MATH 215A: Algebraic Topology

Lecturer: Professor Zhenkun Li
Notes by: Andrew Lin

Autumn 2022

Introduction

Professor Li can be reached in 380-383FF; office hours are Tuesdays and Thursdays from 6-7:30pm (or by appoint-
ment). The CA (Qianhe Qin)'s office hours start next week and are available on Canvas.

There will be nine homework assignments, released weekly and due each Wednesday at midnight. Grading will be
70 percent homework (with lowest two homework grades dropped) and 30 percent final take-home exam.

This is a course in algebraic topology and will follow Hatcher's book (it can be freely accessed online). That book
has four chapters on the fundamental group, homology theory, cohomology theory, and homotopy theory; we will cover
the first three. Some basic knowledge from topology and algebra will be assumed (like knowing what groups and group

homomorphisms are).
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Throughout the course, we will assume that all spaces are topological spaces and all maps are continuous. In this first
week, we'll discuss homotopy, CW complexes, and some basic ways to construct spaces, and after that we'll get into

the content previously mentioned.

Definition 1

Let f,g: X — Y be two (continuous) maps between topological spaces. We say that f and g are homotopic if
there is a (continuous) map H : I x X — Y (where [ is the interval [0, 1] with its standard topology) such that
H(0, x) = f(x) and H(1, x) = g(x). We denote this as f ~ g.

We can think of the interval as parameterizing “time,” so that we have a one-parameter (continuous) family of

maps hy : X — Y which is a deformation from f to g.

Example 2
Suppose X =Y = R. Then the maps f(x) = x and g(x) = x> are homotopic, because we have the homotopy

H(t, x) (alternatively written h¢(x)) given by
H(t,x) = (1 — t)x + tx°.

It can directly be checked that H(0, x) = f(x) and H(1, x) = g(x) and that H is continuous.




Example 3
More generally, if X = R™ and Y = R" (for m, n € Z=) and f, g are two arbitrary maps X — Y, we can always

construct a homotopy between them given by the linear interpolation h:(x) = (1 — t)f(x) + tg(x).

We can check that being homotopic is an equivalence relation, meaning that f ~ f, f ~ g if and only if g ~ f,
and if f ~ gand g ~ hthen f ~ h.

Definition 4
Let X and Y be two topological spaces. We say that X and Y are homotopy equivalent if there are maps
f:X—>Yandg:Y — Xsuchthat fog~idy and go f ~ idx. We denote this as X ~ Y.

Example 5
Let X = {0} and Y = R2. These two spaces are indeed homotopy equivalent, since we can have f : X — Y send
0 to (0,0) and have g : Y — X send everything to 0; indeed g o f is the identity map on X and any two maps

R2 — R? are homotopic.

Definition 6

A space is contractible if it is homotopy equivalent to {0}.

Example 7
For any m, n = 0, we can check that X = R™ and Y = R” are homotopy equivalent with the same argument as

above.

Definition 8
Suppose X € Y, and we let f : X — Y be the canonical inclusion. A map g : Y — X is called a retraction if

g(x) = x for all x e X (or equivalently, g|x = idx).

For example, the map g in Example 5 is a retraction. And since X € Y, retractions can be interpreted as maps
g:Y — Y whose image is X, or equivalently maps where g% = g. We'll now relate this concept to that of homotopy

equivalence:

Definition 9
Let XS Y, and let g:Y — Y (with im(g) = X) be a retraction. g is called a deformation retraction if there is
a homotopy h: : Y — Y such that hy = idy and hy = g, and h¢|x = idx for all t.

In other words, we start from the identity map and deform it to a “projection” onto X, while keeping the map on

X constant. And the map g in Example 5 is a deformation retraction if we view 0 as the origin in R?.

Example 10
Let X = S+ be the n-dimensional unit sphere in R™!, given by X = {(x1, -+, Xp41) € R"FL o xZ4- - 4x2, = 1},
and let Y = R"1\{0}.




We claim that there is a deformation retraction from Y to X (though there is none from R” to X). Indeed, let
g : R"1\{0} — S™*! send y to the normalized vector ﬁy. Indeed g is a retraction (since a unit-length vector is
sent to itself), and the homotopy is given by the usual linear interpolation
t
I

he(y) = (1 —t+ |y> .

Remark 11. /n Hatcher's book, the third condition h¢|x = idx is required for us to have a deformation retraction, but
in some other books this is called a “strong deformation retraction.” Note that if we have a homotopy hy : Y — Y

between idy and a retraction g without that third condition, we already have X ~ Y.

The idea is that homotopy equivalent spaces will have the same fundamental groups, homology groups, and
cohomology groups, so they are “basically the same” when we consider them in those ways. But we'll come back to
all of that later.

Our next topic will be CW complexes, and we'll start with some motivation:

Example 12

A circle can be broken up into two points connected by two disjoint arcs, and a square can be broken up into a
face, four edges, and four vertices. Even with more complicated spaces, we can perform this process: for example,
we can cut a torus along a curve of “longitude” and “latitude,” and we end up with a square where two opposite

edges are identified.

(For example, if we imagine gluing together the red lines and the blue lines below in the same orientation, we will

recover a torus.)

The idea with CW complexes is that they are made up of various n-dimensional components, called n-cells (which
are homeomorphic to closed n-balls), glued together so that higher-dimensional cells are glued to lower-dimensional

cells at their boundary.

Definition 13
A CW complex is defined inductively in the following way: X° is a discrete set of points, and given X!, we

take a set of n-cells {D7}4e; and define a set of characteristic maps {¢” : D2 — X"~1},c;. Then we define

X" = (x"—luUDg> / ~

ael

the n-skeleton

with quotient induced by the gluing maps (x € dD2) ~ (¢2(X) ~ X"~1) and equipping it with the quotient
topology. Finally, take X = UpsoX".

Example 14
For a single square, X°® would be a set of four vertices, X! would be the set of four vertices with edges between

them (where we've specified which vertices are the boundaries of each edge), and X2 is the full square.




To describe the topology on X more explicitly, we're looking at the weak topology. In particular, X" is equipped
with the quotient topology, and if X = X™ for some ng, then the weak topology is just the quotient topology. But
more generally, if X = X% U Xt U X2 U -+, we say that a set U < X is open if and only if U n D2 is open in D for
any cell D2, (So this is the weakest topology on which all of the inclusion maps are continuous.) It's also okay to

require that U n X" is open in for all n.

Remark 15. The name “CW-complex” comes from “closure finiteness” (any compact set intersects the interior of only

finitely many cells) and “weak topology.”

Example 16
Consider the two-dimensional sphere S?. We can decompose S? into the northern and southern hemisphere (each
of which is a 2-cell) and an equator (which is S'). We denote this $? = S U D7 U D?, and more generally we

can write S" = S""t u D" U D".

So this inductively allows us to find a CW structure for S”, but it is not the only one — for example, we can write
52 as D? u DY (by imagining gluing the entire boundary of a disk to a single point, “closing it” into a sphere).

Definition 17

The real projective space RP" is given by
RP" = (R"\{0})/ ~,

where x ~ Ax for any nonzero scalar \.

In other words, we can imagine that RP” is the set of all lines passing through the origin in R"*1. We can give
this a CW structure by noticing that on the unit sphere S”, only the points x and —x are related to each other, so we
actually have RP" = S"/ ~ under the relation x ~ —x. Thinking back to the decomposition S" = S"~1 U DI u D",
notice that points on the interior of D} and D" are taken to each other, and what’s left is “half of” S"~1. So we can
write the inductive relation

RP" = D}/ ~,

where ~ is the relation that turns 0D into RP"! by identifying opposite points. The gluing map is then the projection
map ¢" : 0D — RP"~!, and thus we are able to obtain X" = RP” from X"~ = RP"~1.

Definition 18
Let Y be a CW complex. If X € Y is the union of some cells of Y, then (Y, X) is a CW-pair.

We'll continue to cover some related ideas next time.
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Last lecture, we discussed some basic ideas surrounding homotopy and CW complexes. (We won't cover everything
in the book during lectures, but we can ask if we have any questions.) We'll continue on today with “homotopy stuff,”
starting with criteria for homotopy equivalence. Recall that X ~ Y (X and Y are "homotopy equivalent”) if there exist
maps f : X - Y and g : Y — X such that f og ~ idy and go f ~ idx. We call the maps f and g homotopy

equivalences.



Proposition 19
Let (X, A) be a CW-pair (recall that this means that A is a union of some cells of the CW complex X), and
suppose A is contractible (meaning that A is homotopy equivalent to a single point). Then the natural quotient

map g : X — X/A (in which all points in A are reduced to a single point) is a homotopy equivalence.

Example 20
Suppose X = D" is the n-dimensional disk, and A = S"~! = 9D". (This is not contractible — it's just an example
to illustrate the quotient map.) Then it turns out X/A = S" — for example, we can imagine that identifying the

boundary of a two-dimensional disk gives us a sphere in 3D space by “rolling up.”

Example 21
Let T be a torus, and let u be a ring on the torus (a cross-section). Then we can compare X = T /u with the
space Y = S2 v S where we “wedge” S? and S* together (gluing the two spaces along at a single point).

These spaces may look different, but it turns out they are homotopy equivalent. Indeed, consider the space
Z = 52U B defined by starting with a 2-sphere and then adding an arc 3 connecting the north and south pole. Letting
o be an arc contained within S2 and also connecting N with S, we see that both o and 3 are contractible in Z. So by
Proposition 19, Z should be homotopy equivalent to both Z/a and Z/B. But quotienting by a gives us Y = S? v St
(where 3 becomes St and the sphere stays $2), and quotienting by 3 gives us X = T /u (where the north and south
pole become the point that v contracts to).

We'll discuss the proof of Proposition 19 later, but for now we'll discuss another criterion for homotopy equivalence.

We'll need the idea of gluing spaces for this:

Definition 22
Let A< X, and suppose f : A — Y is a map. Then we can form the space X 1ir Y = X11Y/ ~ by identifying the
point a€ A with f(A) e Y.

Example 23
If A= {x} € X is a single point and f maps xo to some yy € Y, then we basically take X and Y together and
glue them together at the point xp = yy. This gives us the “wedge” X v Y = X1 Y.

(If X and Y are path-connected, then different choices of points xg, yo are homeomorphic. But otherwise we may

need to specify xo and yo more specifically.)

Definition 24
The mapping cylinder Mr of a map f : X — Y is the space

/\//f:(XX/)I_IfY,

where we think of f as a map from X x {1} - Y.

The idea is that we imagine the image of X as a circle (so that X x / looks like a cylinder, and we attach one end
of the cylinder to Y.



Definition 25
The mapping cone Cr of f : X — Y is the space

Cr=(Xx1/Xx{0})1fY.

(This is very similar to the previous case, but we identify the other end of the cylinder so that we just have a cone
sticking out of Y. We call CX = X x //X x {0} the cone over X.)

Example 26

Suppose X = S". Then the cone over X is the disk D"*1 (we can imagine that the cone fills in the interior until
we get to the origin, which is the tip of the cone). Thus, for any map f : S"~! — Y, the mapping cone Cr is
CS"™ 11, Y, which is just D" 1if Y. Thus the mapping cone glues an n-dimensional ball to Y along the boundary
given by f, and in particular this allows us to glue an n-cell to the skeleton in a CW complex. Specifically, if Y is

a single point, there is a unique map f : S"~! — Y and the mapping cone gets us Cf = S” again.

Notice that for an arbitrary space X, the cone CX is always contractible by shrinking along the time-direction. So
now if we have a CW pair (X, A) with contractible A, and ¢ : A — X is the inclusion, then we can glue the cone CA to
X along A, and thus Proposition 19 allows us to identify (by homotopy equivalence) the mapping cone C, = X u CA

with X /A, whether or not A is contractible. And we're now ready to state the second criterion:

Proposition 27
Let (X, A) be a CW pair, and suppose f, g : A— Y are homotopic. Then we have homotopy equivalence of the
spaces X Lf Y ~ X1y Y.

Example 28
Suppose (X, A) is a CW pair with A contractible. Then we can consider the inclusion map ¢ : A — X, as well as

the map f: A — {ag} for some fixed point ag € A < X.

Since Ais contractible, these maps are homotopic, so applying Proposition 27 tells us that C, ~ C¢. But ~ C,
as discussed, while Cr can be thought of , which is wedging X with the suspension of A:

Definition 29

Let X be a space. Then the suspension of X is

SX = (X x [~1,1]/X x {1}) /X x {-1}.

In the example above, quotienting at 1 corresponds to the mapping cone of A, and quotienting at —1 corresponds
to gluing all points in A to ag € X.

If we take S° < S? (which we can take to be the north and south pole), then S is not contractible (because it is a
set of two disjoint points) but it is homotopic to a single point in S?. So we can still work with the maps ¢+ : SO < S?
and £ : S® — {N}, which are still homotopic, and the same conclusion still holds: C, ~ 52/S° is homotopy equivalent
to Cr ~ S? v SS°. But the suspension of S% is S*, so we are saying that $2/S% ~ 52 v S, recovering the result from

earlier this lecture. And more generally, if S” < S™ and m > n, we have S”/S" ~ ™\, S"+1,



We can now start to discuss how to prove these two criteria for homotopy equivalence, and an important ingredient
will be homotopy extension. The idea is the following: let A < X, and consider maps f; : A — Y for t € [0, 1],
forming a homotopy. Additionally, suppose fy extends to a map fo © X — Y. Then we may ask when f; etxends as

well:

Definition 30
A pair (X, A) has the homotopy extension property if any homotopy f; : A — Y extends to fy - X > Y whenever

fo extends to 7.

Recalling that a homotopy on X is a map on X x | — Y, we can imagine that X x [ is a cylinder that we would like
to map to Y, where we already have the map on A x | (a smaller cylinder contained inside) and on X x {0} (the base
of the larger cylinder). Homotopy extension is then equivalent to the following: any map (X x {0}) u (Ax ) > Y

extendstoamap X x | - Y.

Lemma 31

The homotopy extension property is equivalent to (X x {0}) u (A x I) being a retraction of X x / (meaning that
there is a map r : X x [ — X x | such that im(r) = (X x {0}) U (A x /), and such that r|xx{o})u(ax/) is the
identity map on that space).

Proof. If a retraction r X x | — (X x {0}) U (A x I) does exist, we can define f = f o r to be the composition of
the retraction and the map f, which gives us a map X x I — Y and thus satisfying the homotopy extension property.
On the other hand, if (X, A) satisfies the homotopy extension property, then we can extend the identity map on
(X x{0})u (Ax 1) (that is, taking Y to be the space itself), and then the property yields the desired retraction r. O

In general, it's easier to construct a retraction and write the map explicitly, and that will automatically show
homotopy extension directly.

Example 32
If (X, A) has the homotopy extension property, then so does (X x Y, AxY) for any Y (by constructing a retraction
and then multiplying everything by Y).

Recall that both Proposition 19 and Proposition 27 involve CW complexes, and this is actually an important detail:

Proposition 33
If (X, A) is a CW pair, then (X, A) satisfies the homotopy extension property.

For example, we'll see that (D", 0D™) satisfies the homotopy extension, because there is a deformation retraction
D" x | — (D" x {0}) u (¢D" x I). So we do have this property for a single cell.

Example 34
D' is a line segment, so D! x [ is a square. Then we want to retract the square onto three of its edges, which
we do by projecting downward as shown below.




Applying this to an arbitrary CW pair (X, A), we find that because X" is obtained from X"~1 U A" by gluing
n-cells, X" x [ is obtained from (X" x {0}) u ((X"~* U A") x [) by gluing D2 x | along (D2 x {0}) u (dD% x I. So
on each cell D] x [, we have a retraction, and thus we can (deformation) retract the entire n-skeleton X" x [ to
(X" x {0}) U (XL U A™) x .
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Last lecture, we established two criteria for homotopy equivalence: if (X, A) is a CW-pair and A is contractible, then
the quotient map ¢ : X — X /A is a homotopy equivalence, and if f,g : A — Y are homotopic maps, then the “glued
spaces” X LrY ~ X1z Y are homotopy equivalent as well. We proved last time that any (X, A) has the homotopy
extension property — specifically, there is a retraction X x /| — (X x {0}) u (A x /), and the existence of such a
retraction is sufficient, and for a CW pair we actually have a deformation retraction because we can do this cell by
cell.

We can start today by proving the two propositions stated last lecture:

Proof of Proposition 27. By assumption, because f and g are homotopic, there is a map H : A x | — Y such that
H(a,0) = f(a) and H(a,1) = g(a) for all a € A. If we then consider the space (X x /)1y Y (thinking of A x | as
a subspace of X x /), then applying the homotopy extension property allows us to perform a deformation retraction
from (X x N1y Y to (X x {0}) u (A x )11y Y —in particular, since we have the identity map on A x | throughout,
the gluing does not get affected. And X x {0} is only being glued to Y at A x {0}, so the space we get here is actually
X 1r Y, because we're only gluing X to Y using H(-,0) = f.

But we may also perform the analogous deformation retraction to ((X x {1}) u (A x [)) iy Y (swapping the roles
of 0 and 1). And this time, when we glue A x / to Y we are only gluing X x {1} to Y through A x {1}, using the
map H(-,1) = g. So we are deformation retracting to X Ly Y this time. So both X Lif Y and X 1y Y are homotopy
equivalent to (X x /)11y Y, and thus they are homotopy equivalent to each other. O

Proof of Proposition 19. Since A is contractible, there is a homotopy f; : A — A such that fy is the identity on A
and f; maps all of A to a single point ag € A (this is also called a constant map), which we must think of as a map
fr © A — X. The identity map fy extends to all of X (it's still just the identity map), so by the homotopy extension
property for the CW pair (X, A) we get a map fi - X — X which extends f; from A to X. In other words, we always

have the dotted map making the diagram below commute for any t € [0, 1]:

X ----- » X
L L
ATy A



But now ft(A) must be contained in A for all t (since we are extending the map f; : A — A, so f, descends to a
map ¢ : X/A — X /A, and this is well-defined.

X —" . x

ok

X/A —"s x/A

(So if x € X\A and fi(x) € A, then f.(x) will be mapped to the point [A] corresponding to all of A.) We have
that o is the identity on X/A (since f; was the identity on X). On the other hand, f;(A) = {ao}, so we can actually

construct a “diagonal” map in our diagram here specifically because all of A goes to a single point:

X —" i x

g
a q

X/A?X/A

(We should check explicitly that both triangles here actually commute.) So we have go g = f1, which is homotopic
to fo = idx. On the other hand, gog = f1, which is homotopic to fg = idx/a. So the two compositions are homotopic
to the corresponding identity maps, which is what we need for homotopy equivalence. (Importantly, this map g only

necessarily exists at t = 1 because not all of A needs to be mapped to a single point until then.) O

We now have many criteria for proving homotopy equivalence, but we may now want to ask for ways to prove
that X 2 Y (for example, if X = R? and Y = R?\{0}). Usually we cannot exhaust all possible maps X — Y as
possibilities, so instead the strategy will be to find invariants /(X) that are preserved under homotopy equivalence —
such invariants may be numbers, polynomials, groups, or more complicated, as long as we can show that /(X) = /(Y)
whenever X ~ Y. (There's also a follow-up question of whether there is a “complete set of invariants” that would allow
us to also prove that X ~ Y.) So the three chapters of Hatcher's book we'll go through will give us three examples
of such invariants.

We'll start with the fundamental group. The idea will basically be that any space X with some base point xg € X
is associated with a group 1 (X, xp), and for a large family of manifolds we can actually determine the space from this
“fundamental” group. We'll also find that maps between spaces induce group homomorphisms between fundamental
groups (which are the same if the maps are homotopic) — category theory abstracts all of this, and we might discuss
this a little if there's time.

But for now, we'll start with definitions, and the basic ingredient here will be the set of loops passing through xj.

Definition 35

We can think about loops in one of two ways — they're f : [0,1] — X with f(0) = (1) = xo, and they're also
equivalently maps f : S' — X such that 7((1,0)) = xo — and we'll use both throughout this class. The space of
loops in X based at xp is denoted Q(X, xo) = {f : [0,1] = X : f(0) = f(1) = xo}.

Definition 36

Let f,g:[0,1]s — X be two loops (based at xp) with f(0) = f(1) = g(0) = g(1) = x5. A homotopy between
based loops f, gisamap H : [0, 1] x [0, 1]s such that H(0, s) = f(s), H(1,s) = g(s), and H(t,0) = H(t,1) = xo
for all t € [0, 1].




(This may also be denoted f ~ g rel {xp}, and more generally we can have f ~ g rel A if we want to fix a space
A throughout the homotopy.) This last condition is basically saying that H; : [0, 1] — X is always a loop based at xg
for any t, and it is in fact going to be a necessary additional assumption in some situations.

To define a fundamental group, we'll first recall that a group (G, -) is a set with a binary operation - : G x G —» G
which is associative, has an identity element e such that eg = ge = g for all g € G, and has inverses (so for any g
there is an element h such that gh = hg = e). We may ask whether there's a way to construct such an operation on
Q(X, xp). There is indeed a natural map given by composition: if f and g are two loops, then we can define f - g to
be the loop that “first travels through " during [0, 2] and “then travels through g" during [3, 1]:

\,\
~—
N
0
N>
o
N

s<i,
fg(s) =
g(2s—1) I<s<1

N

However, this does not satisfy the group axioms that we want: we don’t have associativity because (f - g) - h has us
traveling along h for the second half on [0, 1], but f - (g - h) has us traveling along h only for the last quarter. (So
even though we travel along the same loops, we do not have the same map [0, 1] — X.) To solve this, notice that

(f-g)-handf-(g-h)are homotopic just by doing a time-change:

|

f 9/ h

f((4—2t)s) 0<s< 255

-2t
H(t.s) = 4 g(4s) T <S<zmta
h2+2t)s Fm+i<s<l

So this motivates studying loops up to homotopy: define the set m; (X, xo) = Q(X, xp)/ ~, where f ~ g if and only
if f~grel {x}.

The product formed by composition in 1 (X, o) is then associative — it's an exercise to check that we can indeed
do the composition and get a homotopic result independent of the elements we choose in the initial equivalence class.
We also claim that the constant loop ¢ : [0,1] — {xo} is the identity element — indeed, we need to check that

c-f~f~f-cforanyloop f. Indeed (for example for ¢ - f ~ f) we can consider a diagram as follows:

f
tw\
c f
—
5
c(s) 0<5<%—%f,

(Explicitly, the computation is that H(t,s) = ) And to find inverses, we basically



traverse our loops in reverse: if f : [0, 1] — X satisfies f(0) = f(1) = xo, then we can define the loop f : [0, 1] — X
by f(s) = f(1 —s). And indeed, the idea is that instead of fully traversing f forward and f backward, at time t we

only traverse a fraction t of the loop forward and then retrace our steps:

f((2 —2t)s) se |0,
f((2—2t)s+2t—1) se[3,

SIS
—

H(t,s) =

[y
[a—

So we do have a group operation on this set 71 (X, xp):

Definition 37

The fundamental group of (X, xp) is the group (m1(X, Xp), -) as defined in the discussion above.

Example 38

Suppose X = R? and xp = {(0,0)}. Then every loop is homotopic to the constant map, because we can construct
a homotopy H(t,s) = (1 — t)f(s) + (0,0) between any based loop and the constant loop. Thus 71 (R?, (0, 0)) is
the trivial group with only one element {[c]}.

We may now ask whether the choice of base point matters in defining 1 (X, Xo). If we assume X is path-connected
(to avoid any silly examples where loops are restricted to different components), it turns out that the groups will be

isomorphic:

Proposition 39

For any two base points xp, X1 in a path-connected space X, we have the group isomorphism 1 (X, xo) = 71 (X, x1).

Proof. Since X is path-connected, there is a map h : [0, 1] such that h(0) = xo and h(1) = x; (this is a path, not a
loop). Let h be its reverse (so that h(0) = x; and h(1) = xp). Notice that this path induces a map B : 71 (X, x;) —
m1(X, x0), because for any loop f € Q(X, x;), the map h- f - h (first traveling along h, then following f, then reversing
h) gets us a map in Q(X, xo).

It can be checked (exercise) that this is well-defined (meaning that the result only depends on the homotopy class
of hrel {xo,x1}) and that this is a group homomorphism. So we have the map B,([f]) = [h- f - h], and we have an
explicit inverse B : m1(X, Xg) — m1(X, x1). We can check that G, o B, is the identity on 71 (X, xp), and B; o By is the
identity on 1 (X, x1), giving us the desired group isomorphism. O

Thus if X is path-connected, we can just denote the fundamental group 1 (X) and pick a base point for convenience.
And next lecture, we'll explore how to study the fundamental groups of two spaces (X, xo) and (Y, yo) given properties
of X and Y.

4 QOctober 6, 2022

Last lecture, we proved the homotopy equivalence propositions and introduced the fundamental group 71 (X, xp). We
showed that for any path h from xo to x; we have (X, x1) = 71 (X, xo) (through the map 8, mapping loops rooted
at x; to loops rooted at xp described in Proposition 39), so the base point itself can be chosen for convenience. Today,
we'll start asking how to relate the fundamental groups 71 (X, xo) and 71 (Y, ¥o) by looking at continuous maps X — Y.
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Theorem 40
Let ¢ : (X, x0) — (Y. ¥0) be a continuous map. Then we have a group homomorphism ¢.. : m1(X, x0) — T1(Y, yo)

which sends the equivalence class of f : [0, 1] — X to the equivalence class of ¢ o f :[0,1] = Y.

We need to check that this is actually well-defined and a group homomorphism, but we won't go through the
details in lecture here. Instead, we'll mention that this induced map behaves nicely even when we change the base

point or compare homotopic maps:

1. Suppose that we have two different base points xg, x; mapping to yg, y1 under ¢. Then we can get the following

diagram (with B and Bgn again coming from the isomorphism in Proposition 39):

s
(X, x0) —— m1(Y, %)

o [

¢
(X, x1) —— T (Y, 1)

Checking that this is actually a commutative diagram is left as an exercise to us as well.

2. Next, suppose we have two homotopic maps ¢ ~ 1 and want to see if we can relate ¢, and ¥,.. One complication
is that the corresponding base points ¢(xo) = yo and ¥(xp) = y1 may not be the same, but we want to find a

path h that makes the following diagram commute:

6
m1(X, x0) —— m1(Y, Y0)

///7
l’lﬂ* /’/ Bn

7r1(Y, J/1)

In order for such an h to exist, it's important here that ¢ and v are homotopic. That means that there is a map
7t © X — Y such that ng = ¢ and n; = 9, so a natural path between m9(x0) = Yo and m1(xo) = y1 is the path
h(s) = ns(x0). (So because xp's image is shifting from yp to ;1 continuously during the homotopy, we should

just use that as our path.) Then we can check as an exercise that this is again a commutative diagram.

3. Finally, suppose we have maps X 2, Y 2, Z which send xo — yg — z5. Then we get a corresponding composition
1 (X, x0) LLN m1(Y, Yo) Y, m1(Z, 29), but we can also look at the map ¥ o ¢ : X — Z and thus get a map
(Yod)

(X, X0) —

equivalence class of loops [f]), sO (¥ 0 ¢d)x = Yy © Ps.

m1(Z, z9) directly. These maps are the same (by unpacking what happens in each case to an

Theorem 41
Suppose X ~ Y are homotopy equivalent, X and Y are path-connected, and we pick (an arbitrary) xo € X, yo € Y.
Then m1(X, x0) = m1(Y, Yo)-

(More generally, we can pick yo to be any point in the same path component as ¢(xp). But when we have

fundamental groups rooted at a point xg, the points in X not in the path component of xg don't matter anyway.)

Proof. Since X ~ Y, there are maps ¢ : X — Y and ¢ : Y — X such that ¢ o1 ~ idy and ¥ o ¢ ~ idx. Thus by the

composition property (3) above,
Yo¢~idx = ¢x 0Py = (idx)x o Bh = B

12



(where the second-to-last step is because homotopic maps are different by a base-change By, (property (2) above),
and the last step is because the identity map gives us the identity group homomorphism on the fundamental groups).
So we have an isomorphism By = ¢4 o ¥, and similarly an isomorphism B = ¢4 © W, which implies that ¢, and ¥,

are both isomorphisms (since they must both be injective and surjective) betwen the fundamental groups. O

Example 42
If X is contractible, that's equivalent to saying that it is homotopy equivalent to a one-point space, which only
contains the trivial loop. Thus the fundamental group of a contractible space (such as R?) is also trivial.

On the other hand, just because the fundamental group is trivial does not mean the space is contractible — the
n-sphere S” (for n > 2) is not contractible but has trivial fundamental group, because we can shrink any loop to a
point (for example by stereographic projection from a point not on the loop, giving us R?) but S” is non-contractible

(this can be seen for example through homology, which we'll discuss later in the course).

Example 43
Recall that Y = R? — {(0,0)} has a projection onto the unit sphere S : {(x,y) € R? : x? + y? < 1} given by a
deformation retraction, so 1 (R? — {(0,0)}, (1, 0)) is isomorphic to m1(S?, (1,0)).

In the next few lectures, we'll develop some techniques for computing fundamental groups in general (such as the
van Kampen theorem and covering spaces). But for today, we'll work towards computing 71(S?). For any integer n,

we define the loop w, : [0, 1] — S? by setting
wy(s) = (cos(2nms), sin(2nms)) e St

Geometrically, these loops are basically traveling around the sphere n times counterclockwise at a constant rate, and

we give them a group structure by saying that [wp][wm] = [Wm+n].

Theorem 44

There is a group isomorphism ® : Z — m1(S?, (1, 0)) sending n to w,,.

In other words, every loop is homotopic to exactly one of the w, maps. We'll first show some applications of this
result before proving it:

Corollary 45 (Brouwer fixed point theorem)
Any (continuous) map f : D? — D? (where D? is the unit disk {(x,y) : x> + y? < 1}) has some fixed point
x € D? with f(x) = x.

Proof. Suppose otherwise, so that there is some function f with f(x) # x for all x € D?. Then we can construct
a retraction r : D? — S! in the following way: for any x, draw a ray from f(x) towards x, and let r(x) be the
intersection of that ray with S*. We can check that there is always one such intersection point, and in particular if x
is on the boundary then r(x) = x. But then the composition S* > D? 5 S! is the identity on S, so this composition
should also give us an induced map on the fundamental groups ry oty = (ids1)s = id, since the base point (1,0) is
unchanged. But 71(S?, (1,0)) = 11(D2, (1,0)) = 711(S?, (1,0)) is a map Z <% 0 % Z (since D2 is contractible).

This composition must then be both the zero and identity map, which is a contradiction. O
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Corollary 46
Let h: St — St be a map such that h(x) = —h(—x) for all x. Then h is not nullhomotopic (in other words, h is

not homotopic to the constant map).

The idea is that we can rotate the map h so that h(1,0) = (1,0), so we can think of h as a loop on S*. Then we
wish to show that [h] # [0] € w1 (ST, (1,0)). But we'll postpone the proof of this for a bit — the idea is related to the
proof that m;(S?, (1,0)) = Z.

Corollary 47 (Borsuk-Ulam)
Let f: S — R? be any map. Then there is some point x € S? such that f(x) = f(—x).

(One interpretation of this result is that there are always two antipodal points on Earth with the same temperature

and pressure.)

Proof. Suppose otherwise, so that there is some map f : S2 — R2 with f(x) # f(—x) for all x € S?. Then we can
define a new map ¢ : S2 — S given by

ST = F=l
and we can look at the image of the equator S! = S? under g. Letting ¢ : S* — S? be the inclusion of the equator in
S, wegetamap h=gowr:St— S'. But notice that
f(=x) —f(x)

M=) = T =70l

= —h(x),
and by Corollary 46 h is not homotopic to the constant loop. But h: S! — S2 — S! factors through S2, and any

loop is null-homotopic in S?, which is a contradiction (again the map Z — 0 — Z cannot have a nonzero image). [

The two remaining things left to prove — that ® : Z — 71(S?, (1,0)) is an isomorphism and that we cannot have
a nullhomotopic map h: St — S* with h(x) = —h(—x) — are both proved using covering spaces. To motivate that,

recall that S! is the unit sphere {(x,y) € R?: x> + y? = 1}, so we can define a map g : R — S! given by
q(s) = (cos(2ms), sin(2ms)).

We then have g(n) = (1,0) for all n € Z, and we can imagine that this map loops around the circle once in every unit
interval. So this means that any map [0, 1] — S! can be lifted to a map [0, 1] — R (R is called the universal cover
of S'), and it turns out such a lift will be unique up to some conditions, which we'll see in subsequent lectures.

5 October 11, 2022

Last lecture, we stated (in Theorem 44) that the fundamental group of S* is Z. In other words, we claimed that there
is an isomorphism ® : Z — m1(St, (1,0)) which sends n to [w,(s) = (cos(2nms),sin(2n7s))], the loop which goes
around S' n times counterclockwise.

We will prove this in three steps, showing that ® is a group homomorphism, that it is surjective, and that it is
injective. Step 1 can be verified directly: the composition of the loops w,, and w, is indeed homotopic to the loop

Wmin, as represented in the diagram below (writing down the detailed expression is an exercise for us):
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N|—

For the second step, we will make use of the map p : R — S! mapping s to cos(27s, sin27s). The point is that
any loop f : [0,1] — S* will be lifted to a path f [0,1] — R, because we can figure out more easily what's going
on with the homotopy on R. Indeed, any two paths 7, §:[0,1] — R with the same start and end point X, and X; are
homotopic on R (for example by linear interpolation), so they must descend to homotopic loops on St rel {xp, x1}.

But we'll need to figure out how to ensure that such a lift exists, and it's important that we chose the map p
specifically because for any (a, b) € R with b —a < 1, we get a homeomorphism p : (a, b) — p(a, b) (in other words,

any small enough open interval is mapped to an open interval on S*.), and we'll use this property to lift the path.

For any x € S!, there is a neighborhood (open set) U < S* containing x such that any connected component V
of its preimage p~1(U) < R yields a homeomorphism p|y : V — U.

Geometrically, if we imagine a small neighborhood U in S, its preimage is a disjoint union of a bunch of intervals,
and any of these intervals projects down to U. (This will become a general property when we look at more general
covering spaces soon.)

Proposition 49
Fix any path f : [0,1] — S%, and fix any point X such that p(X) = f(0). Then there is a unique path
f :[0,1] — R such that f(0) = X% and po f = f (that is, f lifts to f).

Proof. For any point x € S! there is some neighborhood U, of x satisfying the covering property. Since S?! is
compact and the set of U,s covers it, we can cover S! by finitely many such neighborhoods. Thus we see that
f[0,1] € Up u -+ U Uy, where each U, € S1 satisfies the covering property, and where we assume that xg € Up. Let
Vo be the component of p_l(Uo) which contains X;. Because we have a homeomorphism between Uy and Vg, we can
locally lift f uniquely to 7 : [0,€) — Vo (by composing with p~1). Now Uy intersects some other interval Ui, so the
same argument shows that we can extend f to Uy u U;. Repeating this eventually lets us extend to Uy u --- U U, by
patching these extensions together.

And uniqueness follows because locally p is a one-to-one map, so there are no other paths possible besides the one

that we constructed. O

Remark 50. More precisely (to avoid some of the issues with infinitely switching between the U;s), for every point
s € [0,1] we have a small neighborhood (as, bs) € [0,1] so that f(as,bs) € U < S*. Then we can use those

neighborhoods in our compactness instead.
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But now returning to our goal, recall that what we care about is loops in S!, and the next step we wanted to
perform is to show that ® : Z — 71 (St, (1,0)) is surjective. To do this, consider any loop f : [0,1] — S based at
(1,0), and choose x5 = 0 € R. The lifting property then tells us that we have a path £ [0,1] — R with f(O) =0 and
pof = f. Then f(1) should be in the preimage of p~*(1,0) = Z, so our path ends at some integer on R. There is
indeed a path from 0 to n, namely the linear path @,(s) = ns. But f and @, both have the same starting and ending
points, so they are homotopic rel {0, n} on R, and thus (composing with p) they descend to homotopic maps on S*
rel {(1,0)}. But W, gives us the loop w,, and f gives us back our original f. Thus [f] = [w,] € im® for some n. This
means that the map Z — M;(S%, (1,0)) sending n — [w,(s)] is surjective because any element of M;(S?t, (1,0)) is
some class [wp(s)].

On the other hand, we can also prove that ® : Z — 71(St, (1,0)) is injective, meaning that we wish to show that

wy, and wp, are not homotopic rel {(1,0)} for any m # n. For this, we'll make use of another useful property:

If £,g:[0,1] — S* have the same endpoints f(0) = g(0) = xp and (1) = g(1) = xq, and f ~ g rel{xg, x1 }, let
H :[0,1]¢ x [0,1]s — S be such a homotopy (meaning that H(t,0) = xo, H(t,1) = x;, H(0,s) = f(s), and
H(1,s) = g(s) forall s, t € [0,1]). Then if we fix any % € p~1(xo), H lifts to a (unique) map A : [0, 1] x [0, 1]s —
R, such that po H = H and H(t,0) = X.

The proof here is very similar to our previous argument — we lift the square piece by piece by compactness instead
of lifting the circle. And now we can prove injectivity: if we write f(s) = H(0,s) and §(s) = H(1, s), we have pof = f
and po g = g (just by restricting po H = H to only part of the domain), so we see that His a homotopy between the
lifts of f and g. Additionally, if we define A : [0,1] — R via h(t) = H(t,1), we get a path from (1) to §(1) which
descends to h(t) = H(t, 1), the constant path at (1,0). But by uniqueness of path lifting, that means h must be a
constant, so f(1) and §(1) must be the same point. But w,, and w,, lift to paths from 0 to m and 0 to n, so they can
only be homotopic if m = n.

Notice that all we've really used is the local homeomorphism covering property — it's not important that we just

work with paths into S or even with S* and R in particular. So that’s what we'll be generalizing now:

Definition 52
Let X, X be two spaces. Amap p: X — X is a covering map if for any x € X, there is a neighborhood U of x
such that for any connected component V of p~!(U), the restriction p|y : V — U is a homeomorphism. If this

holds, then X is a covering space of X.

(We require a connected component here because we want to be able to uniquely lift maps into X to maps into
%)

Theorem 53 (General lifting property)
Let p: X —> X bea covering map, Y be an arbitrary space, and let f; : Y — X be a homotopy of maps such that
fy lifts to fo : Y — X. Then there is a unique lift f, : Y — X for all t € [0, 1], meaning that po fr = fr.

In particular, if Y is a single point, this gives us the path lifting property, and if Y is the interval [0, 1], we get the
homotopy lifting property.
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Theorem 54
Let p: X — X be a covering map with p(Xo) = Xo. Then the corresponding map py : 7r1()N<,>~<0) — (X, x0) is

injective.

Proof. Suppose we have two loops f,§ : [0,1] — X with £(0) = f(1) = §(0) = (1) = xo. Then if py[f] = p«[3].
that means that po f ~ po g rel{xy}. But by homotopy lifting this means that f ~ g rel{x}, so [f] = [§]. O

Next, we'll mention a necessary condition for being able to lift a general map f ;Y — X toamap f:Y — X. If
such a lift exists, then f = po f means that f, = py o f,, meaning that we must have the condition fe(m1(Y, y0)) S
p*(wl(f(, %0). But it turns out this condition is also sufficient:

Theorem 55
Let p: X — X be a covering map with p(X9) = xp. Then if Y is path-connected and locally-path-connected, and
f:Y — X is a map such that f(yp) = xo and fi(m1(Y, ¥0)) S ps(m1(X, %)), then f liftsto a map f : ¥ — X

with f(xp) = %.

6 October 13, 2022

Last lecture, we introduced the concept of a covering space and its lifting property. Specifically, a covering map
isamap p: X — X where any x € X has a neighborhood U, such that for any component of the preimage
V < p~}(U), we have a homeomorphism p|y : V — U. Such a construction is useful because it allows us to lift
paths and homotopies from X to X (Theorem 55): as long as Y is path-connected and locally-path-connected, the
relation i (71 (Y, o)) S p«(m1(X, %)) between the fundamental groups is equivalent to the existence of an extension
f:y—-X.

Proof of Theorem 55. For one direction, if a lift f exists, then we have f = pof = f, = p4 o fx, which means the
image of f, is contained in the image of p.

The other direction is more substantial: suppose fx (71 (Y, ¥0)) € ps(m1(X, %)), and we want to define the map
f. We know that f should preserve the base point, so we must define f(yo) = Xo. Now for any y; € Y, by path-
connectedness, there is some path h: [0, 1] — Y such that h(0) = yo and h(1) = y;. Then f o his a path in X with
foh(0) = xp and f o h(1) = xq, and by the path lifting property f o h lifts uniquely to a path f oh: [0,1] — X if we
fix the starting point X. Thus we can define f(y;) = f o h(1) = .

To make sure f is well-defined, we must show that it does not depend on the path h: [0, 1] — Y that we chose.
Suppose there is some other path A : [0, 1] — Y also with /’(0) = yo and K’ (1) = y1, so that fo /' : [0,1] — X is a
path in X with f o /(0) = xp and f o h'(1) = x;. We must ensure that the lift of this new path f o h’ also ends at
%;. Notice that v = W o h is a loop in Y starting and ending at yo, which means f oy = (f o h) o (fo h) is a loop
in X starting and ending at xo. Since [y] € (Y, o), fu([Y]) € fu(m1(Y, %)) S ps(m1 (X, X)), meaning that there is
some loop & on X starting and ending at X, such that f«([7]) = p«([6]). This means that f o~y and pod have the
same homotopy class in X rel {xp}. By the homotopy extension property of covering spaces, we thus get a homotopy
between f oy and § rel {%} (since 6 is a lift of pod and lifts are unique). But this means that f oy is homotopic to
a loop and thus must be a loop itself, and that can only happen if the extension of A’ ends at the same point as the

extension of h. (Throughout this argument, we have crucially used that lifts are unique in a few spots.)
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Finally, we need to make sure that fis actually continuous (since we defined it point-by-point), and this is where
locally-path-connectedness matters (which basically means for any point and any open neighborhood of that point,
there is a smaller neighborhood which is path-connected). We should read the details of that part of the argument in
our textbook. O

The next question is to ask when (and how) such an extension map can be unique:

Proposition 56

Suppose p: X — X is a covering map such that ¥ : Y — X has two extensions fi, : Y — X, meaning that
pofi = pofh = f. If Y is connected (not necessarily path-connected) and there is some point yg such that
fi(v0) = fa(yo), then f; = % on all of Y.

Proof sketch. Suppose ﬁ(yo) = fz(yo) = Xo. By definition, there is some neighborhood U around xg = p(Xy) such that
p is a local homeomorphism on that neighborhood. Thus f; and f must coincide locally on all of f~1(U). Thus the
set S={yeVY:fy)=rfily)}isopen andsoistheset {y eY : {y eV :fl(y) # fa(y)} (because f, and f can be
contained in disjoint neighborhoods). Thus Y — S is also open, meaning S is closed, and by connectedness this means

S must be the whole space. O

We'll come back to covering spaces next week, but for now we'll cover some other important techniques for

computing fundamental groups:

Definition 57
Let G and H be two groups. The free product of G and H, denoted G = H, is the set of words {g19>--- gn},

where each g; is an element of G or an element of H, quotienting by the relations that if g;g;+1 are from the same

group, then g1 -+ gigiy1-*Gn = g1+ 9i-1(9igi+1)gi+1" " Gn-

In other words, we can simplify our words by using the group multiplication of G and of H separately, but there are
no relations between elements of G and H. We can also explain this concept using group presentations: we let

G={9a:acllg:Bely, H={g,:aecly:Bel),
where the g,s are generators of the groups and rgs are relations. Then the free product is given by

GiH={ga gh:aclulmprs:Bel ).

Theorem 58 (Von Kampen)

Let X be a topological space, and let A, be an open cover of X (meaning that each A, is open and [ JAq = X.)
Suppose there is some xg € [, Aa S X, and Ay N Ag is path-connected for all &, 8. Then there is a natural
map ® : kqe T1(Ag, X0) — m1(X) which sends any word (g1, 92, ,9gn) t0 9192+ gn, Which is surjective.
Furthermore, for [v] € m1(Aa N Ag, Xo), then we can define (by inclusion) iy[Y] € T1(Aa, Xo) and i[y] € T1(Ag, Xo)-
Then if AxnAgn Ay is also path-connected for any a, 3, -y, the kernel of ® is generated by elements iy [Y] (ig[Y]) !
for all a, B, 7.

We can read the proof of this result on our own — being able to use it in applications is more important. The
algebraic way of saying this is that the fundamental group of X is actually a pushout coming from the inclusion maps
AlﬂA2—>A1 and AlﬁA2—>A2.
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Example 59
Suppose X = A; U Az, with xg € A; n Ay and Ay n A, path-connected. Then if (A1, Xo) has group presentation

{q1, . Qnlr, -+ ruy, ™1(A2, x0) has group presentation {f, -, f|s1, -+, s, and w1 (A; N Az, o) has group
presentation {e1,--- , &t1, -+, twy. Then by Von Kampen, we have the group presentation

7T1(X,X0) = <g1, e Gn Ml fm|f1v e fyaS10 0 Sy, /1*(61) = /2*(61), e, /1*(611) = /2*(e£)>-
Example 60

Consider the wedge S! v St; we'll apply Van Kampen's theorem to the diagram below, where the red and purple

regions form A; and the blue and purple regions form A,.

Al A2

By Van Kampen, we know that m1(X) = m1(A;) = m1(Az)/ker ®. But A; and A, are homotopy equivalent to
circles, and the intersection is contractible and thus provides no new relations. This means the fundamental group of
X is Z + 7.

Example 61

Now suppose X = S2, and let A; and A, be the upper and lower hemispheres of S? extended a bit (so that
A1 n Az is homotopy equivalent to the equator — we call this a collar of the equator). But the fundamental group
of A; and A, are each trivial because they are open disks, so we indeed see that 7;(S?) is trivial (we don't even

need to consider the quotient).

A similar argument also shows that m1(S") is trivial for any n > 2. But we cannot make an analogous argument

for ST because we need A; N A, to be path-connected.

Example 62
Suppose we have a CW complex X = u,X", where X" is the n-skeleton of X. We wish to understand  (X)

based explicitly on how cells are attached to form X.

The answer turns out to be yes, but we'll do the argument in parts:

Proposition 63
Attaching an n-cell for n = 3 does not change the fundamental group of X.

Proof. Recall that n-cells are added to X via an attaching map ¢ : D" — X"~! and use ¢ to glue X"~ to D" along
the boundary. But D" can be thought of as a mapping cone CS""1, so D" ~ [0,1] x S"1/({1} x S"~1). But now
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we can decompose X = X"~ 11, D" into two parts, where A! = (3,1) x S"~1/({1} x S"~1) is only the “tip” of the
mapping cone” and A? = X 1y (0, 3) x S"~*. Their intersection is a collar (from % to 3) of S"~!, and thus

(X, x0) = m1(A1, X0) * T1(Az, X0)/ ker .

But the fundamental group of Aj is trivial (because it is a cone and thus contractible when n > 3), while the
fundamental group of A, is just m;(X) because we can deformation retract the attached cylinder back to X1
Finally, 71 (A1 N A, Xo) = m1(S"~1) is also trivial for n > 3. Thus the fundamental groups of X"~! and of X"~ 1114 D"
are the same, and the attachment did not change the fundamental group. O

Corollary 64
For any CW complex X with 2-skeleton X2, we have m1(X?) = 71 (X).

We'll understand how to study the attachment of 2-cells and 1-cells later on!

7 October 18, 2022

We'll discuss covering spaces in more detail today. Recall that a covering space of X is a space X with a covering
map p, such as p : R — S! sending s to (cos(27s), sin(27s)); we in particular used this space to compute 7(S?)

because R is contractible. R plays a special role for S in that it is a “universal cover:”

Definition 65
Suppose X is a covering space of X which is simply connected (meaning that it is path connected and its

fundamental group is trivial). Then we call X the universal cover of X.

We'll see later that “universal” refers to the universal property that any other covering space of X is also covered
by X — in particular, this gives us uniqueness of the universal cover up to homeomorphism, if it exists — but the
characterization as a simply connected space is what we'll care about here, because it helps us compute 1 (X).

We'll first try to figure out when universal covers do exist, and we'll start with a necessary condition. We'll focus
our attention on path-connected and locally-path-connected spaces here — suppose we have a universal cover X, so
that there is a map ()~< X0) — (X, x0), where X is any preimage of xo. Because we have a covering space, we can find
a small neighborhood U of x, € X and a small neighborhood V of X, € X so that p:V — U is a homeomorphism. We

thus get the following commutative diagram, where /,j are inclusions:
(V. %) —— (U.x0)

b

(X, %) —— (X, x0)
This gives us a corresponding map between fundamental groups as shown:

T (Vi %) —— (U, x0)

L‘* J{J*

Wl()?,)?o) i) 7T1(X,Xo)
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But because X is a universal cover, its fundamental group is trivial, and the p, map on the top is an isomorphism
by definition of U and V because we have a homeomorphism V — U. Thus, j, must have trivial image for any
arbitrary base point xp:

Definition 66
A space X is semi-locally simply connected if for any x € X, there is a neighborhood U of x such that
Jx 1 T (U, x) — w1 (X, x) is trivial.

For example, consider an annular neighborhood of the origin U in R2. Then 71 (U, x) is nontrivial, but any loop is
trivial when mapped into 71 (X, x). In this case we could have chosen a simpler neighborhood, but there are spaces
that are semi-locally simply connected but not simply connected.

There is also a notion of being locally simply connected, where for any x € X there is a neighborhood U of x
which is simply connected. In particular, this is a stronger assumption than being semi-locally simply connected
(because it means 71 (U, x) is always trivial so the map into 71 (X, x) will be trivial). And the point is that all CW

complexes are locally simply connected.

It turns out that this is the only necessary condition:

Theorem 68
Suppose X is path-connected, locally-path-connected, and semi-locally simply connected. Then X admits a

universal cover.

To figure out how to construct such a universal cover, recall that such a construction must have the path lifting
property (in which any path v : [0,1] — X with ¥(0) = xo has a unique lift 4 : [0, 1] — X with 4(0) = X) and also
must have the homotopy lifting property (where any v, : [0, 1] — X with 7:(0) = xp and (1) = x; for all ¢ uniquely
lifts to 4¢ : [0, 1] — X with ¥:(0) = X and 41(t) = X; for some unique X; determined by X). In addition, we must
have that any two paths from X, to X; are homotopic because X is simply connected. Thus, we are motivated to think
of the universal cover as the space of homotopy classes of paths on X starting at some fixed starting point X,
since the path class just depends on the final point 4(1) € X of the lift. Specifically, if a universal cover X exists, then
we have the map

& {[y] 17 :[0,1] = X, 7(0) = xo} — X

sending [v] to (1), and if X is simply connected then this is a bijection. So now we're ready to actually construct

the universal cover:

Proof. Define X to be the set of homotopy classes of paths [v] starting at xo (meaning we consider all v : [0, 1] — X
with v(0) = xp), where the covering map p : X — X maps [v] to v(1). We need to (1) define a topology on X,
(2) show that p is actually a covering map, and (3) check that (X, %) is trivial. (It turns out that if we choose a
different base point xp, we'll get a homeomorphic space. But we'll talk about uniqueness later.)

For (1), recall from point-set topology that a basis for a topology 7 on X is a set of open sets U = {Uq}aes SO
that for all U,V € U and any x € U n V, there is some W € U such that xe W < U n V. (For example, think about
the set of arbitrarily small balls in R".) We'll use a basis for the topology on X to construct a basis for the topology
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on X. Specifically, we can define
U = {U : U open and path-connected, such that m (U) — m1(X) is trivial.}

This forms a basis for X (exercise), and now we can construct a basis for X as follows. For any U € U, and for any
path v : [0, 1] — X between y(0) = xp and (1) = x; € U (that is, any path from xp to a point in U), we will define
an open set Up,) on X (the “open neighborhood" of «y), which is the set of compositions [n o 7], where 7 is a path
in U with 1(0) = x;. In other words, because U is path-connected we can draw a path from x; to another point in U
(staying within U), and we can use that path to extend -y. So the set of all extensions gives us a subset of X, which
will be an element of our basis for X.

There are a few important properties of this set Upy:

a v eV C U an Is also open and path-connected, then we can construct , which will be a subset o
If v(1 VcUandVisal d h d, th V['v] hich will b b f
Uly) (because any path within V' is also a path within U).

(b) If 4" is another path [0, 1] — X with 4/(0) = xp and 7/(1) = x| € U (not necessarily ending at the same point
x1), and we assume [Y'] € U}, then ¥/(1) € U, and we actually have Upy = Upyy. (This relies on the fact that
the map 71 (U) — w1 (X) is trivial.)

We claim that
U={Upy :Ueld,v:[0,1] — X where 4(0) = xo, ¥(1) € U}

gives us a basis on X. To show that this set can actually be a basis which lets us define a topology, we must show
that for any Upy,1, Viy,) € U and any point [y] € Upy,j N Vi), there is some Wiy, such that [v] € Wiy,) S Upy) 0 Vi)
We know by (b) that if [v] € Upy,1 0 V1, then (1) € U nV, and (by properties of the original basis ¢ on X) there
is some open set W € U such that y(1) e W < U n V. But now by (a), because W is a subset of U n V, Wi, must
be a subset of U, N V[y). And now by the second part of property (b), that also means that Wiyl € Upy) 0 Viya)s @
desired. So U is actually a valid basis, and from that we can define a topology on X in the usual way (a set O is open
if for any point x in the set, there is some U in the basis so that x € U < O).

Remark 69. A more naive approach would be to take the pullback of the topology on X to get a topology on X
(which is the weakest topology making p : X > X continuous). But this doesn't quite work — the pullback of the
topology on S to R collapses all of the different “sheets” and gives us the topology on S* again.

Next, we work on (2), showing that p : X — X is a covering map. If we pick a small open set U € U of X, then any
preimage of a point in U is some 7y : [0, 1] — X mapping from xg to some point in U. Thus we have the “neighborhood
of 4" Uy}, and we claim that p : Uy} — U is in fact a one-to-one correspondence sending [yn] to yn(1) (injective
because the fundamental group of U is trivial, and surjective because U is path-connected). Furthermore, p restricted
to Upy) is a homeomorphism, because we get a bijection between restrictions of bases U|y — Z/N{\Um.

So we indeed have a covering space because this covering map p is valid — indeed, for any U € U, the preimage of
U under p is the set of homotopy classes

= U Um
7:[0,1]->X
et
And the key fact is that Uy nU[y is either empty or the two neighborhoods are the same (since a nontrivial intersection
means we have a common point [y"] in both neighborhoods, so v”(1) € U and Upyj = Upyr) = Upy). So p=1(U) is a
disjoint union of sets, and each is homeomorphic to U, so we do indeed have a covering space.
Finally, we must check (3), which is showing that X is simply connected. We'll do that argument next time! [
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Last time, we discussed the construction of a simply-connected covering space (that is, a universal cover) of a path-
connected, locally-path-connected, and semi-locally simply connected space X. Specifically, we define X to be the set
of homotopy classes of paths [y] (for v : [0, 1] — X starting at some fixed point xo), from which we can define a
topology and show that p : X — X is in fact a covering map. Our goal is now to check that this space is simply
connected, which we can do by checking first that X is path-connected and then by showing that 7 ()N<) is trivial.

Our first step will be to restate the lifting property for X in a better way, because we have an explicit description
of the covering space. Given any path -y : [0, 1] — X with y(0) = xo, we can describe its lift in X in the following way.
We need to choose some Xy € p_l(xo) c X —in particular, we can choose Xy to be the class of the constant path
[xo] (because that constant path ends at xp, and our covering map sends [y] to y(1)). The lifting property then tells
us that «y has a unique lift starting at X5. For any t € [0, 1], we can define a new path

Ye(s) = y(ts), se][0,1],

which is the path that travels along only the first t fraction of v from xg to «y(t). We can thus define 4 : [0, 1] — X by
letting 4+ = [y¢]. In other words, the path in X can be thought of as starting with the constant path and then stretching
out along =y, and this is always a valid element of X because we're always starting at xo. Then 4(0) = [vo] = [x0] and
(1) = [n] =[] )

But this shows that X is path-connected — fix X = [xo] as before to be our chosen base point on the covering
space. Then for any [v] € X (that is, any path on X starting at xo), we know that «y lifts to 4 : [0,1] — X, which is
a path in the space of (classes of) paths connecting X, to [y]. Thus any point is connected to X; and thus the whole
space is path-connected.

We can now show that 71(X, %) is trivial. Recall that for a covering map p : (X, %) — (X,xo), the map
Ds ° 7r1()~<, %X0) — m1(X, xp) is injective. So it suffices to show that any loop (of paths) 4 : [0,1] — X sends to a loop
v = poA (with 4(0) = 4(1) = X = [x0] under the covering map, which is nullhomotopic in X. In other words, we
wish to show that [y] = [xp]. By assumption, 4 is the unique lift of y starting at Xp = [x0], and because 4 is a loop, it
ends at Xp. But by the path-lifting property, «v (now viewed as a path in X) also has a unique lift on X from %, to (7]
on X. Thus uniqueness means [y] and [x] must be in the same homotopy class of loops, which is what we wanted
to show.

We will now return to the question of uniqueness of the universal cover:

Theorem 70

Let X be path-connected and locally-path-connected. Suppose we have two connected covering spaces p; :
(X1, %) — (X, x0) and ps : (X2, %) — (X, x0). Then there exists a homeomorphism h : (X1, %) — (X2, %) so
that p1 = po o h if and only if the images of p; . and p, 4 are the same (in other words, pl,*(m()?l,fq)) =
P2+ (m1(X2, %)) € m1(X, X0).

Remembering that m; ()?1, Xp) is trivial for simply-connected covering spaces and thus the image is also trivial in X,

we immediately get the following result:

Corollary 71

There is a unique simply-connected covering space (up to homeomorphism).
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Proof. For one direction, if the map h exists, then p; = p» o h induces a corresponding diagram between fundamental
groups with p; 4 = p2.x © hy, where h, is an isomorphism because h is a homeomorphism. Then the images of the
fundamental groups will be the same.

The other direction is more challenging. Suppose we know that im(pys) = im(pss). Because (X2, %) is a
covering space of (X, xp), the map (Xi,%) — (X, xo) lifts to a map h : (Xi,%) — (X2, %) because we satisfy
that necessary lifting assumption (Theorem 55). Similarly, switching the roles of the two spaces gives us a map
g: ()~<2, )~<2) — ()N<1, X1). We now want to show that gh and hg are the identity maps on X, and X», respectively. For
this, notice that we can lift the covering map p; : ()~<1, %1) — (X, xo) to its covering space X1 in two ways: we can use
the identity map, or we can use g o h (because for the latter choice, we have (p; 0 g)o h = pyoh = p;). Thus those
two maps must be the same lift by uniqueness because they coincide on at least the point X; (since both the identity

at go h send % to X;). Similarly we can show that ho g = Idg , as desired. O

So up to homeomorphism, all path-connected covering spaces of X must correspond to subgroups of the funda-
mental group of X, and now we want to ask if we can achieve all subgroups. In other words, if N is a subgroup of
1 (X, Xo), then we want to know if there is a covering space py @ (Xn, Xn) — (X, x0) with py«(m1(Xn, %)) = N.
When X is path-connected, locally-path-connected, and semi-locally path connected, the answer turns out to be yes
— first, start with the universal cover ()?,)?0), and now define an equivalence relation on X (which we can identify
with the set of classes of paths [7] starting at %) by setting [y1] ~n [Y2] if ¥1(1) = ¥2(1) and [y1 - 7] (which is a
loop based at Xy, so we can think of it as an element of the fundamental group) is an element of N. We can check
(exercise) that this is actually an equivalence relation, so that we can define Xy = )~</ ~n. We then get two natural
maps p’ : X — Xy (the quotient map; we can check that this is also a covering map) and py : Xy — X, and we can
check that py gives us the covering space that we desire.

Definition 72
Let p: ()?,)?0) — (X, Xo) be a covering map. A homeomorphism h : X — X such that p = po his called a Deck
transformation. The group of Deck transformations will be denoted G(X, p).

In other words, h is a homeomorphism such that for any x € X, the set p~}(X) < X is preserved. Notice that if
two Deck transformations h; and hy coincide at any point, meaning h;(X) = hy(X) for some X € X, then h; and h,
coincide on the connected component of X containing X.

Definition 73
A covering space p : X — X is normal if for all x € X, G(X, p) acts transitively on the set p~1(x) € X. In other
words, for all X1, % € p~1(x) € X, there is some h e G(X, p) such that h(%) = %.

Theorem 74

Suppose X is path-connected and locally-path-connected, and we have a path-connected covering space given
by p: X —> X (note that X being locally-path-connected also implies that X is locally-path-connected). Let
H = P*(7r1()~<,>"<0)) c m(X,xp). Then X is a normal covering space if and only if H is a normal subgroup of
m1(X, x0). Also (independent of that fact), G(X, p) = N(H)/H, where N(H) is the normalizer of H.

(Here, the normalizer of H < 71(X, xo) is the subgroup

N(H) = {a € T (X, xo) such that a~*Ha = H},
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and a subgroup is normal if N(H) = 71(X, x0).)

Proof sketch. For the first fact, suppose that X — X is a normal covering space; we wish to show that H is normal.
So we need to show that for any [y] € 71 (X, x0), we have [y]"1H[y] = H. Notice that [v] is a path [0,1] — X, so
it can be lifted to a path [§] : [0,1] — X with (0) = % and 4(1) = X € p~1(xo) (because we started with a loop
rooted at xg, we must have 47 end at a point X; that projects down to xp). But now we can apply the definition of a
normal covering space to find some Deck transformation h that maps Xy to X;. The property p = p o h of the Deck

transformation then gives us an induced relation on the fundamental groups. But

H = P*(Wl()?,?o)) = Px © h*(ﬂl()?,)?o)) = P*("rl()?yil)),
and now we can compose with the change-of-basepoint homomorphism G5 (this is the only place where we use the
Deck transformation) to get

H= P Oﬁfy(ﬂl()?,)?o)).
So now if j is any loop on X with 7j(0) = 7i(1) = %, we see that

px o B5([A)] = p«([377]) = [p o (3717)]
by definition of py. But this now simplifies to

=[(poA)(pod)(pod)] = [A(pomv] = [v]"" p«([7])[V]-

Since v was arbitrary and we had an arbitrary element py([7j]) € H, this shows that H = [y]~*H[v], and thus H is

normal. ]

O October 25, 2022

We'll start our discussion of homology today — it has some connections to the fundamental group but not direct
relations, and we'll only cover this at a basic level. (And if we're seeing this for the first time, we should check all of
the details at least once.)

We'll start with some motivation for why we want to study homology: when we defined the fundamental group
71 (X, Xo), the main ingredient is the set of loops v : [0,1] — X with v(0) = (1) = xo, or equivalently the set of
maps S! — X with (1,0) mapping to xp, where we have equivalence coming from homotopies St x| — X with
H((1,0),t) = xo for all t. We now want to generalize these objects a bit to remove a few restrictions — topologically
we care about more than maps from circles and cylinders. Instead, we'll think about higher-dimensional objects —
studying v : S" — X will give us the higher homotopy groups m,(X) (with some fixed data), but that's not the
direction in which we'll go. Instead, we'll allow more general n-dimensional objects, such as the surfaces of arbitrary
genus. Additionally, we can also generalize homotopy — instead of going from S! to S* x /, we'll go more generally
from n dimensions to (n + 1) dimensions (for example imagining that a genus-g surface connects our two S's rather
than just a cylinder / sphere).

We'll start with some homological algebra. Let R be a commutative ring with unit 1 — we'll be considering the
modules over the ring R. (We can imagine R = Z for now if we're not too comfortable doing this, and we can just

think that we're working with abelian groups.)
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Definition 75
A chain complex is a pair (C, d), where C is an R-module and d : C — C is a module morphism (called the

differential) such that d? = 0.

Usually the idea is that C is a graded module C = (‘D/ez C;, where d maps C; to C;_;1 (in other words, it has degree
—1) — we'll see that d will increase the degree in cohomology, but it decreases it here. We'll then let d; denote the
restriction of d to C;. In general for the situations that we're seeing, we'll have C = Co @ C1 @ - -- C,. We see that

this setup means we have a sequence
d d;
.._>C,-+1—>/+1 Ci—>Ci_1— -,

where d? = 0 is really saying that d; o di.1 = 0, or in other wrods im dj1 c ker d;.

Definition 76
The homology of the chain complex (C, d), denoted H,(C, d), is ker d/im d. In other words, for each /, we have
the module

H,'(C, d) = ker d,-/im d,'+1,

and then we define Hy(C, d) = @, Hi(C, d).

Example 77
Suppose our chain complex looks like 0 — Z 37 0, where 2 means we have the multiplication-by-2 map. This

notation is meant to mean that the only nontrivial parts of the chain complex are Co = Z and C; = Z.

This is indeed a chain complex (easy check); to compute the homology, we have
H1(C,d) = kerdy/im do =0/0 =0, Ho(C,d) =kerdy/im dy = Z/2Z,

which is the field of two elements. All other homology modules / groups H;(C, d) will be zero because the kernel of

d; must be zero.
What we're interested in studying is often how to relate different chain complexes:

Definition 78
Let (C, d), (C',d") be two chain complexes. A module morphism f : C — C’ is a chain map if d’of = fod (that

is, the differentials commute with f).

Proposition 79
Any chain map f : (C,d) — (C’, d’) induces a canonical module morphism f : Hy(C, d) — H(C', d’).

Indeed, if we send [x] to [f(x)], we can check that the map is well-defined and actually a module morphism. And

there is also a functoriality property (which we can check by computation as well):

Proposition 80
If we have chain maps (C, d) ER (C’',d") % (C”, d"), then we also get a chain map go f, and (go f)s = gy o fx.
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We may ask whether two chain maps f, g : (C, d) — (C’, d’') yield identical induced morphisms f, g — in the case
of the fundamental group the answer came from homotopy, and here we have a “chain homotopy" as well:

Definition 81
A module morphism (not necessarily a chain map) T : (C, d) — (C’, d’) is a chain homotopy between chain maps
f,g:(C,d)— (C',d")iff—g=dT+Td. (Wesay that f and g are chain homotopic.)

Proposition 82
If f and g are chain homotopic, then f, = g, as maps H.(C, d) — H.(C', d").

We'll encounter more algebra as we move forward, but this is all the preparation we'll do on that front for now.

For now, we'll move on to some other preliminaries:

Definition 83
The simplex A” is a subset of R"T1, defined via

n

A" ={(x0, -+ Xn) : Zx,-z 1,x = 0}.
i=0

For example, the 1-simplex is the set of points (xo, x1) € R? with xp + x; = 1 in the first quadrant, which is a line
segment. A 2-simplex is then a triangle, and a 3-simplex is a tetrahedron (and a O-simplex is a single point). In general,
A" is then a convex space spanned by (n+ 1) standard basis vectors — we'll let those vectors v; = (0,---,0,1,0---,0)

be the vertices of our simplex and write the simplex as [vo, v1, -+, Vu]. The faces of A" are then spans of subsets:

Definition 84
Let [vo, -, vy] be an n-dimensional simplex. Given any nonempty subset {v;,---,v; }, we get a subspace
A™ < A" (the convex space spanned by the subset), which we call an m-dimensional face of A”.

For example, picking a subset of size 2 gives us a line segment, and a subset of size 3 gives us a triangle. In making
all of these definitions, the order has not mattered (something like [vp, v, v1] produces the same simplex as [vo, v1, v2]
but rearranging the faces), but we do want to describe how they are different in terms of traversing along cyclic paths.

This basically comes down to characterizing permutations in a particular way:

Definition 85
A transposition is a permutation in which only two elements are switched (so v; is sent to v; and vice versa, but

all other elements stay fixed).

Fact 86
All permutations are a finite product of transpositions (by induction), and for any permutation, the parity of the
number of transpositions required is fixed. (One way to see this is to think about permutations as matrices;

requiring an even (resp. odd) number of permutations then corresponds to a determinant of 1 (resp. —1).
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Definition 87

A permutation is even (resp. odd) if the number of transpositions in its representation is always even (resp. odd).
The set of orderings of the vertices of a simplex is then divided into two equivalence classes, where equivalence
means that we get from one to another by an even permutation. An orientation of A” is a choice of one of the

two equivalence classes.

For example, if we write A2 = [vg, v1, vo], we have now denoted an oriented simplex, which is ordered in the
opposite way as [vg, vz, v1]. And for any subsimplex A™ of an oriented simplex A", we get an induced orientation on
A™ (from the induced ordering).

We're now actually ready to introduce what homology theory looks like for topological spaces — it turns out we
really just care about codimension-1 faces, and the point of this orientation is that it gives us some negative signs
when we do calculations in chain complexes. There's two ways we can set this up, which give rise to two different

homology theories, but it turns out they will be isomorphic:
« Simplicial homology, in which we embed simplices into our topological space X (in other words, triangulate the
space),
+ Singular homology, in which we think about continuous maps o : A" — X.

(There is also cellular homology coming from CW complexes, which is what is more useful for actual computa-

tions.) For simplicial homology, our setup is as follows (this definition will be rewritten next lecture):

Definition 88 (Sketch)

A simplicial structure of a topological space X is a collection of embeddings (homeomorphic injection) of simplices
{ofe : Alr — X}, (often we'll just write the images as A* < X) such that X = ¢, A%, with the condition
that whenever AZx n Agﬁ is nontrivial, there is some y € | with Ay = A% A Agﬁ which is a face of both AZ* and

Agﬁ (so simplices must intersect along a common face, which is also a simplex in the embedding).

(In particular, this does restrict the set of spaces X we can consider — even for manifolds, there is the triangulation
conjecture which was proven false, so not all spaces can be triangulated.) The point of such a simplicial structure
will be to define a chain complex on which we can do homology: if K = {Al*},¢/ is a simplicial structure on X, then
define the chain complex (CK, d¥) as follows. Fix some commutative ring R with unit 1, and let

CK= {ZI’,‘A,‘ZI’,‘ER,A,’EK}

i=1
be the set of finite formal sums of all simplices (of any dimension), which is an R-module. We then get a natural
CK., defining

decomposition into its various graded parts CK = P ez

m
i=0

n
ch = {Zr,-A;":r,-eR,AreK,dimAf’_m}.

Then the differentials will basically take m-dimensional simplices to (m — 1)-dimensional simplices, but we'll see that

in more detail next time.
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We introduced simplices last time, with the goal of creating simplicial structures on topological spaces for the purpose
of computing homology. We'll begin by slightly restating the simplicial structure definition to account for a few extra

conditions:

Definition 89

A simplicial structure is a collection of maps K = {0]* — X}4e/ with the following conditions:

1. For any a, o4 restricted to the interior of Al is an embedding (injective map).

2. If our simplicial structure contains o4 : Alx — X and A™ < Al is a face of the simplex, then o4|am : A” —

X is also one of the embeddings in K.

3. Forany two maps o4 : Al* — X and og : Agﬁ — X, ifaa(Aga)maﬁ(Agﬁ) # &, then we have a “common face”
(meaning that 05 (04 (A%) N op(AF)) = By = A2, and similarly o5 (04 (A%) N og(AY)) = Ag = AP).

4. X =g 0a(Dl); that is, X is covered by the simplices.
5. A subset U < X is open if and only if U n o4 (int(AZ)) is open for any a.

6. The interior of any two simplices do not intersect in X.

In other words, we want to glue simplices along the common boundary, restricting the topology formed by those
gluings (so that we can't make the topology arbitarily stronger).

Remark 90. We often also call a simplicial structure on X a triangulation. A simplicial structure has more requirements
than a CW complex because of point (3) — gluings can only happen along entire faces in simplicial structures. So
simplicial structures give rise to CW complexes but not necessarily the other way around. Expanding on what was
mentioned last time, all smooth manifolds do admit simplicial structures, and all manifolds of dimension at most 3 do

as well, but there are n-dimensional topological manifolds which do not for any n = 4.

We can now describe simplicial homology (the most restrictive homology theory) in more detail than we did last
time. We start by defining a chain complex in terms of the simplicial structure K of X — here, we'll work with abelian

groups to make the construction simpler and define

n
Ck(X) = {Z rioi i €Z,0;: Al* — X simplex in K}
i=1
to be the set of Z-finite sums of simplices (more generally Z can be replaced with any commutative ring, but we'll just
think about this in terms of abelian groups for simplicity). We can place a grading on this ring, where the mth graded
part CKX is restricted only to sums over the m-dimensional simplices. To define the differential map d¥ for this chain
complex, we just need to define d¥ : CK — CK | for each m; we know the generators of CX are the m-dimensional
simplices, so we just need to define the differential of any simplex and extend by linearity: we'll basically sum over all

faces in an alternating fashion:
dm([Vo.vi, - o Vm]) = [vi, Vo, va, -+ Vin] — [Vo. Vo, Va3, -+ Vi + [Vo Vi, Va0 Vi — -+ (=1)"[vo, i, -+, Vin—1].-

In other words, when we remove the ith vertex, we get (—1)' times the (m — 1)-dimensional face without /. This

choice of signs is to ensure that we actually have d? = 0, and it's also motivated by the induced orientation that we
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discussed last time. Checking that we do have d? = 0 will be left as an exercise, but as an example notice that

dQ[Vo, Vi, VQ] = d([Vl, V2] — [Vo, VQ] + [Vo, Vl])
= (Vl — VQ) — (Vo — V2) + (VO — V1)

=0.

Intuitively, the differential gives us the boundary of our simplex, and the boundary of a boundary is zero. So

(CK,d") is a chain complex, and we can define the simplicial homology HX (X) = H,(CK, d¥).

Remark 91. /f we want to make this definition, we have two main problems: X may not have a simplicial structure,
and we need to check that this is well-defined regardless of the choice of our chain complex. Additionally, if (X, Kx)
and (Y, Ky) are two spaces equipped with simplicial structures, then we may want to relate X and Y with a continuous
map f. But f does not generally preserve simplicial structure, so it is hard for us to describe how f gives a map
HIS(X) — HE(Y).

In classical simplicial homology there is a way to show well-definedness and also deal with continuous maps (specif-
ically using barycentric subdivision) but we won't explain that here because it takes a bit of work. Instead, we'll now
show some of the more advanced techniques so that we don’t have to think about these kinds of questions. We're
mentioning simplicial homology mostly because it came first in mathematical development and as motivation for more
powerful theories.

In singular homology, the point is that we no longer require o4 : A™ — X to be injective in the interior, so that

we can work with more general objects:

Definition 92

A singular simplex is a continuous map o : A" — X.

We'll again just work with Z coefficients here and construct a chain complex. This time, we have

n
C(X) = {2 rio;j : ri € Z,o0; » A" — X singular simplices} :

i=0
notice that we're allowing arbitrary continuous maps into X now, so this space is now much bigger than the C(X)
that we had before. And now we define the differential in a similar way: we can decompose C(X) = @59 Cm(X),
where Cp,(X) is generated by the m-dimensional singular simplices, and then we can define d : Cpy(X) — Cp—1(X) by

defining it on the generators, so that for any o : [wo, v1, -+, V] — X we have
do=oc([vi, -, vm]) —0o([vo. Vo, -, Vm]) + -+ (=1)"o([vo, va, - -+, Vim—1])-

This is again restricting to faces, so the argument for showing that d? = 0 is identical. So we have singular homology
H;(X) = H«(C(X), d) defined in the usual way for a chain complex.

This time, we don’t have issues with specifying a simplicial set anymore, but because our chain complex is generally
infinitely generated it's hard to answer questions like “is homology finite-dimensional?”. In general, simplicial homology
is more computable if we have a finite simplicial structure (because it's induced by simplices rather than continuous
maps or other properties), but it has worse functoriality properties and it's hard to see why it's well-defined. We'll

mention just a few cases where singular homology can be actually computed:
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Example 93
If X is a single point {p}, then C,,(X) only has a single unique generator which sends all of A™ to p.

. . Ao
Our goal is then to calculate the homology of the chain complex --- — C,, G, Croyg 2250 LN Cp — the actual

calculation is left as an exercise for us, but we can check that each Cy is freely generated (as Z) — in particular, we're

not modding out by relations from permutations — and then we get

Z n=0,
0 n#0.

HH(X) =

(And now if we replace Z with an arbitrary commutative ring, all of the Zs become Rs, including our final answer.)

Example 94

Now suppose X is a path-connected space; we will still be able to compute Ho(X).

We need to understand the chain complex Cy(X) LN Co(X) ©, 0 and calculate ker do/im dy, but all of Co(X)
maps to zero so the kernel of dp is all of Co(X). But remember that zero-dimensional simplices are maps from a point
into X, so Co(X) can be regarded as {}>_, rix; : r; € Z, x; € X}. On the other hand, C;(X) is the set of maps from
a line segment into X, which can be thought of as the formal sum of paths in X. Furthermore, if o : [0,1] — X is
an element of C;(X), then do = o(1) — ¢(0). So modding out by the kernel of d; means ¢(0) = o(1) for any path o
in Co(X), but X is path connected so any two points are equal under this relation! Thus Hgy(X) is isomorphic to the

group generated by any one point, which is Z.

Theorem 95

For any space X that admits a simplicial structure, we have HX(X) = HZ(X).

It turns out that (when we introduce it later) cellular homology will also be isomorphic to these homology theories.
This is not a coincidence — there turns out to be an set of axioms that guarantee isomorphism, which we may explore
more if we have time. But the point is that we can pick whichever is easiest to use to make arguments or perform

computations.

11 November 1, 2022

We introduced singular homology last time, in which we study the set of singular simplexes (that is, the set of
continuous maps ¢ : A" — X). We get the chain complex C(X) of linear combinations Y.\, rio; (where r; € Z and
o; are simplexes), and we get the differential map d : C(X) — C(X) in which d; : C;(X) — C;_1(X) restricts each

simplex to its faces with alternating signs and orientations as we've previously described:
d(o([vo, - val)) = o([vi, v, -+ va]) = o([vo, va, -+ L vi]) + -

+(=1)'o([Vo, - Vic1, Vig1, - Vi) + -+ (=1)"0([vo, Vi, -, Vi1]).

Last time we shows that the homology groups H;(X) of a point are Z for i = 0 and 0 otherwise, and we also showed

that whenever X is path-connected, Ho(X) = Z. Today, we'll understand how continuous maps f : X — Y relate to
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singular homology. For any such map f, we get a natural map fx : C(X) — C(Y) which sends any singular simplex
c: A" > Xtofoo:A" >Y.

We can check that (1) this is in fact a chain map (meaning that it commutes with the differential, so dy o fy =
fy o dx), (2) if f is the identity map X — X, then fyx is the identity map C(X) — C(X), and (3) if we have maps
f:X—>Yandg:Y — Z, then gy ofy = (gof)y. Inparticular, (1) says that because fx is a chain map, we get a
natural map on homology f; : Hy(X) — H.(Y), (2) tells us that the induced map id, on homology is also the identity
map H.(X) — H«(X), and (3) tells us that g, o f, = (gof), at the homology level too. And what's nice is that with
singular homology, we get this induced map in a very natural way.

The next natural question to ask is whether the maps fu : g» : C(X) = C(Y) or fy, gx : He(X) = Hy(Y) can
be related if we have homotopic maps f,g : X — Y. Recall that f ~ g can be restated as having a continuous map
H: X x| —Y, and any singular simplex o : A" — X gives us a composition of maps A” x [0, 1] — Y by first applying
o x id; and then the homotopy H. This composition restricted to {0} is H|x o} : A" — Y, which is f oo (the image of
o under fy), and this composition restricted to {1} is H|x 1} : A" — Y, which is goo (the image of o under gx). So
with that, we can now define a chain homotopy T : C,(X) — Cp41(Y) making use of H: forany o : [vo, -+, vs] — X,
denote v; x {0} by the original v; and denote v; x {1} by v/. Then we basically “triangulate” [vo, v1, v2] x | by defining

T(o) =Ho (o xid)|;[vo, Vg, V4, -+, vi] — Ho (o x id)|i[vo, v1, v, -+, v,]
+ 4 (=1)'Ho (o xid)|i[vo,v1,---vi, V], -+ V] + -+ (=1)"Ho (o xid)|;[vo, vi, -+ , Vo, VL] + -+ -,
a (n+ 1)-simplex into Y. We can check by computation that

g# — f# = dyT + de,

so by Proposition 82 we indeed have identical maps fi, gx : Hx(X) — Hi(Y). And similarly, if X ~ Y, then
Hy(X) — H«(Y) by constructing inverse maps on homology, so for example for any contractible space we get the

homology of a single point (Z for n = 0 and O otherwise).

Example 96
Consider the case where A! = [vg, v1]. By the construction above, we have T ([vo, v1]) = [vo, V{, v{] — [vo. v1, V{],
and we can check the chain map condition here explicitly, using that g« ([vo, v1]) = [V, vi] and fx([vo, v1]) =

[Vo, v1].

Indeed, we have
dy T ([vo. v1]) = [vo. vi] = [vo. vi] + [vo. vo] = [vi. vi] + [vo. vi] — [vo. v1]

and
Tdx([vo, vi]) = T([1] = [w]) = [v1, vi] = [0, Vo),

so adding these together preserves only the terms [v{, vi] — [, vi], which indeed corresponds to g« ([vo, vi]) —
fi([vo, v1]).

We'll now discuss relative homology: let A < X be a subspace, and we define the homology H.(X,A) in
the following way. We have Cx(A) < Ck(X) for each k, so we can form the quotient complex C(X)/C(A) (or
equivalently making formal sums zero if they consist of terms inside C(A)), which is a direct sum ), ., Cx(X/A) =
Dkez Ck(X)/Ck(A). Additionally, the differential dx : Ci(X) — Cir—1(X) also maps Cx(A) — Cx_1(A), so we get a
natural differential on the quotient complex X/A.
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Definition 97
The relative homology H, (X, A) is the homology of the quotient complex H, (X/A).

This relative homology turns out to be useful for doing certain computations:

Proposition 98
If U< X is an open set with A < U a deformation retraction of U, then H"(X, A) = H,(X/A) for all n > 0.

For example, if X = D? and A = 0X = S!, then we can let U be an open collar of the boundary. Since U
deformation retracts onto A, we have H,(X/A) =~ H,(X, A) for all n > 0, meaning that H,(X, A) =~ H,(52) for all
n > 0 (and the zero-dimensional case is easy because we have a connected space, so Ho(S?) = Z). Similarly, whenever
we have X = D" and A = 0D", then X/A = 5" so H(S") = Hk(X, A) for all k > 0 and Ho(S") = Z.

But we want a way to actually compute the relative homology of C(X, A) = C(X)/C(A), and it turns out we can

make use of an exact sequence:

Definition 99
. ) fo ) )
A sequence of group homomorphisms between abelian groups --- — A, i, o1 — Ap,_o — - is exact if for

any n, we have ker(f,—1) = im(f,).

(Remember that in chain complexes, we have a sequence of such maps in which each kernel contains the previous
image, but exactness is stronger — a chain complex is exact if and only if H,(C,d) = 0 for all n.) For example,
0 > AL Bis exact if and only if f is injective (since ker f = 0), A % B — 0 is exact if and only if g is surjective
(since kerg = B), and 0 —> A L B — 0 is exact if and only if f is an isomorphism. So the inclusion ¢ : A — X
induces a map tx : C(A) — C(X), and we also get a quotient map g : C(X) — C(X)/C(A). We can check that ¢ is
injective, g is surjective, and ker(q) = im(t4), so we have an exact sequence (called a short exact sequence because
it is of the form0 > A— B —» C — 0)

0 — C(A) — C(X) — C(X)/C(A) — 0.

We can now make use of an important theorem in homological algebra:

Theorem 100 (Zigzag lemma)

Suppose 0 — (A, da) — (B,dg) — (C,dc) — 0 is a short exact sequence of graded chain complexes. In other
words, we have chain maps f : A— B and g : B — C which preserve gradings of A, B, C (meaning f(A,) € B,
and g(B,) < C,), such that f is injective, g is surjective, and ker(g) = im(f). Then we can construct a long
exact sequence with the connecting maps 0

f: % f; )
e Hn(A) —=> n(B) o n(C) = nfl(A) = anl(B) s anl(c) o an2(A) —

Applying this to our particular question, we find the following property for relative homology:

Corollary 101

If A< X is a subspace, then there is a long exact sequence

o Hp(A) = Hn(X) = Ha(X, A) = Hp_1(A) = Hp_1(X) = Hp_1(X, A) — - .
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The essential step to showing the zigzag lemma is constructing the connecting map 0y : H,(C) — Hp—1(A), and
we can visualize this in the diagram below (we will do some “diagram chasing”):

Cnt1
dn+1
0 A, B, —X— C, 0
J d
00— A1 — B3 Cho1 0
e
00— Ao —— Byo Choo 0

To construct the blue map H,(C) — H,—1(A), we need to start with an element of ker(d,)/im(dp+1). We can
pick some arbitrary representative o € ker(d,) < C, (sent to zero under d,), and because g is surjective, we can find
some B € B, such that g(8) = . But then d,(8) € B,—1 must be sent to zero because of the commutative square
formed by B, Cy, Br—1, Cn_1, 50 d,(B) € ker(g). By exactness, this means it is also in the image of f, so there is
some element -y in A,_1 which maps to d,(8) — we wish to define dx([a]) = [¥].

Next, we check that «y is actually in ker(d,—1). For the latter, by the commutative square formed by A,_1, Bp—1, An—2, Br—2,
we know that f(dy—17Y) = dn—1(dn(B)) = 0 (because B is a chain complex), but f : A,_» — B,_5 is injective we must
have d,_17y = 0. Thus <y does represent a homology class in H,_1(A).

But there is still work to do — we need to check that our choices of a, B, do not affect the final homology class
Hn—1(A), and we also have to check that d, actually fits into the long exact sequence. But that's left as an exercise
for us, and what's important is that this is a very powerful result for computation:

Example 102

Let X = D", A= 0X = S"~1. The short exact sequence 0 — C(A) — C(X) — C(X, A) — 0 yields a long exact
sequence including

c = Hi (8™ 1) = H(D™) — Hi(D", S™ 1) = Hi_1(S" 1) = Hi_1(D") — Hx_1 (D", S™ 1) — - ..

But for all k > 1 we have H(D") = Hy(point) = 0, so in fact the blue part of the long exact sequence yields an
isomorphism Hy (D", S"71) =~ Hy_1(S""1) for all k > 1.

12 November 3, 2022

Last lecture, we introduced relative homology, defining a quotient chain complex C(X, A) = C(X)/C(A) and defining
the relative homology H..(C(X, A)) in terms of the induced differential map of the quotient. We mentioned that there
is a short exact sequence of chain complexes 0 — C(A) — C(X) — C(X, A) — 0, which then gives rise to a long exact
sequence of the homology groups (with ¢, “connecting maps” constructed by the zigzag lemma). We care about this
quotient chain complex, because it turns out the relative homology is actually related to the homology of the quotient
space — H"(X, A) = H,(X/A) for all n > 0 if A is a deformation retraction of some open set U < X.

Remark 103. The case n = 0 is generally a bit trickier — we don't expect Ho(X, A) = Ho(X/A), because in the case
where A = X (so the deformation retraction condition is clearly satisfied) the right-hand side is 7, but Ho(X, X) =0
because C(A) = C(X) so the relative homology chain complex is just identically trivial.
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So if we want to include the case n = 0 in our characterization, we'll make use of the reduced homology, where
we extend the original (singular) chain complex C, —» C,_1 — --- — C; — Co — 0 to a complex

d, d; d
Ch—>Chg1—-—>C—Co—>7Z—0.

So most of the maps are defined as usual, but we now need to define dy in a way that still makes this a chain
complex. Remembering that Co(X) is spanned by the set of maps from a single point into X, we can basically write
Co(X) = {>;rixi : ri € Z, x; € X} as a formal sum of points. Since C1(X) is generated by paths (maps from [0, 1] into
X) 7 which are sent under d; : C1(X) — Co(X) to ¥(1) — ¥(0), we want to make sure do(y(1) —¥(0)) = 0 so that
the chain complex does satisfy d? = 0. So this motivates us to define

do <Zn: fiXi) = Zn: ri,
i—0 i—0

which works because we get a 1 — 1 contribution from any image (1) — «y(0) of a path. Keeping all other d;s the

same, this extended chain complex is often denoted (C(X), d), and we define the reduced homology

Ha(X) = Ho(C(X), d) = ker(d,,)/im(dpi1).

By the way we've defined this chain complex, H,(X) and H,(X) will agree for all n > 0, and the only difference comes

in the n = 0 term: we have | H,(X) =~ H,(X)®Z| So now we can rephrase our previous result for relative homology:

Theorem 104
Let A < X be a subspace such that there is some open set U < X with A € U a deformation retraction. Then
Hye(X/A) = Hye (X, A).

Example 105
The n-cell X = D" is homotopy equivalent to a point (it is contractible). Then the reduced homology /:/,,(X) is
zero for any n (since we have one less copy of Z in the reduced homology compared to the ordinary one).

Example 106
This reduced homology being completely trivial actually helps us do some other calculations. For example, take
A = 0X = S" ! as discussed last time. Then H,(D", S"~1) = H,(D"/S"') = H,(S"), since quotienting the

boundary of an n-ball gives us an n-sphere.

Applying a long exact sequence to the reduced homology, we have
Ak (8™ 1) = H(D") — Hi(D", 5" 1) — He_1(S™ 1) — H,_1(D") — - -

But the two red terms are trivial, so the two terms between them must be isomorphic (because exactness proves
injectivity and surjectivity), and we see that /:/k(S”) ~ /:/k_l(S”*l). So now we can inductively compute the reduced
homology of S”. First of all, S° = {p, g} has Ho(S°) = Z? and all other groups zero, so we also have Hx(S°) = Z
(one rank lower) and all other groups zero. This then shows that /—N/k(S") is Z for k = n and 0 for all other groups,
and thus the actual homology is

Z k=0,n,

Hi(S") =
0 otherwise.
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Remark 107. In doing this induction, there's two ways we can deal with the cases where k < n. First of all, we can
compute /:IO(S M) for each n, noticing that it's trivial because we have a path-connected space. Or alternatively, we can
notice that the zigzag lemma for reduced homology can be extended to negative homology groups —k, with C_1 =7

(this is the space we added when extending the chain complex) and C_, = C_3=---=0.

We'll now turn to applications: much like for fundamental groups, we can take advantage of the nontrivial homology

groups H,(S"). The details are left as exercises to us, but the argument is very similar to before:

Example 108
There is no retraction «y : D" — S"~! = 9D", because the induced map on the homology groups would need to
be trivial. Also, for any continuous map f : D" — D", f admits a fixed point.

Example 109
For n # m, R” and R are not homeomorphic — intuitively, we're saying that the dimension of R” and R are
actually different.

Indeed, if f : R” — R™ were a homeomorphism, pick x € R"” and y = f(x), so that we have a homeomorphism
from R™\{x} to R™\{y} (just by restricting f). Thus the homology of R™\{x} should be isomorphic to the homology
of R™\{y}, but H,_1(R" — {x}) = Z because R” — {x} retracts to S"~*, while H,_1(R" — {y}) = H,_1(S™1) = 0
because n # m, a contradiction.

We'll now move to the discussion of multiplicity — we may have first encountered this when thinking about roots
of polynomials (for example, (x — 1)2 = 0 has a root x = 1 of multiplicity 2), and it comes up in algebraic geometry

because the map f(z) = z°

in the complex plane is a 2-to-1 covering except at z = 0. So that tells us that the
multiplicity of £ at z = 0 is 2 (since at this singular point we get two sheets collapsing).

Our question is therefore to ask how to describe multiplicity of general continuous maps f : X — Y in algebraic
topology. We'll restrict to the case where X and Y are both manifolds (meaning that for any point x € X, there is an
open neighborhood U < X of x such that U is homeomorphic to some Euclidean space). To define this multiplicity

me(x), we'll need a result in homology theory:

Theorem 110 (Excision theorem)
Suppose we have subspaces Z € A € X such that Z < int(A) (so the closure of Z is contained in the interior of
A). (This is a very weak condition.) Then Hy(X,A) = Hy, (X — Z,A— 2).

(We should read the proof of this on our own — it's in our textbook.) With this, we can consider amap f : X —» Y
between n-dimensional manifolds and consider points x € X,y = f(x) € Y. We then take U € X to be some open
neighborhood of X homeomorphic to R”; by excision for the triple where A = X\{xo} and Z\X — U (so throwing away
everything except the local behavior), we see that

Hy (X, X = {x}) = Hx(U U — {x}).

But U is homeomorphic to R” for some n, so we can treat it as D" so that U — {x} is effectively S"~!. So this
right-hand side is basically Hy (D", S"~1) = H,(S"); in particular, we see that

Ha(X, X — {x}) = Z.
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This means that for a map f : X — Y and whenever x = f=1(y) for y € Y (not just f(x) = y), we induce a map
fe  Ho(X, X —{x}) = Hu(Y,Y — {y}), which is a map Z — Z. We then want to define the multiplicity at the point
x to be me(x) = fi(1). Intuitively, what's happening near x is that my tells us how many times the input S” wraps
around the target S”. But notice that we've switched from x = f~1(y) to f(x) = y in the condition above — the point
is that if the preimage f~1(y) contains more points than just x, then f(X — {x}) € Y — {y} so we can’t say that we
have a map (X, X — {x}) — (V.Y — {y}). But multiplicity is a local property anyway, so we can use excision to only

look at a local neighborhood.

Definition 111
A map f : X — Y is proper if for any compact set C € Y, f~1(C) € X is also compact.

Compactness is useful here because for any proper f : X — Y, plus some additional constraints, the preimage
f=1(y) is actually finite for any y € Y, so for any x € f~1(y) we can pick some open neighborhood U < X such that
Un f=Y(y) = {x}. This lets us make a proper definition:

Definition 112
Let f : X — Y be a continuous map with finite preimages, let x € f~1(y), and suppose we have U as above.
Then f induces a map f, : Ho(U U — {x}) = H,(Y,Y — {y}), which is a map Z — Z. The multiplicity is then
me(x) = £, (1).

We'll now consider the special case where we have a map f : S” — S”, in which the nth homology of S" is Z so

we have f, : Z — 7Z without needing to look locally at any point.

Definition 113
The degree of a map f : S" — S" is the value of f,(1) in Z.

This “global multiplicity” is in fact related to the multiplicity:

Theorem 114
Let f : S” — S” be a continuous map, and suppose y € S” with f~1(y) finite. Then

deg(f) = 3 mi(x)

xef—1(y)

(in particular, we claim this is independent of y).

Example 115

If f:S" — S™is the identity map, then f; is the identity map as well so deg(f) = 1. Meanwhile, if f : S” — S"is
not surjective, then f is homotopic to a constant map (if x is missing from the image we can use a stereographic
projection from x to map to R"), so deg(f) = 0 because H,(S") — H,({x}) — Hn(S") is always the zero map.

(On the other hand, there are indeed surjective maps with degree zero.)

Example 116
The map f : C — C sending z — z" indeed has m¢(0) = n, so this multiplicity we've defined coincides with the
algebraic one at least in this simple case.
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Notice that two maps f,g : S” — S" of different degree must not be homotopic to each other, so deg is a
homotopy invariant. But the converse is also true, and this is a result of Hopf: if f,g : S” — S" are two maps
with deg(f) = deg(g), then we actually have f ~ g. (But this is a very hard theorem to prove — we can take a
look at the fourth chapter of Hatcher for the details.)

This degree is actually what will lead us to cellular homology, a more computable homology theory for CW
complexes. We'll discuss that next time — basically the degree will give us the coefficients in the differential maps when
defining the chain complex.

13 November 10, 2022

Last time, we described an long exact sequence for pairs A < X relating the homology groups of X, A, and relative
homology (X, A). We mentioned that if there is an open set U € X with A € U a deformation retraction, then we
have H4(X/A) = Hy4(X, A). For example, we saw that H,(S") = Hx(D",S" ') is Z if k = n and 0 otherwise; we
then used this to define the degree of a map S" — S”" to be the image of 1 in the map f, : H,(S") — H,(S") (a
map Z — 7Z), and we mentioned that the degree can be calculated locally if preimages are finite.

Today, we'll discuss how to use degree to define cellular homology, another homology theory which applies to
CW complexes. If X is a CW complex (in which we have cells that are glued along boundaries to lower-dimensional
skeletons) and we have some fixed CW structure {1, : €l — X"~1} for X, our chain complex C(X) will be generated

by the set of cells {e,} in that structure; in other words, we have

n
C(X) = {Z rie el e’ cell},
i=1

graded by the dimension of the cell (so Ci(X) is the Z-span of the k-cells e,-"). We now need to define a differential,
which is a map di : Cx(X) — Ci_1(X) satisfying dx_1 o dk = 0, meaning that for each cell el with n, = k, the map
takes the form
de(er) = >, dP¥ey.
Bel.ng=k—1

(In words, the differential of a k-cell is some linear combination of (k — 1)-cells.) Our job is then to specify all
coefficients d,f‘ﬁ by thinking about how cells are glued to their boundary. We know that there is a map from any k-cell
Yo @ 00 — Xk =1 and the skeleton X¥~1 in particular contains egﬁ, so we can consider the quotient

XKL/(XNint(eg)

where we identify everything outside the interior of the (k — 1)-cell 3, which actually just gives us a sphere S¥~1. So
composing 1, with this quotient map, we get a map 'L/;aﬁ in which we start with de=, which is a sphere Sk, and

end up in the quotient sphere, which is also S¥~1. We will thus define

dl?ﬁ = deg ('J)aﬁ)

to be the degree of the map S~ — Sk=1 (which is some integer), and that gives us a complete characterization of
the map. Intuitively, this number tells us how many times we wrap around the (k — 1)-cell 3.
We might be concerned that there might be infinitely many nonzero coefficients d,f‘ﬁ, since elements of the chain
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complex should only contain finite linear combinations. But this is where the CW complex definition comes in:
Yo : 0€ — Xk~ is a map from a compact set, so the image must also be compact in X%~ (by how our topology
is defined). And any compact set only intersects finitely many cells, even if the CW complex has infinitely many.

Additionally, we also have to check that this is a valid differential map — we need that d? = 0. We won't do this
in too much detail, instead just explaining this at an intuitive level: if the image of 14 is contained in a single B-cell,
meaning im(¥y) S int(eg‘a), then because eg‘j is contractible, 1 is nullhomotopic and thus dfﬁ = 0 for any B, meaning
the image itself is zero (we don't even need to look at d?). On the other hand, if the image of 1, wraps around each
of the two adjacent (k — 1)-cells egﬁ and ey once, and those two (k — 1)-cells overlap on the X*~2-skeleton. But the
coefficients from a — 3 and @ — =y are both 1, and then the coefficients from B and -y to their common intersection
will cancel out (because we wrap around in opposite directions). That's why we should expect any coefficient to be
zero.

So we do have a chain complex C(X) along with a valid differential map d, and thus we can define the CW

homology
HWY(X) = Hy(C(X), d).

Theorem 118
The simplicial, singular, and cellular homology theories HX(X), H3(X), and HSW(X) are all isomorphic to each

other.

In particular, for both simplicial and cellular homology we even have to answer the question of well-definedness
— the homology is independent of the choice of simplicial or CW structure we put on X. And this is powerful for

computation because CW structures have fewer restrictions than simplicial ones.

Example 119
We'll compute the cellular homology for surfaces, specifically thinking about the (one-holed) torus S.

We can place a simplicial structure on S and compute the simplicial homology, but we'll do so for cellular homology

here. We can cut along the usual two circles for a torus and unfold to get the following picture:

v b v
\
?

aan € Ad
\
7

v b %

We have one 0-cell v, two 1-cells a and b, and one 2-cell e. Then Cy(S) = Z{e), C1(S) = Z{a, by, and Cy(S) =
Z{v), and we need to define the differential map. Orienting e counterclockwise, we see that e =a—b—a+ b = 0.
Similarly, da = 0b = v — v = 0. Thus all of the differential maps are zero, and we see that

Z k=0,2
H(S)=147? k=1

0 otherwise.

39



We can similarly consider a chain complex for a two-holed torus, in which we again have a single O-cell, four 1-cells
(two for each hole), and one 2-cell, Again there will be no differentials at all, so the homology will be Z, Z*, Z. This
can in fact be generalized to general genus g.

Example 120

Next, we can compute the cellular homology for a Klein bottle, in which the gluing looks slightly different:

% b %
Vi
N

a e Ad
\
4

% b v

This time everything is the same as for the torus, except de = a— b —a— b = —2b, so that our chain complex

looks like
Ca(S) = (e) 22228 C1(S) = (a, bY 2 Co(S) = (v) — 0.

Then we have Hy(S) = 0 because there's no kernel in the map e — —2b, and H1(S) = {a, by/(—2b) = Z® Z/2Z.
Finally, Ho(S) = Z and we've computed all of our homology groups.

Example 121

Now, we'll find the cellular homology for S” for n > 2.

We know that one possible CW complex structure for S” consists of one 0-cell plus one n-cell, so we have
Ch(S) > 0— -+ 50— Cy(S). Soif n= 2 all such maps are zero, and this shows quickly that the homology groups
H(S") are Z for n = 0, k and 0 otherwise.

We'll mention one more important tool for homology computations now, in which we glue two spaces together to

make a new one:

Theorem 122 (Mayer-Vietoris)
Let X be a topological space with subspaces A, B < X, such that X = int(A) uint(B). Then there is a long exact
sequence

Hp(An B) > Hy(A)® Hy(B) > Ho(Au B) > Hp1(AnB) — - -+,

where we can notice that H,(Au B) = H,(X). In fact, we can describe all of the maps here explicitly. Additionally,
there is also a version with reduced homology which also holds.

In other words, knowing homology of An B, A, and B tells us homology of Au B. The idea of the proof is that
we have a standard process for generating a long exact sequence given a short exact sequence of chain complexes (the
zigzag lemma), so we can make use of the short exact sequence 0 - C(An B) - C(A)®C(B) - C(AuB) - 0in
which the maps C(An B) — C(A) @ C(B) and C(A)® C(B) — C(A u B) can be explicitly given: we have natural
inclusions i : C(An B) — C(A) and j : C(An B) — C(B), and we also have natural inclusions k : A— A u B and
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L. B — Au B. We then get maps on the chain level i, jis, ky, £4, and we claim the maps that give us a short exact

sequence of chain complexes are
3@y ky—ly
0->C(AnB)— CA)®e(C(B) —> C(AuB)—0.

So through the proof of the zigzag lemma, we can figure out the connecting map H,(Au B) — H,_1(An B) by hand.
But it turns out the answer is that elements of H,(A u B) are represented by n-dimensional “objects” a”, which can
be decomposed into a part in A a4 and a part B a}, so that a”" = a} U af intersecting along a common boundary

Ooly = 0. Then we are basically sending a” to this common boundary, which will be an object in H,_1(A n B).

Example 123
Consider the case where X is a two-holed torus, and we pick A and B so that A contains one of the holes and B
contains the other one. (So imagine cutting the two-holed torus in half, and letting each half plus a little bit of

the other be one of the two spaces we're considering.)

Then the homology of A n B follows the long exact sequence in Mayer-Vetoris for reduced homology
Hi(An B) — Hi(A) @ H1(B) — A1 (AU B) — Ho(An B)

Since the intersection of A and B is a connected annular region, Ho(A n B) and Hy(A n B) =~ Hy(S). Similarly, we

have the sequence

Ho(A A B) — Hy(A) @ Ha(B) — Hz(AU B) — H1(An B) — H1(A) @ Ha(B) |,

in which we know that H.(A n B) = H»(S?) = 0, but we don't know how to compute H»(A) or Ha(B). for that,
notice that both of them are basically a punctured torus, so we can think about the Mayer-Vietoris sequence for a

torus covered by A and D?. That gives us

fa(A A D?) — fa(A) ® Aa(D?) — Fa(A U D) 25 Fi(A A D?),

isomorphism
————

and these spaces are 0 — I:/2(A) — 7 Z, so in fact I:/2(A) must be trivial. Similarly, we can find that
/:/1(A) = 7?2 by looking further down that sequence. So plugging back in to our boxed sequence, we find that it is
0-0—FMH(AUB) > Z 2, 72 @ 72), and this shows that we must have Hy(A U B) = Z. Similarly, we can find
that H1(A U B) = Z*, and we indeed see that we get back the same answer with Mayer-Vietoris as with our previous

method above.

14 November 15, 2022

We'll finish our discussion of homology theory today with a few remarks. The first thing we'll talk about is orientation
— we'll focus on manifolds here, in which we have a topological space X with an open cover {Uq}qes such that there
are homeomorphisms p, : R" — U, for each a. (There are also some other conditions that are required, but this is
the most important one.) We see that our manifold X is smooth (this also gives definitions for Cl (C?, and so on), if
the transition map '06_1 0 p from pt(Uy N Ug) to pﬁ_l(Ua N Ug) is a smooth map R” — R".

Our goal is then to define an orientation for manifolds. For smooth manifolds this is easy, because the differential
d(pgl 0 pa)x at any x € pyt(Uy n Ug) is @ map R” — R". Since p,gl 0 pg is a diffeomorphism, d(pg1 0 Pa)x IS
nondegenerate for all x (meaning that the corresponding n x n matrix is of full rank).
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Definition 124
A manifold X is orientable if we can pick an open cover {Uy}aes SO that det(d(p[;1 0pa)x) >0 forall a,B el

and x € p31(Uy N Up).

Intuitively, the point is that we have local coordinate charts at every open set in our cover, and we want the
canonical choice of R" to agree in orientation when we transition from one open set to another. But this only works if
the transition map is differentiable, and for an arbitrary topological manifold we cannot use this definition. So instead
we want to ask what happens in general. In particular, the map pgl 0 pa : Prt(Uy nUs) — pgl(Ua n Ug) will just be
continuous, not differentiable, and in such a case we will use homology to define orientation instead.

Definition 125
Let f : U — V be a homeomorphism between open subsets U,V of R"”. Then for any x € U, we have a map
Hy« (U, U —{x}) > He(V,V — {f(x)}) (this is well-defined because f(x) is only mapped to by x), which is a map
7, — 7. by excision. Then 1 is sent to either 1 or —1 because f is a homeomorphism; we say that f is orientable
if 1issent to 1.

Definition 126

A topological manifold is orientable if there is an open cover {U,} such that for any o, B € /, pglopa is orientable.

In most cases we can use the differential definition, but there are some manifolds that are not “smoothable,” so
this homology definition is more general.

Next, we'll see how all of this is related to simplicial complexes — recall that we can define orientation in that
setting, but not all topological manifolds can be triangulated. Suppose X is a topological manifold which does admit
this simplicial structure. Notice that if we have an n-dimensional topological manifold, then we must basically take
a bunch of n-dimensional simplices and glue them along (n — 1)-dimensional faces, which is much more constrained
than the usual construction.

But recall that for a single simplex, we define an orientation by choosing the parity of ordering of its vertices
(we get the same orientation if we perform an even permutation on that ordering). And for any codimension-1
(meaning dimension n — 1) face of an n-simplex A" = [xo, - -+ , X»], we get an induced orientation on the n vertices
Xo, "+, Xj—1, Xi+1, Xn — specifically, we need to use (—1)’[X0,X1, ©e  Xi—1, Xit1, 0+, Xp]. (That's what appears in the
definition of the differential map when we constructed homology that way.) Repeating this process repeatedly gives
us orientation on all sub-simplices.

So turning back to our n-dimensional topological manifold X admitting a simplicial structure, it turns out that X
is orientable if and only if each n-simplex in the given structure can be oriented so that the induced orientations on

common codimension-1 faces are opposite to each other.

Example 127
Recall that both the torus and Klein bottle are obtained by gluing opposite edges of a square together, and we

can form triangulations in both cases by drawing one of the diagonal lines of the square.
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The torus is shown on the left, and the Klein bottle is shown on the right, with their corresponding triangulations.
Consider the top left triangle A; and place an orientation on it as given by the arrows. If we call the bottom left
vertex vél), the top left vertex vl(l), and the top right vertex vz(l), then A; = [véo), vl(l), v2(2)], so that a = [vél), vl(l)],
b = [vl(l), VQ(I)], and ¢ = —[vél), VQ(I)]. We can then check that we can choose one of the two orientations on the
bottom right triangle A,, so that the orientations for a, b, ¢ (which are all identified with a, b, ¢ in A1) are all opposite.
But we can check that kind of process will not work for either of the two choices in the Klein bottle, which is not
orientable.

So now if we look at the top of the chain complex for an orientable n-dimensional manifold X, then we already
know some elements of the kernel d, : C,(X) — Cp—1(X): the sum >, A" will be in ker(d,,) because the opposite faces
will all cancel out. So there is some nontrivial element in the top homology H,(X) = ker(d,)/im(dp+1). This turns

out to be a general fact:

Theorem 128
Let X be a closed, connected n-dimensional manifold. Then H,(X) =~ Z if X is orientable and H,(X) ~ 0

otherwise.

In particular, the actual result holds whether or not X admits a simplicial structure. And it will turn out that certain
duality results only hold if we have a nontrivial top homology, which we will see later.

Given the result above, it turns out we can also define degree for a general orientable manifold:

Definition 129
If f : X — Y is a continuous map between connected, closed, oriented manifolds, then there is a map f; :
Hn(X) — Hp(Y) which is a map Z — Z. Then the degree of f is the image of 1 under f,.

We're now going to turn to some “abstract nonsense:” we've discussed topological spaces and continuous maps
between them (along with homotopy and some other properties), and there's also some similar structure that comes
up when we have groups and homomorphisms between them, or abelian groups and homomorphisms between them.
These are all very similar “packages,” and we can even map between them (for example, m; maps from topological
spaces to groups, and H, maps from topological spaces to abelian groups) in a way that also sends continuous maps
to group homomorphisms. The point is that we can make all of this more abstract using category theory, a way to

describe this phenomenon more generally.
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Definition 130
A category C consists of a collection of objects ob(C) (such as the collection of groups, or topological spaces, or
abelian groups), as well as a collection of morphisms Mor(X,Y) for any objects X,Y € C, such that the following

properties hold:

+ For any X € C, there is a distinguished element idx € Mor(X, X).
+ Thereisamap o : Mor(X,Y)xMor(Y, Z) — Mor(X, Z) sending (f, g) to gof, such that idyof = foidx = f.

« For all morphisms f, g, h, we have (fog)oh="fo(goh).

Remark 131. There's some problem in set theory where we can’t actually say that we have a “set of all topological

spaces” without a Russell’s paradox coming up — that's why we use the word “collection” instead.

For example, Top is the category of topological spaces, where the set of morphisms from X to Y is the set of all
continuous maps X — Y. We can make similar definitions for the category of sets Set, the category of groups Grp,
and the category of abelian groups AbGrp. And then all of the conditions are basically generalizing the structures of
composition and identity and so on that we're used to.

One particular example that's relevant for us is the category Pairs, which has objects of the form (X, A) where
A € X and has morphisms f : (X, A) — (Y, B) in which X — Y is continuous and f(A) € B. We can also define
the category Based, which is a subcategory of Pairs in which we must have (X, xp) and where a morphism is a map
f (X, Xo) = (Y, ¥) in which f(xo) = . Finally, we can think about a category Homotopy, in which the objects
are topological spaces and the morphisms are a refinement of those in Top: they are the set of continuous maps up
to homotopy. Since homotopy composes, composition is still respected, and we just have a smaller set of morphisms
between any two topological spaces.

Our construction of fundamental groups and homology groups can both be thought of as relations between cate-

gories, in which we change from one to another:

Definition 132

Let C and D be two categories. A functor F : C — D consists of maps F : ob(C) — ob(D) and F : Mor(X,Y) —
Mor(F(X), F(Y)) for all X,Y € C, such that F(idx) = idr(xy and F(f o g) = F(f) o F(g) (this is called the
functoriality property).

Example 133
Our construction of fundamental groups m; : Based — Group is a functor. Indeed, we map each (X, xp) to a
group m1(X, xp), and we go from a continuous map of based topological spaces to a group homomorphism of

their fundamental groups.

Example 134
For any k € Z, we have a functor Hy : Top — AbGrp sending X to H,(X). Similarly, reduced homology Ay is
also a functor Top — AbGrp, and relative homology is a functor Pairs — AbGrp sending (X, A) to Hk(X, A).
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Example 135
We have a functor Top — Homotopy sending X to X itself and f to its class [f], but we know that two continuous
maps that are in the same homotopy class have the same homology. Thus Hy : Top — AbGrp factors through

Homotopy via the (“forgetful”) functor Top — Homotopy.

Remark 136. Noticing that we can compose functors, we may ask whether there is a category of all categories with

morphisms given by functors. But it turns out we run into set-theoretic issues there.

Recall that we stated that the different H, homology constructions give us the same map, but we didn't show
fundamentally why that was the case. It turns out that there's some fundamental axioms for homology called the
Eilenberg-Steenrod axioms, such that if a homology theory satisfies those axioms, it will agree with the constructions
we've already made. We say that we have a homology theory if we have a sequence of functors Hy : Pair — AbGrp
(where we can treat a single topological space X as (X, @)) together with a natural transformation (we won't make
the definition here, but it's basically a map between functors) d, : Hx(X,A) — Hi_1(A) (previously 0, was the

connecting map). Then we want the homology theory to satisfy these axioms:

1. Homotopy: under the functor, f : (X, A) — (Y, B) is sent to fi : Hc(X,A) — Hi(Y.B). Then if f ~ g, we
require that f, = g.

2. Excision: if Z < A< X with cl(Z) < int(A), then Hx (X, A) = Hi(X —Z A— Z).
3. If X is a single point, then H(X, @) = Z if k is trivial and 0 otherwise.

4. Union: if X = Lye/Xq, then H(X) = @, Hi(Xa). (Notice that direct sum and product agree when we only

have finitely many terms, but not in general.)
5. There is a long exact sequence H,(A) — Hn(X) = Hy—1(X, A) Ox, Hp—1(A) — -+

So with (1) and (3) we can compute all contractible spaces, (5) allows us to compute pairs, (2) lets us compute

quotients, particularly S”, which allows us to pass to cellular homology along with (4).

15 November 17, 2022

We'll start our last topic of the course, cohomology, today — it'll be similar to homology but with some different
constructions and some different properties. We can use any of the homology theories we've developed to construct
cohomology — we'll use singular homology here. Recall that C,(X) is the set of sums {>."_; rio;}, where r; € Z and

o; . A" — X are continuous maps. We'll now construct the corresponding dual space
C"(X) = Hom(Cn(X), Z),

the set of group homomorphisms C,(X) — Z (equivalently, the Z-valued linear functions on C,(X)). (Note that we
have to be careful trying to identify C, with C" because of infinite-dimensional considerations.) To make this into a
chain complex, we need to construct a new differential 6" : C"(X) — C"™1(X) (going in the opposite direction as
before, increasing the grading). We already have an old differential dy1+1 @ Chy1(X) — Cn(X) from homology, and
we can define " in the following way: any f € C"(X) is a homomorphism C,(X) — Z, and if we pre-compose it by
dni1, we get a homomorphism f o d,i1 : Cpy1(X) — Z. That will then be an element of C"™1(X), and we call that

element §"f. (We then call this the “dual” of the map d,,1 — this construction is following the general idea that a map
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f:A— Bleads us to a map f* : B*¥ — A* for a general abelian group A.) This can be represented in the following
diagram:

Coi1 —2 Hom(Cpy1, Z)

J/d/7+1 5”]\

C, — Hom(C,, Z)

Then 6" 06" = 0 as a map C"(X) — C"2(X) just from the definition: for any f € C"(X), we have
6" 0 8"(f) = 6" (f 0 dyyr) = £ 0 dpy1 0 dpso,

which is always the zero map and thus 6”1 o §” sends anything to zero. So given any topological space X with a
singular chain complex C,(X), we can define C"(X) = Hom(C,(X), Z) and define a differential 6"(f) = f o dy41, and
(C", 6™ will be a valid chain complex and we can define a homology theory for it, which we call cohomology:

Definition 137
The nth cohomology of X, denoted H"(X), is

H™(X) = ker(6™)/im(6"1).

Since we're looking at the dual spaces to the ones from homology, there are a few expected properties that we

now have:

« A continuous map f : X — Y now yields a map in cohomology in the opposite order — it induces a map
ff . C*(Y) — C*(X) and thus a map f* : H*(Y) — H*(X).

« If f ~g: X — Y are homotopic maps, then we induce equal maps f* = g* : H*(Y) — H*(X).

« The composition X 5 ¥ £ Z gives us an induced map (gof)* = f*og* : H*(Z) - H*(X). So this is
functoriality in the opposite order.

+ We can define a cohomology for pairs similar to the homology for pairs: if A < X, then we can define C"(X, A) =
{f € Co(X) : fla = 0 € C"(A)}. We can still define a § differential on this chain complex, which gives us
cohomology H"(X, A).

« Just like in homology, we can write a long exact sequence coming from the short exact sequence of chain

complexes, where the sequence of arrows is reversed:
e — H”(A) «— H”(X) «— HH(X‘ A) - anl(A) —

« Excision still holds: if Z < A< X so that Z < int(A), then H*(X, A) >~ H*(X — Z,A— 2).

+ Similarly, we still have a Mayer-Vietoris sequence but with all arrows reversed: if A, B € X with X = int(A) u

int(B), then we have a long exact sequence

i H"(A B) «— H"(A) @ H"(B) « H"(X) « H"™ Y(An B) < -+ .

Beyond reversing arrows, though, the reason for cohomology theory is that there are some unique structures that

don't show up in homology. Specifically, there is a cup product U : HX(X) x H*(X) — H**¢(X) (which we will talk
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about next time), which makes cohomology into a ring (not just an abelian group). Additionally, cohomology has

various applications, which we'll show now:

On a smooth manifold, there is a de Rham cohomology — there are covariant derivatives on differential forms,
where the derivative of a k-form is a (k + 1)-form and the square of that derivative is zero. So we can in fact do
analysis on manifolds, which connects to many branches of mathematics. And like with homology, the different
cohomology theories are all equivalent — there is also a set of axioms for cohomology just like the ones we saw

last time for homology.

Characteristic classes are certain cohomology classes that obstruct or classify certain structures (like existence
of bundles over a manifold). For example, if M is a closed and smooth n-manifold, then the Whitney embedding
theorem says that M embeds into R??, and 2n is the minimal bounding constant. Specifically, RP" does not
embed into R?™~1, and we can see this using a certain cohomology construction that obstructions the embedding.

We can read Milnor's book ‘Characteristic Classes” for more.

Before we dive more into properties of cohomology, we want to first find a relation between homology and cohomol-
ogy. We know that H"(X) = ker(8")/im(6"~1) and H,(X) = ker(d,)/im(d™*1), so given an element class [a] € H"(X)
and an element [x] € H,(X), a can be thought of as some element of C"(X) with §"a = 0 (an actual element in the
cochain complex sent to zero under the differential), and similarly x can be thought of as some element of C,(X) with
dpx = 0. But by definition, C" is the dual of C, — a is a map from C,(X) — Z. Thus we can evaluate a at x, and

we can check that this evaluation gives rise to a well-defined map
e H'(X) x Hao(X) > Z,  ([a], [x]) = a(x)

which is Z-bilinear. Thus we get a natural map e : H"(X) — Hom(H,(X), Z) sending each element to the evaluation
map we wrote above. On the chain level this is an identity map, but on the homology level we won't necessarily have

an isomorphism:

Theorem 140 (Universal coefficients theorem)

There is a split exact sequence
0 — Ext(Hp—1(X),Z) —» H"(X) - Hom(H,(X),Z) — 0,

where being split means that there is an isomorphism that represents the middle term H"(X) as a direct sum
Ext(Hp—1(X); Z) ® Hom(H,(X), Z), and where Ext is explained below.

So what this means is that we can calculate cohomology from homology as long as we know what the Ext map is.

We won't define what the Ext functor is in full generality, but we will explain how to compute it:
« If A, B, C are abelian groups, then Ext(A@® B, C) = Ext(A, C) @ Ext(B, C).
+ Ext(A, B) =0if Ais free.

« Ext(Z/nZ, A) = A/nA = coker(A 5> A) (that is, the cokernel of the multiplication-by-n map). We will sometimes
write Z/nZ as Zp,.
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However, note that Ext is not symmetric: for example,
Ext(Z,Z/nZ) =0, Ext(Z/nZ,Z) =7Z/nZ.

The idea is that if we have a torsion part of H,(X), then it will not contribute to Hom(H,(X),Z), and if we have a
free part of H,_1(X), it will not contribute to Ext(H,—1(X),Z).

Here we actually just have Ext(H,_1(X),Z) = Tor(H,—1(X)), but if we were doing cohomology with different
coefficients, not necessarily Z, then Ext could be more complicated. For a more general abelian group G, we can

define the singular chain and cochain complex

n
Ca(X;G) = {Zg,oa, :91€G,0;: A”—»X}
i=1
and C"(X;G) = Hom(C,(X),G). We then get corresponding differential maps d, : C,(X;G) — C,-1(X;G) and
6" C"(X;G) — C"™1(X;G) as before — all the proofs and constructions are the same — so we get homology
Hn(X; G) and cohomology H"(X; G) with the same definition (kernel of one map modded out by the image of the
next). And with this, we can state a more general universal coefficients theorem as well — we'll write H,(X) for
H,(X;Z) and specify the group G otherwise.

Theorem 141 (Universal coefficient theorem, general version)

We have the split exact sequence
0 — Ext(Hp—1(X),G) — H"(X; G) > Hom(H,(X); G) - Z
where H,_1(X) and H,(X) are using integer coefficients. We also have the split exact sequence

0 — Hp(X)®z G — Hp(X;G) — Tor(Hn,—1(X),G) — 0.

Similarly, we'll mention a few properties of the Tor functor so that we can do computations for it:
+ For any abelian groups A, B, C, Tor(A® B, C) = Tor(A,C) @ Tor(B, C).
« Tor(A, B) = Tor(B, A) (so Tor is symmetric, unlike Ext),

» Tor(A, B) = 0 if either A or B is free.

Tor(Z/nZ, A) = ker(A 5 A).

Example 142

Suppose X is a closed connected manifold of dimension n. Recall that the top dimension homology is either Z
or 0 depending on whether X is orientable or not, and if X admits a simplicial structure and is orientable, then
Hp(X) is generated by > 5, A", the sum of all n-simplices (since each codimension-1 face is in two simplices with
opposite orientations which cancel out under the differential d). But if we instead work with Z/2Z-coefficients,
no matter which orientation we give, each codimension-1 face will be counted twice, and 2 = 0. So H,(X;Z,) is

always nonzero.

In particular, if X is not orientable, H,(X) = 0, but H,(X;Z,) is nontrivial. Thus by the universal coefficients
theorem, looking at the second split exact sequence, we know that Tor(H,—1(X), Z) =~ H,(X; Z,) because H,(X)®zZ
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is zero. Thus Tor(Zz, Hy—1(X)) # 0, meaning that multiplication by 2 has a nontrivial kernel in H,_1(X). That can
be restated in the following way:

Proposition 143

Let X be a closed n-dimensional manifold which is not orientable. Then H,_1(X) has 2-torsion.

(For example, if X is the Klein bottle, H;(X) =~ Z @ Z, (from our past calculations), and if X is RP?, then
H1(X) = Z,.) Now to look at another kind of example, we can apply the first split exact sequence for H*(X) (since
we know Ho(X)): applying it with G = Z, we see that

HY(X) = Ext(Ho(X); Z) @ Hom(H1(X); Z).

But Ho(X) is a free abelian group, so by our rules above Ext of it is zero. So | H*(X) = Hom(H1(X);Z)|, and in fact

Hom(H1(X);Z) is a free abelian group. That tells us the following statement:

Proposition 144

For any topological space X, H*(X) has no torsion.

In the first example above, we saw that whenever X is non-orientable, H,_1(X) has 2-torsion. We'll see later on in
the class that whenever X is orientable, Poincaré duality tells us that H,_1(X) = H*(X), so H,_1(X) must be free.
So there will be more systematic approaches for studying the structure of these different homology and cohomology

groups, and we'll study those in the rest of the course.

16 November 29, 2022

We'll discuss the cup product construction today: our goal is to construct a map u : H™(X) x H"(X) — H™"(X),
making cohomology into a ring with unit. We will define it by first constructing a product on the cochain level
U CM(X) x C"(X) — C™t"(X), so first we will review what all of that means. Recall that if we're working with
singular homology, then Cy(X) consists of formal sums fo;l rio; where rie Z, o, : Ak > X is a singular simplex, and
we have the differential map dx : Cx(X) — Ck—_1(X) defined by an alternating sum over codimension 1 simplices. We
then define C*(X) = Hom(Cy, X) to be the dual space of Cx(X), where we define the dual map &x_; by saying that
for any f : Cxk_1(X) — Z, the map dx_1(f) — Cx(X) is defined via

Sk—1(F)(cX) = f(dxa").

So now suppose we have two maps ¢ : Cpy(x) = R and ¢ : C,(X) — R, and we want to define p U@ : Cpypn(X) — R.

Remembering that the simplex A* has a standard embedding {(xo, - -+ , Xk) : Zf-‘:() x; = 1,x; = 0}, giving us a canonical
ordering of its vertices v = (1,0,---,0), vy = (0,1,---,0),---, v = (0,0,---,1). A map Cpnyn — Z would then
need to be defined on all simplices [vo, v1, -, Vm+n], and we define

(o) ([vo.vi -+ Vinenl) = ¥([Vo. -+ Vin])O([Vim, Vins1, -+ Vingnl)-

This then defines a map Cpyp — Z. (More generally, if we're working with homology and cohomology with coefficients,
we will need a ring for the base coefficients so that we can actually multiply those two values together.) We can explore

a few properties of this map we've just defined:

49



+ Applying the differential to our cup product, (¢ U @) = (09) U @ + (=1)"P U (0¢). (where ¥ € C™(X)).

+ Since a class in cohomology H™(X) is a class [¢] where d1 = 0, we can define the cup product on cohomology
U H™(X) x H"(X) — H™"(X) by taking the cup product on the representative 1s:

Y] v (8] = [¥ vl

We must check that 1 U ¢ is in fact in the kernel of the differential map if 9, ¢ are, and we must also check
that this definition is well-defined (yielding the same result within a given class). But by the previous point,
0(pud) =(0v)ud+ (—1)"P U (d¢), and by assumption both terms on the right-hand side are zero so the
left-hand side is zero as well. Thus ¥ U ¢ does represent a cohomology class. For well-definedness, we must
show for example that if [¢'] = [¢], then [ U @] = [¢¥' U $] € H"T"(X) (and then we just need to do the
same with the second argument, but it's the same reasoning). If [¢'] = [¢], that means d9' = 09 = 0 and
P — ' €im(§). Thus 9 — ¢’ = dn for some n e C™1(X). But then

Youo-—Youd=W-Y)ud=(nuae
and now we can apply the first bullet point again: because d¢ = 0, this is also
= (@M v+ (=1)""nu (8¢) =d(nu @),
which is zero in cohomology. Thus if 1 and ¥’ are in the same class, then [¢ U ¢] = [¢’ U @] as desired.

Remark 145. We may ask why this is more natural in cohomology than in homology — one reason comes from the
case where X is a smooth manifold and we can look at de Rham cohomology, studying the differential forms. Then

the wedge product actually coincides with the cup product.

+ Next, suppose f : X — Y is a continuous map. Then f* : H*(Y) — H*(X) preserves the cup product — that is,

fAlaup) = f*(a)u F*(B). In other words, f* is actually a ring homomorphism.

+ This cup product has a unit when X is path-connected. Indeed, since the cup product maps H”(X) x H"(X) —
H™+1(X), the unit must be something in H°(X). We know that H%(X) = Z (for example by the universal
coefficients theorem because Ho(X) = Z), and 1 € H°(X) will then be a unit. More explicitly, Co(X) consists of
finite integer linear combination of points in X, so C%(X) is a map Co(X) — Z, which we can think of basically
asamap f : X — Z. So taking the constant map ¢ sending all of X to 1 (which represents the generator in

cohomology — exercise), we can check that c U ¢ = ¢ € C™(X).

It turns out that this ring structure almost forms a commutative ring:

Theorem 146
If o e H"(X) and B € H"(X), then a u B = (—=1)™B U a.

This is very similar to how wedge products work for differential forms, since we need to switch mn “pairs” and pick
up a negative sign each time. This result is true on the homology level, and if we try to pass it to the chain level we

should expect a chain homotopy. (But we should read through the proof on our own.)
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Example 147
To make our computation easier, we'll go back to simplicial structures and look only at simple surfaces via
triangulation. Consider the simplicial structure of the torus X given by identifying opposite edges of a square in

the same orientation:

Here, c1, &, c3, ¢4 represent the outgoing edges from the central vertex, and ey, e, €3, e4 represent the faces.

Vo a V3
\
7
€1 @
1
bA €1 Vo € Ab
G3
Cy e3
\
7
Vi a V4

We'll orient everything so that the central vertex is always the “first vertex,” and for each of the four faces we
orient the other two vertices in terms of the orientation of the edge mentioned. We then find that de; = ¢; + a — o,
des=c3+b—c, des=c4+a—c3, deg = ¢4 + b— ¢y, and the differentials for each edge are just the differences of
the end and start vertices. Recall that H(X) = Z, but explicitly it turns out to be generated by e; — e —e3 + e4. Then
Hy(X) = Z?, generated by a and b, and Ho(X) is generated by any of the vertices, say vg. To find the cohomology,

we can then use the universal coefficients theorem:
H"(X) = Hom(Hp(X),Z) @ Ext(H,-1(X), Z),

but all homology groups are free so there is no torsion, meaning we have isomorphism between homology and coho-
mology. Thus H"(X) = Z if n=0,2, Z? if n = 1, and 0 otherwise. Our goal is then to find the dual basis for H*(X)
— that is, we want H'(X) generated by [a] and [B] such that a(a) = 1,a(b) = 0,8(a) = 0,B8(b) =, and then we
want to understand o U 8. To do this, we must first find maps C;(X) — Z such that da = §8 = 0. There are six
one-dimensional simplexes (a, b, ¢1, ¢, ¢3, ¢4), but we can think about the two blue lines in the diagram below which

are really loops on the torus:

Vo a V3
\
4
€1 2
G
6]
bA €4 Vol € A b
&}
Cy4 €3
\
4
Vi a o Vg

Motivated by where these points intersect the lines, we define a(a) = a(c) = a(c) = 1 and a(b) = a(q) =
a(cq) = 0, and similarly we define B(b) = B(c1) = B(c2) = 1, and B(a) = B(c3) = B(ca) = 0. We can check that
0o = 03 = 0 as map Co(X) — Z, but that just needs to be done by checking that da(ej) = 0 and 3(e;) = O for each
/. Indeed,

da(e)) =a(de)) =a(ca+a—c)=0+1-1=0,
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and similarly all of the other checks work out, so o, 8 do represent classes in cohomology. And indeed a, B8 evaluate
correctly on a and b (more precisely we evaluate in cohomology, with [a]([a]) = (@) = 1 and so on), so we have found
a dual basis for H1(X). We can now compute the cup product, but a U 3 should lie in H?(X) = Hom(H2(X),Z) = Z,
so we should find a generator in H?(X). Indeed, the generator of Hx(X) is [e; — e — €3 + €4], so we can choose
[v] € H?(X) such that [y]([e1 — & — e3 + e4]) = 1. We now just need to compare [a U 3] and [y]. By definition of
how we've oriented our simplices,

(@vB)(er) = a(a)B(a) =0

and similarly (o u B)(e) = a(c3)B(b) =1, (x uB)(e3) = a(cs)B(a) =0, and (a v B)(es) = a(cs)B(b) = 0. This
means that (¢ v B)(e;1 — ex — e3 + &) = —1, and thus we must have ‘ [auB] =—[7] ‘ in cohomology.

This type of computation works in general, just dealing with more simplices as the surface gets more complicated.

And it works for non-orientable surfaces too:

Example 148
Next consider X = RP?, which is obtained by taking S? and identifying antipodal points x ~ —x. We get a
simplicial structure by taking the upper half hemisphere and identifying opposite points on the equator, which we

can write as shown below:

(S

This time we can compute in Zp-coefficients to get something nontrivial with the differential map Ho(X) — H1(X):
we find that H"(X;Z,) =~ Z, for n = 0,1,2 and 0 otherwise and the same for cohomology. And we can similarly
find a € C1(X; Z,) which generates H'(X; Z,), specifically evaluating to 1 on a and ¢; and 0 on ¢, and we find that
[@ U a] = [a] U [a] is a generator of H2(X; Zy), which we write a?. This means that H*(RP?; Zy) can be thought
of as a polynomial ring Zs[a]/(a3), and that turns out to be a general fact: replacing RP? with RP", we get the
polynomial ring Zo[a]/(a™*) instead. (And we do need Z, coefficients here, because RP" is orientable if and only if
nis odd.)

17 December 1, 2022

We'll discuss the cup product some more today: recall that we define u first on the complex level (for singular

homology) by setting
(Il/) Y ¢))([V01 SR Vm+n]) = ’l/)([V(), R Vm]) : d)([Vm, e, Vm+n])

for any 9 € C™(X) and ¢ € C"(X). We showed last time that this actually induces a cup product on cohomology,
so we have a map U : H™(X) x H"(X) — H™"(X). It turns out we can also generalize this to relative cohomology
—if A € X, recall that C"(X, A) is defined to be C"(X)/Cn(A) for each n, so C"(X,A) can be interpreted as
the set of functions f : C,(X) — Z that vanish when restricted to C,(A). Thus, we can define a cup product
CM(X,A) x C"(X,A) - C™"(X,A), and in fact even if A and B are two different subspaces, we can define a cup
product C™(X, A)u C"(X, B) — C™"(X). We are taking a function 1 vanishing on C,,(A) and a function ¢ vanishing
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on Cp(B), so Y u¢ vanishes on Cpyyn(A) and Cpin(B). We can compare that to the space of functions Cpyn(X) — Z,
which are the functions which vanish on Cp,1,(A U B). We then have an inclusion C™*"(X, A U B) into this space
{f: Cnin(X) = Z: flc,,.a =0, flc,,.(8y = 0} which is not necessarily an isomorphism (since there might be some
simplices partially contained in A and partially contained in B), but under some weak conditions it turns out that this

inclusion induces isomorphism in cohomology:

Proposition 149
If A, B < X are open subspaces, then we have a cup product on relative homology U : H™(X, A) x H"(X, B) —
H™ (X, Au B).

We will next discuss the Kunneth formula, which helps us understand the product of two topological spaces
and how homology and cohomology behave under that operation. For this, it will be convenient to work with CW
complexes, since the product of an m-cell e’ of X and an n-cell ef of Y is an (m + n)-cell e]” x e§ of X x Y with
boundary

e x e3) = ((0ef") x &) v (" x (0€3")).
Recall that in cellular homology, C,,(X) is generated by m-cells of X and C,(Y') is generated by n-cells of Y, so

Ck(X x Y) is generated by cells of the form e” x €4 for any m, n = 0 such that m+ n = k. Then it turns out

GXxY)= @  CalX)QC(Y),

m+n=k,m,n=0

which we will write in short as Cy (X X Y) = C4(X)®C«(Y). And the differentials for the product can also be computed
in terms of the differentials of the individual spaces: whenever a € C,,(X), we have

dxxy(a® b) = (dxa) ®b+ (—1)ma® (dyb)

The Kunneth formula then gives a formula for the homology of the tensor product chain complex in terms of the

individual chain complexes:

Theorem 150

There is a split exact sequence
0> Hio(X)® Hy(Y) = Ho(X xY) = Tor(Hy«(X), He(Y)) — 0.

In the special case in which H,(X) or H,(Y) is free, we know that the Tor term goes to zero, so Hy(X x Y) =~
Hye(X) ® Hye (Y).

A similar thing happens for cohomology as well, and we also get similar results if we work with general coefficients:

Theorem 151 (Kunneth formula, special case)
Suppose X and Y are CW complexes and R is a commutative ring. If H*(Y; R) is a finitely generated free
R-module, then we have a module isomorphism wu : H*(X x Y; R) =~ H*(X; R) ® H*(Y; R).

We may then ask how the cup product or relative cohomology interact with this homomorphism — both of them
do turn out to work. There is a natural cup product H*(X x Y'; R), and we can define the cup product for our tensor
product in the following way: for any a, c € H*(X) and b, d € H*(Y'), we can set

(a®@b)u(c®d)=(-1)"(avc)® (bud),
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where be H™(X) and c e H"(Y).

Theorem 152 (Kunneth formula with cup product)

The isomorphism p in Theorem 151 preserves the cup product as defined above.

Very similarly, if (X, A) and (Y, B) are CW pairs and R is a commutative ring, then we have an analogous result:

Theorem 153 (Kunneth formula, relative version)
Let (X, A), (Y, B) be CW pairs, R be a commutative ring, and suppose H*(Y, B; R) is a free finitely-generated
R-module. Then there is an isomorphism p : H*(X, A, R) ® H*(Y,B;R) —» H*(X x Y, (AxY) u (X x B);R)

which preserves the cup product.

Here, the reason for (A xY)u (B x X) is that this is the space on which all functions must vanish. And in particular,
this theorem holds whenever R is a field and we have finite CW complexes, because modules over R would be vector
spaces and there is no torsion.

Example 154
We'll compute the cohomology ring of the projective spaces RP" = P" (for simplicity) over Z, — we'll prove that
H*(RP" : Zy) = Zs[x]/x"T* where x has degree 1 (that is, it's the generator of HY(RP", Zj).

Omit the Z5 in notation for brevity. We did this for RP? last time using an explicit simplicial structure, but here
we will use cell structures and apply the Kunneth formula to get a more general result. (And something similar would
work with complex projective spaces too.) Recall that P = (R"*1 — {0})/ ~, where we identify x and Ax for any
nonzero constant A. (So projective space is the set of lines through the origin.) Alternatively, we can think of P" as
S"/ ~, where ~ now identifies antipodal points. In particular, P! is just S1, so nothing interesting happens there, and
P2 can be thought of as the upper hemisphere of S? with its boundary identified via the antipodal map, or equivalently
gluing D? to S! via the quotient map S* — P'. More generally, we can look at the upper hemisphere of S”, whose
boundary is S"~1, and we get a cell structure for P” in which there is one cell in each dimension: the m-skeleton is
just P™, and we glue via the natural quotient map S™ — P™. Thus if C;(P") is generated by the cell e;, our chain

complex is
CY(P") = D Za(e').
i=0

To figure out the differential map, we're basically adding up the local degrees, but the quotient map is 2-to-1 and
we're working in Zy so in Zp-coefficients all differentials d : Ci(P") — C,(P") vanish. Then because § is the dual
of d, 6 = 0 as well, and thus
Zo 0<1i<n,
Hi(P"; Z>) =
0  otherwise,
and for similar reasons we also have
, Zo 0<i<n,
H' (P":Zy) =
0  otherwise.
(Note that P" — P"~1 is the interior of our single n-cell and thus homeomorphic to R".) We now want to study the
cup product, and if we want to know what happens to U : H'(P") x H/(P") — H™*J(P") for any n = i +j, we can just
look at H'(P™*/) x H/(P™*) — H'*(P*J), since the inclusion P™*/ — P" induces an isomorphism (all differentials are
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zero so the chain complexes literally just include). So we can reduce to thinking about the case where j +j = n. The
trick is to think about the relative homology

H'(P", P"— P/) x H/(P", P" — Py — H"(P",(P" — P/) u (P" — P")),

because if we start with an (/ + j)-dimensional disk which we think of as a product of an /-dimensional disk and
a J-dimensional disk, quotienting by the antipodal map gives us the spaces listed. Checking that we then have an
isomorphism H'(P", P" — P/} — H'(P") and H/(P", P" — P') — H/(P") is then an exercise, and then H"(P", (P" —
P/ U (P" — P")) is exactly H"(P", P" — {p}) (where p is the only point of intersection between the two disks — this
is where we use i +j = n). So the point is that we get the following diagram of maps:

HI(P") x HI(P") S H™(P")
,T ;T
)

HI(P", P" — PJ) x HI(P" — P') —<— H"(P", P" — {p})

By the excision theorem, we now want to look at P"~! < P” — removing it from P" yields just an open ball
homeomorphic to R”, and the subset P’ of P" correspondingly has R’ removed. Thus we get the additional blue part
of the diagram by the excision theorem:

Hi(PT) x Hi(P") S Hr (P7)

= ;T

HI(P", P" — PI) x H/(P" — Py —=— H"(P", P" — {p})

lexcision lexcision

H(R" R" — R/) x H/(R",R" — R") —— H"(R",R" — {0})

But then H'(R™;R" — R/) =~ H'(R/, R’ — {0}) and similarly H/(R",R" — R') =~ H/(R/,R/ — {0}) by “removing
the dimensions that are unnecessary,” and finally thinking of R’, R/, R” instead as i, j, n-dimensional cubes and retract
everything but 0 to the boundary in all three cases, we get a map

H(I', 01"y x H' (K, 0F) — H"(I", 01",

and now we can identify (1", 01") = (I'x M, (0" x P)u (1" x @F)). But now at this last stage, we finally an isomorphism
by the Kunneth formula which maps generators to generators, so tracing this back up to H'(P") x H/(P") — H"(P")
gives us the desired result.

It turns out that the cohomology ring structure H*(RP"; Zy) = Zo[x]/x"*1 tells us something powerful:

Corollary 155
Suppose R"” admits a division algebra structure (a not-necessarily abelian group structure where every nonzero

element is invertible). Then nis a power of 2.

Proof. The multiplication R” x R” — R” also gives us a continuous map between spaces h : RP"™! x RP"! —
RP"1 from which we get a cohomology ring structure h* : H*(RP"1) — H*(RP"! x RP"~1) preserving the
cup product. By the Kunneth formula, H*(RP"™1 x RP"!) has the structure Zp[x1, x2]/(x{, x5); in particular,
HYRP" x RP"1) is Z1{x1, xo). If we say that H'(RP") (on the left) is generated as Zy(x), then the map h*
must send x to kix; + koxo, where ki, ko € {0,1}. But because we have a division algebra, if we keep the first
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argument in h: RP"™1 x RP"~1 — Rp"~! fixed then we get an isomorphism, which lets us deduce that we must have
h(x) = x1 + x. But then H*(RP"1) = Zs[x]/x", s0 (x1 + x2)" = (h*(x))" = h*(x") = 0 in Za[x1, %]/(x{, x3). The
binomial expansion then tells us that Y27_} (7)x{ x5~ + x' + x§ = 0, which is true if and only if all coefficients (}) for

1 < k< n-—1 areeven. And this is only true if nis a power of 2. O

It turns out that there is a full classification of the allowed division algebras (for example, the only associative ones
are R, C, and the quaternions, and then we also have some more interesting constructions like the octonions), but the

point is that we can prove some interesting things with cohomology.

18 December 6, 2022

Our last topic for this class is Poincaré duality — we've understood some relations between homology and cohomology
in terms of the Ext and Tor functors through the universal coefficient theorem, and now we'll see another useful tool
along those lines. Our discussion will be restricted to the case where M is a connected, closed manifold (meaning that
connectedness and path-connectedness are the same thing, and that things look like R” locally). By compactness, it
is a basic fact that H,(M") is always finitely generated.

We previously introduced a cup product U : C™(X) x C"(X) — C™+"(X), and we will now introduce a new operator
called the cap product, which maps n : C,,(X) x C"(X) — Cp_p(X) for m = n (notice that we have a chain in one
case and a cochain in the other). So we take in some simplex ¢ : [xp, -+, Xm] — X and some map V : C,(X) — Z,
and we will produce a simplex o N 9 € Cpy—n(X), defined by setting

anN ’([) = ¢(0|[X0,... vXn])o.‘[Xan+1y"' Xm] -

(So we get a number times an (m — n)-dimensional singular simplex.) Using the definitions of chain and cochain
complexes, we can check that this cap product gives us an operation on homology and cohomology as well, so there

isamap N Hyn(X) x H'(X) —> Hn—n(X). Furthermore, the cup and cap product have an interesting relation:

cn(ud)=(cnyY)no

Finally, there is some naturality here: for any continuous map f : X — Y, we may think about how to relate
Hm(X) x HY(X) = Hm_n(X) and Hn(Y) x H'(Y) —> Hp_n(Y). We do have maps f. from the homology groups
Hm(X) = Hn(Y) and Hpy—n(X) = Hm—n(Y), and we have a map f* backwards as well (from H,(Y) — H"(X)). The
point is then that if we have some class [x] € H,(X) and some [¢] € H"(Y'), we indeed have analogous results of the
cap products:

fe([x] n F[9]) = (Flx]) 0 [%].

(We can prove this on the level of chain complexes and then have it descend to homology.)

Example 156

Consider the example of the torus from a previous lecture (Example 147) and use the same diagram. We found
the homology groups (Z,Z?,Z for n = 0,1,2, 0 otherwise) and the cohomomology groups (the same). We
then found the generators of homology and cohomology: H;(X) is generated by [a], [b], H2(X) is generated by
[e1 — e2 — e3 + e4], and then (with corresponding dual bases) H'(X) is generated by [a] and [B], and H?(X) is
generated by [y]. We then found that [a] U [B] = —[¥].
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We'll now try to compute the cap product — the case C;(X) x C1(X) — Co(X) is left as an exercise, and we'll
demonstrate Co(X) x C1(X) — C1(X) here. For example, we see that

eena=[v, v na=ala)lwn v]=0 eanB=0(e)vw v]=a

Similarly, we have

ena=alca)vs ] =b enpB=p0(c)va vs] =0,

and also that e3s "o, e3 " B, €2 N, e2 N B are all zero. But Ho(X) is generated by e; — e; — e3 + €4, SO to compute
Ha(X) x HY(X) — Hi(X), we see that

s —e—est+ea|lnfa]l=[-b], [ea—e+e+e]n[B]=]a]

And notice that H(X) is generated by [a] and [B], while H;(X) is generated by [a] and [b]. It turns out this is a
general phenomenon — for any closed oriented n-dimensional manifold, we know that the top homology group H,(M)
is a copy of Z, and we can write its generator as [M]. (If we had a simplicial structure on M, it would be the
sum of all oriented top-dimensional simplices.) We call M the fundamental class)of M, and we then define a map
D : HX(M) — Hy_ k(M) via

D([¥]) = [M] n [¥] € Hp—k(M).

Theorem 157 (Poincaré duality)
If M is closed and oriented, then the map D : HX(M) — H,_x(M) is an isomorphism.

Remark 158. /f M is an oriented manifold, then for any commutative ring we get the isomorphism H"(M; R) =~
Ho—«(M; R) as well — the proof is independent of the coefficient ring. On the other hand, if M is unorientable, we
no longer get duality results with Z coefficients — for example, H,(M) = H"(M) = 0 but Ho(X) = Z for a connected
unoriented manifold. However, if R is a commutative ring in characteristic 2, we still have H,(X) = R, and thus we
still have an isomorphism H*(M; R) =~ H,_x(M; R).

Example 159

Suppose Y is a connected, closed, oriented n-dimensional manifold, and suppose R = Q so we don’t need to
think about quotients. By the universal coefficient theorem (and using that the Ext functor is trivial) we then
have H*(X; Q) = Hom(Hx(X;Q); Q).

So for any nonzero cohomology class [¢] € H¥(X;Q), we have a nonzero Poincar'e dual D([¢]) € Hqp—«(X; Q)
(because D is an isomorphism), and then there is an element ¢ € H"~%(X, Q) such that

[#](D[%]) # 0.

But by definition, this is saying that

0 # [o](IM] ~ [9]) = [M] ~ ([9] v [o]),

and thus we must have [¢] U [¢] # 0. In words, any cohomology class (in H*(M;Q)) has a cohomology class of
complementary dimension (in H"~%(M; Q)), such that their cup product is nonzero (in H"(M;Q) = Q). So the cup
product is nondegenerate as long as we work with rational coefficients, and the nondegeneracy result works when we

quotient out the torsions too.
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Example 160

Poincaré duality also has applications to the signature of manifolds of dimension a multiple of 4. We'll work with a
special case where X is still connected, closed, and oriented, and we’ll keep using Q-coefficients, but now say that
Y is a manifold of dimension 2n for some n. Then the cup product U : H?(X; Q) x H"(X; Q) — H*"(X;Q) ~ Q

is a bilinear form on the middle dimension n.

Notice that [9] U [¢] = (=1)"[¢] U [¥]. so this bilinear form is symmetric if n is even and antisymmetric if n
is odd. In the former case, we can then represent the bilinear form as a symmetric m x m rational matrix, where
m = dim H"(X; Q). We can then define the signature o(X) of X to be the signature of that m x m matrix, which is
the number of positive eigenvalues minus the number of negative eigenvalues.

Poincaré duality then tells us that the map u : H"(X;Q) x H"(X;Q) — Q becomes a map / : H,(X;Q) x
Hy(X; Q) — Ho(X; Q) =~ Q (often called the intersection form). And there is a famous result along these lines:

Fact 161 (Freedman’s theorem)

Let X be a closed, connected, oriented, smooth 4-dimensional manifold with 7 (X) trivial (so X is simply
connected). Then X is classified by its intersection form /, meaning that two such spaces are homeomorphic if
they have the same intersection form.

(For another result on o(X), we can look up the Atiyah-Singer index theorem, which is a different deep result.)
For now, we'll turn back to the intersection form and think about its geometric interpretation. Assume that everything
is smooth for simplicity. Suppose X is a (2n)-dimensional manifold and that we're using Q-coefficients, so our map
is |1 Hp(X) x Hao(X) = Ho(X) = Q. Suppose now that M < X is an n-dimensional closed, connected, orientable
submanifold — then H"(M) =~ Q, so there is a fundamental class [M] € H,(M). The natural inclusion ¢ : M — X
then gives us a map ¢y : H,(M) — Hp(X), and in particular we may ask about ¢, (M), which we will also write as
[M] € H,(X). So any such manifold M gives us a class in H,(X).

Then given two such n-dimensional closed, connected, orientable submanifolds M and N, we can use facts from
differential topology, because we're assuming things are smooth. In the special case n = 1, we have two curves inside a
2-dimensional surface, and we can perturb them slightly so that the curves generically intersect transversally at various
points. Then M n N will be a set of finitely many points (because of compactness), and the generators of Ho(X) are

points themselves. So it's reasonable that [M] x [N] is just going to be a signed count of the points in M n N:

I(MLIND = > san(x) |

xeMnN

More generally, if M and N are n-dimensional and X is 2n-dimensional, near any point x € M n N, we can find a
neighborhood D of x in M n N so that M and N are “intersecting transversally” — that is, we can choose D =~ R?" so
that Mn D =~R", Nn D >~ R", and x € D maps to the origin. We can then use the orientations to define sgn(x):
specifically, we define sgn(x) = 1 if the orientations of M and N together (by putting together the oriented bases of
M and N at x) coincide with that of X, and —1 otherwise.

Remark 162. More formally, having a local orientation is equivalent to choosing an element of each of the relative
homologies H"(M, M — {x}), H"(N, N — {x}), and H?"(X, X — {x}) with Z-coefficients (each of which is isomorphic
to Z by excision) — the sign of x then corresponds to whether the cup product v : H"(M, M — x) x H"(N, N — x) —
H?"(X, X — {x}) gives us +1 or —1.
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