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Introduction
This is the last course in the STATS 300 series. All of the course information is on Canvas, but we’ll do a bit of

explaining what the class is about. STATS 300A and 300B are listed prerequisites, but those courses are typically on

“classical statistics” (from 40 or 50 years ago), and there’s been a tremendous change in the last decade or so. This

course basically addresses the changes that have happened.

One big change during Professor Candés’ lifetime is that instead of testing for a single hypothesis (separating signal

from noise), technology now lets us look at a lot of stuff at once, and we may have many noisy signals to study. So

we’ll be exposed to modern ideas in statistical theory – the first month will be on large-scale hypothesis testing and

inference, and then we’ll discuss even more modern topics as we progress. Specifically, we’ll consider testing problems

in high dimensions and multiple testing problems (leading to the false discovery rate theorem), and we’ll see how

people address this in difficult scenarios. We’ll then consider e-values instead of p-values, do some conditional testing,

conformal inference, and so on. The point is “user-friendly theory” that can be useful in practice (which we should

know about if we want to function as a professional statistician).

Because we’re covering modern topics, we can’t really point to a particular textbook (only tangential references),

but the course has been offered in the past and there are some past lecture notes available. Slides will be on Canvas

as well.

In terms of grading, homework assignments will be distributed on a roughly weekly basis (on Thursdays) – collab-

oration is encouraged but we should write up solutions on our own and cite sources appropriately. And there will be a

final project at the end of the course (which will basically be a take-home exam).

Fact 1

Unless otherwise specified, all images and figures in this document are either taken from the lecture slides or drawn

by hand. Also, I was unable to attend Lectures 16 and 18 in person, and so the material there was constructed

from course lecture slides and some notes from classmates.

1 April 1, 2025
Today’s lecture will focus on global testing, particularly building toward Bonferroni’s method and Fisher’s combination

test.
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Example 2

One setting in which we might want to do multiple hypothesis testing is in a biological setting: suppose we have

n genes (for humans, n ≈ 20000), and we have data about expression levels for each gene among healthy and

sick patients. (This wasn’t possible a few decades ago, so technology has really evolved!) Specifically, we have

m0 healthy patients (say a few hundred) and m1 sick patients (say a hundred), and say that gene i is expressed

at level Y (0)i j for the jth healthy patient and Y (1)i j for the jth sick patient. Our goal is to understand which genes

are differentially expressed between these two populations (so that we can understand for example how to treat

the disease).

Notice that the number of people in the study here is relatively low compared to the number of variables being

studied. Formally, we may consider a null hypothesis of the form

H0,i : E
[
Y
(0)
i j

]
= E

[
Y
(1)
i j

]
,

or perhaps the stronger hypothesis of equality in distribution

H0,i : Y
(0)
i j

d
= Y

(1)
i j .

In classical statistics, we can construct test statistics to test each of these. For example, we could use a two-sample
t-test, or if we don’t believe in the central limit theorem in the latter case we can do a permutation test – this is

applicable because we only need to assume exchangeability and no other information.

Definition 3

Two random variables X, Y are exchangeable if the distributions of (X, Y ) and of (Y,X) are identical, or equiva-

lently P(X = x, Y = y) = P(X = y , Y = x). And we can extend this to finitely many random variables by saying

that we have equality in distribution under any permutation, so P(X⃗ = x⃗) = P(X⃗ = πx⃗).

Note that iid random variables are exchangeable, but exchangeable random variables need not be iid – or example,

consider (X,−X) for X standard normal, or the top two cards in a shuffled deck of cards.

Fact 4

Here’s a “cool math problem”: I take a shuffled deck of cards and reveal them from the top one by one, and then

you can tell me when to stop. At that point, if the next card is red then you win $100, and otherwise you lose

$100. The question is whether there is a way to say “stop” so that the expected gain is positive; this turns out to

do with exchangeability.

Since we have many variables to consider at once, we may care about the global null hypothesis

H0 =

n⋂
i=1

H0,i .

We’ll assume (because we’ve run our permutation test) that we have p-values for each H0,i . Here we’ll assume that

our p-values have the super-uniform property that (here pi is a random variable coming out of the test)

P(pi ≤ t) ≤ t
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under the null hypothesis. (In fact we’ll often assume pi is uniform on [0, 1] for simplicity, but the formal definition is

that it’s a random variable stochastically dominated by a uniform [0, 1].) So our goal is now to combine those p-values

together and answer the global question of “is there anything interesting happening.”

Definition 5

Let α be some desired significance level (for example 0.05), and suppose we have n different hypotheses. Bon-
ferroni’s global test rejects the global null if

min
i
pi ≤

α

n
.

This test is used thousands of times in leading medical literature.

Proposition 6

If the p-values are super-uniform then Bonferroni’s procedure has size (that is, chance of Type I error) at most α.

Indeed, the probability of rejecting the null under the null hypothesis is, by a union bound and the super-uniform

property

P(reject) = P

(
n⋃
i=1

{
pi ≤

α

n

})

≤
n∑
i=1

P
(
pi ≤

α

n

)
≤ n ·

α

n

= α.

Notice that this does not require any independence assumptions, and in fact if we assume p-values are uniform and

independent then as n →∞ the probability of the type I error is q(α) = 1− e−α, which is very close to α. Here we’re

doing the calculation

P(no reject) = P

(
n⋂
i=1

{
pi ≥

α

n

})
=
(
1−
α

n

)n
≈ e−α

≈ 1− α+
α2

2
− · · · .

So there isn’t much room to “change” the Bonferroni method for improvement unless we have correlations, and

thus a lot of studies indeed use this threshold.

Fact 7

Graphically, we can visualize what Bonferroni “looks for” by taking our n p-values and sorting them from smallest

to largest.

Under the null hypothesis and assuming the p-values are uniform and independent, we expect these p-values to

“hug the line” y = x (in fact these order statistics follow beta distributions, so we can explicitly calculate the expected
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value and variance). But if we’re not under the global null, we will not “hug the line” anymore – sometimes (1) these

sorted p-values will have a few that are extremely small and then the rest generally following the line (meaning maybe

five hypotheses have very strong signals), and sometimes (2) all of the p-values will be overall deflated (too small).

Bonferroni’s method is really most useful in case (1), because it will successfully reject due to the very small p-values;

it will not reject the null in case (2) and thus is not a very powerful test. Thus we should use it when we expect strong
effects from individual tests – we call this scenario sparse alternatives. In the other case, we can use something

different:

Definition 8

Fisher’s combination test rejects the global null using a more combined measure. Specifically, we consider the

test statistic

T = −
n∑
i=1

2 log pi ,

and we reject the null if T is large.

This method is actually very frequently used in meta-analysis to combine different studies. The idea is the following:

Proposition 9

Assume that p1, · · · , pn are independent and uniform (for example in meta-analysis, suppose we do not have

overlapping patients among the studies). Then under the null hypothesis, we have T ∼ χ22n (that is, the chi-

square distribution with 2n degrees of freedom).

Proof. Note that for pi uniform on [0, 1], − log pi is a standard exponential random variable and therefore −2 log pi =
2E (which is the chi-square distribution χ22 with 2 degrees of freedom). And the sum of independent chi-square

distributions is another chi-square distribution.

Fisher’s combination test is then more powerful in case (2) where we have lots of p-values that are too large rather

than a few isolated outliers against the null (which might get absorbed into fluctuations).

Example 10

People often think Bonferroni’s method is naive, but it really isn’t so naive – there are cases where it is the right

thing to do. We want to do power calculations, so we’ll specify some distributions. Assume Yis are distributed

independently as N(µi , 1) for 1 ≤ i ≤ n, and we are interested in the n hypotheses H0,i : µi = 0. The global null

then asserts that (two-sided) all means are zero or (one-sided) that all means are nonpositive, so that under the

alternative there is some µi which is (two-sided) nonzero or (one-sided) positive.

In the case of sparse alternatives, the alternative hypothesis means that a few of the means are nonzero and the

rest are zero, and our goal is to discover this by data analysis. Bonferroni’s method would then set the rejection

threshold in the one-sided setting if max Yi ≥ z
(
1− αn

)
, where z() = Φ−1() denotes the quantile of the Gaussian.

(Indeed, our p-values in this case are pi = Φ(−yi); since Φ is monotone, asking for pi ≤ α
n is equivalent to asking

yi ≥ Φ−1
(
1− αn

)
.) And in the two-sided setting, we replace αn with α

2n .

Given α, n, we can ask a computer to tell us where this threshold actually lies, but mathematically for n large it is

roughly
√
2 log n (notice that to leading order this doesn’t depend on α) – we get this from the expression for the tail

of a Gaussian, and more precisely we’re saying that if Yis are iid standard normal we have

max Yi√
2 log n

p→ 1.
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So at this crude rescaled level, the distribution of the maximum becomes deterministic, so it makes sense to set the

threshold at roughly this point.

Fact 11

It turns out the distribution of the maximum of iid standard Gaussians is well-approximated as

max Yi ≈ µn + σnG,

where G is the Gumbel distribution (with cdf P(G ≤ x) = exp(− exp(−x)) for x ∈ R) and

µn = z

(
1−
1

n

)
, σn = z

(
1−

1

en

)
− z

(
1−
1

n

)
.

(The Gumbel distribution often comes up in extreme value statistics like this one, even beyond Gaussians.) And

if we replace max(Yi) by max(|Yi |), we get the same approximation but with 2n in place of n.

Note that the mean of the Gumbel distribution is not zero – it’s a skew distribution and its mass is roughly

concentrated between [−2, 6]. And what we’re saying is that a shifted, rescaled Gumbel (by some factors related to

Gaussian quantiles) gives us the maximum of Gaussians. For size n = 105, these approximations are quite good (for

both the maximum and the maximum of the absolute value):

We can recover this result with the following more precise calculation:

Proposition 12

Let Mn = max(Y1, · · · , Yn) for Yi standard Gaussian. Then

P(Mn ≤
√
2 log n − log log n + z) = exp

(
−
exp(−z/2)
2
√
π

)
(1 + o(1)).

In particular, this implies the
√
2 log n convergence in probability from before, and it also gives us some corrective

terms.

So we understand now that under the global null, Bonferroni computes the maximum (which concentrates around
√
2 log n with some fluctuations). And if the Yis are N(µi , 1) and we don’t know which µi is positive, we will have

power if and only if the mean is above that Bonferroni level – that is, we will be able to spot the “needle in a haystack”

if µi >
√
2 log n. If we do a power plot where the x-axis plots the nonzero mean µi√

2 log n
and the y -axis plots the

power, then there is a sharp “phase transition’ where the power is very low (α-ish, or more precisely the size q(α) of

the test) to the left of 1 and very high (close to 1) to the right of 1. In words, we call this “asymptotic full power

above threshold” and “asymptotic powerlessness below threshold” (since we can obtain the same level and power by
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just flipping an α-coin); this is strange compared to the usual “smooth transitions” that we might expect in classical

statistics.

The question we’ll ask next time is then the following: suppose we have a few signals that are “below 1” on this

scale, meaning that those nonzero means are (for example) 0.9
√
2 log n. Then we want to ask whether there is any

test which has some power (in other words, whether we can do better than flipping a coin to detect those signals).

And the answer turns out to be no, so in fact Bonferroni is as good as we can get for this “sparse alternative” model.

2 April 3, 2025
We discussed Bonferroni and Fisher’s tests last time – in particular, we considered the “needle in a haystack” problem

where one of n means may be nonzero and we want to distinguish whether that indeed occurs. Bonferonni then cares

about whether maxi Yi (or maxi |Yi | if two-sided) is large, and we arrived at the “threshold phenomenon” conclusion

that if the “size of the needle” is h =
√
2r log n, then for r < 1 Bonferroni asymptotically has no power, while for r > 1

it has full power. We were then wondering whether there is some α-level test with some nontrivial power for r = 1− ε
(that is, whether we can do better than coin-flipping).

The answer, given by Ibragimov and Hasminski, is no – the total variation distance between the hypotheses

approaches zero. If we have to do something like this in our research, the crux of the matter is to use the following

setup where we know the optimal answer. The point is to avoid having a composite alternative: instead, consider the

Bayesian decision problem with null hypothesis

H0 : µi = 0 for all i

and a “simple” alternative hypothesis

H1 : {µi} ∼ π,

where π selects a coordinate uniformly at random and sets its mean to µ(n), keeping all other means to zero.

The most powerful test in such a setting where H0, H1 are both simple hypotheses is the likelihood ratio test, and

if we can show it has no power then everything else will have no power.(This goes under the name Neyman-Pearson.)

Indeed, we have likelihoods

f0(y) =

n∏
j=1

1√
2π
exp

(
−
1

2
y2j

)
, f1(y) =

1

n

n∑
i=1

1√
2π
exp

(
−
1

2
(yi − µ)2

)∏
j :j ̸=i

1√
2π
exp

(
−
1

2
y2j

)
.

and we want to reject when f1
f0

is large. What’s nice is that all the terms cancel out except the shifted mean:

L =
1

n

n∑
i=1

exp

(
Yiµ−

1

2
µ2
)
.

Notice that this is different from Bonferroni – it’s a softmax instead of looking at the maximum, since if µ =∞ this

would be completely dominated by the maximum Yi . This is nice because it’s just a sum of iid terms of mean 1, and

in fact if µ is small enough this likelihood concentrates:

Proposition 13

Under the null hypothesis, if µ(n) = (1− ε)
√
2 log n, then L→ 1 in probability as n →∞.

Note that we can’t apply the central limit theorem to get this result – it’s not true that the variance of the

likelihood ratio goes to 0, since this sum is dominated by a few terms, namely the large exponentials (so things like
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Berry-Esseen don’t hold). So there are very rare events where L is very large, but in probability we still converge to 1.

But this fact means that if we set thresholds Tn(α) so that PH0(L ≥ Tn(α)) = α, we see that the probability of a

type II error is asymptotically 1− α. Indeed, we can do a change of measures

P(type II error) = PH1 (L ≤ Tn(α)) =
∫
1{L ≤ Tn(α)}dPH1

=

∫
L · 1{L ≤ Tn(α)}dPH0

=

∫
1{L ≤ Tn(α)}dPH0 +

∫
(L− 1)1{L ≤ Tn(α)}dPH0

→ α+ 0,

where we can use the bounded convergence theorem on the latter term because the truncation (L− 1)1{L ≤ Tn(α)}
implies that this random variable is bounded, and L− 1→ 0 in probability.

So the power of Neyman-Pearson in this setting is also equal to the power of Bonferroni’s test, and this is not that

surprising because L is dominated by a few “largest terms.” Restated, we see that the optimal test satisfies

P(type I error) + P(type II error)→ 1

as n → ∞, and thus we can’t do better than coin-tossing – more formally, for any test for this needle-in-a-haystack

setup, we have

lim inf

(
PH0(type I error) + sup

H1

P(type II error)
)
≥ 1.

(If we set the type I error to any arbitrary α, then the type II error must be 1 − α – we cannot ever come up with a

better power curve than Bonferroni for this problem.)

Example 14

We’ll now turn to the other test, and our goal is now to understand what kind of alternatives it’s good for (the

“case (2)” in our discussion last lecture). Recall that we want to analyze the sum of the values −2 log 2Φ(|y |); for

simplicity we’re going to instead replace those with y2 in this discussion (which has a very similar curve shape

and is used in settings like analysis of variance (ANOVA)).

So instead of Fisher’s combination test, we’re now looking at the χ2 test. Our model is then, as before, that

Yi = µi + zi for iid standard normals zi , and the null hypothesis is that all µi are zero. The χ2 statistic is then

T =

n∑
i=1

Y 2i = ||Y ||2

Under the global null, this is a chi-square with n degrees of freedom, and under the alternative this will be distributed

differently (as a non-central chi-square). Specifically, we have the central limit theorem approximation under H0

T − n√
2n
∼ N(0, 1) =⇒ χ2n(1− α) = n +

√
2nz(1− α),

where χ2n() and z() denote the corresponding quantiles. Meanwhile, under the alternative hypothesis we have

T =

n∑
i=1

(µi + zi)
2, E

[
(µi + zi)

2
]
= µ2i + 1, Var

[
(µi + zi)

2
]
= 4µ2i + 2
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and thus we again have a central limit theorem approximation under H1

T − (n + ||µ||2)√
2n + 4||µ||2

∼ N(0, 1).

So the mean is shifted a bit, and the variance is also slightly increased, and all that matters about our alternative

means (in this approximation) is the sum of the squares of the means – in fact, ||µ||2 is a sufficient statistic for the

non-central χ2. That means we have our z-score under the null

Z =
T − n√
2n
,

and defining the parameter θ = ||µ||2√
2n

, we see that our approximation reads

H0 : Z ∼ N(0, 1), H1 : Z ∼ N

(
θ, 1 +

θ√
n/8

)
.

So if θ is around 0.1 or 0.2 we won’t have a lot of power, but if θ = 2 the power of the test is roughly P(N(0, 1) >
1.65 − 2) ≈ 66%. In other words, the scale at which we can see differences is only where ||µ||2 >

√
2n – that’s

quite large compared to something like Bonferroni! So such sparse alternatives will be drawn into the variance of the

chi-square distribution, but if we see a lot of small values we will be able to detect that with χ2. In slightly different

terminology, the main parameter that mattered here was proportional to the signal-to-noise ratio

SNR =
signal power

expected noise power
=
||µ||2

σ2n

(just with an extra factor of
√
n
2 ).

Remark 15. We can check that the normal approximation for the shifted chi-square is quite good for a fairly wide

range of values of θ (say between 0 and 4) even when n = 104, so our “simple story” is quite accurate in telling us

what’s going on.

Example 16

We now want to ask a similar question as we did for seeing how powerful Bonferroni was: with the absence of
any information about the location of our µis, can we find a test with power as θ → 0?

Again, the answer is no, and we do a very similar thing as before where we set up simple hypotheses. The global

null is that µ = 0 identically, and the alternative is that µ ∼ π for π distributed uniformly on the sphere of radius

ρ(n) (so that the parameter is constrained to be θ(n) = (ρ(n))2√
2n

). We will show that if θ(n) → 0, then the situation is

hopeless.

Again, we do this by writing out the likelihood ratio and showing that it again goes to 1 in probability. Indeed, the

conclusion is again that under H0, if θ(n) → 0 then L → 1 in probability, meaning that Neyman-Pearson is no better

than a coin toss.

Remark 17. In this case, we do get a power curve in terms of θ: at θ = 0 we have power α, and as θ increases we

get a continuously increasing curve approaching 1. And the point is that “we can’t do much better than that.”
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Example 18

We can now try to compare Bonferroni with χ2 in some simulations with n = 106 hypotheses at the level α = 0.05.

If we have four nonzero means at the Bonferroni level 5.45 (strong sparse effect), then the power of Bonferroni

is roughly 94%, while the power of χ2 is roughly 6%. On the other hand, if we have 2400 nonzero means at 1.1

(mild distributed effect), then the power of Bonferroni is about 6%, while the power of χ2 is roughly 66%.

In the latter case, the maximum statistic likely actually comes from a null, since the maximum of the 1000000−2400
nulls is concentrated at a higher value than the 2400 nonnulls. (So it essentially looks like the maximum of 1000000

nulls, and Bonferroni doesn’t actually detect the effect.)

So each of χ2 and Bonferroni is powerful in a different situation, and we would like a method which has the best

of both worlds (without double-dipping). Instead of just running both tests separately, we can actually “bridge across

sparsity” with a method due to John Tukey called second-level significance testing or higher criticism.

Example 19

Let F̂n(t) be the empirical cdf of our n p-values p1, · · · , pn, meaning that F̂n(t) = 1
n#{i : pi ≤ t}. Under the

global null and assuming that p-values are uniform, we have E
[
F̂n(t)

]
= t; furthermore under independence we

have nF̂n(t) binomially distributed with parameters (n, t).

One useful test statistic in this setting is the Kolmogorov-Smirnov statistic

sup
t

∣∣F̂n(t)− t∣∣ ,
which tells us about deviations from the expected cdf. We then reject the null if this quantity is above some critical

value – in our case if we want to detect when p-values are unusually small (that is, F̂n is too big), we will check whether

supt(F̂n(t)− t) is too big.

However, note that the Kolmogorov-Smirnov statistic isn’t great because we expect the fluctuations to generally

be large near t = 1
2 . So then we generally need to set the critical value based on what happens in the bulk, and that’s

not where we should be looking if we have a lot of small p-values early on. Instead, we should standardize by the

standard deviation and look at the standarized value of “how many significant tests we see at level α,” considering

nF̂n(α)− nα√
nα(1− α)

=
F̂n(α)− α√
α(1− α)/n

,

and we use this to define the higher criticism statistic

HC∗n = max
0<α≤α0

F̂n(α)− α√
α(1− α)/n

.

So we scan across significance levels and see whether there’s a level at which the number of significant tests is

unusually high relative to the binomial distribution. And in a paper by Donoho and Jin, this was actually used for

detecting sparse heterogeneous mixtures – it turns out to be a very good statistic for bridging the different kinds of

effects we’ve discussed, since it will be able to detect things at different αs.
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3 April 8, 2025

We’ll spend most of today’s lecture on Tukey’s second-level significance test (the higher criticism) and also see some

other tests in passing. Then we’ll move on to proper multiple testing and understand how to accept some and reject

other hypotheses.

We left off last time by considering the test statistic HC∗n as an attempt to be “always successful” whether we’re

strong and sparse (where Bonferroni is good) or mild and distributed (where chi-square is good). The idea is that we

scan over different significance levels α, and when we see F̂n(α) particularly large, that means there’s unusual behavior

compared to the null hypothesis.

To study this new model, we’ll move away from the needle-in-a-haystack setting here.

Example 20

Our original model was that we had independent statistics Xi which are N(0, 1) under the null hypothesis and

N(µi , 1) under the alternative, but now we want to extend to a setting where we have a small fraction of non-null

hypotheses. Thus we will now use a simple model where

H0 : Xi
iid∼ N(0, 1), H1 : Xi

iid∼ (1− ε)N(0, 1) + εN(µ, 1).

For example if ε = 1
n , this is essentially like the needle-in-a-haystack, but if ε is constant we have a growing number

of non-null hypotheses. We’ll end up scaling ε in a very particular way.

Given the values of ε, µ, we can write down the Neyman-Pearson test and compute likelihoods. ε encodes sparsity

and µ encodes signal strength, so we can write down a 2D plot of the values

L =

n∏
i=1

(
(1− ε) + ε exp

(
µXi −

µ2

2

))
.

It turns out that we again get a sharp transition. To illustrate this, in the literature we historically parameterize

εn = n
−β,

1

2
< β < 1,

µn =
√
2r log n, 0 < r < 1.

(So the needle-in-a-haystack problem has β = 1, r = 1.) Putting r on the y -axis (representing signal strength) and

β on the x-axis (representing sparsity), we’ve already studied the point (β, r) = (1, 1) and found that the problem

is easy above that point and hard below it. We want to figure out how this generalizes to other β (since the more

non-nulls we have, the easier the problem should be).

Fact 21 (Ingster ’99)

It turns out that we have a threshold curve

ρ∗(β) =

β −
1
2

1
2 < β ≤

3
4 ,

(1−
√
1− β)2 3

4 ≤ β ≤ 1,

such that Neyman-Pearson has full power for r > ρ∗(β) (that is, we can adjust the test so that the sum of type I

and type II error probabilities approaches 0) and no power for r < ρ∗(β) (that is, for any test, the limiting sum of

type I and type II error is at least 1).
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The plot of the curve ρ∗(β) is shown below in the solid line – what we’re saying is that above that line we have

full power with Neyman-Pearson, and below that line we are powerless. And the dashed line shows the level at which

Bonferroni’s test can effectively distinguish the non-null hypothesis – it instead follows (1−
√
1− β)2 all the way until

β = 1
2 . In other words, Bonferroni is a very good test as long as we have fewer than n1/4 non-nulls, but it’s suboptimal

with less sparsity.

We can do a quick analysis to calculate the Bonferroni threshold with a crude calculation, asking for the probability

that the maximum comes from a null hypothesis – if this is overwhelmingly likely, then we cannot have power. Indeed,

we get power if

max
non-null

Xi ≈
√
2r log n +

√
2 log n1−β >

√
2 log n,

since the
√
2r log n term is the mean of the non-nulls and we have n1−β of them. Dividing through by the

√
2 log n

factors, we thus see that
√
r +

√
1− β > 1 =⇒ r > (1−

√
1− β)2.

What’s interesting is that this actually coincides with Neyman-Pearson – Bonferroni doesn’t need the values of ε and

µ and still achieves the right threshold if we are sparse enough. And indeed in general, the whole point is that in global

testing we do not know ε and µ and thus cannot use the NP test in the first place, so what’s nice is that Tukey’s
higher criticism asymptotically achieves the same threshold without needing those parameters. Indeed,

HC∗n = max
0<α≤α0

Fn(α)− α√
α(1− α)/n

only needs the p-values to compute Fn. (And we should really restrict to scanning over small p-values, e.g. α0 = 0.2.)
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Fact 22

The process
√
n(Fn(t)− t) will converge in distribution to a Brownian bridge, and the maximum of this rescaled

Brownian bridge on (1/n, α0) converges in probability to
√
2 log log n (this is the law of the iterated logarithm). And

a result of Donoho and Jin says that rejecting when HC∗n ≥
√
(1 + ε)2 log log n gives us P0(type I)+P1(type II)→

0 for any r above the detection threshold.

In more intuitive words, getting something like HC∗n = 2 is not super surprising – for a given α being two standard

deviations above the expected number might be somewhat surprising, but when we scan over all possibilities it’s still

reasonable under the null. But if we get something like 10, then something is definitely going on. (A Poisson(1)

random variable can reasonably take on the value 5, but a standard normal will not.)

(And in practice, we won’t rely on asymptotics – we will just simulate. For example, we get something like 3.6 for

n = 109.)

Example 23

However, there are issues with the higher criticism. In particular, we can simulate the curve Wn(t) corresponding

to the higher criticism statistic (meaning that we sort our p-values, and at each one we get a jump in the empirical

CDF and can thus plot a value of Fn(t)−t√
t(1−t)/n

). (The maximum will be realized at one of those p-value jumps) We

can see a sample plot of this below.

The main problem is that near t = 0, we are no longer approximately normal – B(n, p) is nicely approximated by

a Gaussian if np is not too small, but if np is small we get something that’s Poisson, which has much heavier tails.

Thus even though we are still mean-zero, variance-one near t = 0, we are very likely to achieve the supremum near 0

instead of somewhere else; thus the threshold is still being dominated by the behavior there and often the maximum

comes very early. The point is that calibrating a statistic to get the maximum to occur at a uniform location is often

very difficult, and this test does not manage to do so.

Example 24

The Burk-Jones statistic is an attempt to resolve this problem, but it is not fully effective.

The idea is that for each t (this is the significance level α we’re scanning), we can test whether nF̂n(t) < t using
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a likelihood ratio test

logLRn(t) =

nD(F̂n(t), t) 0 ≤ t ≤ Fn(t),0 otherwise,

where D(p0, p1) = p0 log
p0
p1
+ q0 log

q0
q1
), qi = 1− pi is the Kullback-leibler divergence. We then define

BJ+ = max
1≤i≤n/2

nD

(
p(i),

i

n

)
that is, at what significance level we detect a divergence between what we see an what we expect. We can simulate

this and see that we also attain the optimal detection boundary, and it has better finite sample properties in the less

sparse regime:

Fact 25

If we set r = 1.2ρ∗(β) (so 20 percent above the theoretical detection threshold), we don’t actually get full power

for either HC∗n or BJ+n . The plots below show some finite-size simulations for n = 104 and n = 106 (red is higher

criticism, while black is Burk-Jones):

In the latter case, we see that HC∗n and BJ+n are both nowhere near 100 percent power; from β = 0.5 to β = 0.7,

HC∗n ’s power roughly goes from 0.4 to 0.7, while BJ+n goes from about 0.9 to 0.7 (meaning the latter is better in the

less sparse regime). But then higher criticism does better after that.

Again, we run into a situation where we “want to be like HC on one side and BJ on the other,” so that we can get

the best of both worlds. One heuristic for this was proposed by Walther in 2011 – the idea is that instead of looking

at the maximum of likelihood statistics, we can look at a weighted average, called the average likelihood ratio

ALR =
1

2
LR1 +

1

2

n/2∑
i=2

1

i log(n/3)
LRi , LRi = exp

(
nD

(
p(i),

i

n

))
where LR1 is the first p-value (so basically Bonferroni) and the other weights are cooked up from some Bayesian

argument. (Basically in the remaining case, we look at weights decaying like 1t .) This does turn out to do better in

finite-size simulations (the green curve shows the power of ALR)
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Example 26

There are some other tests that we can also cover (Anderson-Darling, Kolmogorov-Smirnov), but we’ll skip over

them here. Instead, returning to the higher criticism, we can get a sense of what it is doing and where it is looking.

Define α(z) = P(N(0, 1) > z) and let z(q) =
√
2q log n. The values of the higher-criticism statistic is then

HCn = max
q≥0
Vn(q), Vn(q) =

#{Xi > z(q)} − nα(z(q))√
nα(z(q))(1− α(z(q)))

.

Our question now is what value of q causes Vn(q) to grow fastest under the alternative hypothesis. To study this,

note that by the tails of a Gaussian P(Z > t) ≤ φ(t)
t for φ the density of the Gaussian (in fact we are bounded from

below by a factor 1− 1
t2 ), and thus plugging in t =

√
2q log n we find

α(z(q)) = Lnn
−q

for some logarithmic factor Ln. Therefore for a non-null normal, if we have r < q ≤ 1, then

P(N(µn, 1) > z(q)) = Lnn−(
√
q−
√
r)2 .

Therefore, under this crude approximation we have (plugging in all of those expressions)

EH1 [Vn(q)] =
EH1 [#{Xi > z(q)}]− nLnn−q√

nLnn−q

= Lnn
(1+q)/2−β−(√q−

√
r)2 .

Thus to find what q this grows fastest for, we can optimize over q and thus find where we expect the higher

criticism statistic to peak. Doing the maximization, we find that the optimal for r < 1
4 is q∗ = 4r , and we get that

EH1 [Vn(q)] = Lnnr−(β−1/2).

So if r > β − 1
2 we will indeed see the alternative hypothesis using HC. interestingly, this means we’re looking at a
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signal at 2µn rather than µn (we’re looking at
√
8r log n instead of

√
2r log n).

Meanwhile if r ≥ 1
4 , then the optimal q turns out to be the Bonferroni threshold q∗ = 1. In such a case, we then

instead get

EH1 [Vn(q)] = Lnn(1−β)−(1−
√
r)2 ,

and that completes the detection threshold curve. So overall, we stop before the Bonferroni level for β < 3
4 because

that’s where the ratio between non-nulls and nulls is favorable, but for β > 3
4 we essentially look at Bonferroni.

4 April 10, 2025
Today, the topic will shift from global testing to multiple testing and comparison problems. We’ll learn about the

familywise error rate and see basic ways of controlling it, seeing connections with global testing even in this different

setting.

Example 27

We’ll return to Example 2 from the beginning of the course now where we have n = 6033 genes measured on 102

patients (50 control, 52 cases) and want to analyze the expression levels Y (0)i j , Y (1)i j among the healthy versus sick

patients. Recall that the null hypothesis H0,i is that gene i is null and that the alternative H1,i is that it is not

null.

We’ve seen ways of formulating this more quantitatively; for example we can test whether the mean is nonzero by

considering

pi = P(|t100| > |Ti |), Ti =
avg(sick)− avg(control)
estimated standard error

,

since Ti is distributed as t100. But the point is that we have 6000 of these hypotheses and want to know what to do

with them all at once (that is, which genes have to do with the sickness). In multiple testing, it’s worth thinking about

the following two-way table:

accepted rejected total

true U V n0

false T S n − n0
total n − R R n

We do not know the values of U, V, T, S, but they will be populated by numbers (based on how many hypotheses

we accept or reject of each type) – T is the number of false negatives and V is the number of false positives, and

depending on the sample we collect we get different values. So it would be nice to know the distribution of those

(unobserved) random variables, but we don’t even know n0; we only really know the column totals R and n − R.

Fact 28

We are particularly interested in V (the number of false discoveries – that is, the papers we write that should not

have been written) and how it compares to R (the total number of discoveries).

We can thus consider two error metrics, and we’ll look at them in historical order:

Definition 29

The familywise error rate (FWER) is defined to be P(V ≥ 1) (that is, the probability of any false positive).
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The idea is that often in genome-wide studies, the threshold for significance is often set at something like 5×10−8.
This is meant to be a way to control the probability of reporting anything false at all, and the question is “given

p-values, how can we make rejections in such a way that FWER is controlled at level α?”, and we want this to be true

for any configuration of true and false hypotheses. (There’s also variations on this, such as the k-familywise error rate

P(V ≥ k), also called k-FWER.)

We’ve already seen one way we can do this: recalling that Bonferroni’s method rejects all hypotheses with p-value

below α
n , each null leads to a false positive with probability αn , so that we get the following:

Theorem 30

Bonferroni’s method controls FWER at level α; more specifically, if there are n0 ≤ n null hypotheses, we get

FWER ≤ E[V ] =
n0
n
α.

Proof. Since V is nonnegative-integer-valued, we have P(V ≥ 1) ≤ E[V ]. And letting N0 denote the set of null

hypotheses, we have

E[V ] = E

[∑
i∈N0

1
{
pi ≤

α

n

}]
=
∑
i∈N0

P
(
pi ≤

α

n

)
= n0 ·

α

n
,

So we don’t need any independence between p-values – as long as our nulls are (super)-uniform, this works. And

even if the p-values are independent, we’ve already seen that the scale at which we can set the threshold α0 is pretty

close to just using the naive Bonferroni (for example instead of 0.05n we would use 0.0512n under independence).

Remark 31. Note that when people talk about multiple testing, there are actually two types of control. We can

consider a two-step procedure for achieving control on FWER proposed by Fisher in 1934: first, do a global test for

the global null H0 =
⋂n
i=1H0,i , and if we say that something interesting is happening, then we test each hypothesis

at level α. So then the protection only happens at the first stage, and this controls the familywise error rate weakly
(meaning that under the global null the chance of a single rejection is α). However, this does not control FWER

in general, since we’re in serious trouble if we have even one strong signal. For example, suppose we have 1000

hypotheses and 10 of them are nonnull. We will likely pass the global test, and then we test each hypotheses at level

α = 0.05. Then

P(V ≥ 1) = minimum null p-value ≤ α,

which is extremely high (1− 0.95990 ≈ 10−22).
We won’t be so interested in this notion, but it’s something we might see in the literature.

Another procedure (which is useful to know even if it’s not such a big deal) is Holm’s procedure:

Example 32

Suppose we have n hypotheses H(1), · · · , H(n) corresponding to the ordered p-values p(1) ≤ · · · ≤ p(n) (so we

choose H(1) to be the hypotheses with the most surprising p-value, and so on). Now we will compare p-values

with an adaptive threshold based on what we’ve seen so far.

What we do here is called a step-down procedure:

• First, compare with Bonferroni’s threshold: if p(1) ≤ α
n , then reject H(1) and move to the next step. Otherwise,

reject nothing (accept all null hypotheses).
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• Now in general for step i , if p(i) ≤ α
n−i+1 , then reject H(i) and go to the next step (i + 1). Otherwise, accept

H(i), H(i+1), · · · , H(n) and stop.

• Finally, if p(n) ≤ α, then we reject H(n); otherwise we accept it.

This adaptive threshold for the p-values is particularly useful if we have something like n = 12 total treatments,

since the p-value does indeed noticeably change as the procedure proceeds. So the p-value gets larger over time (the

comparison gets more favorable over time, meaning it’s strictly less conservative than Bonferroni), but it’s still called a

step-down procedure because the z-score thresholds (for our test statistic) are decreasing. In a sentence, we basically

reject all the small p-values until the critical value where p(i) > αi =
α

n−i+1 .

Theorem 33

Holm’s procedure controls the FWER strongly.

Proof. Consider the sorted p-values p(1), · · · , p(n). We want to study the event where we make a false rejection; this

must happen at some index, and we define i0 to be the first null hypothesis we encounter (so that p(i0) = min{pi :
i ∈ N0}). We then have

{V ≥ 1} = {procedure reached i0} ∩
{
p(i0) ≤

α

n − i0 + 1

}
,

since if we don’t reject this first null we must have stopped before it, and if we do then we get at least one false

positive. (Note however that both i0 and V are random variables.) But now α
n−i0+1 ≤

α
n0

, since n− i0+1 is maximized

if we see all the non-nulls first (that is, i0 ≤ n1 + 1 = n − n0 + 1). Thus the event of false rejection is certainly

contained in {p(i0) ≤ α
n0
}, which has probability bounded by n0 · αn0 = α as desired.

Example 34

We can now see a general method which turns any global test into a multiple test that controls FWER – this

is called the closure principle. We have a family of hypotheses as usual, and we now want to think about the

intersection nulls

HI =
⋂
i∈I
Hi for all nonempty I ⊂ {1, 2, · · · , n}.

We thus have 2n−1 different such joint hypotheses to think about – our global null is that all HIs are true. The

principle is then that for each I, we assume that we can test (by higher criticism or Anderson-Darling or anything else

we’ve seen so far) HI at level α with some test φI . In notation (if we say the test rejects the null with φI = 1),

P(φI = 1|HI) ≤ α.

Definition 35

The closure procedure then rejects HI if and only if HJ is rejected at level α for all J ⊇ I. Mathematically, we

consider

TI = min
J⊇I
φJ ,

and if this is 1 (meaning all φJ were 1) then we reject the intersection null I.
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Example 36

For example for n = 3, we have global tests for H1, H2, H3, H12, H13, H23, and H123. And in order to reject H2,

we need global tests to actually reject H2, H12, H23, and H123.

On the other hand if we have n = 4 and we see that global tests rejectH1, H2, H12, H13, H14, H123, H124, H134, H1234
at level α = 0.05, then we can reject H1 (because any hypothesis with a 1 is rejected) but not H2 (because H23
is not rejected), even though H2 is significant.

Theorem 37

This closure principle described above controls the FWER strongly.

This is nice in that it provides a generic recipe for translating any global test into a procedure for rejecting or

accepting various null hypotheses.

Proof. The event {V ≥ 1} (of a false rejection) is contained in the event {H0 was rejected}, but we have a global

test at level α which shows that this happens with probability at most α.

The main problem with this principle is that you have to do an exponential number of tests, so the computational

cost is not manageable. But sometimes we can try to find shortcuts, and this is where the research is really interesting:

“is it possible to find a procedure which is a bit more conservative than the closure, say in polynomial time?”

Example 38

The suggestion is that we can use Bonferroni as our global test and try to close it – it will turn out that we can

use some strategies for speeding it up.

Our global test is then saying that for any index set I,

φI = 1 ⇐⇒ inf{pi : i ∈ I} ≤
α

|I| .

The key claim now is that closing Bonferroni is exactly Holm’s procedure, so this is a second argument that shows

Holm’s procedure does control FWER. Indeed, sort the p-values as usual so that p(1) ≤ · · · ≤ p(n) correspond to the

hypotheses H(1), · · · , H(n).

• In order to reject H(1), we must reject H{1,2,··· ,n}, meaning that the minimum of the p-values satisfies p(1) ≤
α

n
,

and any other comparison is strictly easier than that. And if the intersection is not rejected, then every hypothesis

is not, as it is in Holm’s procedure.

• Next, in order to reject H(2), there are two kinds of conditions for sets I containing 2: we must have p(1) ≤ α
|I|

if I also contains 1, and otherwise we must have p(2) ≤ α
|I| . So in particular we must have to reject H(1) already

(so p(1) ≤
α

n
), and then the remaining hardest comparison is for I = {2, · · · , n}, meaning that we must also

have p(2) ≤
α

n − 1 .

• Similarly for the third hypothesis, we need to consier the cases where I contains 1, or doesn’t contain 1 but does

contain 2, or doesn’t contain 1 or 2. These correspond to the conditions on p(1), p(2), and p(3) respectively.
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So we don’t need 2n comparisons in this case! But in general, we might get more unlucky because closing global

tests is hard. (And what’s useful is that a polynomial-time procedure which rejects strictly less than the closure also

controls FWER; in contrast, this is not true for false discovery rate.)

Example 39

Last lecture, we left out a global test, called Simes’ test. For this, we reject the global null if and only if the

ordered p-values satisfy

p(i) ≤
αi

n
.

In other words, we want that mini
np(i)
i ≤ α. This is less conservative than Bonferroni, and this has level α under

independence.

Closing this test is a bit of a mess, but it turns out it can be bounded by something called Hochberg’s procedure
– it’s Holm’s procedure but in the reverse order. We examine the p-values with the same critical thresholds as before,

but we start at the largest p(n) and go down until we’re below the threshold, rather than starting at the smallest p(1)
and going up until we’re above the threshold.

This therefore gives us a more liberal procedure (which is very similar to the Benjamini-Hochberg procedure),

and it will reject more while still controlling FWER because it’s still more conservative than the closure principle. So

under independence this is a better thing to do!

5 April 15, 2025

We’ll introduce another notion of error today, the false discovery rate (FDR), which has become popular in the last

25 years as a replacement for the familywise error rate. We’ll understand some procedures for controlling the FDR,

especially under independence. The original paper had a lot of trouble being published, but it’s since had a large

influence (being cited over 115, 000 times as of today!).

Fact 40

The familywise error rate makes a lot of sense when testing a small number of hypotheses and where the conse-

quences or cost of a single false rejection is high (for example, comparing treatments and suggesting one for the

market which actually hurts people). However, it will be difficult to achieve high power this way if we are testing

many hypotheses, and the way we do science has changed. For example in genome-wide association studies today,

we test millions of different hypotheses simultaneously (and there is lots of data available everywhere), and it’s

often “not the end of the world” now if we make a false discovery.

So in today’s world, FWER is so stringent that we often return nothing if we require FWER control. There’s always

a tradeoff – we can’t publish things that can’t be replicated, but if we require too strong a chance of replication, we

won’t get anything at all. It would thus often be better to return some false positives and give scientist a chance to

follow these primary leads. Maybe “it’s okay if there’s an irreproducability chance of 10 percent” or “a lab spends 10

percent of its time on incorrect hypotheses,” and this was advanced by Benjamini and Hochberg in 1995:

Remark 41. Technology “had not caught up” back when this paper first (it wasn’t getting citations for the first five

years), but over time our data has caught up and this has become quite important.

Recall the following table from last lecture:
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accepted rejected total

true U V n0

false T S n − n0
total n − R R n

In the language of this table, last lecture we studied ways to minimize the probability P(V ≥ 1) (or P(V ≥ k).

Definition 42

The false discovery proportion (FDP) is given by

FDP =
V

max(R, 1)
=

V/R R ≥ 1

0 otherwise

(this last case is just by convention so that we can control this quantity). In general this random variable is

unobserved, and the false discovery rate (FDR) is the expectation FDR = E[FDP] of this quantity.

The proposal is that if we control this number at 10 percent, we can design methods where on average, at least

90 percent of our discoveries are indeed correct.

One objection that people had with this criterion when it was first proposed was that it is weak: first of all, it’s a

weaker notion than FWER, but also controlling the expectation of a random variable doesn’t actually say much about

an individual study. A statement like P(FDP ≥ 0.1) ≤ 0.05 would mean that unless we are unlucky, our study has a

good chance of doing well, but just applying a procedure with FDR 0.1 doesn’t let us say anything – all we can say

is that by Markov’s inequality we have P(FDP ≤ 0.2) ≤ 0.5, for example. But the point is that “science as a whole

is correct,” and luckily, we’ll see that often (with independent p-values) FDP is concentrated around its mean, so we

can say something stronger about individual studies as well.

Here are some important properties of the false discovery rate:

• Under the global null, the FDR is equivalent to the FWER. (Indeed, under the global null, every rejection is false,

so the variable 1{V ≥ 1} is the same as V
R∨1 – here ∨ means maximum.)

• Thus, a false discovery procedure has to look at Bonferroni a little bit and make comparisons of that sort, since

it must control FWER weakly.

• In general we instead have the inequality 1{V ≥ 1} ≥ V
R∨1 , so FWER is at least FDR; thus controlling the FWER

also controls the FDR.

Example 43 (Benjamini-Hochberg procedure)

We’ll now consider a procedure generally more powerful than Holm’s procedure – instead of Hochberg’s procedure,

we consider a step-up procedure with critical values αi = αi
n , which is far less conservative than α

n−i+1 .

Basically, we draw a line at slope α, and we look at the rightmost (largest) p-value below this line. Then we

stop and reject the null for that p-value and anything smaller. (This is somewhat like Simes’ test but it’s a multiple

comparison test instead of a global test.) This threshold is also adaptive, in the sense that a particular fixed p-value

is more likely to be rejected if there are many low p-values (that is, if it’s ranked less significantly).

Remark 44. Remember that in a step-up procedure, if our p-values cross the critical threshold multiple times, what

matters is the rightmost crossing (which is the more liberal approach). In a step-down procedure, we’d instead care

about the leftmost crossing.
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Theorem 45

Suppose our test statistics are independent (so p-values are independent). Then the Benjamini-Hochberg controls

the FDR at level α. More precisely, we actually have the expression

FDR =
n0
n
α ≤ α.

The proof in the original paper is a bit contested, but we’ll see a proof here which Professor Candés developed

with a former student. What’s nice is that it’s powerful and that it can also be used in a more general setting or to

compute moments:

Proof. Let Vi = {Hi rejected} be the indicator function for hypothesis i being rejected. By definition, we have

FDP =
∑
i∈H0

Vi
R ∨ 1 .

Now, it suffices to show that for any null i , we have E
[
Vi
R∨1
]
= α
n . (This is somehow “the only answer we can get”

because the nulls are uniform and thus the random variables are exchangeable.) To prove this claim, notice that we

can do casework over the value of R and write

Vi
R ∨ 1 =

n∑
k=1

Vi1{R = k}
k

=

n∑
k=1

1
{
pi ≤ αk

n

}
1{R = k}
k

,

since assuming R = k , we know the threshold for rejection is αkn . Notice that on the event pi ≤ αk
n , changing pi

to zero doesn’t change the threshold, meaning whenever we reject Hi , the number (and identity) of rejections is the

same. So we can write the above expression as

n∑
k=1

1
{
pi ≤ αk

n

}
1{R(pi → 0) = k}
k

where this notation means that we set this null p-value to zero. Now we can take the expectation of this quantity

conditioned on all other p-values – the only randomness is in pi here, so

E
[
Vi
R ∨ 1

∣∣∣∣p1, · · · , pi−1, pi+1, · · · , pn] = n∑
k=1

αk
n 1{R(pi → 0) = k}

k

=

n∑
k=1

α

n
1{R(pi → 0) = k}

=
α

n
.

Then finally taking the expectation over the last p-value yields the result.

Remember that for the tenth smallest p-value, Hochberg’s procedure is looking at α
n−9 , which is essentially still

Bonferroni, while Benjamini-Hochberg is looking at 10αn , which is ten times larger. Thus this is letting us reject far

more liberally.

What we really needed here is that the distribution of any null pi does not depend on the distribution of the other

p-values – we could even condition on the non-null p-values as long as they are independent from the nulls. But under

dependence, we might get FDR inflation, and we might also find that the distribution of the FDP is less concentrated

around its mean, and we’ll talk about both of these now.
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Example 46

Suppose n = 2, meaning we have two p-values which we will represent on the x and y -axis. Assume that we’re

under the global null. Benjamini-Hochberg commits a false rejection if the smaller p-value is below α
2 or if the

larger p-value is below α. Thus there’s a region of situations where we get a rejection:

α
2 α

α
2

α

I

III

III

Graphically, we see that if the p-values are uniform and independent, then this chance of a false rejection (the area

of these regions) is exactly α. But we can inflate that value and make it larger, because in general we have

FDR = P(I) + P(II) + P(III) = α+ P(III)− P(II),

and now the best bound we can get is

FDR ≤ α+ P(III) ≤ α+ P
(α
2
< p1 < α

)
=
3α

2
.

And these inequalities can all be made tight (we can make P(III) = α
2 and P(II) = 0) by considering a joint distribution

over these marked regions and assigning the density to be zero in the other regions:

α
2 α

α
2

α

b

b

a

c

Specifically, if we set the densities to be constant on each region with b = 1
1−α , c =

2
α , and a = b(1 − bα

2 ), then

the marginal densities (the individual p-values) are each uniform, and indeed that gets us the “inflation” to 3α
2 .

Of course, we’re not running this procedure when n = 2 in practice – what we’re curious about is what the inflation

looks like for larger n:
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Theorem 47 (Guo-Rao ’08)

Let S(n) = 1+ 12 + · · ·+
1
n ≈ log n+0.577 be the nth harmonic number. Then there are joint distributions where

the FDR of the Benjamini-Hochberg procedure BH(α) is at least min(1, αS(n)).

(This proof essentially comes down to constructing similar examples as the one we did above for n = 2.) So if we

test 10000 things, we can inflate things by a factor of 10. But conversely, we have tightness (meaning this is the most

adversarial situation):

Theorem 48 (Benjamini-Yekutieli ’01)

Under dependence of p-values, the BH(α) procedure does control at level αS(n); in fact,

FDR ≤ αS(n) ·
n0
n
.

The following proof is also by Professor Candés and a former student:

Proof. Let αi = iα
n ; much like in the proof before, it suffices to show that E

[
Vi
R∨1
]
= α
n S(n). We again have

Vi
R ∨ 1 =

n∑
k=1

1 {pi ≤ αk} 1{R = k}
k

,

and we look at where pi can fall. Summing over the possible ranks it can take on, we have

n∑
k=1

k∑
ℓ=1

1 {αℓ−1 ≤ pi ≤ αℓ} 1{R = k}
k

=

k∑
ℓ=1

∑
k≥ℓ

1 {αℓ−1 ≤ pi ≤ αℓ} 1{R = k}
k

just by swapping the order of summation. But now if we do the k-sum first, we’re just looking at the probability of

getting a particularly high number of rejections, so this simplifies to

n∑
ℓ=1

1{R ≥ ℓ}
R

1 {pi ∈ [αℓ−1, αℓ]} .

Everything so far has been an equality, so “nothing interesting” has happened yet. But now we can simplify the first

fraction to be bounded by 1ℓ ,
n∑
ℓ=1

1

ℓ
1 {pi ∈ [αℓ−1, αℓ]} =

n∑
ℓ=1

1

ℓ

α

n
= S(n)

α

n
,

and then the rest of the proof proceeds as before. What’s surprising is that the result of Guo and Rao shows that

there are distributions of p-values for which this inequality is indeed tight!

So this inflation can indeed get bad, but here’s a question to think about: if we are testing the means of a Gaussian

using absolute z-values, and the Gaussians are correlated in some arbitrary way (so the test statistics are elliptical),

what is the worst possible inflation of FDR when we apply Benjamini-Hochberg? People believe that in cases with

unimodal distributions, FDR is still controlled or close to controlled, and numerical simulation shows that this seems

to be the case as well. But it’s still an open question whether we can indeed prove that FDR inflation is very limited.
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6 April 17, 2025
We’ll see a different perspective on Benjamini-Hochberg today, thinking about the empirical process viewpoint, and

then understanding how to improve on BH. While we do have a proof that this gives us control on FDR, we don’t

really fully understand it yet, and today’s lecture will make it more intuitive. This lecture will mostly follow a paper of

Storey, Siegmund, and Taylor from 2004.

Example 49

In today’s lecture, we’ll switch the x- and y -axis in plotting p-values. Previously, we had points at x-coordinates in
and corresponding y -coordinate the p-values p(i), which we can think of as plotting the cdf on the horizontal axis

and the inputs on the vertical axis. But now if we consider the empirical CDF F̂n(t) =
#{i :pi≤t}

n , then plotting

F̂n(t) will have p-values on the x-axis and indices on the y -axis. Then instead of a slope of line α, the critical

threshold line will be of slope 1
α .

Recall that Benjamini-Hochberg sorts the p-values and computes

i0 : max

{
i : p(i) ≤

αi

n

}
,

rejecting all p-values below p(i0). In other words, we define the critical p-value

p∗ = max

{
p(i) : p(i) ≤

αi

n

}
= max

{
p(i) : p(i) ≤ αF̂n(p(i))

}
= max

{
t ∈ {p1, · · · , pn} : t ≤ αF̂n(t)

}
(where by convention we can just set p∗ = α

n if we don’t reject anything). Thus we can rewrite this as saying that we

reject all hypotheses Hi for pi below the adaptive threshold

τBH = max

{
t :

t

F̂n(t) ∨ 1/n
≤ α

}
.

Now we will think about how this compares to rejecting hypotheses below a fixed threshold t. We then end up with

an outcome table of the following form, depending on the threshold t:

accepted rejected total

true U(t) V (t) n0

false T (t) S(t) n − n0
total n − R(t) R(t) n

The false discovery proportion is then FDP(t) = V (t)
max(R(t),1) , and we are interested in bounding its expectation

FDR. If we could estimate FDR(t) for all t, then we want to use the most liberal threshold possible, which would be

τ = sup
{
t ≤ 1 : F̂DR(t) ≤ α

}
;

that is, among all procedures, our estimate says that we should be fine, and then we take the best threshold possible

at that point. To obtain such an estimate of V (t)
max(R(t),1) , we know the number of rejections (hence the denominator)

but not the number of false rejections (the numerator). So we’ll estimate using the expectation and do the crude
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bound E[V (t)] = n0t ≤ nt. Thus we get the estimate

F̂DR(t) =
nt

max(R(t), 1)
=

t

max(F̂n(t), 1/n)
,

which is exactly what we have in Benjamini-Hochberg! So the optimization over t for our adaptive threshold makes

sense: τBH is basically estimating the false discovery rate we get for each threshold t, and we pick the highest t so

that this statistic is below α.

Theorem 50

If p-values are independent, our estimator is actually biased upward (which is good); that is, E[F̂DR(t)] ≥ FDR(t)

for all t.

So even in the case where n0 is very close to n (so we only have a very small number of alternative hypotheses),

we’re being a bit conservative, so that in general the false discovery rate is at least as good as what we’re complaining.

(It would be good to have an unbiased estimator, but it’s not clear how to get one or what we can actually do with

it.)

We can also take this estimate and rephrase it in terms of control on the FDR (which is what we did last lecture):

we showed that E[FDR(τBH)] =
αn0
n , but we will show the proof in a different way now (understanding why it works).

Proof. We want to show that E
[
V (τBH)
R(τBH)∧1

]
= αn0

n , and remembering that we’re “finding the first t that’s above a

particular line,” we’ll try to make a martingale argument where we start at t = 1 and go down towards t = α
n .

Let Ft be the sigma-algebra of all information about R(s) (the number of rejections at level s) and V (s) (the

number of nulls we would have rejected) for all s ≥ t. At the start, V (1) = n0 (because we would be rejecting all nulls)

and R(n) = n. Each time we cross a p-value, R goes down by one, and we’ll reveal whether it was null or non-null

(which tells us V ); thus we can keep a running count and have the values of V (s) and R(s) all the way down to t.

We claim that V (t)t is a martingale with respect to the given information. Indeed, at some s ≤ t (any real numbers,

not necessarily p-values), we have

E [V (s)|Ft ] =
s

t
V (t),

since conditioned on F(t) we know how many nulls are left to reveal, and V (s) looks at a fraction s
t of the interval.

Thus E
[
V (s)
s

∣∣∣Ft] = V (t)
t , meaning we have a martingale and can stop it using the stopping time τBH. Indeed,

E
[
V (τBH)

R(τBH) ∧ 1

]
= E

[
τBH

R(τBH) ∧ 1
·
V (τBH)

τBH

]
=
α

n
E
[
V (τ)

τ

]
(last step by definition of τBH), and by the optional stopping theorem this is αnE

[
V (1)
1

]
= α
n n0, as desired.

Example 51

We can now try to get closer to getting an unbiased estimator of FDR, but we still need to be able to invert it to

actually get control. We were only conservative here because we bounded n0 by n (since we don’t know the value

of n0); it would be nice to save the factor of π0 = n0
n if we knew what that quantity is.

What’s nice is that we can estimate it from the distribution of p-values that we observe. Fix a constant λ (say 12)
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and consider

π̂λ0 =
n − R(λ)
(1− λ)n .

This is our estimate of “fraction of null hypotheses” – the idea is that if we look at the p-values between 1
2 and 1, we

probably don’t have many non-nulls. Since that part is dominated by nulls, if we see that 40 percent of the p-values are

in the top half, then we expect about 80 percent of the hypotheses to be null. (So in other words, our estimate of n0 is

the number of p-values in this upper interval, divided by the length of the interval.) This is also upward biased, because

we can in fact sometimes see non-nulls and that means π̂λ0 will typically be a little larger than π0. So E[π̂λ0 ] ≥ n0
n = π0

implies that we can make a new FDR estimate

F̂DR
λ
(t) =

π̂λ0nt

max(R(t), 1)
;

we recover the usual BH procedure if we set λ = 0, but in general it’s a little less conservative. We thus want to prove

that “putting together these two biased-upward estimates” is good, meaning that setting the threshold to

τ = sup

{
t ≤ 1 :

π̂λ0nt

max(R(t), 1)
≤ α

}
still yields FDR control at level α. Unfortunately, this is not the case, but luckily, there is a slight variation that works.

With λ = 1/2 we would have π̂0 =
n−R(1/2)
n/2 (in particular, it’s possible for this quantity to be zero), and we just need

to inflate this a tiny bit by adding a 1 to the numerator:

Theorem 52 (Storey’s procedure)

Consider the estimate

F̂DR(t) =
n + 1− R(1/2)

n/2
·
nt

1 ∧ R(t) .

This is like “adding one to the number of p-values we see in the interval [1/2, 1] when estimating the proportion

of nulls. Then if we reject pi below the threshold

τ = sup
{
t ≤ 1/2 : F̂DR(t) ≤ α

}
(so basically we only use the points above 1/2 to estimate π0; they’re never getting rejected), then we control

the FDR at level α.

Proof. We will make a similar argument to the martingale one from before, but now starting at t = 1
2 and coming

down. (So we get to condition everything here on F1/2.) We then get

E
[
FDP(τ)

∣∣F1/2] = E [ V (τ)

R(τ) ∨ 1

∣∣∣∣F1/2]
= E

[
V (τ)

nτ
·
nτ

R(τ) ∨ 1 ·
n + 1− R(1/2)

n/2
·

n/2

n + 1− R(1/2)

∣∣∣∣F1/2]
= αE

[
V (τ)

τ
·

1/2

1 + n − R(1/2)

∣∣∣∣F1/2]
where we use that the blue quantity is always exactly α when we stop. Now V (τ)

τ is still a martingale, so the optional

stopping theorem tells us that this is also equal to α V (1/2)1/2 ·
1/2

1+n−R(1/2) .

So Storey’s procedure satisfies (now we take the expectation overall)

FDR(τ) = αE
[

V (1/2)

n + 1− R(1/2)

]
= αE

[
V (1/2)

n + 1− S(1/2)− V (1/2)

]
.
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Now S(1/2) ≤ n1, so n − S(1/2) ≥ n0 and thus

FDR(τ) ≤ αE
[

V (1/2)

1 + n0 − V (1/2)

]
.

Now V (1/2) is binomial with parameters (n0, 1/2), and we can check that this expected value is indeed at most 1 (in

fact it is exactly 1− 2−n0), completing the proof.

If we didn’t add 1 in the numerator, this last step would not work (in particular because V (1/2) might be exactly

equal to n0) – if we replace the 1 with any smaller real number the expectation will be larger than 1. And we do

in fact see FDR inflation in real-life situations if we don’t have this correction term as well – in regimes where π0 is

substantially away from 1, this is in fact better than Benjamini-Hochberg.

Remark 53. We can choose other values of λ as well, but we still need this same +1 in the numerator in Storey’s

procedure (the same binomial calculation works out).

There are two problems with correlations in p-values – first of all, the FDR might be inflated (as we discussed last

time), but also the distribution of the false discovery proportion might not be tightly concentrated around its mean,

meaning control of the FDR might not actually be informative. (For example if all p-values are exactly equal, then we

have to either reject everything or nothing, and that’s not useful because it means our FDP is either 0 or 1.) There

are tests of independence (via information-theoretic measures), but unfortunately in this situation they don’t help very

much.

7 April 22, 2025
Today, we’ll talk about controlled variable selection – we’re moving further away from classical stuff now. We’ll

introduce problems that we care about, for which it’s difficult to construct p-values; the point is that there are

important problems out there where this is not clear.

Fact 54

There was a paper from 2005 which claimed that most published research (about 80 percent) is false. Regardless

of the status of this paper, the fact that science runs into trouble has been noted by lots of people – this is the

replicability crisis.

There was a Nature paper by Begley and Ellis in 2012 which showed that out of 53 landmark studies in basic cancer

science published in top journals, Amgen (a biotech company) could only replicate 6 of them. Similarly, HealthCare

(a similar company in Germany) could only replicate about a quarter of 67 seminal studies in their field of research,

and generally systematic attempts to replicate widely cited priming experiments in psychology have failed. And other

areas of science go through phases of clinical trials – even phase III trials for the FA still end up in failure about half

the time, even though they’re supposed to be far in the research process alreay.

So there are many different components to consider here – there’s of course a publishing culture at fault (since

journals want extraordinary results), and there’s also pressure to promise a lot to granting agencies and work on

“big science” (where there isn’t a clear understanding of the pipeline from beginning to end). But there are smaller-

scale problems as well, such as computational reproducability (in terms of not publishing data or code) or statistical

methodology. And those last issues are what we can address more directly: we can decide when to report a finding

and enhance replicability.

27



Remark 55. We’ve hinted at this before, but the scientific method has been turned upside down: in the new scientific

paradigm, we collect data first and then ask questions afterward. But usually in hypothesis-driven research, we’re

supposed to observe the world and make a hypothesis, design an experiment for it, and then only collect data and

interpret it once we have the hypothesis in mind. Instead, we now have AI agents that sift through data for us, and

that’s a big driving factor as well.

Example 56

In Professor Candés’ field of research, the activity went from “testing an experiment for a particular gene” to an

explosion of technology where we can now test thousands of genes as well (so that we have a small number of

samples and a high number of variables). So it’s not fraud or that we’re dishonest; instead there are enormous

data sets, and most of what we look at is null and the “look-everywhere effect” needs to be addressed accordingly.

The human genome project is the epitome of what we’re talking about here: we sequence the genome because

we’re hoping that by doing so, we can formulate interesting questions and get the data-driven paradigm. So we

might have a response variable Y (such as Alzheimer’s disease status) which is a phenotype, and we have hundreds

of thousands of genotype information variables X. Our goal is then to understand the relationship between mutations

and phenotype, and we have no theory – we just want to figure out which variations do affect these traits, or what

profiles determine the severity of a tumor.

Thus, our goal is to select variables without creating too many false positives, so that we have a low rate of

irreproducability and increase our credibility. Perhaps we have a sample of individual human beings from a population,

and we can collect the values of X and Y from them. (There’s in fact lots of datasets like this that are available,

such as the UK Biobank.) We then want to understand which variables X are most important. Here we might have

n ≈ 5000 people in a large study but about 500000 variables, and we might want to know which 500 (for example)

are actually important for the conditional distribution of Y |X.

Definition 57

To make this well-posed, we’ll say that a variable is a discovery if

p(response|variable, other variables) ̸= p(response|other variables);

that is, j is null if and only if Y ⊥⊥Xj |X−j , where X−j is the set of all other variables.

We thus want to do a conditional test for whether Y ⊥⊥Xj |X−j . Notice that this is different from just testing the

natural question of Y ⊥⊥Xj – we are interested in whether Xj provides information beyond the information from the

others. (Of course, we have to address the pathological case where two variables are extremely correlated or actually

identical, but we’ll do that later on.) Most literature just tests for independence via marginal tests, but that doesn’t

make much sense because of the strong correlation between nearby parts of our chromosome (linkage disequilibrium).

So if X1, X2 are strongly correlated but it’s because X2 is caused by X1, we might think that both X2 and X1 are both

discoveries. A conditional test would ideally then only detect X1 as a discovery but not X2. (See Example 60 below.)

If we were in an introductory stats course, the equivalent of this would be positing in a linear model that Y ∼
N(βT x, σ2I) and checking whether βj = 0. So this is a natural question to do, but we can’t do that because the

model is way overfit in this case (far too many variables).
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Example 58

Instead, we can reframe the question in terms of graphical models. We can consider the dependency graph between

our random variables, and then the interesting variables are just the neighbors (the Markov blanket) of Y .

To find interesting variables, we can now try to score them. We live in an era of machine learning and deep learning

and so on, and it would be nice to be able to use some of these tools to make scientific discoveries. What we do is

feed in our matrix of data (with rows indexed by our samples, and columns indexed by the features X along with the

response Y ) and then get some black-box scores for feature importance. For example, in a random-forest algorithm,

we might ask how many times we used a given feature to split the dataset. But then we would need to ask the question

of whether we’d get the same range of importance if we replicate the study and how likely things are to pay off.

The main problem is that (at least in genetics experiments) we don’t know how Y actually depends on X, and

we don’t know how to compute the distribution of these statistical estimates we get, and we also don’t know how to

get p-values. (For example if we see a lasso coefficient through lasso regression, we don’t know the null distribution

because we don’t know what to compare it to. And bootstrapping doesn’t work at all because we’re in such high

dimensions and even fitting linear models will just randomly interpolate with some subset of the variables without a

clear interpretation – inference in high dimensions is hard.)

Definition 59

In the conditional randomization test (CRT) (of Professor Candés, Fan, Janson, and Lv in 2016), we can test

the hypothesis Xj ⊥⊥ Y |X−j if we assume that we know the joint distribution of X. (This is okay in genetics

because we have lots of models which help us detect errors and fill in missing data.) What we do is sample X̃j
with a “synthetic null,” meaning that X̃j ∼ Xj |(X−j = x−j). We then check whether or not

(X1, · · · , Xj , · · · , Xp, Y )
d
= (X1, · · · , X̃j , · · · , Xp, Y ).

If we forget the Y here, then by definition this is always true. But the point is that with the Y s it might not be

true if there is dependence – we’re detecting an asymmetry that can test our hypothesis. Indeed, the point is that Xj
and X̃j are equally consistent with X−js by construction, and asymmetry means the variables are directly connected in

our graphical model. We call this an imputation.

The method from here is very simple: assuming we can do this resampling because we know the distribution (and

if we don’t have a good model, we fit one with deep learning), the conditional randomization test does the following:

1. First construct the score (test statistic) t∗ = T (Xj , X−j , Y ) on our observed data. For example if we do lasso

regression, pick λ by cross-validation and let T = |β̂j(λcv)|.

2. Now for each of the K patients in the sample, score them on the new imputed value by sampling X̃j conditional

on X−j ; this gives us a score tk = T (X̃j , X−j , Y ).

3. We can now get a finite-sample p-value

p =
1 +#{k : t∗ ≤ tk}

K + 1
.

Indeed, the distribution of this random variable is 1
K+1 ,

2
K+1 , · · · ,

K+1
K+1 uniformly under the null hypothesis (since

t∗ has an equal chance to be ranked anywhere among {t∗, t1, · · · , tK}, since they’re all iid samples), so this is a

valid p-value.
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Another way to say this is that we want to see whether the test statistic T (Xj , X−j , Y ) is extreme compared to

the distribution T (X̃j , X−j , Y ) from resampling. Importantly, we do need to sample from the conditional X1|X−1, and

this is different from doing a permutation test in which we would just randomly permute the values of Xj around

our sample to get our new values of T . That would be incorrect, because we would be essentially resampling from the

marginal and then we’re not preserving associations of Xj with other variables:

Example 60

Suppose we have a linear model with two standardized variables X1, X2 (mean 0, variance 1) so that corr(X1, X2) =

0.5, but Y = X2 + ε is just a noisy observation of X2. Then we should care about X2 but not X1, even though

X1 happens to be correlated with Y .

The marginal correlations would then be E[Y X2] = 1 and E[Y X1] = 0.5, so we get a marginal association even

though X1 is not interesting. So if our statistic just calculates the correlation between the phenotype and a given

variable, we’ll find 0.5 for something uninteresting, and if we resample X1 from the marginal we suddenly get a

correlation of 0. This means that X ′1 would not be a valid control sample – we’d think that we’re very significant

because 0.5 is so different from the “fake control” of 0.

Fact 61

There are problematic limitations of the CRT that are important to note. First of all, we need to do our tests

a large number of times, and the Bonferroni threshold is low so this is very computationally expensive. And

furthermore, we’re reusing the same data repeatedly, so the p-values we get for different variables are in fact not

independent.

Lots of papers have tried to improve on this and take shortcuts, but instead it’s better to try to parallelize and do

comparisons in one step. There are instead knockoffs, which we’ll talk about more next lecture. In short, the idea is

to take a different point of view and resample all variables at the same time and compute for instance just a single

lasso:

• For each variable Xi being considered, make a knockoff version of that variable. (So if we start with a data

matrix with rows indexed by patients and columns indexed by SNPs, we append to X a new data matrix with

fake SNPs, one per real variable.)

• Instead of running the lasso on just X, we run it on the augmented matrix (X, X̃). In particular, we get a lasso

estimate of the importance |β̂j | for each variable Xj , but we also get one for the corresponding knockoff variable

|β̂j+p|.

• If these variables were null, then these statistics would have the same distribution since they are exchangeable.

So we can do a comparison to get a sense of whether we’re important. Basically for any null variable, the two

lasso coefficients should have equal chance to be larger, so the procedure sets a threshold so that there are some

real data points above it but very few false data points; the FDR is then well-estimated by the ratio of the points

above the threshold, and there is a clever filter (called SeqStep) to make this work for finite samples.

• We then select all variables which are above this threshold and larger than their knockoff variant.

We’ll see the mechanics of this next time, but we need to understand how to create this fake data matrix which

looks like a SNP matrix. For comparison, we could think about taking unrelated people and permuting their genomes

to form X̃, but that is a very bad idea because the distribution of X̃ is the same as X and then the distribution of
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feature importance for the permuted data will look nothing like the distribution of feature importance for the real data.

Instead, we point out that the property we need satisfied is that

(X, X̃)
d
= (X, X̃)swap(j),

where the right-hand side takes the jth column of X and the jth column of X̃ and swaps them.(And of course, we

should not be looking at Y here.) If this is the case, then the scores we get out for the importance of our real and

fake variables should be exchangeable for nulls (that is, if Xj does not influence the responds beyond what we know

for the other variables, then our statistics Zj , Z̃j will be exchangeable.) This will turn out to be sufficient for what we

want to do, and we’ll see how this process works in detail next time! What’s nice is that lots of this is model-free and

will fall under “non-parametric methods.”

8 April 24, 2025

Remark 62. As a quick remark about high-dimensional inference (continuing on the comments from last lecture), it’s

generally very hard to get things to work with the number of parameters p is large. For example, it’s very hard to get

a confidence interval on a particular β for a linear model y = xβ + ε with n = 10000, p = 50000, or to get a bound

on variance on β for a logistic model with n = 1000, p = 100.

We’ll continue our discussion of the conditional randomization test today – we talked last time about how it’s

computationally expensive and that we need to find some shortcuts. This lecture will discuss model X knockoffs.
Recall that the test we want to do is whether our phenotype Y is independent from a particular gene Xj when

conditioned on all other variables X−j . (This doesn’t give causality, but in some applications it’s getting a lot closer

to causality than just doing a marginal test – the arrow is much more clear in something like genetics.) We’ll discuss

the technical details of those model-X knockoffs today and next lecture.

Example 63

Our setting is that we have a matrix of covariates, and our goal is to create “fake genotypes” X̃ in such a way

that (X, X̃) has the same distribution as if we swap the jth columns of X and X̃. (That is, we can’t tell unless

we look at Y whether we’re looking at X or X̃.)

So it’s good to keep in mind that X̃ is “null” in the sense that

X̃j ⊥⊥ Y |X, X̃−j

(since we created X̃ without looking at Y ). So the idea is that for any null variable Zj , the null scores will be
exchangeable regardless of what our blackbox algorithm A – taking in as input [X, X̃], Y and trying to score the

importances Z1, · · · , Zp, Z̃1, · · · , Z̃p of our variables – does. Formally,

Z = A([X, X̃], Y ) d= A([X, X̃]swap(j), Y )swap(j).

(We can think of fitting a lasso and getting coefficients β̂1, · · · , β̂p, β̃1, · · · , β̃p; the point is that if we swapped the

real and fake j , we would get the same distribution back except with β̂j and β̃j .) For something like the lasso we have

this deterministically, but even with stochastic gradient descent or something it will still hold in distribution.) And that

fact is all we’re going to need, so we can accordingly choose whatever algorithm A we want.

31



So nothing in the score will tell us about X or X̃ if variable j is null (because Y cannot give us any more information):

we will have (Zj , Z̃j)
d
= (Z̃j , Zj) for any null j .

Fact 64

It’s important to note that we can only use this method if we know the distribution of X, so that we can create

X̃ by sampling the rows from it. And in something like genetics, we do have a very good sense of the distribution

of genotypes.

Note however that there are some complications because X̃ needs to still depend on X, so we do not just resample

independently from the distribution of X:

Example 65

Suppose X1, X2 are normal with mean µ =

[
µ1

µ2

]
and covariance matrix Σ =

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]
. (So each of X

and X̃ should have two columns. We’ll assume that we get iid samples, so each row is independent.) Now to

create our knockoff X̃, we need to create a function which samples X̃|X in such a way that our exchangeability

condition holds.

In particular, this means X1 and X̃2 still need to have nontrivial correlation, and so do X2 and X̃1. We can think of

this by creating a 4-dimensional Gaussian; the means necessarily must be


µ1

µ2

µ1

µ2

 (because otherwise we would be able

to tell which column is which). For the covariance matrix, by exchangeability it must take the form
Σ11 Σ12 ∗ Σ12

Σ21 Σ22 Σ21 ∗
∗ Σ12 Σ11 Σ12

Σ21 ∗ Σ21 Σ22


and these are the only conditions we need to have because the density here is symmetric in x1 and x̃1, and also in

x2 and x̃2 So if we can find a matrix which is positive semidefinite of this form, with any values of ∗ which keep the

matrix symmetric, this will be valid and it will be a valid joint distribution for (X, X̃). (Then we have plenty of standard

tools – regression formula and Schur complement – to figure out the conditional distribution for X̃1, X̃2 given X1, X2).

All that remains is putting something on the diagonal – this is asking us about the covariances Cov(X̃1, X1) and

Cov(X̃2, X2) between our fake and true SNPs. We wouldn’t want to make them equal to Σ11 and Σ12, because that

would just be duplicating X and that won’t create any contrast. Instead, it would make the most sense to set those

values to 0, but we don’t know whether that would make our matrix positive semidefinite. Thus this ends up coming

down to a convex programming problem, making those diagonal ∗ entries as small as possible while still ensuring

that we’re PSD – this is a semidefinite program.

Remark 66. Notice that this proposal is different from the following alternative way to construct knockoffs, which

works regardless of the joint distribution: choose X̃1 to be sampled from the conditional distribution X1|X2, and then

choose X2 from X2|X1, X̃1. (we need to do this “Gibbs sampling” where we also include X̃1 as a conditional, or else we

won’t get the correct distribution). This bypasses the semidefinite programming, but it’s expensive because we have

to keep track of more and more variables to get X̃1, · · · , X̃n.
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We can now think about how we might use this in real life: this construction is nice because it asks questions

like “do we know the distribution of X,” rather than making up models for randomness and asking for precise facts

about “made-up model.” (When Professor Candés took Stats 305, he had to model height on length of the church

in England, but it’s not really clear what the point of that is because we can’t make any inferences if we have the

full census of all the churches already.) The point is that we’ve often “assumed away” a lot of stuff, but here we can

put the randomness where we know it occurs (in genetics, this is during meiosis, since recombination spots are quite

random) and we can use that to make inferences about the actually unknown dependence Y |X.

Fact 67

With something like the UK Biobank dataset, we have 500000 individuals (some of which are related) with 500000

SNPs documented and ancestry recorded. We can then build a hidden Markov model and build knockoffs using

that. It turns out that if we calculate the first two principal components of our genotype, individuals cluster by

ancestry, and this occurs even with our knockoffs as well. And (this is what we called linkage disequilibrium)

we see that corr(Xj , Xk) ranges heavily from 0 to 1 depending on the SNPs, but those values are quite close to

corr(X̃j , X̃k) and also to corr(X̃j , Xk). So the exchangeability assumption does indeed hold up. The key fact is that

even though it’s difficult to generate knockoffs in general, it’s easy for Markov chains or hidden Markov models

because we don’t get the same complexity in Gibbs sampling. There are some complications with relatedness (we

need to be careful about siblings and parents), but if we do so carefully everything works out.

We’ll return to the theory now, developing a test for the conditional hypothesis. We can say something more than

that (Zj , Z̃j) are exchangeable:

Proposition 68

Define a test statistic Wj = wj(Zj , Z̃j) such that wj(Z̃j , Zj) = −wj(Zj , Z̃j). (For example, we could just let Wj
be Zj − Z̃j .) Then conditional on |W |, the signs of the null Wjs are iid coin flips.

The idea is that if we want to know whether variable 1 is important, we can fit a lasso at some point λ and get

regression coefficients β̂1, β̃1. We can then let our score be

W1 = |β̂1| − |β̃1|,

and if this quantity is large then we think variable 1 may be important. Thus if we compute all of our test statistics

and plot the values of |Wj | for all variables on a number line, then (regardless of the blackbox we use) the sign of each

test statistic is an independent coin flip for each null.

That fact will be enough to get FDR control, since we’ll apply the program we see before: the candidates for good

discoveries are the ones where Wj is large (for example if the lasso thinks X1 matters but the “control” X̃1 does not).

Thus we need to select the variables j where Wj ≥ t for some t, and we need to determine what t is. Much like

before, we now have

FDP(t) =
#{j null : Wj ≥ t}
#{j : Wj ≥ t} ∨ 1

.

We don’t know what this quantity is exactly, but because the nulls are equally likely to be positive or negative, we also

have by symmetry that

FDP(t) ≈
#{j null : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

.

And now we expect most of the very negative values to come from nulls, so we can make our estimate by bounding
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this as

FDP(t) ≈
#{j null : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤
#{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

= F̂DP(t)

This will turn out to be a pretty good estimate, and we won’t even be off by that π0 factor from before! So now we

step up in |W | (at the start our estimate is 0) and we stop the first time it jumps below α.

Theorem 69

This procedure described, with a slight modification like in Storey’s procedure (see below), controls the false

discovery rate. That is, we get FDR ≤ α for any user input significance level.

Much like the proofs we saw before, this one comes from martingale theory. And we’ll be explicitly clear about

what the selection is: we choose

τ = min

{
t :
1 + |S−(t)|
|S+(t)| ∨ 1 ≤ α

}
with S+(t) = {j : Wj ≥ t} and S−(t) = {j : Wj ≤ −t}, and then our selection of nonnulls is S+(τ).

9 April 29, 2025
We’ll wrap up conditional testing today and then move on to other topics – at the end, we’ll talk a bit about causality

and why we’re “close to it.”

Recall from last time that we’re testing whether Y ⊥⊥Xj |X−j (that is, Xj helps us in predicting Y , given that we

already know about all the other variables). We’ve seen a framework for this now: we create fake variables in an

intelligent way (so that swapping variables Xj and X̃j just swaps the black-box scores Zj , Z̃j that we get out), and then

we combine the scores into a single constant Wj for each real variable j . (This constant needs to have the “flip-sign

property so that conditional on the magnitudes, the nulls’ signs are always iid coin flips.)

We will then use this to assess importance: we typically expect the high values of |Wj | to come from non-nulls and

be positive, and so we have a selection procedure which selects these large positive scores (the black-box thinks it’s

important, and it’s quite a bit larger than the corresponding control). So we start from 0 and go from left-to-right,

and we want to set a threshold t which is the first time the false discovery proportion estimate is below α. (So we

compare the number of minuses to the number of pluses, and if the number of pluses is 20 times as large we stop.)

Precisely, let S+(t) = {j : Wj ≥ t} and S−(t) = {j : Wj ≤ −t}. Then our estimate of FDR is 1+|S
−(t)|

|S+(t)∨1 , and we let τ

be the minimum t where this ratio is at most α.

Proof sketch for FDR control. When the procedure stops, we have some false discovery proportion which is equal to

FDP(τ) =
#{j null and j ∈ S+(τ)}
#{j : j ∈ S+(τ)} ∨ 1 .

Using a similar stopping rule as before, we can rewrite this as

FDP(τ) =
#{j null and j ∈ S+(τ)}
#{j : j ∈ S−(τ)} ∨ 1 ·

#{j : j ∈ S−(τ)} ∨ 1
#{j : j ∈ S+(τ)} ∨ 1 .

But now the latter fraction is at most α when we stop, so the FDP is at most α times the former fraction. Then

#{j null and j ∈ S+(τ)}
#{j : j ∈ S−(τ)} ∨ 1 ≤

V +(τ)

1 + V −(τ)
,

and now because our nulls are symmetrically distributed we expect V +(τ) and V −(τ) to be approximately equal; indeed
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the expected value of this quantity is bounded by 1 by a martingale argument. We can check that with respect to

the sigma-algebra Ft = σ ({V ±(u))u≤t}), V +(t)
1+V −(t) is a supermartingale (meaning expectations are nonincreasing)

using some hypergeometric random variable calculations. (As an illustration of the kind of calculation we need to do,

suppose we have an urn with 17 balls, and we know 10 of them are marked with +s and 7 of them are marked with

−s. Then we remove 3 of them uniformly at random; we need to show that the expected value of (+ balls)
1+(− balls) is at most

10
8 . In fact, it’ll be exactly equal.) Thus

E
[
V +(s)

1 + V −(s)

∣∣∣∣V ±(t), V +(s) + V −(S)] ≤ V +(t)

1 + V −(t)
,

and so this calculation is also true marginally. Therefore

FDR ≤ αE
[
V +(τ)

1 + V −(τ)

]
≤ αE

[
V +(0)

1 + V −(0)

]
≤ α,

where this last step comes from the symmetry of the nulls, meaning V +(0) is binomial with parameters (n0, 12) (so we

reduce to a calculation we’ve seen in a previous lecture).

What’s remarkable about this argument is that throughout most of it, we are very close to equality, so we aren’t

losing a factor like π0 in Benjamini-Hochberg.

Remark 70. To summarize what we have so far, we’re introducing a different kind of testing to what we might be

used to. Previously, we might write down a linear model and run a t-test, but those kinds of assumptions are faulty and

often give us a fixed set of observations X to work with. What’s nice about the knockoffs framework is that it works

in any dimension (including p > n) and with any model for Y |X and any black-box. The main thing is just needing

access to the law PX so that we can construct knockoffs, and then we think of observations of X as random. This is

generally more appropriate in “big data applications,” and it turns out that even if the model isn’t exactly correct, we

still get useful inference.

Fact 71

Overall, the tradeoff is a shift in burden of knowledge: we need knowledge of X rather than knowledge of the

dependence Y |X to do these tests correctly.

In something like genetics, it’s useful because we in fact do not know how phenotypes depend on genotypes, but

we do actually have very good understanding of the distribution of genotypes in the population. And then we can use

this new framework regardless of what model for Y |X we want to use – there’s no inherent risk to power because we

can choose whatever machine learning algorithm we think represents the dependence correctly. And we can tell if our

representation of PX is good via data imputation.

Example 72

Some researchers were trying to study the effect of policies on number of COVID cases. They had a tensor with

state we live in, the number of COVID cases by date, and dates of certain policies. The questions of interest then

look like “what would happen if California implemented a different policy.”

This is a tensor completion problem, and so people tend to make a story about low rank tensor approximations

“plus some additional error.” But in order to make this make sense, we need to understand “where the randomness ω

is:” we’ve seen all the real data already, so we can’t control randomness to make real conclusions. (Professor Candés
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is skeptical about being able to answer those kinds of “what if” questions, especially in terms of burying things in layers

of math. In particular, sometimes it’s useful just to use statistics for description and summary rather than dubious

inference.) In contrast, in something like genetics, we know randomness actually comes from inheritance and thus we

can model that properly.

We’ll now forget a bit about knockoffs and focus more on the conditional testing aspect, specifically accounting
for correlations. Recall that nearby SNPs are very correlated, and perhaps there is a causal relationship between one

of them and the phenotype, while the other one is null. When we collect data, it’ll be difficult to distinguish the two

SNPs, but we don’t want to get the answer wrong.

One solution is testing over regions – we can compute a correlation matrix between SNPs and do hierarchical
clustering (so at the finest level they’re all in their own clusters, and then based on correlations they cluster together).

Once we have these clusters C1, · · · , Cm, we can then try to answer the question of Y ⊥⊥Xc |X−c . We then have a

tradeoff, where the question is easier to answer if the cluster is larger but the information we get from it is weaker.

In the image below, there are “seven levels of clustering:” at the very top we have just SNPs, and at the bottom we

have large clusters. We can then do knockoff analysis for each one (this is essentially the same as what we discussed

before, except that we have more freedom in actually building knockoffs because we don’t need exchangeability among
the cluster). This image shows that we have something interesting in each large region, but as we get finer we localize

the regions of interest more and more. (The stronger the effects, the more carefully we can observe their exact

locations.)

Remark 73. Based on everything we’ve said in this class, note that we cannot take “every highest peak” and mark

that down as an independent discovery, because FDR control is only done layer by layer. (Except that we can in fact

combine information and still control FDR due to some recent work, and we might hear more about this later on.)

In contrast, we can do marginal analysis and do univariate regression, as shown below. But it’s harder to make

sense of that – we still have to do additional processing and understand what the overlapping clumps really mean.

The point is that this strategy (going under the name KGWAS) manages to control the FDR, and it can make

precise discoveries and pinpoint the causal things at “low width” (that is, localizing the sources quite well).

Fact 74

Even in genetics, where we know molecular biology and thus can say that editing the genome actually changes

the phenotype (and not the other way around), what we’re doing is not sufficient for causality yet.

It’s rather philosophical to even get an exact definition of causality, but in this setting we can kind of ask it in the

context of “if we edit the genome, do we get a different distribution for Y ?”. Forgetting the knockoffs now, rejecting
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the null hypothesis Y ⊥⊥Xj |X−j tells us that Xj influences Y , but it could be that there is some other confounding

variable U which determines both Xj and Y . But when we say this kind of thing, we need concrete examples:

Example 75

For an easy case, it’s possible that we do not end up sampling every spot on the genome (that is, we don’t type

all of the mutations), and thus we’re not getting causality because we’re only taking the nearest neighbors that

are most correlated. But for a more interesting example, suppose gene A is a “good parent” gene which makes

you encourage your children to go outside, and gene B makes your muscles lean. Then if Y is the phenotype for

running ability, then clearly B causes Y (and it will be found by this kind of analysis). But this analysis will also

find A, because knowing what your parents make you do influences Y (the children of good parents will tend to

run faster). However performing an intervention on gene A will not change much; it’s an interesting discovery but

it’s not causal in this interventional sense.

The point is that randomization is what gives causal inference, because it corrects for unknown confounders, and

genome-wide association data is not randomized. That being said, we can add an additional step to get to causal

inference via the transmission disequilibrium test – we can condition on the genome of parents, since now we are a

randomized experiment coming from thermodynamic fluctuations during meiosis and basically nothing else. In such a

test, we let our data be the haplotypes of a subject and their parents, so that we have our genotype X = (Xm, Xf )

and our ancestors A = (Ma,Mb, F a, F b) (where each of Xm, Xf ,Ma,Mb, F a, F b are valued in {0, 1}n×p).

Definition 76

With the notation above, we call a variable Z an external confounder if

X|(A = a, Z = z) d= X|(A = a, Z = z ′)

for any value of a, z, z ′; that is, we don’t change the recombination based on the value of Z.

(It’s hard to come up with variables which aren’t external confounders, because it’s hard to think of anything else

which would cause meiosis to behave differently; any environmental condition after conception is external.)

Theorem 77

For any external confounder Z, any valid test of the hypothesis H0 : Y ⊥⊥Xj |(X−j , A) is also a valid test of

H′0 : Y ⊥⊥Xj |(X−j , A, Z).

Thus, we’re showing that our test is valid regardless of confounders Z (even if we don’t know what they are!). So

conditioning on X−j and A means we end up also conditioning on all other external variables as well, and that’s enough

for causality (the effect Xj → Y can’t be due to diet or location or anything else, unless it somehow strangely affects

meiosis). In the graphical model picture, we’re basically saying that conditioning on A blocks the potential effect of

Z, so we must have a real causal arrow Xj → Y .

Xj

A

Z

Y

37



10 May 1, 2025

Last time, we introduced the concept of an external confounder (in the context of genetics, this means that the

distribution of X conditioned on the ancestors A does not change if we additionally condition on any external con-

founders Z; that is, X|A,Z d
= X|A). What’s powerful is that if we have a test Y ⊥⊥Xj |(X−j , A), we are then implicitly

testing the more general Y ⊥⊥Xj |(X−j , A, Z) (meaning we still get an α-level test). So when people say that we

cannot do causal inference because of external confounders, we’re largely managing to get around that here. It’s very

well-described statistically how to get the distribution of X given A, so this isn’t too difficult to do.

Today we’re moving on to a new topic, e-values. This is a relatively new topic in the course, and we’ll start today

by explaining what they are and what we can do with them (controlling the FDR).

Remark 78. For some references, we can see Grünwald’s paper “E is the new P: Tests that are safe under optional

stopping, with an application to time-to-event data,” as well as (for next lecture) Shafer’s “Testing by betting: A

strategy for statistical and scientific communication” and Wang’s “Game-theoretic statistical inference E-values vs

p-values, calibration, combination, and closed testing.”

Example 79

Consider the following situation (which is real): research group A tests a medication and gets a promising but not

conclusive result (whatever that means – perhaps it’s risky to go to trial). Then research group B tests again on

new data, but it’s still not clear, so research group C tests next (again on new data). We then want to understand

how to combine these test results together even when we aren’t following a fixed plan.

The point is that this is different from what we did at the beginning of the course: if research group A got a p-value

of 0.6, then maybe research group B wouldn’t have done a test at all, so it’s not like we’re deciding ahead of time

to do some fixed number of tests and use some Bonferroni-type threshold. So this is a dynamic thing and continuing

tests might depend on various factors, not necessarily under our control.

The current method is typically to sweep all of the data together and recalculate the p-value, but here we have no

plan and the ideas of meta-analysis or sequential analysis do not clearly apply mathematically. And what we want to

avoid is p-hacking by giving us too many chances to notice something significant.

The e-value is a generic replacement of the p-value which will handle this problem of optional continuation:

Definition 80

Recal that a null hypothesis H0 is basically a collection of probability measures. An e-variable E for testing H0
is a nonnegative random variable such that

sup
P0∈H0

EP0 [E] ≤ 1.

A realization of an e-variable is called an e-value. Meanwhile, a p-variable for testing H0 is a nonnegative

random variable that satisfies

sup
P0∈H0

PP0(P ≤ α) ≤ α

for all α ∈ (0, 1), and a realized value of a p-variable is a p-value.

The idea is that the constraint for being a p-variable is controlling the cdf, while the constraint for an e-variable

is much weaker (just controlling the expectation). And in a simple hypothesis (So there’s only a single probability

measure), we’re just asking for the variable to have mean at most 1.
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Proposition 81

For any e-value E, the random variable E−1 is a conservative p-value (meaning that it is a p-value with wiggle

room).

Indeed, we have

P
(
1

E
≤ α

)
= P

(
E ≥

1

α

)
≤
E[E]
1/α

≤ α.

(There are other simple functions of E which work as as well.) The main problem is that there can be a fair bit of

wiggle room if we test by rejecting the null if E ≥ 1
α – we have no description of tails and thus knowing whether we’re

in the tail can be sometimes weak. But this will still turn out to be useful under certain perspectives, specifically if we

construct the correct e-values.

Example 82

We can connect this material with likelihood ratios in the following way. Suppose we have a set of null hypotheses

H0 = {pθ : θ ∈ Θ0} and a set of alternatives H1 = {pθ : θ ∈ Θ1}.

We might be interested in the Bayes factor

pW1(X)

pW0(X)
, where pW0(X) =

∫
θ∈Θ0

pθ(X)dW0(θ),

∫
θ∈Θ1

pθ(X)dW1(θ),

which essentially gives us a sense of how much more likely X is to occur in H0 versus H1 and it’s like a generalized

likelihood test. In particular, if we have a simple null, then H0 = {p0} is a single point and our Bayes factor is of the

form

M(X) =
pW1(X)

p0(X)
.

The point is that under a simple null, this quantity is an e-value – regardless of the prior W1, we have

EX∼p0 [M(X)] = 1

(this is the same argument as how the expected value of the likelihood ratio is 1). And if our alternative is also just a

point hypothesis, our e-value looks like

E(X) =
p1(X)

p0(X)
,

and we want to reject this for large values of E (for example if E ≥ 20). But this “safe test” is not quite the same as

Neyman-Pearson testing, which would reject at a much smaller threshold E ≥ 1
B where Pp0(E ≥ B) = α (in words,

whatever the tail of the likelihood ratio actually is under the null).

On the other hand, for any e-variable E, we can also interpret the e-value as a likelihood ratio by defining the

alternative in terms of the equation p1(X)
p0(X)

= E (and then p1 will integrate to 1). So we can really think of this as

“alternative view of the world.”

Example 83

Suppose we’re doing a simple case of classical testing, where X = (X1, · · · , Xn) are iid N(µ, 1) random variables.

Suppose the null is that µ = 0 and the alternative is that µ = µ1.
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We can then calculate explicitly (as we’ve already seen)

E =

n∏
i=1

exp

(
µXi −

µ2

2

)
.

The safe test is then rejecting when
n∑
i=1

(
µXi −

µ2

2

)
≥ ln 20 ≈ 3,

so if we reparameterize µ = t√
n
, the threshold for Neyman-Pearson to reject is X ≥ 1.64√

n
, while the threshold for the

e-value to reject is X ≥ 1√
n

(
3
t +

t
2

)
≥
√
6√
n
. Thus we will lose some power.

More generally, suppose our alternative is now H1 : µ ∈ Θ1 for a more general location family. We could then have

some prior w(µ) ∝ exp
(
−µ

2

2

)
on the alternatives, and the Bayes factor now looks like

E =

∫
µ pµ(X)w(µ)dµ

p0(X)
.

This is an e-value, and we calculate with a straightforward calculation that

logE = −
1

2
log(n + 1) +

1

2
(n + 1)µ̆2n, µ̆n =

n

n + 1
X,

where µ̆n is our Bayes MAP (maximum a posteriori) estimator. So we’ll indeed reject if X is large, which is a reasonable

thing to do, but the question is how much it has to deviate. It turns out that our safe test now rejects the null when

|µ̃n| ≥
√
2 ln 20+log(n+1)

n+1 , which isn’t quite right – we’d like to see 1.96 in the numerator.

Remark 84. When we look at the log-likelihood ratio under the alternative, it’s a sum of independent terms and thus

logE will concentrate around its mean (while µ̆n converges to 0). So more data is still good, but the question we’re

often asking is “what is the loss in effective sample size to detect a specific effect size compared to Neyman-Pearson,”

and that’s where the log n factor comes in.

Fact 85

The advantage of e-values is that we don’t know how to compute p-values for a lot of problems (and to compute

an e-value, we just need to control the mean). So in high-dimensional settings or more irregular models, it’s often

useful to use them. And as we alluded to at the start of the lecture, it will also help us with more sequential

studies – the dependence will not be a problem because expectation is much easier to deal with (using stopping

times) than entire probability distributions.

Example 86

We’ll be looking at safety under optional continuation in this lecture: suppose (X1, Z1), (X2, Z2), · · · is our data,

where Zi is some “side information” (for example, whether we have enough money to keep running experiments).

Suppose that the data comes in batches of size n1, n2, · · · , and Nt =
∑t
i=1 ni is the size of the data we have so

far.

We’ll establish an e-value E1 on the first batch. From there, we evaluate an e-value E2 on the next batch, but

only if the outcome is in a certain range (promising but not conclusive) and the external factors take on certain values

(things that we cannot plan) – otherwise we stop early. Then depending on the outcomes and external factors up

until the second batch, we decide whether or not to compute E3, and so on. But the point is that after τ total data
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batches, the final result we report is the product

Vτ =

τ∏
i=1

Ei .

In particular, we’re allowed to choose whether to continue on depending on whether each individual Ei is above some

threshold of our choice, and the point is that we’ll still be able to control the type I error:

Theorem 87

Regardless of the stop-continue rule, as long as τ is a stopping time, Vτ is itself an e-value. More formally, let

Ft be a filtration. Suppose that for all t, the conditional e-variable Et is a nonnegative random variable which

is Ft-measurable, and such that for all P0 ∈ H0 we have EP0 [Et |Ft−1] = 1. (This is easy to check in practice.)

Then Vt =
∏
i≤t Ei is a nonnegative supermartingale under the null. Thus by the optional stopping theorem, for

any stopping time τ with respect to the filtration, Vτ =
∏τ
t=1 Et is an e-value. (In particular, Vt is an e-value for

each fixed t.)

This even means we can accumulate evidence until Vt ≥ 20 and let our stopping time τ be the first t where this

occurs, and we will still control the type I error! And indeed, if we actually have a non-null hypothesis, p1p0 will have

expectation greater than 1, and so we will get a compounding effect and with enough data the ratio will eventually be

large enough. (So here we can think of the process as “positing a better distribution and betting on it;” furthermore,

we can redesign p1 adaptively as we continue on, since we’re only conditioning on the past.) The idea is that any

nonnegative supermartingale which starts at 1 can only ever globally achieve 20 with probability 1
20 , and we can be

completely adaptive with the procedure as long as we satisfy that specific inequality EP0 [Et |Ft−1] = 1.

Example 88

A paper by Professor Candes along with Huang, Jin, Li, Li, and Leskovec called “Automated Hypothesis Validation

with Agentic Sequential Falsifications” (appearing in ICML this year) designs an automated AI agent which validates

experiments of various sub-hypotheses given a main hypothesis and some type I error rate. This AI agent basically

collects data (Or finds it online), and automatically implements and computes p-values which are converted to

e-values (via e = κ × pκ−1). It then decides whether to stop based on whether
∏
Ei ≥ 1

α . (It turns out this

agent got very similar conclusions to expert biologists but in a much shorter amount of time...) And this use of

e-values was important for controlling FDR.

11 May 6, 2025
Last time, we showed how to aggregate evidence across trials with an optional continuation concept, where we keep

track of an e-value Vt =
∏t
i=1 Ei . Then Vt is a nonnegative supermartingale, and thus if we stop it at 1α we can safely

control the FDR. The point is that under the null, the event
{
sup Vt ≥ 1

α

}
has probability at most α by Markov’s

inequality as a consequence of the optional stopping theorem; more formally, τ = inf
{
t : Vt ≥ 1

α

}
is a stopping time,

and a nonnegative martingale Vt converges to some random variable V∞ almost surely. So

E[V0] ≥ E [Vτ1{τ <∞}+ V∞1{τ =∞}]

≥ E [Vτ1{τ <∞}]

≥
1

α
P(τ <∞),
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so rearranging this yields P(τ <∞) ≤ α.

We’ll discuss e-values even more today, first introducing a point of view of “testing by betting’ and using the GROW

criterion as an analog of power. (The references for this lecture are Shafer’s “Testing by betting” paper, as well as

work by Wang and Ramdas and also by Ren and Barber.

Example 89

Let’s think about conventional hypothesis testing in the way we typically learn about it: we have a hypothesis that

P describes a random variable X, and we want to use instances X = x to test the hypothesis P . Conventionally

(the Fisherian answer), we pick a significance level α, pick an event A with P(A) = α, and then we reject the null

if x ∈ A. But we can also interpret this in terms of betting: we put a dollar on the event A, and we get back $20

if A occurs (discrediting the hypothesis P ) and no money otherwise.

To actually measure the strength of that evidence against a hypothesized distribution P , conventionally we

construct a p-value which is the smallest α value for which the test (via a test statistic) rejects. So in other words,

the smaller the p-value, the more evidence against P we have.

On the other hand, a bet in the e-value language is that we have a function E(X) that can pay many different

values depending on our outcome. We choose E so that EP [E(X)] = 1, and so we pay 1 dollar and get back E(X)

dollars. So the larger E is, again the more evidence we accumulate against P . So this E(x) is a betting score, and in

fact we can think about it as a likelihood ratio as discussed last lecture:

Lemma 90

A random variable E is a betting score if and only if E(X) = dQ
dP (X) for some other distribution Q.

(Indeed, we’re saying that if E(x) ≥ 0 and Ep[E(x)] = 1, then we can write q(x) = E(x)p(x) and check that q is

a probability distribution.) So proposing E is like proposing that data follows Q rather than P :

Theorem 91

Suppose that I think Q describes X. Then E = dQ
dP maximizes the expected log wealth growth E[logE], meaning

that for any other distribution R (and independently of your prediction P ),

EQ
[
log
dQ

dP
(X)

]
≥ EQ

[
log
dR

dP
(X)

]
.

This is a form of “Kelly gambling,” which says that there’s only one way to bet intelligently and maximize the

exponential rate of growth of money in expectation. (Maximizing rate of growth makes more sense than maximizing

the expected value of the wealth itself – the latter might optimize for situations where you have very high wealth of

very low probability, and that introduces too much risk.)

Proof. We can write the difference between the two sides as

EQ
[
log
dQ

dP
(X)− log

dR

dP
(X)

]
= EQ

[
log
dQ

dR
(X)

]
,

and this is nonnegative because this is the Kullback-Liebler divergence between the random variables Q and R (whose

nonnegativity is just Jensen’s inequality):

EQ
[
log
dQ

dR
(X)

]
= ER

[
dQ

dR
(X) log

dQ

dR
(X)

]
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and now Y 7→ Y log Y is convex and thus this is at most ER
[
dQ
dR (X)

]
logER

[
dQ
dR (X)

]
= 1 log 1 = 0.

So the point is that any test E = dQ
dP expects to grow like exp(EQ[logE]) = exp(EP [E logE]), and we call this the

“implied target.” What’s nice is that this quantity (if we know what P and Q are) can be evaluated in advance. The

interpretaion is that if we expect the wealth to grow at a very slow rate even in an optimal world, then it doesn’t make

sense to invest in it (and in fact we should be reluctant to publish a paper if this implied target is very low).

Example 92

We talked last class also about Bayes factors M(X) = pW1 (X)

pW0 (X)
=

∫
pθ(x)dw1 (θ)∫
pθ(x)dw0(θ)

, where W0 is some set of nulls and

W1 is some set of alternatives.

This is an e-value if there was just a single null hypothesis p0(x) contributing to the denominator, but not in
general: we can only guarantee that coming from the mixture of nulls, EX∼PW0 [M(X)] ≤ 1. So this is a problem, since

for example in vaccine testing we have contingency tables and we might want to average over various possibilities.

One way to get around this is the following: assume we have some prior W1 on the alternatives Θ1. Then

for every θ0 in the null W0, we want the expected value of the e-value to be 1, so we want to find some Q with

EX∼Pθ0
[
PW1 (X)

Q(X)

]
≤ 1. This turns out to be possible: geometrically, we will find a mixture of components of Θ0 that

is closest to PW1 in a KL sense. We have this notion of Kullback-Leibler divergence D(P ||Q) = EX∼P
[
log p(X)q(X)

]
, and

we’ll find a mixture W ∗0 such that D(PW1 ||PW ∗0 ) is minimized:

W ∗0 = argminW0 distribution on Θ0D(PW1 ||PW0).

Once we solve this optimization problem, PW ∗0 is called the reverse information projection of PW1 on the set H0,

which is the set of PW over distributions W of Θ0. In very special cases, this W ∗0 will actually be a point mass at some

θ.

Theorem 93 (Li ’99, Barron–Li ’00, Grünwald et al. ’19)

Suppose this W ∗0 exists (so the optimization problem has a solution). Then pW1 (X)

pW∗
0
(X) is an e-variable, and in fact it

is the one we should use in the sense that it is the GROW e-variable relative to W1, meaning that it maximizes

logE under PW1 :
pW1(X)

pW ∗0 (X)
= max
E an e-variable for H0

EX∼PW1 [logE] .

We can now think about computations (and we’ll have some homework to do these computations as well):

Example 94

Let’s make the setting discrete to make our lives easier, and suppose Θ0 is finite (otherwise we do some dis-

cretization). We then want to find wis (the weights on the null θis) to minimize the quantity∑
x

pw1(x) log
pw1(x)∑
wipθi (x)

,

subject to the condition that wi ≥ 0 and
∑
wi = 1.

We can simplify the objective because the pw1 log pw1 doesn’t affect the minimum: our goal is really to minimize

the quantity ∑
x

−pw1(x) log
(∑

wipθi (x)
)
,
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and this expression is actually convex in the wis, so it’s not too bad to do.

So the “GROW e-variable” maximizes the rate of growth of our “money” E – under the null we have E[E] ≤ 1, and

looking for GROWs is the same as looking for power since we’re picking the one that “GROWs fastest” under W1.

Example 95

We can do a lot with e-values, and in fact we can come up with an analog of the Benjamini–Hochberg procedure

and control the FDR. Suppose we have n realized e-values e1, · · · , en associated to H1, · · · , Hn, and we want to

combine them.

As usual, we order them from most promising to least promising, so we have e(1) ≥ · · · ≥ e(n).

Definition 96

In the e-BH procedure, we reject the hypotheses of the largest k̂ e-values, where

k̂ = max

{
i :
ie(i)

n
≥
1

α

}
.

Numerically, recall that we can create p-values out of e-values by using 1
ei

, and this is equivalent to applying
Benjamini-Hochberg on those p-values (since it’s the last time p(i) is below αi

n ).

Fact 97

We should be careful that 1p is not an e-value in general (in fact its expectation need not be finite), even though
1
e is always a p-value.

Theorem 98 (Wang–Ramdas ’20)

The e-BH procedure has FDR at most n0αn , and no independence assumption is required.

In fact, if we work with e-values in our research, it’s more generally true that

FDR ≤
α

n

∑
i∈H0

EHi [Ei ]]

even if we don’t have “valid” e-values (we just need the sum of the expectations to be at most n, not that each

individual one has expectation bounded by 1).

Proof. We can calculate the false discovery proportion; as usual, let R be the number of rejections, which is a random

variable. We have

FDP =

∑
i∈H0 1

{
ei ≥ n

α(R∨1)

}
R ∨ 1

= 1{R ≥ 1}
∑
i∈H0 1

{
ei ≥ n

αR

}
R

≤ 1{R ≥ 1}
∑
i∈H0 ei/(

n
αR )

R

=
α

n

(∑
i∈H0

ei

)
,

and taking expectations yields the result.
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The main problem is that this requires us to construct e-values that are quite large, say n
α – that’s the main

problem with the field, since it’s difficult to cross even 20 (so 20000 will be very difficult). And even though this result

looks fantastic and works even for dependence, it’s quite conservative – we won’t get much power out of this. In

general, e-values are less likely to product rejections and thus underperforms for “0-1 decisions” – they only focus on

expectation and not the tail behavior.

Example 99

It turns out that we can reinterpret what we’ve already seen and do a lot more with these e-values – for example,

we can connect this idea with knockoffs. Specifically, letting Tα be the knockoff threshold and supposing we have

p hypotheses, we can define the e-values

ej =
p · 1{Wj ≥ Tα}

1 +
∑
k∈[p] 1{Wk ≤ −Tα}

.

This random variable is always nonnegative, and if we sum over null js we get

∑
null j

E[ej ] = pE

[
1{Wj ≥ Tα}

1 +
∑
k∈[p] 1{Wk ≤ −Tα}

]
,

and this expectation on the right-hand side is at most 1 (the same binomial calculation we’ve done often before). So

we do get FDR control at level α if we use these as e-values, by the theorem of Wang and Ramdas above. (And in

fact the two αs here – for FDR control and for Tα – need not be the same.)

Do note however that this isn’t so useful for us – the e-values are all one of two values (positive or zero), but the

knockoffs procedure already told us those are the ones to select. So we end up getting the exact same procedure as

before, just studied differently – knockoffs are essentially doing e-BH on a particular selection of e-values {e1, · · · , ep}.

Fact 100

Averages of e-values (even dependent ones) are e-values, but averages of p-values are not p-values. Notice that

when we do the knockoff procedure and create random knockoffs X̃(i)s, we might get different results depending

on the randomness. But now with e-values, we can derandomize knockoffs by repeating this procedure repeatedly

M times and averaging.

The idea is that for each X̃(i) we get some e-values e(i)j (for 1 ≤ j ≤ p). For each fixed i doing e-BH is just

selecting our knockoffs in the usual way, but now if we average the (very dependent) e(i)j s over all runs i (say 1000

trials), we get some values e1, · · · , ep and we can do e-BH on that last result. We’ll still control the FDR, and no

other assumptions are needed. (Lots of other stuff can be derandomized with this principle as well!)

12 May 8, 2025
Today’s lecture will mostly focus on limitations of e-values, but we’ll see one last good thing first.

Example 101

We’ve been discussing how we can do analysis at different levels of granularity to get more precise rejections when

signal-to-noise is strong. Naively we can’t pick the finest discoveries at all levels and get FDR control overall, but

it turns out that we can do e-value multi-resolution analysis and that will still work.
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Last time, we showed e-BH controls the FDR, and in general it turns out the idea is that if we reject RF out of

the |H| hypotheses, all we need is the self-consistency (at level α) property

ek ≥
|H|
αRF

for all rejected hypotheses Hk . (We tuned this in one particular way for e-BH, but there are various other ones too, and

the point is that self-consistency is a purely algorithmic property.) And we can enforce this by doing an optimization

problem – let xH be indicators for rejecting hypotheses H, and let w(H) be some corresponding fixed weights for

how valuable rejections are. (This is then a vector which tells us something about quality of rejections – w will be

proportional to the resolution.) We can then solve the maximization problem

max
{xH :H∈H}

w(H)xH given |H| − αeH
∑
H∈H
xH ≤ |H|(1− xH) for all H ∈ H.

In other words, we don’t need to know any statistics at this point – we’re getting FDR control just by imposing

this constraint, and we can maximize same weighted version of power and “go as high as possible” in resolution. So

e-values allow us to do this control much more easily than p-values, and we can even optimize for things like quality

or discovery.

Remark 102. One problem is that solving this is a Boolean optimization problem, which is very hard computationally

in general. If we could relax each xH to the full interval [0, 1], we would just have a linear program and could solve the

problem almost instantly. What we can do is find a relaxation problem and round it in some way; the canonical thing

to do is sample ξi Bernoulli with probability xi and check whether it satisfies our inequality (and then from there do

some more fiddling around).

The point is that we’re still asking very hard questions like “which parts of the genome affect this particular

phenotype” and solve some problems at different resolutions all at once, so this is real progress! Of course, we’re

focused on a genetics example where we have an ordering coming from contiguous parts of our chromosomes, but in

general we can always cluster our variables and do this process on clusters instead.

Example 103

As we’ve said many times, e-values “shouldn’t be that hard to find” since we only need to control the mean instead

of the distribution. Suppose we’re observing a logistic regression (yi , Xi) to the model

P(yi = 1|Xi) = σ(XTi θ∗) =
exp(XTi θ

∗)

1 + exp(XTi θ
∗)
,

and we want to test whether a coefficient θ∗1 = 0.

There are several ways that we typically learn to do this: one is to look at the likelihood function

L(θ) =

n∏
i=1

σ(XTi θ)
yi (1− σ(XTi θ))1−yi

and we calculate the log-likelihood ratio

LLR = 2 log
(
supθ∈Rp L(θ)

supθ∈Rp :θ1=0 L(θ)

)
;

since we’re just testing one coefficient it will converge to a chi-square by Wilks’ theorem. So if the sample size goes

to infinity, this log-likelihood should converge to χ21.
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But the question is whether this is actually good in the regime where p ∼ n – the answer turns out to be no. If we

apply the cdf of the chi-square, we should get our p-values and get something close to uniform under the null; instead

it turns out things are spiked significantly near p = 0. That’s a problem, because this means we’ll be falsely rejecting

much more than we should (and we can’t even do Bonferroni correction properly!).

Very similarly, we can use the Wald statistic, which says that for p fixed and n → ∞, we have
√
n(θ̂MLE → θ∗)

converges to a normal with variance I−1(θ∗). (Statistical packages that compute p-values for logistic regression will

basically always use one of these.) We then get standard errors by plugging in I−1(θ̂MLE) in place of I−1(θ∗), and we’re

again curious if this still holds up when p scales with n. Once again, the answer is no – the standard errors are off by

a significant amount.

So the point is that “what we get in R is wrong,” and in fact we don’t really have any way to calculate p-values

for high dimensions. The bootstrap method doesn’t help us out either, whether it’s parametric or non-parametric: the

real distribution of the MLE does not match up with the parametric and pairs bootstrap (which look similar to each

other but are both wrong!). It turns out that even if we sample with something like p = 8, n = 80, we’re still running

into problems where these limit statements aren’t working out.

Thus we’re still stuck with the problem of constructing a finite-sample test for the null hypothesis Θ0 = {θ ∈ Rp :
θ1 = 0}. There is an idea of Wasserman et all. from 2020 which goes as follows:

• Do split sampling, so write [n] = D0 ∪ D1. With D1, compute any estimator (MLE, logistical lasso, etc.) θ̂1 of

θ. We don’t know anything about the sampling distribution of θ̂, so we can’t form accurate p-values.

• Now look at D0 and consider

Tsplit-LRT =

∏
i∈D0 pθ̂1(yi |Xi)

supθ∈Θ0
∏
i∈D0 pθ(yi |Xi)

.

If this quantity is large, that means that under the likely value of θ1, the likelihood ratio is large and we have

evidence against the null. So we reject if this is larger than 1
α .

The point is that what we have here is an e-value, so we actually end up with an α-level test! Indeed, conditioned

on any value of D1 and under the null, the expectation of Tsplit-LRT is at most 1, since letting θ∗ be the true parameter

and θ̂ be our estimate, we have (replacing the blue quantity above)

Eθ∗ [Tsplit-LRT|y⃗D1 ] ≤ Eθ∗
[ ∏

i∈D0 pθ̂(yi |Xi)∏
i∈D0 pθ∗(yi |Xi)

∣∣∣∣y⃗D1] = 1,
This then also lets us get a confidence interval by inverting our test, and we can do anything we want by duality.

Remark 104. This strategy is advantageous because it works for a wide range of problems – we could have done so

for any parametric family, we’re allowed to use regularized estimators of θ, and it’s exactly valid for finite samples. But

the main disadvantage is that we have low power – indeed, we lose data because of sample splitting, and Markov’s

inequality is conservative (the usual e-value concern), but more concerningly using a supremum over all of Θ0 is in

general extremely conservative compared to the exact likelihood ratio – people are reporting that this is exponentially

conservative as the dimension of Θ0 grows.

If we do power plots, we in fact see that the split LRT has incredibly low power – methods like the ordinary and

adjusted likelihood ratio test are detecting much more than the split LRT.
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So an open question is whether we can do e-values and construct logistic regressions which have power closer to

the blue curves! And if not, then it’s “not so clear why we keep talking about them.”

Remark 105. We could be less conservative by using the reverse information projection instead of a supremum, so

that we consider

TRIPR =
pθ̂,D0(y⃗D0 |X)
pripr,D0(y⃗D0 |X)

This is an e-value, so we can validly reject when this is greater than 1
α . Unfortunately this RIPR is difficult to compute

in general – we want to optimize over mixture distributions on pθ,D0 , and there aren’t known ways to do that even for

something like logistic regression.

We can cheat a bit and use a quasi-RIPR, where instead of finding the best mixture in KL divergence, we find the
distribution in Θ0 (that is, a point mass) which is closest. This is not an e-value, but it still controls the size of the

test because there’s so much slack everywhere else. This becomes a maximium likelihood problem and we can do it,

and the result is shown below:

It’s somewhat better but still not as good as other tests, and we’ve gotten to the heart of the matter – we need

to get good e-values so that e-BH or something similar will actually get rejections.” The examples where we do get

good e-values already leverage other frameworks, and doing things from scratch is not simple.

Fact 106

There are methods of getting concentration out of this framework too. Suppose we have bounded random variables

Xi with mean µ, and we want to produce a confidence interval for µ with P(µ ∈ Cn) ≥ 1 − α. (It turns out

that if our random variables are not bounded, we cannot do this unless Cn is the whole real line.) We can do

this with Azuma-Hoeffding, but that turns out to be a bit silly – the interval is way too wide especially for small

variance, for example if Xi is Beta(10, 30) instead of Bernoulli. (Azuma-Hoeffding doesn’t even take the variance

of the random variables into account!) A paper by Waudby-Smith and Ramdas goes into a way to adapt to the

distribution in more detail, and it gives a narrower interval than other methods that have been proposed in the

past.
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The key idea is that Hoeffding is a large-deviations inequality which allows us an interval of the form

CHn =

{
{m ∈ [0, 1] :

∏
exp

(
λ(Xi −m)−

λ2

8

)
<
1

α

}
,

optimized over λ. Waudby-Smith and Ramdas basically chooses a different functional

Cm =

{
m ∈ [0, 1] :

n∏
i=1

(1 + λi(Xi −m)) <
1

α

}
,

and by cleverly choosing λi with a “gambling strategy” we can get something still valid but much narrower. But we

won’t go into this in more detail this year.

13 May 13, 2025

Today’s lecture will be a blackboard talk (just to change things up a bit); it will cover permutation tests and have

some interesting questions for us. We’ll be looking ahead to conformal prediction, hoping to understand the key ideas

from the point of view of permutation tests, before we do it in more detail in the coming lectures.

Problem 107

The following fundamental problem is an old idea going back to Fisher. Suppose X1, · · · , Xn are iid samples from

some probability distribution P , and Y1, · · · , Ym are iid samples from some other probability distribution Q. Our

goal is to test the hypothesis that P = Q even if we don’t know either of the distributions.

The strategy we learn in early statistics is that we should choose a test statistic T (for example we can let

T = |X − Y |) and reject the null based on whether T is unusually large. The question we need to ask is “how large

does T need to be,” and typically this is wher permutation tests are introduced: we compare T to how the statistic

would look if we were to permute the data.

Formally, we introduce the following (randomized) permutation distribution: choose M uniform permutations

σ1, · · · , σM from Sn+m (the set of permutations acting on a list of n+m objects), and we will have these permutations

act on the vector

Z = (X1, · · · , Xn, Y1, · · · , Ym).

Specifically, the σis will shuffle the entries of Z, and then we evaluate the test statistic on the permuted entry. So we

always take the average of the first n entries and the average of the last m entries after permuting, and we find their

absolute difference; in other words, we compare

T (Z) =
∣∣Z1:n − Zn+1:n+m∣∣

to the corresponding values of T (Zσ), and the p-value will essentially be the relative rank of T (Z) compared to T (Zσ1)

through T (ZσM ):

p =
1 +

∑M
i=1 1{T (Zσi ) ≥ T (Z)}

1 +M
.

Under the null, this is either uniformly distributed on
{
1
M+1 ,

2
M+1 , · · · ,

M+1
M+1

}
or biased upward due to ties (because

under the null we have exchangeability of the vector Z). Thus it is indeed a p-value, and notice that this doesn’t rely

on us needing to know the distribution of T at all.
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Example 108

The discussion above has been a motivating example, and from now on, we’ll assume that Z = (Z1, · · · , Zn) is

an exchangeable vector of random variables. That is, the distribution is symmetric in its arguments – for example

for two variables, we might want the pdf or density to satisfy p(z1, z2) = p(z2, z1).

There’s another way to characterize exchangeability as well: suppose we have a “bag” {Z} of numbers, where

some of the numbers may appear multiple times. (So it’s an unordered multiset of the values that appear.) Then our

random variables are exchangeable if

P(Z = zσ|{z}) is constant over all σ;

that is, we cannot distinguish ordering, and every permutation is equally likely. We’re going to go through some key

facts now:

Example 109

Given a set of permutations S, consider the quantity

p =
1 +

∑
σ∈S 1{T (Zσ) ≥ T (Z)}
1 + |S| .

If the variables are exchangeable, then Zσ has the same distribution as Z and thus T (Zσ) has the same distribution

as T (Z). We are interested in what sets of permutations S yield a valid p-value.

Here are the answers:

S p-value?

all permutations (Sn) Yes

iid samples from Sn Yes

an arbitrary fixed subset of Sn No

iid samples from an arbitrary fixed subset No

a subgroup of Sn Yes

iid samples from a subgroup of Sn Yes

Fact 110

Here “subgroup” means that we have a subset S of elements in Sn which is closed under composition and inverses

(and in particular therefore also contains the identity permutation).

In other words, we can only depart a little bit from taking all permutations or uniform samples from Sn. And first,

we’ll show why we can’t let S just be some arbitrary fixed subset of permutations with a counterexample:

Example 111

Consider Z1, · · · , Zn iid standard normal, and let S be the set of permutations

S = {σ ∈ Sn : {σ(n − 1), σ(n)} = {1, 2}} .

Let our test statistic be T (Z) = Z1 + Z2.
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We will show that this does not yield a valid p-value. Indeed, we now have

p =
1 +

∑
σ∈S {Zn−1 + Zn ≥ Z1 + Z2}

1 + |S| .

But now this inner sum is equal for all σ, which means that our p-value either takes the value 1
1+|S| or 1, each with

probability 12 . And this does not stochastically dominate a uniform random variable, since it takes on a very small value

with probability 12 ; the idea is that “all of the Zσs are conspiring.”

We’ll now show that if we use all permutations instead, then we’re okay, and in fact we don’t even need the +1 in

the numerator and denominator:

Proposition 112

The quantity

p =

∑
σ∈Sn 1{T (Zσ) ≥ T (Z)}

n!

is a p-value.

Proof. We’ll make use of the following “probability integral transform” lemma:

Lemma 113

Let the test statistic T have cdf F . Then F (T ) stochastically dominates U (in fact it is equal in distribution if T

is continuous, but larger if the variable takes on discrete values). Equivalently, if G(t) = P(T ≥ t), then G(T )

stochastically dominates U.

With this, let σ0 be an arbitrary permutation in Sn, and let Z′ = Zσ0 . Then

1

n!

∑
σ∈Sn

1 {T (Zσ) ≥ T (Zσ0)} =
1

n!

∑
σ∈Sn

1
{
T (Z′

σ◦σ−10
) ≥ T (Z′)

}
,

and now because we are summing over all permutations, we can do a change of variables and sum over τ = σ ◦ σ−10
instead. Then τ also ranges over Sn again, so this is also equal to

1

n!

∑
τ∈Sn

1 {T (Z′τ ) ≥ T (Z′)} .

But Z′ d= Z by exchangeability, so this quantity is also equal in distribution to 1
n!

∑
τ∈Sn 1 {T (Zτ ) ≥ T (Z)}. That

means that if we let σ0 be a random draw from Sn, then T (Zσ0) is a random draw from T (Zσ) and thus we can apply

our probability integral transform lemma. More precisely,

p
d
=
1

n!

∑
σ∈Sn

1
{
T (Zσ) ≥ TZσ0

} sto
≥ U,

as desired.
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Corollary 114

We can also adapt this to random permutations drawn from Sn, and we will now put the 1 back. Letting σi be

M iid permutations drawn from Sn,

p =
1 +

∑M
i=1 1{T (Zσi ) ≥ T (Z)}

1 +M

is a p-value.

Proof. Use the same argument as before: let σ0 be uniform over Sn and define

q =

∑M
i=0 1 {T (Zσi ) ≥ T (Zσ0)}

1 +M

But now q stochastically dominates a uniform random variable (by the same logic as before and the fact that σ0 is

a random draw from {σ0, · · · , σM}), and we claim that q and p have the same distribution. Indeed, by the same

change-of-variable as before,

M∑
i=1

1{T (Zσi ) ≥ T (Zσ0)} =
M∑
i=1

1{T (Z′
σi◦σ−10

≥ T (Z′)} d=
M∑
i=1

1
{
T (Zσi◦σ−10

) ≥ T (Z)
}

and because the distribution of σi ◦ σ−10 is the same as the distribution of σi itself, this also has the same distribution

as
∑M
i=1 1 {T (Zσi ) ≥ T (Z)}. Plugging this into the expressions for p and q yields the result.

Fact 115

The two proofs above also apply if we replace Sn with any subgroup of Sn. Indeed, instead of summing over Sn in

the proofs we sum over the subgroup H, and we choose σ0 to be first an arbitrary, then a random draw from H.

The subgroup property is necessary here so that summing over σ ◦σ−10 ∈ H is equivalent to summing over σ ∈ H.

We’ll close with a brief note on conformal inference:

Example 116

In predictive inference, we take some set of training samples (X1, Y1), · · · , (Xn, Yn) which are iid from some

distribution P . We then get a test sample Xn+1, and our goal is to construct, from the training samples, a

prediction interval for Yn+1 with prescribed coverage. That is, we want some C so that

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α.

Note that this is not a confidence interval – this is an observation we have not seen yet, and it’s interesting that

we can solve this problem at all. In fact, the way we can do so is through permutation tests! We hypothesize a value

of Yn+1 and test for exchangeability by computing

py =
1

(n + 1)!

∑
σ∈Sn+1

1 {T (Zyσ) ≥ T (Zy )} ,

where Zy = {(X1, Y1), · · · , (Xn, Yn), (Xn+1, y)}. Then setting y ∈ C(Xn+1) if and only if py ≥ α, we claim this is a

valid prediction interval regardless of our choice of T . Indeed, Yn+1 itself will be in the confidence interval if and only

if pYn+1 ≥ α, but we’ve already shown that pYn+1
sto
≥ U and thus we are done.
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Remark 117. Conformal inference requires some additional assumptions, and we’ll see that in the coming lectures.

The point is just that we can turn permutation tests into prediction intervals, but the caveat is that we require a sum

over (n + 1)! possibilities. So by introducing symmetry in the function T (specifically in its first n arguments) we can

collapse the calculation and make it practical (we only need to sum over n + 1 things instead of (n + 1)!):

py =
1

n + 1

n+1∑
i=1

1
{
T (Zy−i , Z

y
i ) ≥ T (Z

y
−(n+1), Z

y
n+1)

}
.

So we can use non-symmetric test statistics at the cost of additional computation.

14 May 20, 2025
Our topic for the next two lectures will be conformal prediction: we’ll discuss prediction intervals and different flavors

for how to get them, as well as the new ideas of jackknife+ and CV+.

Example 118

The motivation for conformal prediction is that we want some uncertainty in our prediction and some way of

quantifying accuracy. For example, suppose we have partial data of percentage vote change between 2016 and

2020 in some counties. Then for example at the Washington Post, there will be issued statements of predicted

ranges for unreported counties, and the cost of being wrong there is rather high.

There is some uncertainty quantification being used there – it’s not exactly the conformal prediction concept we’ll

talk about here, but there are some similar ideas. We use machine learning more and more in a lot of sensitive

applications (for example treatment being received or punishments for crimes), and we outsource a lot to decision

algorithms. Our goal is then to get some kind of confidence prediction even if we don’t understand the algorithm fully.

Fact 119

As professionals, we use data to make predictions – we have some input features and we predict some output

feature. Questions we need to be able to answer include “how certain are we of a prediction,” “how does that

uncertainty affect the eventual decision,” and “can the model be safely deployed.” It’s not so useful to have a

blackbox otherwise.

Summarizing the idea from last time, we have a training data of n points (Xi , Yi) as well as a test point (Xn+1, ?).

If we assume these points are all exchangeable (for example iid from the distribution PXY ), we have some hope of

predicting Yn+1, and our goal is to construct a marginal prediction interval C(Xn+1) so that P(Yn+1 ∈ C(Xn+1)) ≥ 1−α
for any distribution PXY and any sample size n. (This is different from a confidence interval, which is just measuring

population parameters and thus is sometimes harder to interpret if we’re for example specifying a linear model.) One

solution comes via permutation tests: letting Zi = (Xi , Yi) and Zyn+1 = (Xn+1, y), we basically consider the vector

Zy = (Z1, · · · , Zn, Zyn+1) with an imputed value y and test for exchangeability via some arbitrary statistic T :

py =
1

(n + 1)!

∑
σ∈Sn+1

1 {T (Zyσ) ≥ T (Zy )}

(This is a test for whether we can detect that we are not exchangeable and thus should be surprised.) We then include

y in the confidence interval if and only if py ≥ α; the point is that we have a valid p-value, so pYn+1 stochastically

dominates a uniform [0, 1], and thus Yn+1 is in the prediction interval with probability 1− α.
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The calculations here turn out to simplify if we use a test statistic with some symmetry (and that’s where conformal

prediction comes in) – if we let T (Z1, · · · , Zn, Zn+1) be assumed to be symmetric in its first n arguments, then all

that matters is the value of σ(n + 1). So the permutation p-value simplifies in this case to

py =
1

n + 1

n+1∑
i=1

1
{
T (Zy−i , Z

y
i ) ≥ T (Z

y
−(n+1), Z

y
n+1)

}
and again we include y in the interval if and only if py ≥ α. (We can check that all of this works even if T is

randomized.) We will call this full conformal invariance.

Example 120

The way this is typically done as follows: we fit a model µ̂(·) = A(Zy ) to Zy = ((X1, Y1), · · · , (Xn, Yn), (Xn+1, y)
which satisfies the symmetry assumption (for example in random forests, it doesn’t matter what order we pass in

the data, and this is true of most algorithms), and we define T (Zy ) = |y − µ̂(Xn+1)| to be the residual. Replacing

T with what we have, we thus get a p-value

py =
1

n + 1

n+1∑
i=1

1 {|Yi − µ̂(Xi)| ≥ |y − µ̂(Xn+1)|} =
1

n + 1

n+1∑
i=1

1{Ryi ≥ R
y
n+1}.

Note that it’s okay (and correct) here for us to fit the prediction model to the imputed value as well, since what

we’re ultimately doing is comparing the residual we get there to the residual of the other data points and we won’t

get a valid comparison if we don’t include everything. (For example, if our model interpolated between the valid data

points and we only trained it on Z1 through Zn, our first n “training residuals” would all be zero and we wouldn’t be

able to say anything about the “test residual” Ryn+1.)

And now if Rn+1 is very large, this quantity is quite small (it doesn’t conform), so instead we want to include a

point y in the prediction interval if the test residual is quite small. More precisely, the condition for including y is that

Ryn+1 ≤ Quantile
(
1− α;Ry1 , · · · , R

y
n+1

)
.

Remark 121. Interpolation is not actually a good thing to do here, though – in this framework, a neural network will

just fit a model through all of the n + 1 points, and so it will include any y that we choose and have a very large

prediction interval. We’ll talk about this more soon.

The point is that if all conformity scores are almost surely distinct, then in fact we get

P(Yn+1 ∈ C(Xn+1)) ∈
[
1− α, 1− α+

1

n + 1

]
(the p-value we get out of this is almost exactly uniform). And this is a statement of expectation over the training set

and the test set – one criticism against conformal inference is that it’s not conditional on Xn+1 – we can say “we’ll

be 90 percent accurate about the next county we randomly pull,” but we can’t say anything if it’s a specific county.

Example 122

Suppose we have a training dataset as shown below, and we want a prediction interval at the blue tick shown

below, Xn+1 = 4.7.

What we do is ask “can Yn+1 be equal to y?” by fitting a model with that value and calculating p(y), the fraction

of residuals with larger magnitude than for our imputed data point. And once p(y) goes below some value, say 0.1,
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it “stops conforming appropriately’ and leaves the prediction interval. (And note that as our point varies, the fitted

curve also slightly shifts.)

The prediction interval we end up with is shown below:

This is all computationally intensive – every time we fit the model we might need to do a lot of computation, and

in fact the prediction interval can be a disjoint set of intervals instead. But there are computationally tractable ways

of doing this. We can check how this works when we take, say, 1200 of the counties in the election and try to predict

the other 1900, and when we want 90 percent coverage we do in fact get very close to 90 percent coverage! (This

is a bit too good to be true since we’re not really testing the theorem – we’re getting 1900 test points to compute

residual quantiles and we’re using the “same training set” for all of them, and we’re really supposed to rerandomize for

each county. But it gets the idea across.)

Example 123

We’ll now understand the various “flavors” of conformal inference, starting with split conformal invariance.

This is a special case where we have n data points and we do sample splitting: we learn a model µ̂ with the first

split (also called a “fold”), and on the second split we calculate out-of-sample residuals (that is, learn the distribution
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of the residuals Ri = |Yi − µ̂(Xi)|). Then the test residual relates to this second split by keeping track of quantiles,

and the point is that we separately do training and calibration and form our interval from points that have all not been

used for training.

Formally, we compute a score function S(x, y) = |y − µ̂(x)| by fitting a model on an independent training set.

Once we have this, we use a distinct calibration set of size n to find typical size of residuals

Si = S(Xi , Yi), Syn+1 = S(Xn+1, y).

The point is that if y = Yn+1 these points should all be indistinguishable (they’re from the same distribution), and now

we include y if

py =
1

n + 1

n∑
i=1

1
{
Si ≥ Syn+1

}
≥ α.

And this result now holds conditionally on the training set, since for all purposes µ̂ is fixed.

This is better computationally, but it isn’t quite “as good as full conformal inference” in that it’s not cross-validation

and thus we need larger samples to get both a good model and good calibration points – it has the drawbacks of sample

splitting.

Example 124

So if data is scarce, we might want something that lets us both fit and calibrate while still being efficient, and

that’s going under the name jackknife+/CV+. This will be a bit more subtle than the previous methods.

We want to construct a prediction interval, and naively we might “fit a model µ̂, measure µ̂(Xn+1), and then do

a ± interval corresponding to the 90th percentile of residuals”

[10th percentile of {µ̂(Xn+1)− Ri} , 90th percentile of {µ̂(Xn+1) + Ri}] .

But we know training residuals are too small compared to test residuals, and an alternative method (called the

jackknife) is to take the regression value µ̂(Xn+1) and then do an interval corresponding to 90th percentile of the

leave-one-out residuals
RLOO
i = |Yi − µ̂−i(Xi)|.

That is, the interval we end up with is[
10th percentile of

{
µ̂(Xn+1)− RLOO

i

}
, 90th percentile of

{
µ̂(Xn+1) + R

LOO
i

}]
.

But this still doesn’t quite work – it’s forgetting something important, and instead what we should do is the jackknife+
where we recenter each time:[

10th percentile of
{
µ̂−i(Xn+1)− RLOO

i

}
, 90th percentile of

{
µ̂−i(Xn+1) + R

LOO
i

}]
.

If µ̂ and µ̂−i are very similar (the fit is stable), then it’ll be essentially the same. But if the fit depends crucially on a few

data points, this could be significant. More intuitively, jackknife always has the same centering point while jackknife+

has shifted centers.

Fact 125

Note that now we don’t have to fit the value for every hypothesized value y – we still need to fit the model n

times for each removed data point in either jackknife or jackknife+, but it’s still computationally feasible.
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Theorem 126 (Barber, Candés, Ramdas, Tibshirani 2019)

With exchangeable data points, we have

P(Yn+1 ∈ C jackknife+) ≥ 1− 2α

(in practice this looks like 1−α for any real dataset, but there are counterexamples where the prediction interval

is smaller).

Interestingly, it’s possible to construct examples where the jackknife actually has zero percent coverage for the

prediction interval, so this strategy is much better!

Remark 127. Professor Candés did a simple example where Y |X is linear, we do regularized least-squares, and we

have 100 samples and 100 features, the jackknife method yields a coverage of 0.475 and jackknife+ yields a coverage

of 0.913. And the idea is that when the number of features and samples are close, fitting a linear model means µ̂ is

not very stable.

Example 128

To further make this computationally tractable, we can do “leave-one-out folds” instead of “leave-one-out residuals”

(say with K = 10 equal-sized folds). We use 9 folds to train a model, and we use the last one to calculate

RCV
i = |Yi − µ̂−Sk(i)(Xi)| and find a prediction interval. This is called the CV+ method, and now we only need to

train K = 10 models (and if we can’t even do, say, 5, we should abandon doing uncertainty quantification).

What we haven’t done in all of this is discuss discrete labels – everything has been continuous, but everything

extends to discrete labels as well.

Fact 129

We can take the fashion-MNIST and MNIST datasets – these have 10 classes of images, 50 features obtained

by PCA, and 1000 training examples. Below are the values of coverage and set size for different methods and

classifiers (all of them have a type I error guarantee, but we want to figure out which one to use).

The coverage numbers are all roughly 0.9, which is exactly what we want. So now we want to return small prediction

sets (that’s more power), and the bold numbers show that jackknife+ does the best.
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To understand why full conformal does not do too well here, these models are usually overparameterized and

interpolate between data points. The idea is that test residuals tend to be rather low, so no matter how we pick y ,

we’ll see a small outcome due to overfitting. Thus it makes sense to instead use jackknife+ for something like a neural

network.

More generally, let’s phrase the discrete problem that we’re trying to solve: suppose we want to categorize into

a discrete, unordered set of labels Y, and we want to construct a prediction set using a conformity score. One thing

we can do is take an algorithm π̂(y |x), estimating the probability of Y = y given X = x (for example the output of a

softmax layer of a neural net); our prediction set is then

Ŝ(Xn+1) =

{
y ∈ Y :

n∑
i=1

1
{
π̂−i(y |Xn+1) ≥ π̂−i(Yi |Xi)

}
≥ α(n + 1)

}
.

In English, we’re saying that we’re in the predictive set if the predicted probability is in the top 90 percent of the

leave-one-out probabilities – −π̂(y |x) is taking the place of |y − µ̂(x)|, we train classifiers instead of regressions, and

then everything else is the same. And with the exact same proof we show that the probability of being in the predictive

interval is again at most 1− 2α.

15 May 22, 2025

Fact 130

Notice that in split conformal prediction, the width of the interval does not depend on the new value of Xn+1 (since

our prediction function is µ̂(Xn+1) plus or minus some quantity). Letting Si = |Yi − µ̂(Xi)| be our conformity

scores in split conformal mode, the width then depends on the quantile of those Sis, but not on the new test

point. And this is the case for jackknife and jackknife+ as well, and this will come up later on in the lecture.

We’ll continue with conformal prediction today. First, we summarize the idea of discrete prediction intervals,

i.e. classification: we now want to output a prediction set which includes the true classification with probability

90 percent, and everything stays the same except with a newly specified conformity score T (Zy ) = 1
π̂(y |Xn+1) (or

alternatively −π̂(y |Xn+1)); again p-values depend on what proportion of these conformity scores we’re above, and we

include points as long as π̂ is larger than some specified quantile. (There’s split conformal and jackknife versions of

this, which play out in the exact same time. The main advantage of jackknife and jackknife+ is that we don’t need to

train models for every y as long as we look at the leave-one-out probabilities, and we can run things in cross-validation

mode as well.)

Example 131

What we’ll turn to now is enhanced conformity scores – conformal prediction lets us choose conformity scores

in any way we want, and our goal should be to fit the high and low quantiles of Y |X.

If we had an oracle which revealed those quantities to us, our prediction interval would then exactly be (for example)

the 5th to the 95th percentile. So it’s not clear why we should start by estimating the mean in the first place, especially

when the distribution is often not expected to have normal fluctuations and when the length of the interval can really

vary greatly depending on X.

Thus, if we want to estimate these true quantiles, we want a way to form adaptive intervals rather than doing
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constant-width across all values of x . (Right now we’re marginally correct over the full distribution of X, but we should

aim for something a bit stronger rather than over-covering in some regimes and under-covering in others.)

The first idea comes from Lei, and it is to change the conformity scores to depend on relative residuals instead

R̃i =
|Yi − µ̂(Xi)|
|σ̂(Xi)

=
|Ri |
σ̂(Xi)

.

(So this requires us to run two machine learning algorithms for fitting instead of one.) We can then get a valid

prediction interval by “standardizing”

C(Xn+1) = µ̂(Xn+1)±Q · σ̂(Xn+1),

where Q is the (1 − α)-quantile of R̃i – everything goes through the same way as before, and now the width can

change.

However, in practice this doesn’t really work very well. One problem is that when we estimate σ̂, we often

underestimate it (for example if we have a tendency to interpolate) and thus end up with huge terms because of fairly

unstable quantities. So that means the intervals aren’t actually as adaptive as we hope, and we don’t end up with

great results.

So the other idea to go with, which is what people do at the moment, goes under the name conformalized quantile

regression. Basically we estimate quantiles, then conformalize them – we change the squared loss to a different loss

function

f (·) = argminf ∈F
∑
i

ρα(Yi − f (Xi)) +R(f )

where R(f ) is some regularizer and pα is the pinball loss which is the absolute value function for α = 0.5 (hence

finding the median) and more generally it is piecewise with slopes α and −(1 − α) above and below 0. We can then

use these quantiles to find conformity scores, and then we don’t need to prove anything new because all we’re doing

is changing the score function: we now use a score function such as

S(x, y) = max
{
q̂α/2 − y , y − q̂1−α/2(x)

}
,

or we can do some kind of standardization (normalizing by width, though in practice it doesn’t really improve very

much)

S(x, y) = max

{
q̂α/2 − y

q̂0.5(x)− q̂α/2(y)
,
y − q̂1−α/2(x)

q̂1−α/2(x)− q̂0.5(x)

}
.

We then include y in our prediction interval for Xn+1 if and only if S(Xn+1, y) ≤ Q(1 − α,Si) (where depending on

the method we use, maybe we are refitting the model, but the idea is still the same).

Remark 132. To give some intuition, suppose we run this in split conformal mode. So then we calculate quantiles

from our first set, and then we measure the distance of a point to the nearest quantile, receiving a + if we’re beyond

the quantiles and − if we’re between them. Ideally we would have 90 percent of our points with a − and 10 percent of

our points with a +, so the quantiles of our scores would be about 0. But if we were overconfident (as typical machine

learning algorithms are), we will have too many positive points and thus the quantile will be positive. Similarly if we

are too conservative our quantile will be negative.

Doing a bit of algebra, this means the values of y that will be in our prediction interval at a fixed x are given by

[lower(x)−Q1−α, upper(x) +Q1−α]

and so this indeed lets us get an adaptive-width interval.
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In practice, both the “ordinary” split conformal method and CQR will give the intended coverage of 90%, but the

width of CQR is adaptive and has a smaller average length. So it’s better because it has shorter intervals, but it also

looks better conditionally. (Of course, we can’t actually get any theoretical guarantee like P(Y ∈ C(Xn+1)|Xn+1) =
1− α, though. To guarantee that in general, we need infinite length intervals or some modeling assumptions.

Example 133

There’s a medical expenditure panel survey from 2015, which has 16000 subjects and 140 features (including age,

marital status, race, health status, etc.) predicting things like healthcare system utilization and number of visits

to the doctor. And regardless of the conformity scores we pick, we’ll get 90 percent coverage in our prediction

intervals – it turns out CQR gets better conditional coverage (much closer to 90 percent) and shorter length of

intervals as well.

It is difficult to measure what conditional coverage actually means – the idea is to measure over slabs of data

points in this 140-dimensional space and find the worst-case adversarial coverage on that slab. The point is that it

turns out to be very hard to make CQR look bad, but it’s pretty easy for other notions to do significantly worse than

90 percent. And there’s been more comprehensive studies to show that this works in a variety of contexts, too.

Example 134

There are other things we can do too which are CQR-related, such as calibration via adaptive coverage. One

thing we can do is start with a data set, and try to essentially predict Y |X via quantile regression (so we do 100

quantile regression problems).

This basically means we’ve fitted a model and have an uncalibrated guess (for example with τ = 0.1)

Cnaive(x, 1− τ) =
[
F̂−1Y |X(τ/2), F̂

−1
Y |X(1− τ/2)

]
.

This interval won’t be good yet (our fitted model is probably overconfident on its training data), so now we conformalize:

run things in full conformal or jackknife+ mode, using this as a conformity score. Specifically, in split conformal mode

we get quantiles based on some predicted distribution, and then we’ll pick a prediction interval of this kind but choosing

τ̂ so that we achieve 90 percent coverage on the calibration set! So for example we might pick τ at 95 percent so that

on test data we get 90 percent coverage. In practice, this ends up being more work but it works fairly well, basically

at the same level as CQR.

We can apply this all to discrete labels as well: we first have some conditional probabilities π̂(y |x) that we estimate

(for example as the output of a softmax layer), for example 50%, 30%, 10%, 5%, 2% for a, b, c, d, e. It would then

be tempting to say that {a, b, c} is a good prediction set with 90 percent coverage, but the neural net might be too

sure of itself. So instead we can “conformalize” and see how well {a, b, c, d} does on the test data, seeing whether we

now get 90 percent coverage. (Or maybe {a, b} turns out to be enough, too.) This is also useful because it actually

reveals uncertainty in a more honest way (we can output the probabilities along with the predictions), and it lets the

threshold be adaptive to x . This does mean we return larger sizes in general, but that’s mostly because we return

fewer empty sets compared to the “original” discrete classification strategy.

Example 135

We’ll close this lecture with weighted conformal inference: some ideas are that (1) the guarantees of conformal

inference are too weak, and we want something closer to conditional guarantees, and (2) there may be shifts in

covariates.
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For example, in the presidential election results by county, it’s a bit too much to expect that counties are pulled

randomly from an urn. It’s reasonable to assume test (revealed counties) and training data (remaining counties) are

exchangeable if all orders are equally likely, but small populations or East Coast counties are typically finished earlier,

and in fact there is some distribution on the orders.

So what we need to do often is reweight observed data: suppose we have

(Xi , Yi)
iid∼ PX × PY |X

for known data i , and

(Xj , Yj)
iid∼ QX × PY |X

for unseen data j , where QX has undergone a covariate shift (this is really what’s happening in all of the examples

we typically think of for why counties report in different orders). Another setting in which this happens is where we

assign either treatment or control based on a coin toss X whose probability may depend on the person, and so we

can observe what happens to people in the treatment group but “not what would have happened if they were in the

control,” and vice versa.

So the question we might ask is: if we are in the control group, how can we predict how well we would have done

if we had been given treatment? This is different from the usual causal inference, and it turns out that we can in fact

construct a prediction interval for this because we have lots of data in the other group. We’re not from the same
population (we’re not exchangeable with the other group), so we have to be careful to account for the covariate shift,

but there is something we can in fact do.

This is called the counterfactual inference problem, and the idea is to make use of the covariate shift

w(x) =
dQX
dPX

(x).

In the context of CQR, we have some histogram of the conformity scores on the calibration side, and now we reweight

that distribution of conformity scores according to w by upweighting training points that could have come from the

calibration distribution: instead of the empirical distribution we now use

n∑
i=1

pi(x)δSi + p∞(x)δ∞, pi(x) =
w(Xi)∑n
i=1 w(Xi)

,

and otherwise the method is exactly the same: we return a prediction interval which takes the quantiles in the weighted

distribution

[q̂0.05(x)−Q(x), q̂0.95(x) +Q(x)].

We’ll see more of this next time, and the point is that we can again guarantee (1 − α) coverage as long as we can

find this dQdP .

16 May 27, 2025

Fact 136

As mentioned at the beginning of the document, this lecture was transcribed via course lecture slides and some

notes by Marc Soong and Yifan Zhu.

We’ll start by continuing our discussion of the counterfactual inference problem and weighted conformal prediction.
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Recall that the idea is that sometimes we have different populations (for example if we’ve sampled two different

groups for treatment and control via some non-iid method) and thus need to account for covariate shift because

exchangeability is no longer true. We do so by “upsampling the stuff more likely to be from the test sampling.”

Using the notation in the previous lecture, we have some weights pi(x) ∝ w(Xi) = dQX
dPX
(Xi).

Proposition 137

Let Pw =
∑n
i=1 pi(x)δSi + pn+1(x)δ∞ be the weighted distribution of scores. If we condition on an (unordered)

bag of n + 1 scores, then SYn+1n+1 is a random draw from Pw .

The point is that this means the p-value pYn+1 will stochastically dominate a uniform random variable by the

probability integral transform lemma when conditioned on the bag of scores, so in particular it also does so marginally.

That means that we can construct the following prediction interval:

Theorem 138 (Barber-Candes-Ramdas-Tibshirani 2019)

For any score function S and any α ∈ (0, 1), we can construct the prediction interval

Ĉn(x) =

{
y ∈ R : S(x,y)n+1 ≤ Q1−α

(
n∑
i=1

pi(x)δS(x,y)i

+ pn+1(x)δ∞

)}
.

Then P(Yn+1 ∈ Ĉn(Xn+1)) ≥ 1− α.

Proof of Proposition 137. We’ll assume for simplicity that all scores are distinct, but the argument can be adapted to

collisions easily. We thus have a one-to-one mapping between Si = S(Xi , Xi) and Zi = (Xi , Yi), and we wish to show
that

P (Zn+1 = zi |bag(z)) = P (Sn+1 = si |bag(s)) = pi =
w(Xi)∑n+1
j=1 w(Xj)

.

(In the case where all ws are 1, there is no covariate shift.) For this, let f be the pdf (likelihood) of the data; we have

f (z1, · · · , zn+1) = p(z1) · · · p(zn)q(zn+1)

and we want the total density over permutations where the last one is zi . Thus

P (Zn+1 = zi |bag(z)) =

∑
σ:σ(n+1)=i p(zσ(1)) · · · p(zσ(n))q(zi)∑

j

∑
σ:σ(n+1)=j p(zσ(1)) · · · p(zσ(n))q(zj)

=

∑
σ:σ(n+1)=i p(zσ(1)) · · · p(zσ(n))p(zi)w(xi)∑

j

∑
σ:σ(n+1)=j p(zσ(1)) · · · p(zσ(n))p(zj)w(xj)

,

but now all terms have the same product of ps and thus this all just simplifies to w(xi )∑
j w(xj )

= pi , as desired.

Example 139

Sometimes we have a setting where each subject is either treated or control with probability determined by some

propensity score e(x), and we may be curious about how to perform ITE (individualized treatment effect) inference.

This is a special case of counterfactual inference, and the goal is to predict the values of Y (1) for specific subjects

even if those values are not observed. Skipping the details, the point is that the performance of methods like

causal forest, X-learner, or BART become much better when conformalized.
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The idea is that we reveal something about the bag and then want to see whether the test point is also from

the bag as well, so it’s the same core idea of conformal inference! We just need to upweight or downweight by the

appropriate pi factor, and all that’s necessary is for us to know what the covariate shift actually is.

With this, we’ll move on to more on conditional conformal prediction. First, we recap the ideas of split conformal

prediction. We construct a conformity score S(Xi , Yi) (for example |Ŷi − Yi |), and we compute a (slightly modified)

quantile ĉ1−α of the values S1:n or of the values Sy1:n+1 (where we fill in the (n+1)th data point by (Xn+1, y)). We then

output an interval Ĉ(Xn+1) to be those values where S(Xn+1, y) ≤ ĉ1−α. The point is that constructing a prediction
set is equivalent to quantile estimation, and the main question we ask is how to make the tradeoff between better

score estimates (fitting the model) and better quantile estimates (gathering more test data points) with limited data.

However, everything we’ve discussed so far has only guaranteed marginal coverage (that is, if Xn+1 is drawn from

the same distribution, then we get 90 percent prediction coverage). This does not account for things like variation

over groups, and it doesn’t help us deal with the case where test data and training data may be different as well. For

example, if we have 100 percent coverage for old people and 0 percent coverage for young people, but 90 percent of

all people are old, then we do get 90 percent prediction coverage but possibly not in the most useful way. Thus, we

may want to ask for conditional coverage, and here would be the ideal conditions that we would want to hold:

• Distribution-free: we should not need to make any assumptions about the distribution of the data.

• Capable of utilizing a black-box model: we should be able to feed in models like neural networks which give

us scores S(x, y) that may not be fully transparent.

• Conditional validity: we have that P(Yn+1 ∈ Ĉ(Xn+1)|Xn+1) ≥ 1− α for almost all Xn+1.

Unfortunately, this is basically too much to ask for:

Theorem 140 (Vovk 2012)

If Ĉ is distribution-free and conditionally valid, then we must have E[|Ĉ(Xn+1)|] =∞.

Remark 141. There are some additional details mentioned in the original paper – for example, Xn+1 must not be an

atom of the distribution because otherwise we could just see that value enough times in the training set to get a valid

prediction interval. But if it isn’t an atom, then in fact it has positive probability of actually having infinite length.

So what we’ll hope for is instead “conditional-ish validity.” There’s basically a spectrum of guarantees we can aim

for – on the one hand we have marginal validity (which is what we get from split conformal), which can be equivalently

formulated in either of the forms

P(Yn+1 ∈ Ĉ(Xn+1)) = 1− α, P(Sn+1 ≤ ĉ1−α) = 1− α.

On the other end, we have the (unfortunately impossible) conditional validity

P(Yn+1 ∈ Ĉ(Xn+1)|Xn+1) = 1− α, P(Sn+1 ≤ ĉ1−α(Xn+1)|Xn+1) = 1− α.

Yet another way to formulate these statements is that marginal validity guarantees

E [(1{Sn+1 ≤ ĉ1−α} − (1− α)) · c ] = 0

for any constant, while conditional validity guarantees

E [(1{Sn+1 ≤ ĉ1−α(Xn+1)} − (1− α)) · f (Xn+1)] = 0
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for all integrable functions f . We’ll instead try to guarantee a statement of this kind for all f within some σ-algebra

F , which we call a function class.

Example 142

As a simple but useful case, suppose G is some pre-specified group of values (for example specifying some

characteristics of our population, like being young versus old or white versus nonwhite). We can then let F be

the set of linear combinations of indicator functions of G, which will allow us to get group-conditional validity

P(Yn+1 ∈ Ĉ(Xn+1)|Xn+1 ∈ G) = 1− α.

This framework also lets us get guarantees under covariate shifts as well: we will see with the strategy below that

defining a tilt of the form dPf =
(
f
EP [f ]dPX

)
× dPY |X , we get validity under Pf if f is a nonnegative function in our

function class F . (This idea is due to Gibbs, Cherian, and Candes.)

The key question to ask is then how we change our strategy when estimating ĉ1−α; the key tool will be to use

quantile loss.

Example 143

Suppose we have d covariates Φ(Xi) for a linear model, which in the “group setting” above may be the indicators

for existing in each of the d groups (so Φ(Xi) = (1, 1, 0, · · · ) would indicate being in the first two groups but not

the second). Letting ℓα be the quantile loss function, we can then solve the quantile regression problem

β̂ = argminβ∈Rd
n∑
i=1

ℓα(Si , β
TΦ(Xi)).

With the true value of the linear fit β∗, βT∗ Φ is in fact F-conditionally valid, where F is the set of linear combinations

of the Φ functions:

E
[(
1{S ≤ βT∗ Φ(X⃗)} − (1− α)

)
·Φ(X⃗)

]
= 0⃗.

This yields asymptotic guarantees if we basically plug in Φ(Xn+1):

Proposition 144 (Jung et al. 2023)

Let Φ(·) be the family of indicators coming from some set of groups G, and let ĉQR
1−α(Xn+1) = β̂

TΦ(Xn+1). Then

we get asymptotic group-conditional coverage

P
(
Sn+1 ≤ ĉQR

1−α(Xn+1)|Xn+1 ∈ G
)
→ 1− α

for G ∈ G.

But the point of conformal prediction isn’t really to get asymptotic guarantees – indeed, with finite sample sizes

and many groups, we start losing coverage (as shown below). The idea is that quantile regression is a linear program

and thus an interpolation of a lot of lines, so the 90th quantile will be biased downward and the 10th percentile will be

biased upward.
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The way to fix this is to include one more term in the loss, yielding the augmented quantile regression estimate

β̂S = argminβ∈Rd
n∑
i=1

ℓα(Si , β
TΦ(Xi)) + ℓα(S, β

Tφ(Xn+1)).

We can interpret this in the following way. We propose a value of S and ask whether it is above the quantile fit

βTSΦ(Xn+1); if no, then we raise it a bit. This will correspondingly pull the quantile regression up, and we get our

estimate ĉCC
1−α(Xn+1) (CC stands for “conditional calibration”) right when S is above βTSΦ(Xn+1) for the first time.

(Naive quantile regression would have just set the threshold when our point crossed the fit on the left.)

Theorem 145

With the notation above, ĉCC
1−α(Xn+1;U) (where U is some randomization procedure) is F-conditionally valid for

F the class of linear combinations of Φ functions. In particular, this yields group-conditional coverage of the sort

we’re looking for if Φ are our indicator functions for various G.

We can then test whether this approach indeed works to get group coverage, and indeed conditional calibra-

tion gets us the correct amount of coverage on each group (with some randomization to avoid accidentally causing

overcoverage).

Remark 146. With the notation we’ve set up, we can now see split conformal prediction as quantile regression. Indeed,

the (1−α)th quantile of our scores S1, · · · , Sn is then q∗ = argminq∈R
∑n
i=1(1−α)(Si−q)++α(q−Si)+, and so we can

construct the prediction interval by picking all y such that S(Xn+1, y) is less than argminq
[∑n

i=1 ℓα(Si ; q) + ℓα(Sn+1; q)
]
.

We’ll close by briefly mentioning the proof of marginal coverage, which is related to the idea in Jung et al. This

65



relies on the KKT condition for optimization, which reads

0 ∈

∑
Si ̸=q∗
(α− 1{Si > q∗}) +

∑
Si=q∗

λi |λi ∈ [α− 1, α]

 .
If this condition holds, then we can rearrange and solve for λi to achieve equality, which yields

1

n + 1

n+1∑
i=1

(α− 1{Si > q∗}) =
1

n + 1

∑
Si=q∗

(α− λi) ≥ 0.

But now by exchangeability of the scores, the left-hand side being nonnegative is exactly equivalent to α− P(Sn+1 >
q∗) ≥ 0, which is what we want.

17 May 29, 2025
We’ll begin with a few more details about conditional calibration. Last time, we mentioned issues with “using the

training points to estimate the quantiles” (which is not useful because empirical quantiles are very biased) and how

it only gives us asymptotic guarantees. Instead, we learn quantiles using the features Φ(Xi) and also include a test

point S, which we move so that it’s just below the estimated quantile function. This gives us conditional coverage

over (possibly overlapping) groups.

Fact 147

In practice, we need to be able to actually compute this value ĉCC
1−α, and we do so with the help of LP duality

because this problem is LP-representable (the function ℓα(t) is (1 − α)u+ + αu−, subject to u+ − u− = t and

u+, u− ≥ 0).

We thus have a loss function of the form

n+1∑
i=1

(1− α)pi + αqi

subject to constraints Si −ΦTi β − pi + qi = 0, S −ΦTn+!β − pn+1 + qn+1 = 0, and pi , qi ≥ 0. Our goal is to minimize

this over p, q, β.

Every such problem has an LP dual, and the dual problem that we end up wanting to solve is of the form

max
η

n∑
i=1

ηiSi + ηn+1S, with constraints − α ≤ ηi ≤ 1− α,
n+1∑
i=1

ηiΦi = 0.

But this dual perspective unifies all three quantile approaches if we track the dual variable. Ordinarily for quantile

regression we want the largest S such that the dual variable for the imputed point satisfies η̂Sn+1 < 0, but what we

actually want under conditional calibration is that ηSn+1 < 1 − α. (All we need to do is check via a “path-following

homotopy method” whether ηn+1 reaches its upper limit constraint.) So it’s not computationally hard, and in general

under randomization ĉCC
1−α(Xn+1;U) then only asks us to have η̂Sn+1 < U − α; this will indeed be what’s necessary to

get us exactly 90 percent coverage.

As mentioned before, all of this theory can apply to covariate shifts (if our shifts are in the appropriate function

class), and it can be used in real-world problems like predicting crime rate from various demographics in ways that

don’t bias against certain groups. There are various extensions too, such as derandomization, infinite classes, or more
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precise estimates of coverage, but we won’t get into them here.

Today’s main topic is Stein’s phenomenon and estimation of a multivariate normal mean. This might seem like a

silly topic, but we’ll see something surprising about estimating the mean and study the correct unbiased risk estimate.

(The person who a lot of this is based on, Charles Stein, was a math and statistics professor at Stanford. He didn’t

publish a lot of papers, but they were extremely groundbreaking.)

Example 148

Consider a Gaussian vector X ∼ N(µ, σ2Ip) in p dimensions, which we can write as Xi = µi+σzi for zi iid standard

normal. We will assume that µ is unknown but that σ2 is known, and our goal is to estimate µ.

We then want to look for estimators that are good at estimating the mean using the quadratic loss function

ℓ(µ̂, µ) = ||µ̂− µ||22 =
p∑
i=1

(µ̂i − µi)2 .

This is a random quantity depending on the samples we receive, and our risk function will be the mean-squared error

R(µ̂, µ) = Eµ
[
||µ̂− µ||2

]
.

Notice that Xi and Xj are independent here, so perhaps Xi is an estimate of the age of the universe and Xj is the

quality of students at Stanford – they don’t need to have anything to do with each other. The MLE (maximum

likelihood estimator) for this is trivial, since it’s just the sample mean X. We can calculate the risk of this estimator

– it’s unbiased so we’ll just see the variance, which is σ2 per coordinate. More explicitly,

R(µ̂MLE, µ) = Eµ
[
||X − µ||22

]
= σ2E[||z ||2] = pσ2.

The question is whether this is the smallest possible risk, and that’s a mathematical question: “is it possible to find

an estimate µ̂ which outperforms this risk, no matter what µ is?”. Of course, we can do better for some values of µ

(because we can just say µ̂ = 0 and then if µ is actually zero, we have no risk), but our goal is to always do better

than this constant risk pσ2 no matter what.

Fact 149

It turns out that for p = 1, 2, this MLE is indeed the best estimator in the sense that we cannot uniformly improve

the risk. We say that the sample mean is the best estimator and that it is admissible.

Stein proved this for p = 2 but couldn’t do so for p = 3, and it turns out it’s because the sample mean is not

admissible!

Definition 150

The James-Stein estimator is defined by

µ̂JS =

(
1−
(p − 2)σ2

||X||2

)
X.

Notice that this is a nonlinear, biased estimator – it shrinks the MLE towards 0 by multiplying it by some specific

scalar, and in fact in principle it can actually become negative and go in the opposite direction as our sample mean.
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Theorem 151 (James, Stein 1961)

For all µ ∈ Rp, we have

Eµ
[
||µ̂JS − µ||2

]
< Eµ

[
||µ̂MLE − µ||2

]
.

This may make sense intuitively as a “regularization” term near µ = 0, but it’s perhaps surprising that it works for

large µ as well. And what this is saying is that if we want to estimate the quality of students Xi at Stanford and also

two other quantities Xj , Xk , we should take our estimate for Xi and then use some other information about those

other quantities Xj , Xk , even though they are independent.

Remark 152. Professor Candes met Jim Simons at some award a few years ago, and he had to explain why people

care about the theory of statistics. He explained the James-Stein phenomenon and wrote out the proof, and that was

what convinced Jim Simons to care more!

This James-Stein estimator is also not admissible – for example putting a “positive part” on the scalar actually

outperforms this quantity as well. But we won’t focus so much on that.

Stein’s original argument (in 1956) for why the mean should not be the best estimator is that a good estimate

should roughly obey µ̂i ≈ µi and thus µ̂2i ≈ µ2i for all i . That means
∑
i µ̂
2
i ≈

∑
i µ
2
i , but that’s not what is happening

for the MLE: we instead have E[
∑
X2i ] = ||µ||2 + σ2p. Thus this suggests that wherever the MLE is, it will be rather

big compared to the true µ – in high dimensions we’ll have a problem where we get concentration around the mean for

E
∑
X2i (because chi-square converges around its mean quite quickly). So shrinking makes sense: in high dimension,

the true mean will be on some sphere with squared radius ||µ||2, while the MLE will be extremely close to a sphere of

squared radius ||µ||2 + σ2p. So if we shrink slightly, we’ll bring ourselves closer, and indeed the result is as follows:

Theorem 153

If we use the estimator

µ̂c =

(
1− c

σ2

||X||2

)
X,

then this outperforms the MLE for all c ∈ (0, 2(p − 2)).

We’ll prove this, and we’ll just do the case c = p − 2 for simplicity (that’s where we get the most savings). For

this, we make use of Stein’s unbiased risk estimate (SURE). Assuming that X is Gaussian with mean µ and variance

σ2I, let’s write our estimator as µ̂ = X+g(X) for some almost differentiable g (we’ll explain this terminology below)

which is integrable in the sense that

E

[
p∑
i=1

|∂igi(X)|

]
<∞.

(Otherwise, the formulas we will write will make no sense – we need to be careful!) We then have the following fact:

Theorem 154 (Stein’s identity, 1981)

With the notation above,

E
[
||µ̂− µ||2

]
= pσ2 + E

[
||g(X)||2 + 2σ2

∑
i

∂igi(X)

]
.

This is actually incredibly useful, because the expectation on the right-hand side does not depend on µ and thus

we get an unbiased estimator for the risk! And thus we just need to calculate that quantity (provided that we can

differentiate g) and try to find some function g such that the expectation is negative.
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Here the assumption we have on g of almost differentiability is saying that there exists some function hi satisfying

gi(x + z)− gi(x) +
∫ 1
0

⟨hi(x + tz), z⟩dt,

which we often write as hi = ∇gi . So something like g(x) = 1{x > 0} is “differentiable almost everywhere,” but it is

not “almost differentiable” because we would need h to be a delta function. But something like g(x) = x{x > 0} is

fine, since we can let h be 1{x > 0}.
The point of this identity is that

SURE(µ̂) = pσ2 + ||g(X)||2 + 2σ2div g(X)

is always an unbiased statistic for the risk.

Proof of Theorem 154. This is essentially “just calculus” and comes down to integration by parts. Expanding out the

square,

E
[
||X + g(X)− µ||2

]
= E

[
||X − µ||2

]
+ 2E

[
(X − µ)T g(X)

]
+ E

[
||g(X)||2

]
,

and so we just need to show that the cross-term matches up with the divergence term; that is,

E
[
(X − µ)T g(X)

] ?
= σ2E [div g(X)] .

We’ll scale σ = 1 just to keep notation simpler (nothing in the argument changes otherwise); the left-hand side is a

sum of terms

E [(Xi − µi)gi(X)] =
∫
(xi − µi)gi(x)φ(X − µ)dx⃗

where φ(X − µ) is a p-dimensional product of densities. Separating out the term we care about, we can write this as∫
(xi − µi)gi(x)φ(xi − µi)

∏
j ̸=i
φ(xj − µj)dx⃗,

and now we do the integral over xi by parts. For a Gaussian, the derivative of a standard Gaussian density is −x
times the density itself, so in particular φ′(xi − µi) = (xi − µi)φ(xi − µi). Therefore, we can use integration by parts

on the blue terms (the boundary term goes away because of our integrability condition)∫
(xi − µi)gi(x)φ(xi − µi)

∏
j ̸=i
φ(xj − µj)dx⃗ =

∫
∂igi(x)φ(xi − µ)

∏
j ̸=i
φ(xj − µj)dx⃗ = E [∂igi(x)] ,

and so the identity holds term-by-term and summing over all i yields the result.

But now we can use this formula to prove that µ̂JS is a better estimate. Again take σ = 1 for simplicity and write

the estimator in the form we’ve been setting up

µ̂JS = X −
p − 2
||X||2X = X + g(X), where g(x) = −

(p − 2)x
||x ||2 .

The risk of this estimate is then the MLE risk p plus this additional expectation, and that’s just calculus: we find that

(here each component gi is − (p−2)xi||x ||2 )

||g(x)||2 =
(p − 2)2

||x ||2 ,
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∂igi(x) = −
p − 2
||x ||2 +

2(p − 2)x2i
||x ||4 =⇒ div g(x) =

−p(p − 2) + 2(p − 2)
||x ||2 =

−(p − 2)2

||x ||2 .

So plugging back into Theorem 154 shows that the latter term of the expectation outweighs the former term, and we

get

E
[
||µ̂JS − µ||2

]
= p − E

[
(p − 2)2

||X||2

]
,

which is strictly smaller than p no matter what µ is. Indeed, this correction term is larger when µ is small, and so

we’re getting more benefits in the regime where regularization makes sense.

Fact 155

We can in fact calculate some sharper estimates using the inequality

E
[
1

||X||2

]
≥

1

(p − 2) + ||µ||2 ,

with equality when µ = 0. So that tells us exactly how much savings we get compared to the MLE; the risk is at

most p − p−2
1+

||µ||2
p−2

. For example, if µ = 0, the risk of the MLE is p but the risk of James-Stein is 2.

Below is a plot of risk for James-Stein versus MLE in dimension p = 10; it’s quite close to the derived bound we

just found.

As mentioned before, we can in fact go even lower than the JS line shown above by taking only the positive part

of 1− p−2
||X||2 , but it’s still not admissible. If we do in fact want an admissible estimator, any Bayes estimator will do.

Remark 156. Intuitively, if we have a bunch of values of µi + Zi , the largest ones are expected to overestimate and

the smallest ones are expected to underestimate, so shrinking the values should be likely to give us something closer

to the true answer. And so we can think of this as just being regression to the mean in another perspective!

18 June 3, 2025

Fact 157

As mentioned at the beginning of the document, this lecture was transcribed via course lecture slides and some

notes by Salil Goyal and Victor Kolev.
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The topic of this last lecture will be the empirical Bayes interpretation of James-Stein. The material here partially

follows ideas from Efron and Morris’s paper “Stein’s Estimation Rule and Its Competitors – An Empirical Bayes

Approach.”

Example 158

Consider a model where we sample iid from µi ∼ N(0, τ2) and then sample our multivariate vector X ∼ N(µ, σ2I).
Here, we should interpret X as our observed variables and µ as our underlying mean, and here everything is a

random variable rather than an unknown parameter.

We can calculate the posterior distribution; it turns out that

µ|X ∼ N
( v
σ2
X, vI

)
,
1

v
=
1

τ2
+
1

σ2
,

or more compactly, that µ|X ∼ N
(
τ2

τ2+σ2X,
τ2σ2

τ2+σ2 I
)
. So in fact the coordinates of µ are marginally independent,

and they are even conditionally independent given X with posterior mean a “shrunken estimate” µ̂B =
(
1− σ2

σ2+τ2

)
X.

When the “signal-to-noise ratio” is roughly 1 (that is, when τ = σ), this shrinks our mean halfway to zero.

Proposition 159

The Bayes risk associated with this “shrunk mean” posterior is

E
[
||µB − µ̂||2

]
= RMLE

τ2

τ2 + σ2
.

So at τ = σ we are removing half the risk by doing this shrinkage. This is a similar story to James-Stein, though

do note here that the quantity we multiply by is always positive.

Proof. Letting ρ = σ2

σ2+τ2 , we have that

µ̂B − µ = (1− ρ)(X − µ)− ρµ.

We can thus compute the conditional expectation

E
[
||µ̂B − µ||2

∣∣µ] = (1− ρ)2E [||X − µ||2|µ]+ ρ2||µ||2,
and now because X − µ is N(0, σ2I) by definition this simplifies to (1− ρ)2pσ2 + ρ2||µ||2. If we now marginalize over

µ, the overall expectation is thus (1 − ρ)2pσ2 + ρ2pτ2, which simplifies to pσ2 · τ2

τ2+σ2 . Since pσ2 is the risk of the

MLE, this yields the result.

We can now use this to interpret James-Stein in this Bayesian way: suppose now that σ is known and that the

Bayes model is correct, but τ is not known and thus we cannot compute the shrinkage factor. What we’ll do then is to

estimate the factor from data in the following way. If we know that each Xi = µi + zi is iid from N(0, τ2+σ2), then

the distribution of ||X||2 follows (τ2 + σ2)χ2p, and the chi-square distribution has the nice property that E
[
p−2
χ2p

]
= 1.

Therefore (p−2)σ
2

||X||2 =
σ2

τ2+σ2
p−2
χ2p

is actually an unbiased estimator for the shrinkage factor, and in fact plugging this in

yields exactly the James-Stein expression from last time!

The risk of this estimate (assuming our Bayes model is indeed correct) can also be calculated: it works out to

E [||µ̂JS − µ||]2 = p
σ2τ2

τ2 + σ2
+
2σ4

τ2 + σ2
= Rµ̂B

(
1 +
2σ2

pτ2

)
.
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So even with τ unknown, we still get something fairly close to the Bayes risk – for example at a signal-to-noise ratio

of 1 and with p = 20, this is only a 10 percent increase.

Fact 160

In the “regression to the mean” perspective, it’s not so surprising that shrinking all of our estimates towards zero

outperforms the MLE. But it’s interesting that we do better as a frequentist statement – that is, regardless of

the distribution of µ (even when the mean is very far away from zero!).

Related to this is the idea that we can even shrink towards any arbitrary value µ0 and still dominate the MLE; that

is, the risk of

µ0 +

(
1−

(p − 2)σ2

||X − µ0||2

)
(X − µ0)

is lower than for just the sample mean. (Indeed, equivariance means we can intuitively interpret this as just being a

translation of sorts.)

Remark 161. Stein’s officemate once asked Stein whether he would actually use this in practice, to which the response

was “You’ve seen the proof. Why wouldn’t you?”

Example 162

In practice, it would make sense to shrink towards the true center and set µ0 = X, and we can now see how that

works out. Our model here is similar to before, but now µi are iid from some N(µ0, τ2) and X|µ ∼ N(µ, σ2I).

The µi here are iid, and the posterior distribution takes the form

µi |Xi ∼ N(µ0 + (1− ρ)(Xi − µ0), σ2(1− ρ)), ρ =
σ2

τ2 + σ2
.

This time both µ0 and τ2 are unknown, so to construct an estimate we need to estimate both quantities: we’ll estimate

µ0 by the sample mean and τ2 + σ2 by 1
(p−3)

∑p
i=1(Xi − X)2, since this time the sample variance is distributed as

(τ2 + σ2)χp−1 and we have E
[
p−3
χ2p−1

]
= 1.

Theorem 163

This new James-Stein-type estimator

µ̂i = X +

(
1−

(p − 3)σ2∑p
i=1(Xi −X)2

)
(Xi −X)

dominates the MLE for all p > 3 (and is equal for p = 3).

It’s again interesting that such a result is purely frequentist even though it arises from Bayesian thinking! And

while we’ve only considered the case where our random variables are independent Gaussians, similar phenomena occur

for Poisson or binomial data or correlated Gaussians as well.

Example 164

We’ll close the course with a very typical problem in statistics, in which we want to estimate players’ true batting

ability (via their batting average across a season) via observations made during the first week of play. To be

concrete, we can consider the set of all players who had exactly 45 at-bats by a certain day – in April 26, 1970,

this was a set of 18 players.
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If θi denotes the true batting ability of each player, then Xi should be distributed as 1
45Bin(45, θi), which is roughly

N(θi ,
1
45θi(1− θi)). This is not the setting of our example where the variance is fixed, but there is a certain variance

stabilization trick we can use: if instead of considering these Xis, we consider

Yi =
√
45 arcsin(2Xi − 1),

then the result will be approximately normal with variance 1: more precisely, Yi ≈ N(
√
45 arcsin(2θi − 1), 1). Thus if

we have our 18 players, we can apply our estimator and predict that

µ̂JS = Ŷ +

(
1−

15∑18
i=1(Yi − Y )2

)
(Y − Y ).

Applying this to real historical data yields the following result:

Indeed, we find a very large improvement in the mean squared error: for the values of µ we get 5.01 via James-Stein

versus 17.56 via the MLE, and when we convert back to batting averages we get a mean squared error of 0.022 versus

0.077 (so improvement by a factor of 3.5).

Fact 165

However, the real question at this point is whether this is actually what we want to do. Indeed, we have increased

the squared error for three of the players, and in particular we have significantly shrunk Clemente’s (exceptional)

average significantly towards the rest of the group. So there’s a bit of a fairness dilemma here especially if we

care only about individual results.

So overall, the big picture is that James-Stein is effectively fitting a regression of µ on X rather than X on µ.

Jensen’s inequality tells us that the expected value of the largest Xi will be biased upward from the true value, and so

shrinkage corrects that bias.
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