measure for

some PCAF A which has full support.

(Examples that we’ve already defined include the Kusuoka measure for the Sierpinski gasket or the Liouville measure

for the Brownian motion.) The associated time-changed Dirichlet form (Eµ,Fµ) is then given by

Fµ = Fe ∩ L2(µ), Eµ(f , f ) = E(f , f ),

In particular, Fe = (Fµ)e . In some sense the process doesn’t change very much, so we won’t have a situation

where a diffusion process becomes a jump process. Furthermore because the extended Dirichlet space doesn’t change,

(X, d,m, E ,F) and (X, d, µ, Eµ,Fµ) have the same family of harmonic functions, and thus the elliptic Harnack in-

equality must be invariant.

The second family of transformations comes from trying to extend the notion of conformal maps to arbitrary metric

spaces:

Definition 178

A homeomorphism f : (X1, d1)→ (X2, d2) between two metric spaces is a quasisymmetry (QS) if there exists a

homeomorphism η : [0,∞)→ [0,∞) such that distances are controlled in the fashion

d2(f (x), f (y))

d2(f (x), f (z))
≤ η

(
d1(x, y)

d1(x, z)

)
for any three points x, y , z ∈ X with x ̸= z .

We can think of η as typically being something like η(t) = tα1 ∧ tα2 . This tells us that, for example, if d1(x, y) =

d1(x, z) then we can’t have d2(f (x), f (y)) and d2(f (x), f (z)) very far apart; thus circles must be taken to at most

ellipses of some specified eccentricity η(1).
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Definition 179

Two metrics d, ρ on a space X are quasisymmetric if the identity map id : (X, d)→ (X, ρ) are quasisymmetric.

(In particular, both metrics must have the same topology.)

The notion of quasisymmetry is an equivalence relation (symmetry holds because we can always invert the home-

omorphism). And there’s a relation between the global quasisymmetry relation and something more infinitesimal:

Definition 180

A homeomorphism f : (X1, d1) → (X2, d2) is k-quasiconformal (k-QC) if we have the infinitesimal eccentricity

condition

lim sup
r→0

sup {d2(f (x), f (y)) : d1(x, y) ≤ r}
inf {d2(f (x), f (y)) : d1(x, y) ≥ r}

≤ k

for all x ∈ X1. (We can think of the numerator as the major axis and the denominator as the minor axis.)

Clearly every quasisymmetric map is quasiconformal by taking k = η(1), and we also have a local-to-global property

which explains why this is the right generalization:

Theorem 181 (Gehring, ’60s)

Fix some n ≥ 2. If f : Rn → Rn is a k-quasiconformal map, then it is η-quasisymmetric for some η : [0,∞) →
[0,∞) depending only on k .

We do in fact need n ≥ 2 here – n = 1 is false, and we can check that f (x) = x + ex is a quasiconformal map

which is not quasisymmetric. This result was generalized to a large class of spaces in the 1990s (for example we know

that it also holds on the Heisenberg group).

This next fact is a simple consequence of the definition:

Lemma 182

If id : (X, d1)→ (X, d2) is an η-quasisymmetric map, then for any A > 1, any center x ∈ X, and any radius r > 0,

there is some other radius s > 0 such that (letting B1, B2 be the balls under d1, d2

B2(x, s) ⊂ B1(x, r) ⊂ B1(x, Ar) ⊂ B2(x, η(A)s).

The picture is that if we have a ball of radius r and of Ar in the first metric, then we can have a ball of radius s

inside the small ball and a ball of radius η(A)s outside the big ball in the second metric. And we can swap the roles

of the two metrics to find that for all A, x, r , there is some s = s(r) such that

B1(x, r) ⊂ B2(x, s) ⊂ B2(x, As) ⊂ B1(x, A1r),

where A1 = 1
η−1(A−1) . The point is that Harnack inequalities only care about these kinds of annuli, and so because the

shapes are preserved up to constants we get the following:

Lemma 183 (Kigami)

Suppose (X, d1, m, E ,F) and (X, d2, m, E ,F) are such that d1, d2 are quasisymmetric. Then if (X, d1, m, E ,F)
satisfies the elliptic Harnack inequality, so does (X, d2, m, E ,F).
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Proof. This follows immediately from the estimates discussed above. Suppose that for any nonnegative harmonic

function h, we know that

sup
B1(x,r)

h ≤ C inf
B1(x,Ãr)

h.

By our inclusions, we thus have

sup
B2(x,s)

h ≤ sup
B1(x,r)

h ≤ C inf
B1(x,Ãr)

h ≤ C inf
B2(x,η(Ã)s)

h.

Example 184

We can in fact build some fractal surfaces with this idea, which we call snowballs (they are generalizations of

the Koch snowflake). We start with the surface of a three-dimensional cube, divide each face into nine parts,

and remove the middle part and add a bump also of height 13 . (This turns a single square into a surface with 13

squares of side length 13 .) We then iterate this repeatedly: at level n we will have a polygonal surface with 6×13n

faces, which are all squares of side length 3−n.

The resulting surface Sn, called the level-n snowball, is homeomorphic to S2 and comes with the geodesic metric

dn (the idea is that we have lots of “small bumps” and thus the shortest path can have many parts). It turns out that

we have convergence in the Gromov-Hausdorff sense

(Sn, dn)
GH→ (S, dS)

for a surface which we call the snowball; it has Hausdorff dimension log 13
log 3 .

Every polygonal surface can also be viewed as a Riemann surface (a manifold, but the change of coordinates must

be holomorphic – we just need to worry about the “corner bump vertices” at which there are three or five right angles.

At those points we need to make things flat and thus we need a map z 7→ z4/5 or z 7→ z4/3 instead. But the point

is that by the uniformization theorem, we get something conformally equivalent to S2 and thus unique up to Möbius

transformations, and then we need to do an appropriate normalization (for example sending the three corners of a

square to 0, 1,∞ for consistency of the scaling limit) to get something well-defined.

Theorem 185 (Meyer ’01)

Let dS2 denote the round metric on S2. There is a sequence of conformal maps fn : (Sn, dn)→ (S2, dS2), as well

as a map f : (S, dS) → (S2, dS2), such that we have the following. Letting ρn be the metric on S2 such that

fn : (Sn, dn) → (S2, ρn) is now an isometry. Then ρn converges pointwise on S2 × S2 to some function ρ, which

is itself a metric on S2, and ρ is quasisymmetric to the round metric dS2 .

In particular, this means that the pushforward of Brownian motion on the snowball should converge to ordinary

Brownian motion but just appropriately time-changed.

Theorem 186

If we let µn be the uniform surface area measure on (Sn, dn), then µn converges to the normalized Hausdorff
measure on (S, dS). Furthermore, if Yn is the canonical diffusion on Sn, then (with fn defined in the theorem

above) fn(Yn) is the timechange of Brownian motion on S2 with the Revuz measure (fn)∗µn. Then the limiting

object f∗(µ) is an admissible measure for Brownian motion on S2.
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We’d like to understand everything with respect to the original measure, such as the heat kernel. Since elliptic

Harnack inequalities are preserved under both of these operations that we’ve performed, we see that we still have the

elliptic Harnack inequality for the diffusion on (S, dS , µ) (via pullback of the timechange).

Notice that we have capacity across annuli of constant order in two dimensions:

Cap(B(x, r), B(x, Ar)c) ≍ 1 for r ≲
diam
c

.

Thus we actually get two-sided capacity bounds of order equal to the volume growth: ψ(r) = rdf for df =
log 13
log 3 .

Volume doubling is also preserved under these operations, so putting everything together we actually get sub-Gaussian

heat kernel bounds for the snowball with dW = df .

It turns out that in any situation like we have where dW = df and we have all of these other conditions, the

limiting metric is quasisymmetric to the 2-sphere metric. Interestingly, we get a phenomenon with dW > 2 even in

a deterministic setting! This is somehow kind of a toy model for Liouville Brownian motion, though it is not useful

because the LQG measure is not doubling and the metric is not quasisymmetric to the Euclidean one (it fails to satisfy

the metric doubling property).

Remark 187. If we try to do this same story with the snowball but with a 5 × 5 grid and put two bumps instead of

one, the limit actually is not quasisymmetric anymore! So we do need some amount of symmetry for this argument

to work; we need the Brownian motion to not be obstructed in some dimensions more than others. It’s possible that

there’s some weaker version of quasisymmetric which yields distortion bounds only at most scales at most points rather

than all scales at all points, which still gives connections to heat kernel bounds.

So we have two transformations that preserve the elliptic Harnack inequality, and now we want to optimize them in

some way, finding the best possible metric to express the diffusion process. This leads to the following notion (which

is helping us get a converse of the form “elliptic Harnack implying parabolic Harnack,” which is not true in general

because we don’t have doubling measures):

Definition 188

Let (X, d,m, E ,F) be an MMD space. The conformal walk dimension, denoted dCW, is defined as follows:

define the conformal gauge

J (X, d) = {ρ : ρ is a metric on X quasisymmetric to d}

and set

dCW = inf
{
β > 0 : there is some admissible µ and metric ρ ∈ J (X, d) s.t. (X, ρ, µ, Eµ,Fµ) satisfies PHI(β)

}
,

where PHI(β) means the parabolic Harnack inequality with the function ψ(r) = rβ.

Observe that if the elliptic Harnack inequality were to fail to hold for some space (X, d,m, E ,F), then the conformal

walk dimension must be infinite (since no timechange will make the parabolic Harnack inequality hold, since that would

have to imply the elliptic Harnack inequality which is preserved under change of admissible measure). Also, we know

that ψ(R)
ψ(r) ≳

(
R
r

)2
and thus in fact we always have dCW ≥ 2.

We will also need a weak condition on the metric, where any two points should be connected by a good curve:
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Definition 189

We say that (X, d) is quasi-arc-connected if there is some homeomorphism η : [0,∞) → [0,∞) such that for

any x ̸= y ∈ X, there is some curve γxy : [0, 1]→ X with γxy a quasisymmetry between [0, 1] and γxy ([0, 1]).

In other words, any pair of points is connected by an arc with not too much distortion – in particular for a geodesic

space we can take the function to be linear. And if we replace the metric d with dα for some α ∈ (0, 1), we still have

a metric and we still preserve the quasi-arc-connected property. But this replacement turns PHI(β) into PHI(β/α), so

it’s easy to increase the conformal walk dimension as much as we want (we’ll indeed stay within the conformal gauge)

– what we’re really curious about is what the minimum possible conformal walk dimension is.

Theorem 190

Assume that (X, d,m, E ,F) is an MMD space where d is quasi-arc-connected. Then the following are equivalent:

1. The metric space (X, d,m, E ,F) satisfies the elliptic Harnack inequality,

2. The conformal walk dimension dCW is finite,

3. The conformal walk dimension is equal to 2.

The equivalence between the first two properties was shown for geodesic spaces by Barlow, Chen, and Professor

Murugan, and the equivalence between the latter two was obtained by Kajino and Professor Murugan. The implications

(3) implies (2) implies (1) are immediate from what we’ve already said, and what’s difficult is to go in reverse.

Example 191

One question we may ask is whether the infimum in the definition of dCW is actually attained, and in fact it

need not be. One such example is actually the snowball from before, but another one which is illustrative is the

following. Recall Kigami’s Gaussian heat kernel bound on the two-dimensional Sierpinski gasket with respect to

the intrinsic metric (which we’ve also already shown)

dint(x, y) = sup {u(x)− u(y) : u ∈ C(X) ∩ F ,Γ(u, u) ≤ µ} , µ the Kusuoka measure.

We in fact have dint ∈ J (K, dEuc), and so we can attain the infimum for the conformal walk dimension in this case.

However, Kajino and Professor Murugan showed that Brownian motion on the n-dimensional Sierpinski gasket for

n ≥ 3 does not attain the infimum of dCW. (And everything is rather case-by-case here – it’s not well understood

what happens on the Sierpinski carpet instead of the Sierpinski gasket.)

One motivation for obtaining these results above is the following fact:

Corollary 192

The elliptic Harnack inequality is stable under perturbations. More concretely, the Laplace-Beltrami operator on

a Riemaninan manifold satisfies elliptic Harnack inequalities if and only if any uniformly elliptic operator does.

So this is a generalization of Moser’s theorem to all manifolds, and it comes from the previously-known stability of

the parabolic Harnack inequality.

Heuristics for why dCW finite implies dCW = 2. Assume that (X, d,m, E ,F) satisfies the parabolic Harnack inequality

for some γ. We wish to get γ down to 2+ε, and we do so by “optimistically” trying to construct an admissible measure

µ and a metric θ ∈ J (X, d) such that the time-changed space (X, θ, µ, Eµ,Fµ) satisfies PHI(2).
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The basic idea is to view this metric space at different scales: consider an annulus at scale (r, 2r) and discretize at

a much finer mesh scale s than r . That is, choose an s-net N for the metric space X (that is, a maximal s-separated

subset), and view N as a graph where two points x1, x2 ∈ N are adjacent if Bd(x1, λs) ∩ Bd(x2, λs) is nonempty (for

some parameter λ). We’ll only look at balls of radius s centered at the points in our net (which cover X but do not

overlap too much); we now define the “relative diameter”

ρ̃(v) =
diamθ(Bd(v , s))

diamθ(Bd(x, r))
.

That is, we look at a ball of scale s in the original metric and see how much it’s distorted under the new metric. This

function satisfies the property of no shortcuts, meaning that for any path γ in the graph (think of this as a sequence

of balls) with first vertex v satisfying Bd(v , s) ⊂ Bd(x, r), last vertex w satisfying Bd(w, s) ⊂ Bd(x, 2r)
c , and all

other vertices contained in Bd(x, 2r), we have ∑
u∈γ

ρ̃(u) ≳ 1.

This turns out to be true because if we enlarge distances by a factor we should still get the same order for the diameter,

and so if we add up the diameters along the path∑
u∈γ

diamθ(Bd(u, s))

diamθ(Bd(x, 2r))
≍
∑
u∈γ

diamθ(Bd(u, λs))

diamθ(Bd(x, 2r))
≳
∑
u∈γ

dist(Bd(x, r), Bd(x, 2r)c)
diamθ(Bd(x, 2r)

and quasisymmetry roughly preserves ratios of distances so if this quantity was of order 1 in d then it also will under θ.

The other condition (which actually uses that parabolic Harnack PHI(2) is satisfied) is called a mass estimate on

µ. We know by the doubling property that

µ(Bd(x, r)) ≍ µ(Bd(x, 2r)) ≍
∑

v∈N(Bd (x,2r)):B(v,s)∩B(

µ(Bd(v , s))

since the balls roughly don’t intersect. Balls in the two metrics are approximately the same, so we can replace this with

Bθ(v , diamθ(Bd(v , s)), and the measure of such balls can be related to the capacity and spacetime scaling: capacity

across an annulus is roughly the volume divided by the spacetime scaling, so

µ(Bd(x, r)) ≍
∑

v∈N(Bd (v,2r))

diamθ(Bd(v , s))
2Cap(Bd(v , s), Bd(v , 2s)c).

But if we’ve seen the notion of “extremal length” on graphs, that’s exactly the admissibility condition we have: the

function u will end up being the optimal equilibrium potential (energy minimizer) for the capacity between Bd(x, 2r)

and Bd(x, 2r)c . We want ρ̃(v) to be roughly the same as a discrete gradient
∑

w∼v

∣∣∣fflBd (v,s) udm − ffl
Bd (w,s)

udm
∣∣∣.

This satisfies both properties we mentioned above (using the Poincaré inequality). Thus somehow using the gradient

of energy minimizers is the right way to construct optimal metrics and measures, much like in the Riemann mapping

theorem.
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