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This will be a course about lattice gauge theories. Lecture notes will be posted on Canvas as the course goes on.

Lattice gauge theories are discrete versions of Euclidean Yang-Mills theories (or what the latter thing is really

“supposed to be”), and the purpose of Euclidean Yang-Mills theories, briefly, is constructing quantum field theories.

There’s an approach where we construct first a probabilistic object (random field or random distribution) and then

using tools from functional analysis construct a quantum field theory. (Just like any quantum system, this involves

producing a Hilbert space and a time-evolution group or Hamiltonian, where the vectors are states and a group of

unitary operators U(t) describes how the states evolve over time.) In quantum field theory the Hilbert space is quite

complicated, and there is a well-developed machinery of converting a Markov process to a quantum system: given a

two-sided stationary Markov process {Xt}t∈R, we define the time-evolution semigroup

Pt f (x) = E[f (Xt)|X0 = x ].

We can then typically find some Hamiltonian H where Pt = e−tH, and once we’ve extracted H we can construct (with

some machinery called Stone’s theorem)

Ut = e
−itH.

So things connect to probability in a different way from the “probability in quantum mechanics,” and lattice gauge

theories are just about the rigorous discrete objects we can construct (and hopefully one day take a scaling limit to

get Euclidean, then quantum Yang-Mills).

This is all rather abstract, so we’ll do something a bit more concrete now:

Definition 1

Let G be a compact matrix Lie group contained in U(n) for some n (such as SU(n) or SO(n)), and let g be its

Lie algebra. A g-valued 1-form A =
∑3
i=0 Aidxi on R1,3 is a 4-tuple A = (A0, A1, A2, A3) of smooth g-valued

functions. The curvature form F of A is the 2-form

F =
∑

0≤i<j≤3
Fi j dxi ∧ dxj

where Fi j = ∂iAj − ∂jAi + [Ai , Aj ].

For example, if the Lie group is U(n), the Lie algebra is the space of skew-Hermitian matrices, and so to form a

g-valued 1 form we have four such matrices at each point in R4, in a way smoothly varying in each coordinate. So

derivatives make sense and we can get a curvature form which is a collection of six matrices.
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Definition 2

The Yang-Mills action associated to a g-valued 1-form is

S(A) = −
1

2g20

∫
R4

Tr

 ∑
0≤i<j≤3

ηiηjFi j(x)
2

 dx,
where η0 = 1 and η1 = η2 = η3 = −1 (this is usually called the Minkowski signature).

To put this in the framework of the program we just mentioned, we need to write down a Euclidean version of

this action S(A). For this, we will perform “Wick rotation,” which is a heuristic process where we replace t by −i t
everywhere (here t = x0 is the first coordinate). If we make such a substitution,

∫
dx =

∫
dx0dx1dx2dx3 gains a −i

factor, ∂
∂x0

gains a 1
−i = i factor, and A =

∑3
j=0 Ajdxj stays the same if we replace A0 by iA0. Thus Fjk has no change

if 1 ≤ j, k ≤ 3, and for the others

F0j = ∂0Aj − ∂jA0 − [A0, Aj ]

changes to i∂0Aj − i∂jA0 − i [A0, Aj ] = iF0j . So actually ηiηjFi j(x)2 has all of its negative factors canceling out nicely,

and what we end up with is (we are also supposed to multiply what we end up with by i)

SE(A) = −
1

2g20

∫
R4

Tr

 ∑
0≤i<j≤3

Fi j(x)
2

 dx.
So what we’ll want to do with the Euclidean theory is to construct some kind of probability measure on the space of all

A – that is, on all g-valued 1-forms – with density proportional to exp(−SE(A)) “with respect to Lebesgue measure.”

That’s what we’ll focus on in this course through a discretization.

Much like the discrete version of Brownian motion is random walk, lattice gauge theories are certain lattice

approximations that may allow us to understand the limiting object. We’ll now be working in general d-dimensional

space instead of R4 as we did above – we can similarly make the definitions for A, F, S(A), and SE(A) in Rd .

Definition 3

Let G be as before and let Λ ⊆ Zd be a finite set. Suppose that for any two adjacent vertices x, y ∈ Λ, there is a

matrix U(x, y) ∈ G, and we impose the constraint that U(y , x) = U(x, y)−1. Such an assignment of matrices is

called a configuration for the theory.

Definition 4

A plaquette is a square bounded by four edges (this is the definition for any d ≥ 2). For each plaquette p ∈ Λ
(meaning all four edges lie in Λ) with vertices x1, x2, x3, x4 in anticlockwise order (let x1 be lexicographically smallest

and x2 the next smallest), define

Up = U(x1, x2)U(x2, x3)U(x3, x4)U(x4, x1).

The Wilson action on this configuration is then

SΛ(U) =
∑
p∈Λ

Re(Tr(I − Up)).

(We’re using free boundary conditions here.)
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To see how this relates to Euclidean Yang-Mills theories, fix some β > 0 and let µΛ,β be the probability measure

on the space of configurations G(Λ) (that is, assignments of matrices to the edges of the lattice) defined as

µΛ,β =
1

Z
e−βSΛ(U)dσΛ(U),

where dσΛ(U) is the product normalized Haar measure on G(Λ) (this makes sense since G is a compact Lie group and

G(Λ) = GE(Λ) for E(Λ) the set of positively oriented edges in Λ) and Z is the appropriate normalizing constant.

Theorem 5

Let A =
∑d
j=1 Ajdxj be a compactly supported smooth g-valued 1-form on Rd (for any d ≥ 2), and let e1, · · · , ed

be standard basis vectors. We define a configuration on the lattice εZd as follows: for any directed edge of the

form (x, x + εj), define

U(x, x + εej) = e
εAj (x)

(and so U(x+εej , x) = U(x, x+εej)−1). We can now define (because A is compactly supported the sum is finite)

S(U) =
∑
p∈εZd

Re(Tr(I − Up)).

Then

SE(A) = lim
ε→0

g−20 εd−4S(U).

(Indeed, Aj is zero outside a compact set, so Up are all the identity and the contribution to the total trace is

zero outside of that compact set.) It’s believed that we might actually need some log ε type factors in d = 4 (via

renormalization group arguments), but it’s not entirely clear how that actually works out.

We’ll need a four-term version of the Baker-Campbell-Hausdorff formula:

Lemma 6

Let A and B be square (complex) matrices of order n with entries all of absolute value at most K. For all t ∈ [0, 1],
we have

etAetB = exp

(
t(A+ B) +

t2

2
[A,B] +

t3

12
([A, [A,B]] + [B, [B,A]])−

t4

24
([A, [B, [A,B]]]) +O(t5)

)
,

where O(t5) means a matrix whose entries have absolute value at most Ct5, where C depends only on K and n.

(The actual Baker-Campbell-Hausdorff formula is an infinite series version of this which doesn’t always converge,

but our version here makes sense.)

Proof sketch. Call the quantity inside the exponential on the right-hand side h(t), and let g(t) = eh(t). Since

h(t) = O(t), we have

g(t) = 1 + h(t) +
h(t)2

2
+
h(t)3

6
+
h(t)4

24
+O(t5),

and then plugging in h(t) and keeping track of all coefficients verifies what we want. For example,

h(t)2 = t2(A+ B)2 +
1

2
t3((A+ B)[A,B] + [A,B](A+ B)) + · · · ,

and if we collect all terms together we get the same expansion as if we write out etAetB as a power series (for example,

in both cases the coefficient of t3 is 16(A
3 + 3A2B + 3AB2 + B3)).
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Lemma 7

Let B1, · · · , Bm be skew-Hermitian matrices (we specialize like this because all of our matrices will be skew-

Hermitian) with absolute values of entries at most K. Then for all t ∈ [0, 1],

etB1 · · · etBm = exp

t m∑
j=1

Bj +
t2

2

∑
1≤j<k≤m

[Bj , Bk ] + R

+O(t5),
where R = O(t3) and R is skew-Hermitian.

We’ll in particular want to apply this to our plaquettes (so m = 4 when we multiply along the four edges).

Proof. We prove this by induction onm; form = 2 this follows from the following lemma, since [A,B] is skew-Hermitian

if A,B are skew-Hermitian. And for the inductive step, we have by the inductive hypothesis

etB1 · · · etBm−1 = exp(tA) +O(t5), A =

m−1∑
j=1

Bj +
t

2

∑
1≤j<k≤m−1

[Bj , Bk ] +Q

for some skew-Hermitian Q with Q = O(t2). So now we can apply the previous lemma to etAetBm and get the result,

since again commutators of A and Bm will all be skew-Hermitian.

Corollary 8

Let B1, · · · , Bm be as above. Then for all t ∈ [0, 1],

Re(Tr(I − etB1 · · · etBm)) = −
1

2
Tr

t m∑
i=1

Bi +
t2

2

∑
1≤i<j≤m

[Bi , Bj ]

2+ Tr

[
O(t4)

m∑
i=1

Bi

]
+O(t5).

Proof. From the previous lemma, we can again take a power series approach and write

etB1 · · · etBm = I +
4∑
k=1

1

k!
(t
∑
i

Bi +
t2

2

∑
i<j

[Bi , Bj ] + R)
k +O(t5).

But the blue part is skew-Hermitian, hence has all imaginary eigenvalues; therefore the traces of its odd parts are pure

imaginary and the traces of its even parts are real. So when we take the real part of the trace, only the k = 2, 4 terms

will survive, and out of those the only parts that give us nontrivial contributions up to O(t4) are the ones listed above.

(Indeed, the only cross-term involving R that may matter is between t
∑
Bi and R, which is indeed absorbed into the

term O(t4)
∑
Bi .)

Proof sketch of Theorem 5. Take some x ∈ εZd and fix some 1 ≤ j < k ≤ d . Consider the plaquette p being formed

from x1 = x, x2 = x + εej , x3 = x + εej + εek , and x4 = x + εek . We have

Re(Tr(I − Up)) = Re(Tr(I − U(x1, x2)U(x2, x3)U(x3, x4)U(x4, x1))),

and we defined U(x, x + εej) = eεAj (x). So substituting these values in and applying our lemma, we can show that the

approximation works – we’ll do this next time.
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2 September 24, 2025

Last time, we set up the following framework: A =
∑d
j=1 Ajdxj is a smooth compactly-supported g-valued 1-form on

Rd , which we discretize by defining for any x ∈ εZd the matrices

U(x, x + εej) = e
εAj (x)

along the edges of our lattice. We were then trying to prove that limε→0 g−20 εd−4S(U) is the Euclidean Yang-Mills

action SE(A), so that the Wilson action is a proper discretization.

Proof of Theorem 5. Writing out the proof sketch from last time in more detail, we again need to make use of

Corollary 8. The Wilson action is the sum over all plaquettes of the lattice

S(U) =
∑
p

Re(Tr(I − Up))

(this sum is nonzero only finitely often, so this is well-defined). Like last time, we fix some x ∈ εZd and consider p

formed by x1 = x, x2 = x + εej , x3 = x + εej + εek , and x4 = x + εek . Our corollary then says that

Re(Tr(I − Up)) = Re(Tr(I − U(x1, x2)U(x2, x3)U(x3, x4)U(x4, x1)))

= Re
(
Tr
(
I − eεAj (x1)eεAk (x2)e−εAj (x4)e−εAk (x1)

))
where notice that we had to take the inverse for U(x3, x4) and U(x4, x1) because we’re defining things in terms of

the positively oriented edges. Applying Corollary 8 yields that

Re(Tr(I − Up)) = −
1

2
Tr

[(
ε
(
Aj(x) + Ak(x2)− Aj(x4)− Ak(x)

)

+
ε2

2

(
[Aj(x1), Ak(x2)]− [Aj(x1), Aj(x4)]− [Aj(x1), Ak(x1)]− [Ak(x2), Aj(x4)]− [Ak(x2), Ak(x1)] + [Aj(x4), Ak(x1)]

))2]
+ Tr

[
O(ε4)(Aj(x) + Ak(x2)− Aj(x4)− Ak(x))

]
+O(ε5).

Now Aj(x1) = Aj(x), Ak(x1) = Ak(x), and then we linearize the other terms: Ak(x2) = Ak(x + εej) = Ak(x) +

ε∂jAk(x) + O(ε
2), and similarly Aj(x4) = Aj(x) + ε∂kAj(x) + O(ε2). Thus the sum of all four of these terms is just

ε(∂jAk(x)−∂kAj(x))+O(ε2); in particular we see that we can absorb the Tr
[
O(ε4)(Aj(x) + Ak(x2)− Aj(x4)− Ak(x))

]
term as part of theO(ε5) error. And similarly the commutators can be simplified: [Aj(x1), Ak(x2)] is just [Aj(x), Ak(x)]+

O(ε), and if we do this with all six commutators the leading contributions add up to 2[Aj(x), Ak(x)]. Thus plugging

everything in,

Re(Tr(I − Up)) = −
1

2
Tr

[(
ε2
(
∂jAk(x)− ∂kAj(x)

)
+ ε2[Aj(x), Ak(x)] +O(ε

3)

)2]
+O(ε5).

So when we expand out the squares, all errors are of order at least ε5, and we indeed get

Re(Tr(I − Up)) = −
ε4

2
Tr
[
(∂jAk(x)− ∂kAj(x) + [Aj(x), Ak(x)])2

]
+O(ε5) = −

ε4

2
Tr(Fjk(x)2) +O(ε5),
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meaning that substituting back into the action,

εd−4S(U) = −
εd

2

∑
x∈Zd

∑
1≤j<k≤d

Tr(Fjk(x)2) +O(εd+1).

But we’re summing over all plaquettes in εZd corresponding to a bounded region of nonzero (I−Up)s, and the number

of nonzero terms is O(ε−d); hence the error term is O(ε). And the main term is just a Riemann sum approximation

converging to
∫ ∑

j,k Tr(Fjk(x)2), which is the Yang-Mills action as desired if we add in the factor of g−20 .

Remark 9. This is a similar argument to what appears when going between Brownian motion and Gaussian random

walk, but the trouble is that we can’t make a “Cameron-Martin” type argument to go from smooth A to general A

since things aren’t Gaussian here.

We’ll turn now to gauge transforms:

Definition 10

Let A =
∑
j Ajdxj be a g-valued 1-form. A smooth gauge transform U is a smooth map from Rd into G. (In

the language of differential geometry, consider the trivial principal bundle and take a section.)

Gauge transforms form a group under pointwise multiplication, and the group acts on smooth 1-forms in the

following way: U acts on A as

AU(x) = U(x)A(x)U(x)−1 − (dU(x))U(x)−1.

More explicitly in coordinates, we have

AU =

d∑
j=1

AUj (x)dxj , AUj (x) = U(x)Aj(x)U(x)
−1 − (∂jU(x))U(x)−1.

(That is, ∂jU(x) = limε→0 1ε (U(x + εej) − U(x)) as matrices.) We proved last year that this is actually an element

of the Lie algebra for any smooth gauge transform, so AU is another smooth 1-form and in fact (by a calculation)

(AU)V = AV U .

We’ll now want to similarly get a gauge transform for the discrete setting and justify why it is a proper discretization.

For any finite lattice Λ ⊆ Zd and lattice gauge theory on Λ, the group of gauge transforms is just GΛ (that is, no

conditions on smoothness – we just assign a group element to each vertex). For a configuration U ∈ G(Λ) and a

gauge transform g ∈ GΛ, we define

Ug(x, y) = g(x)U(x, y)g(y)−1.

So this is a much more transparent description of the action of a gauge transform: the new matrix attached to the

edge pre-multiplies by g at the left endpoint and post-multiplies by g at the right endpoint. By a direct calculation we

have that because U(y , x) = U(x, y)−1,

Ug(y , x) = g(y)U(y , x)g(x)−1 = (g(x)U(x, y)g(y)−1)−1 = Ug(x, y)−1,

and we can also similarly check that (Ug)h = Uhg. The last thing we’ll do for the continous-to-discrete description is

show that these gauge transforms are the right discretization as well.

Recall that for any U ∈ U(N), we can write U = V DV ∗ for some unitary matrix V ∈ U(n) and some diagonal

matrix D = diag(e iθ1 , · · · , e iθn) with all θi ∈ (−π, π) (and this is unique up to permuting things) – this is the spectral

decomposition. We can then define

logU = V diag(iθ1, · · · , iθn)V ∗
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uniquely because of the constraints above.

Theorem 11

Let A be a smooth compactly supported g-valued 1-form on Rd , and let g ∈ C∞(Rd , G) be a smooth gauge

transform that is the identity matrix I outside a compact region. Define the discretization on the lattice as before

with U(x, x+εej) = eεAj (x). Letting Ag, Ug be as before (so Ag is defined in the continuous way, and Ug is defined

in the discrete way). If we let Bj(x) = 1
ε logU

g(x, x + εej), then

sup
x∈εZd ,1≤j≤d

∣∣∣∣∣∣Agj (x)− Bj(x)∣∣∣∣∣∣ = 0.
(Here, the norm denotes Euclidean norm on the entries of the matrix.)

(In fact, the norm will be O(ε), as we’ll see in the proof.) To prove this result, we’ll need the following lemma:

Lemma 12

Let U ∈ U(n) be such that ||U − I|| ≤ 1
2 . Then logU =

∑∞
k=1

(I−U)k
k , and the series converges absolutely with

respect to the norm.

Proof. The absolute convergence is clear because ||UV || ≤ ||U|| · ||V || and thus the sum converges exponentially

fast. To show that it’s actually equal to logU as we defined before, write U = V DV ∗ so that logU = V ΛV ∗ with

Λ = diag(iθ1, · · · , iθn). Letting log now denote the analytic branch of the logarithm in C \ (−∞, 0] agreeing with ln

on [0,∞), we have a power series at 1 given by

log z = −
∞∑
k=1

(1− z)k

k

with radius of convergence 1. So

||U − I||2 = Tr((U − I)∗(U − I))

=

n∑
j=1

|1− e iθj |2

by the spectral decomposition, and we know the left-hand side is at most 14 . Thus each term is at most 14 , meaning

each e iθj is within 12 of 1 and in particular none of them are equal to −π. Thus by the choice of branch of log, we get

iθj = log e
iθj = −

∑∞
k=1

(1−e iθj )k
k . So the rest of the proof just follows from the spectral decomposition and writing out

each term (I − U)k in the sum in terms of V and our diagonal matrices.

Proof of Theorem 11. Take any x ∈ εZd and 1 ≤ j ≤ d . By definition we have

Ug(x, x + εej) = g(x)U(x, x + εej)g(x + εej)
−1

= g(x)eεAj (x)g(x + εej)
−1

= g(x)(I + εAj(x) +O(ε
2))g(x + εej)

−1

(here again the constant in O(ε2) doesn’t depend on x or ε because things are compactly supported); expanding this

out yields

Ug(x, x + εej) = g(x)g(x + εej)
−1 + εg(x)Aj(x)g(x + εej)

−1 +O(ε2).

7



We know that g(x)g(x)−1 = I =⇒ ∂j(g(x))g(x)
−1 + g(x)∂j(g(x)

−1) = 0 by taking a derivative, so ∂j(g(x)−1) =

−g(x)−1(∂jg(x))g(x)−1. Thus linearizing, we get

g(x + εej)
−1 = g(x)−1 − εg(x)−1(∂jg(x))g(x)−1 +O(ε2),

and we don’t have to worry about singularities when taking inverses because everything is a unitary matrix here.

Substituting this back in, we get

Ug(x, x + εej) = g(x)
[
g(x)−1 − εg(x)−1∂j(g(x))g(x)−1

]
+ εg(x)Aj(x)g(x)

−1 +O(ε2)

= I − ε∂j(g(x))g(x)−1 + εg(x)Aj(x)g(x)−1 +O(ε2)

= I + εAgj (x) +O(ε
2).

But by definition Ug(x, x+εej) is a unitary matrix and it’s very close to the identity, and the O(ε2) bounds are uniform

in x . So for ε small enough we can apply our lemma above, and we get

logUg(x, x + εej) = −
∞∑
k=1

(−εAgj (x) +O(ε2))k

k
= εAgj (x) +O(ε

2),

as desired.

When people tried to get convergence to continuum limits in constructive field theory, they tried to choose gauge

transforms to make all of the bond variables close to the identity. But this program has not been completed yet, and

it’s one of the first steps for the Yang-Mills existence problem. We’ll see more of this later on.

Now that we’ve defined gauge transforms, we can understand gauge-invariant observables and gauge fixing. For

Λ ⊆ Zd and a function f : G(Λ)→ C, we can define the expected value of f as

⟨f ⟩ =
∫
G(Λ)

f (U)dµΛ,β(x).

We say that an observable is gauge-invariant if f (Ug) = f (U) for all U, g (that is, f is constant on orbits of the

gauge transform). There’s a physical reason to care only about these observables, but mathematically we also care

because we can always produce gauge-invariant observables with the same expectation as a given observable with a

certain prescription.

Definition 13

A loop in Zd , usually denoted ℓ, is a sequence of points x0, x1, · · · , xk such that xj , xj+1 are neighbors for all

0 ≤ j ≤ k − 1 and x0 is a neighbor of xk . The Wilson loop observable for a loop entirely contained within Λ is

defined as

Wℓ(U) = Tr(U(x0, x1)U(x1, x2) · · ·U(xk−1, xk)U(xk , x0)).

There is a continuous analog of this definition (where we take the gauge connection A and perform parallel

transport of A around a loop), though it is a bit more complicated to define since it’s the Wick-ordered exponential of

the connection rather than just the exponential. And this quantity is indeed gauge-invariant, because

Wℓ(U
g) = Tr(g(x0)U(x0, x1)g(x1)−1g(x1)U(x1, x2)g(x2)−1 · · · g(xkU(xk , x0)g(x0)−1),

and now all of the g factors cancel out except the first and last and trace is invariant under conjugation, meaning we

end up with Wℓ(U) as desired.
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3 September 29, 2025
We started discussed gauge-invariant observables last time, and specifically we considered the Wilson loop observable

Wℓ(U) associated to a loop ℓ in Zd . For a plaquette p, note that Tr(Up) is itself a Wilson loop observable, so the

Wilson action SΛ(U) =
∑
p Re(Tr(I − Up)) is therefore gauge-invariant. This implies that the measure µΛ,β for the

lattice gauge theory is also invariant under gauge transforms; that is,∫
f (Ug)dµΛ,β(U) =

∫
f (U)dµΛ,β(U).

Indeed, we can see this by letting σΛ denote the product (normalized) Haar measure on G(Λ), so that we always have∫
f (Ug)dσΛ(U) =

∫
f (U)dσΛ(U)

since the gauge transform retains the independence and the distribution on each vertex of Λ. Therefore it is also true

that ∫
f (Ug)e−βSΛ(U)dσΛ(U) =

∫
f (Ug)e−βSΛ(U

g)dσΛ(U)

=

∫
f (U)e−βSΛ(U)dσΛ(U),

by first using that S is gauge-invariant and then using our identity above. Dividing through by the normalizing constant

Z then yields the result.

Remark 14. Lattice models are “very real models” in a certain way: people use simulations of some other lattice models

to estimate the radius of elementary particles, among other things. And these are the best available approximations

to the true values verified by experiments. (For example, SU(3) lattice gauge theory should describe the theory of

hadrons or quarks; the pure gauge theory is just about the strong force, but if we add the particles and put in more

things we do get things that aren’t just toy models.) The point is also to construct a non-perturbative Yang-Mills

theory because perturbation theory has its limits, and our best available understanding of that comes through these

lattice gauge theories as discrete approximations.

Example 15

We also mentioned last time that it “suffices mathematically to look at gauge-invariant functions,” which we’ll

elaborate on now.

Let f : G(Λ)→ C be any function such that ⟨|f |⟩ <∞. We can then define a new function which is the “random

gauge transform”

h(U) =

∫
f (Ug)

∏
x∈Λ

dσ(g(x)).

(The notation dσ(g(x)) means that each coordinate of our transform is distributed according to the Haar measure.)

We claim that h is gauge-invariant and also that ⟨h⟩ = ⟨f ⟩ under the lattice gauge theory. Indeed, we have

h(Ug) = f ((Ug)g
′
)
∏
x∈Λ

dσ(g′(x)) = f (Ug
′g)
∏
x∈Λ

dσ(g′(x)),

but since the Haar measure is left- and right-invariant this is the same as f (Ug
′
)
∏
x∈Λ dσ(g

′(x)) = h(U). (Intuitively,

applying a gauge transform and then applying a random one is just a random gauge transform.) And to show that h
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has the same expectation as f , we compute

⟨h⟩ =
1

Z

∫
h(U)e−βSΛ(U)dσΛ(U) =

1

Z

∫ (∫
f (Ug)

∏
x∈Λ

dσ(g(x))

)
e−βSΛ(U)dσΛ(U).

Since f has finite expectation under the lattice gauge theory, we can swap the order of integration and use Fubini’s

theorem to get
1

Z

∫ (∫
f (Ug)e−βSΛ(U)dσΛ(U)

)∏
x∈Λ

dσ(g(x))

But we just showed that the lattice gauge theory is invariant under gauge transforms, so this just simplifies to (replacing

Ug with U)
1

Z

∫ ∫
f (U)e−βSΛ(U)dσΛ(U)

∏
dσ(g(x)) = ⟨f ⟩

∫ ∏
dσ(g(x)),

which is just ⟨f ⟩ since the Haar measure is normalized.

Last year, we talked about some gauge-fixing procedures in the continuum, and now we’ll talk about a more unified

way of doing so in the discrete setting. The following is the main result that will be helpful for us:

Proposition 16

Let Γ be a subset of the positively oriented edges E(Λ) such that the undirected versions of the edges in Γ form

no loops. Let G(Λ,Γ) be the set of configurations U ∈ G(Λ) where U(x, y) = I for all (x, y) ∈ Γ. Then defining

dµΛ,Γ,β(U) =
1

ZΓ
exp (−βSΛ(U)) dσΛ,γ(U),

where dσΛ,γ(U) =
∏
(x,y)∈E(Λ)\Γ dσ(U(x, y)) is product Haar measure on all edges except those in Γ. Then for

any gauge-invariant f with ⟨|f |⟩ <∞, we have

⟨f ⟩ =
∫
G(Λ,Γ)

f (U)dµΛ,Γ,β(U)

In other words, we take our original measure and condition on all edges in Γ to be the identity, and that still gets

us valid expectations while using a simpler theory. And this has important consequences: in lattice gauge theory we

often care about mass gap and quark confinement, both of which hold for two-dimensional theories. And indeed any

two-dimensional theory can be reduced to a collection of independent Markov chains, which is what we’ll use.

Proof. Let V (x, y) be iid (random matrices) from σ for all (x, y) ∈ E(Λ) \ Γ. Extend V to an element of G(Λ,Γ) by

setting all V (x, y) = I for (x, y) ∈ Γ. Let g(x) be iid from σ for all x ∈ Λ (so that we have a random gauge transform),

and let W = V g be that gauge transform applied to V . We claim that the matrices W (x, y) are now all iid from σ for

all (x, y) ∈ E(Λ).
To prove this, we first show that for (x, y) ∈ Γ, the W (x, y) are iid from σ. Indeed,

W (x, y) = g(x)V (x, y)g(y)−1 = g(x)g(y)−1,

and we claim we can order the elements of Γ as (x1, y1), (x2, y2), · · · such that for all n, at most one of xn and yn is

among the previous vertices x1, y1, x2, y2, · · · , xn−1, yn−1. Indeed, if the undirected graph induced by Γ is connected

(meaning it is a tree), then we first let (x1, y1) be any element of Γ, and then once we’ve chosen the first (n − 1)
elements in the ordering, we choose (xn, yn) from among the remaining edges (if any) such that at least one of xn, yn
is in the set of previously observed vertices. By connectedness we will always have such an edge available until Γ is

exhausted, since the undirected graph formed by the first n edges is always connected. And we can’t have both xn, yn

10



in the set of previously observed vertices, because otherwise we would form a cycle (by first taking the previous path

between xn and yn in that connected graph so far, and then connecting that with our edge (xn, yn)). So we can indeed

do the ordering we requested for a single connected component. And finally, if the undirected graph is not connected,

we just separate the edges into connected components and do them one after another.

The point of this ordering is to show that each W (xn, yn) is independent of all previous ones, and that each W (x, y)

is distributed iid from σ, so (W (x, y))(x,y)∈Γ is indeed overall iid from σ. So our goal is to prove that conditionally

given W (x1, y1), · · · ,W (xn−1, yn−1), the matrix W (xn, yn) is always distributed according to σ. For this, it suffices

to prove the stronger statement that given g(x1), g(y1), · · · , g(xn−1), g(yn−1) (which together determine all previous

W (xi , yi)s), we have W (xn, yn) ∼ σ. But now W (xn, yn) = g(xn)g(yn)
−1; if both xn and yn are both not in the previous

set of vertices then g(xn)g(yn)−1 is Haar distributed and independent of the rest, and even if one of xn and yn are

in the set but the other is not, then g(xn)g(yn)−1 still conditionally follows σ by the invariance of the Haar measure.

This proves our claim that W (x, y) are iid from σ for all (x, y) ∈ Γ.
For the remaining edges, note that for (x, y) ∈ E(Λ) \ Γ, we have

W (x, y) = g(x)V (x, y)g(y)−1

and the V (x, y)s are iid from the Haar measure. So conditional on the gauge transform g, {W (x, y)}(x,y)∈E(Λ)\Γ are

also iid from σ, again by invariance. So in fact these are independent of g (while the W (x, y)s in Γ are deterministic

functions of g), and thus all W are indeed iid from γ.

To complete the proof of the theorem, let h : G(Λ)→ C be any gauge-invariant function. We then have∫
G(Λ,Γ)

h(U)dσΛ,Γ(U) = E[h(V )] = E[h(V g)]

by gauge-invariance of h, and this last quantity is exactly E[h(W )]. But W is iid Haar, so this last quantity is exactly∫
G(Λ) h(U)dσΛ(U).

In particular, if we take any gauge-invariant f : G(Λ) → C and let h(U) = f (U)e−βSΛ(U), then h is also gauge-

invariant and thus
∫
G(Λ,Γ) f (U)e

−βSΛ(U)dσΛ,Γ(U) =
∫
G(Λ) f (U)e

−βSΛ(U)dσΛ(U). And there’s one last step to complete

the proof: taking f to be identically 1 yields ZΓ = Z, so that dividing by the appropriate normalizing constants on

each side proves the desired result.

We’ll now turn to mass gap and quark confinement, and we won’t go into the physical details of what exactly these

mean for now, only the mathematical formulations.

Fact 17

Mass gap is equivalent to exponential decay of correlations – recall from last year that to construct a quantum

field theory, we need a self-adjoint operator H. We then say that we have a mass gap if there is a positive spectral

gap between 0 and the next smallest eigenvalue. We then get a quantum operator e−itH with a corresponding

Markov process with semigroup e−tH, and we get exponential mixing if the gap is of positive size. And in fact

the connection between “exponential mixing” and “exponential decay” comes in gauge-fixing – if we fix everything

going in a particular coordinate direction (which we can call “time”), the (time-)slices evolving over that coordinate

yield a Markov process.

On the other hand, we can also have theories with massless particles which will then not have a mass gap. So we’ll

discuss all that later.
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Definition 18

Let ΛN ↑ Zd , and consider the lattice gauge theory on ΛN . Let f : G(ΛN) → C be a gauge-invariant observable;

we say that f is supported on a set of directed edges E if f (U) has no dependence on U(x, y) for any (x, y) ̸∈ E
(so for example a plaquette variable is supported only on its four bordering edges). We then say the theory (that is,

the sequence of theories on Λ1,Λ2, · · · ) has exponential decay of correlations if for all gauge-invariant bounded

functions f1, f2 supported on finite S1, S2 ⊆ Zd and all N large enough so that S1, S2 ⊆ ΛN , we have

|⟨f1f2⟩ − ⟨f1⟩⟨f2⟩| ≤ C1e−C2dist(S1,S2),

where C1 may depend on β, d, G, f1, f2, |S1|, |S2| but not N, while C2 may depend on β, d, G but not f1, f2, or N.

Here dist(S1, S2) is the minimum graph distance between points in the two sets.

4 October 1, 2025

Last time, we began discussing exponential decay of correlations (also called mass gap). We often discuss mass gap in

terms of infinite-volume Gibbs measures, but we stated our version in Definition 18 to avoid some of those technical

details. (From this version, we can essentially prove that the infinite-volume Gibbs measure is unique, in that it uniquely

determines the gauge-invariant expectations, since we can think about how expectations depend on boundary values

on the box and show that the contributions of those effects are small. But we’re trying to not introduce notation for

boundary conditions here for simplicity.)

The Yang-Mills mass gap problem requires us to prove that the continuous-time Hamiltonian has a gap in the

spectrum, which is more complicated than this discrete statement. But even for something like SU(3) lattice gauge

theory on Z4 (or any nonabelian gauge group – it’s expected not to be true for abelian gauge groups), it would be a

big deal and a big step towards proving that conjecture. It’s open to try to prove this for large enough β, and we’ll

see how to do so for small β soon.

Remark 19. The reason that decay of correlations are called “mass” is that if we consider the massive scalar free

field (which is the quantum field theory which describes free bosons with mass m), the mass is exactly the gap in the

spectrum in that model. And in systems of particles in general, that generalizes in some way. We can add mass terms

to our lattice gauge theories too, but it breaks the gauge symmetry.

We’ll prove this in two dimensions shortly, where things are much easier to do. First, though, there’s also a related

problem of quark confinement, which we’ll state as a math problem:

Definition 20

Let ΛN ↑ Zd , and consider the lattice gauge theory on ΛN . We say that the theory (that is, the sequence of

theories) confines quarks if there exists a function V : (0,∞)→ R with V (x)→∞ as x →∞, such that for any

rectangular loop ℓ ⊆ ΛN with side lengths R ≤ T , we have that

|⟨Wℓ⟩| ≤ Ce−V (R)T ,

with C depending only on β, d, G. In the special case where V (R) ∝ R, this identity is called Wilson’s area law
(since we then have exponential decay of expectations dictated by the area enclosed by ℓ).
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The idea is that in physics, we don’t understand why quarks and antiquarks are always bound together rather than

freely existing in nature. The hypothesis is that the potential energy between those objects must grow to infinity

as R → ∞ so that conservation of energy does not allow them to move apart too much, and Wilson showed in

quantum field theory calculations that if V is a potential of a quark-antiquark pair separated by R, then this Wilson

loop expectation should behave as written as T grows. (This comes from taking the quantum Yang-Mills model,

introducing the quark-antiquark pair as fermions via Grassmann variables, and then taking the masses to infinity.)

This is also an open problem – both this and mass gap do not have convincing physics arguments beyond numerical

simulations in four dimensoins.

Fact 21

Remember that the product of matrices along a Wilson loop is always unitary, so the product itself is not actually

getting smaller and smaller. But the point is that when we take the expectation of the trace, it will indeed get

quite small – we can prove that under fairly general conditions we have |⟨Wℓ⟩| ≤ C1e
−c2(R+T ). This is because

by conditioning on all matrices outside the loop, the remaining matrices are almost independent and have some

uniformly bounded densities with respect to the Haar measure. Of course, this “perimeter law” is weaker than the

conjectured “area law.”

We’ll prove that the area law always holds for d = 2, and we’ll also be able to prove that it holds in general

dimension for small enough β. But the important open question is again for SU(3) theory on Z4 and large enough β,

or even any non-abelian theory in place of SU(3). And real-world models are supposed to correspond to very large β

in some sense (in fact β →∞ in ideal models).

Fact 22

Professor Chatterjee has a theorem that a stronger version of mass gap implies confinement, under the assumption

that G has nontrivial center (which is a necessary condition). But both mass gap and quark confinement seem to

be very hard, and it’s not clear which one is easier to prove.

We’ll now turn to the proofs for d = 2 – we’ll need some notation related to Markov chains.

Example 23

Let (S,S) be a measurable space, and let µ be a (not necessarily finite) measure on this space. Let X0, X1, · · ·
be a Markov chain on S with transition kernel p with respect to µ, meaning that

P(Xn+1 ∈ A|Xn = x) =
∫
A

p(x, y)dµ(y).

(If we’re concerned about conditioning on x here, we can in fact make sense of that via regular conditional

probabilities on Polish spaces, which we’re always working on.) Let pn(x, y) be the n-step transition density (that

is, the probability density function with respect to µ of Xn given X0 = x), so that (by Chapman-Kolmogorov)

pn(x, y) =

∫
S

· · ·
∫
S

p(x, x1)p(x1, x2) · · · p(xn−2, xn−1)p(xn−1, y)dµ(x1) · · · dµ(xn−1).

Let ν be an invariant probability measure for this chain, and assume that ν has some density f with respect to µ,

meaning that
∫
S f (x)p(x, y)dµ(x) = f (y).

The following result gives us a way to show exponentially fast mixing of such a Markov chain:
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Theorem 24 (Doeblin condition, special case)

Take the notation above. Suppose there is some ε > 0 such that the transition density satisfies p(x, y) ≥ εf (y)
for all x, y (this is true for example for random walk on a compact group). Then for all x ∈ S, we have∫

S

|pn(x, y)− f (y)|dµ(y) ≤ 2(1− ε)n.

Continuous state spaces can be difficult to analyze, so this is a particularly useful result in that setting. And we

can see from the bound that the proof is not too complicated:

Proof. Let q(x, y) = p(x,y)−εf (y)
1−ε . Then q(x, y) is nonnegative and∫

q(x, y)dµ(y) =
1

1− ε

(∫
p(x, y)dµ(y)− ε

∫
f (y)dµ(y)

)
=

1

1− ε(1− ε) = 1,

so q is also a transition density (though we won’t use this). Defining qn(x, y) in the same way that we defined pn(x, y)

as an n-step transition, we can similarly show that
∫
S q
n(x, y)dµ(y) = 1 for all n and x .

We claim that f is also an invariant density for q; that is, for all y we have
∫
S f (x)q(x, y)dµ(y) = f (y). Indeed,∫

S

f (x)q(x, y)dµ(x) =
1

1− ε

(∫
S

f (x)p(x, y)dµ(x)− ε
∫
S

f (x)f (y)dµ(x)

)
=

1

1− ε(f (y)− εf (y))

= f (y).

Thus, we claim that we can actually write

pn(x, y) = (1− ε)nqn(x, y) + (1− (1− ε)n)f (y).

We can prove this by induction: by definition it’s true for n = 1, and now if this holds for n = k − 1, we have

pk(x, y) =

∫
S

pk−1(x, z)p(z, y)dµ(z)

=

∫
S

(
(1− ε)k−1qk−1(x, y) + (1− (1− ε)k−1)f (z)

)
((1− ε)q(z, y) + εf (y)) dµ(z).

Expanding out the cross-terms, the product of qs gets us (1− ε)kqk(x, y). But then all other terms, by the fact that

f is an invariant measure for q, just yield constant multiples of f (y), so that summing up the coefficients yields the

inductive hypothesis.

And now we’re done, since plugging in this expression for pn into the left-hand side of the theorem yields∫
S

|pn(x, y)− f (y)|dµ(y) =
∫
S

(1− ε)n(qn(x, y)− f (y))dµ(y),

and by the triangle inequality this is bounded by

(1− εn)
∫
|(qn(x, y)|+ |f (y)|)dµ(y) = (1− ε)n(1 + 1)

because qn is nonnegative (this is the only place where we use this fact), which is the desired claim.

In the language of total variation distance, this result is saying that (1− ε)n is a bound for TV between pn and the

stationary distribution. And probabilistically, the idea with this proof is that at each step we either toss an ε-coin to
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end up at the stationary distribution or take a step from q; once we end up heads we are automatically at stationarity.

Corollary 25

With the notation and condition in the theorem above, let g1 be the joint density of (X0, X1, · · · , Xi) and g2 the

joint density of (Xj , · · · , Xk), where i < j < k . Also let g be the joint density of X0, · · · , Xi , Xj , · · · , Xk). (All

densities are with respect to the product µ measure.) Assume that X0 has some density h. Then if i and j are

far apart, g is “approximately” g1 × g2 in the following total variation sense:∫
S

· · ·
∫
S

|g(x0, · · · , xi , xj , · · · , xk)−g1(x0, · · · , xi)g2(xj , · · · , xk)|dµ(x0) · · · dµ(xi)dµ(xj) · · · dµ(xk) ≤ 4(1− ε)j−i .

Proof. We have g1(x0, · · · , xi) = h(x0)p(x0, x1) · · · p(xi−1, xi), and we also have

g(x0, · · · , xi , xj , · · · , xk) = h(x0)p(x0, x1) · · · p(xi−1, xi)pj−i(xi , xj)p(xj , xj+1) · · · p(xk−1, xk)

(note the big jump in the middle). The joint density of the latter random variables is then g2(xj , · · · , xk) =
w(xj)p(xj , xj+1) · · · p(xk−1, xk), where w =

∫
S h(X0)p

j(x0, x)dµ(x0) is the density of Xj . Thus we only have one

term that’s different when we substitute things in:

|g(x0, · · · , xi , xj , · · · , xk)− g1(x0, · · · , xi)g2(xj , · · · , xk)|

=
∣∣h(x0)p(x0, x1) · · · p(xi−1, xi)(pj−i(xi , xj)− w(x))p(xj , xj+1) · · · p(xk−1, xk)∣∣ ,

so that if we integrate both sides what we need to bound is∫
S

· · ·
∫
S

h(x0)p(x0, x1) · · · p(xi−1, xi)|pj−i(xi , xj)− w(xj)|p(xj , xj+1) · · · p(xk−1, xk)dµ(x0) · · · dµ(xi)dµ(xj) · · · dµ(xk).

If we integrate out xk , we just have a probability kernel and so that variable disappears. Then we can successively

integrate out all other variables up to xj+1, so that all we have left is∫
S

· · ·
∫
S

h(x0)p(x0, x1) · · · p(xi−1, xi)|pj−i(xi , xj)− w(xj)|dµ(x0) · · · dµ(xi)dµ(xj).

It suffices to show now that for all xi ,∫
|pj−i(xi , xj)− w(xj)|dµ(xj) ≤ 4(1− ε)j−i ,

because once we substitute that in we can integrate out all of the remaining variables as well. We already know that∫
|pj−i(xi , xj)− f (xj)|dµ(xj) ≤ 2(1− ε)j−i , so it suffices to prove that

∫
|w(xj)− f (xj)|dµ(xj) ≤ 2(1− ε)j−i ; in fact

we can show that
∫
|w(xj)− f (xj)|dµ(xj) ≤ 2(1− ε)j . This is because

w(xj) =

∫
h(x0)p

j(x0, x)dµ(x0),

so substituting this in and applying Jensen’s inequality to bring the absolute value inside, we have∫
|w(xj)− f (xj)|dµ(xj) ≤

∫∫
h(x0)|pj(x0, xj)− f (xj)|dµ(xj)dµ(x0).

Integrating over j first and using Doeblin’s theorem shows that this is bounded by
∫
h(x0)2(1− ε)jdµ(x0) = 2(1− ε)j ,

which completes the proof.

So the point here is that if we have a function of a bunch of variables in two very separated time intervals and

want to understand the correlations, we only care about the distance between the closest points, and that’s very
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related to exponential decay of correlations. More precisely, for any function F of (X0, · · · , Xi) and any function G of

(Xj , · · · , Xk) where |F |, |G| ≤ 1, we have

E[FG]− E[F ]E[G]

=

∫
F (x0, · · · , xi)G(xj , · · · , xk)(g(x0, · · · , xi , xj , · · · , xk)− g1(x0, · · · , xi)g2(xj , · · · , xk))dµ(x0) · · · dµ(xi)dµ(xj) · · · dµ(xk).

But then taking absolute values and then using our bounds from the previous result shows that

Cov(F,G) = |E[FG]− E[F ]E[G]| ≤ 4(1− ε)j−i .

So we’ll see next time how to use gauge fixing to reduce a two-dimensional system to such a system of Markov chains

and prove our desired results for d = 2.

5 October 6, 2025
Last time, we were discussing mass gap in 2D lattice gauge theories. We’ll prove the following result today:

Theorem 26

Consider lattice gauge theories with free boundary conditions on ΛN ↑ Z2, and assume that G is a compact Lie

subgroup of U(n) for some n. Then this sequence of theories has a mass gap at any β ≥ 0.

In other words, we get exponential decay of correlations with constant not depending on N.

Proof. It suffices to consider the gauge-fixed theory, in which the matrices attached to all horizontal edges are the

identity I – horizontal edges contain no loops, so this is valid. (We can do this same thing in any dimension, but it

will not help us as much.) For any plaquette p of vertices (x, y), (x + 1, y), (x + 1, y + 1), (x, y + 1), we have

Up = U((x, y), (x + 1, y))U((x + 1, y), (x + 1, y + 1))U((x, y + 1), U(x + 1, y + 1))
−1U((x, y), (x, y + 1))−1

= U((x + 1, y), (x + 1, y + 1))U((x, y), (x, y + 1))−1

= U(ex+1,y )U(ex,y ))
−1,

where we introduce the notation that ex,y = ((x, y), (x, y + 1)) is the vertical edge pointing upward from (x, y).

Now fix some N. For each y ∈ Z, let S(y) be the set of all x ∈ Z so that the plaquette we described above is

within ΛN . We can then write the action as

SΛN (U) =
∑
y∈Z

∑
x∈S(y)

Re(Tr(I − U(ex+1,y )U(ex , y)−1)).

Since ΛN is finite, all of these are finite sums. Since S(y) ⊆ Z, the set S(y) is always a union of connected components

(under the usual graph structure on Z). Let C(y) be the set of such components, and for each C = {x, · · · , x + k} ∈
C(y), define

SC(U) =

k∑
j=0

Re
(
Tr
(
I − U(ex+j+1,y )U(ex+j,y )−1

))
.

But now two components (and two components belonging to different ys) don’t interact with each other (because
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x + k + 1 won’t be in any other component), so the action is just a sum of terms of this form:

SΛN =
∑
y∈Z

∑
C∈C(y)

SC(U).

So now let U be a random configuration drawn from the lattice gauge theory. For any C = {x, x + 1, · · · , x + k}, we

then define the collection of random variables

U(C) = {U(ex,y ), · · · , U(ex+k+1,y )}.

Assume for simplicity that every edge in ΛN is in at least one plaquette (otherwise it doesn’t contribute to the action

so U on that edge is just a Haar matrix). The previous decomposition then says that the U(C)s are independent of

each other, and the density of U(C) is proportional to

exp

−β k∑
j=0

Re
(
Tr
(
I − U(ex+j+1,y )U(ex+j,y )−1

)) .
To simplify notation, let U1, U2, · · · , Uk+1 be random elements of G with joint density (relative to Haar measure)

proportional to exp
(
−β
∑k
j=0 Re

(
Tr
(
I − Uj+1U−1j

)))
. We claim that this is a Markov chain with kernel

P (V,W ) = C−1 exp
(
−βRe

(
Tr
(
I −WV −1

)))
,

where C is a normalizing constant that doesn’t depend on V , since by invariance of Haar measure µ we have

C =

∫
G

exp
(
−βRe

(
Tr
(
I −WV −1

)))
dµ(W ) =

∫
G

exp (−βRe (Tr (I −W ))) dµ(W ).

So we have a random walk on a group, and each time we’re multiplying by a random matrix chosen by this specified

density. The fact that C doesn’t depend on V thus means that if U1 is Haar distributed, and U2, U3, · · · are generated

from this Markov kernel, then we indeed have the correct specified joint density for (U1, U2, · · · , Uk+1).
But now we are almost done: P (V,W ) is a strictly positive continuous function on G×G, and G is compact. Thus

there is some ε > 0 (depending only on G and β) such that P (V,W ) ≥ ε for all V,W . This means that Doeblin’s

condition is satisfied – we can check that µ is an invariant measure for this Markov chain, and thus we have exponential

decay of correlations. (We can complete the proof on our own.)

Remark 27. We can get some bounds from this proof, but they’ll be exponentially bad in β even if G is of a fixed

size. Doeblin usually doesn’t give sharp bounds, so we may need something else if we wanted the “correct constants”

for exponential decay.

Next, the area law also holds, but only under an additional assumption on G:

Theorem 28

Suppose, in addition to the assumptions of Theorem 26 (in particular, d = 2), that there is no nonzero x ∈ Cn

fixed by all elements of G. Then the sequence of theories satisfies the area law.

(We should also be able to prove that if this additional condition is not satisfied, then Wilson’s area law cannot

hold, so this is necessary.) Groups like U(n) or SO(3) satisfy this “irreducibility-type condition,” which is basically

saying that the standard representation has no one-dimensional invariant subspace.
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Lemma 29

Let U be Haar distributed on G, and let E(U) be the matrix of expected values of the entries of U. If G fixes no

nonzero elements of Cn, then E(U) is identically zero.

(In fact this is an “if and only if” statement: if G fixes a nonzero vector, then the expected value of Ux = x is

E(U) times x , so E(U) can’t be zero.)

Proof. Let ||M|| denote the ℓ2 operator norm of an n × n matrix; that is,

||M|| = sup{||Mx || : x ∈ Cn : ||x || = 1} = sup{||Mx || : x ∈ Cn : ||x || ≤ 1}.

This is indeed a norm and it satisfies the submultiplicativity condition ||MN|| ≤ ||M|| · ||N||. First notice that

||E(U)|| ≤ 1, since if U1, U2, · · · are iid Haar and x ∈ Cn of norm at most 1 is fixed, then the law of large numbers

says that 1n
∑n
j=1 Ujx converges to E(U)x almost surely as n →∞, and therefore

||E(U)x || a.s.= lim
n→∞

∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
j=1

Ujx

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1n

n∑
j=1

||Ujx || ≤ 1,

and taking a supremum over all x yields the result. We now further claim that ||E(U)|| < 1; suppose not so that

||E(U)|| = 1. Then there exists some x ∈ Cn with ||x || = 1 and ||E(U)x || = 1 (by compactness the supremum is

achieved). If we now let U1, U2 be iid Haar, we have for our chosen x that

E[||U1x − U2x ||2] = E
[
||U1x ||2 + ||U2x ||2 − 2⟨U1x, U2x⟩

]
= 2− 2E[⟨U1x, U2x⟩]

= 2− 2⟨E(U1)x, E(U2)x⟩

because all terms in the inner product depend only linearly on the entries of each individual matrix, and this last quantity

is then 2− 2||E(U)x ||2 = 0. Thus we must have U1x = U2x with probability 1, so U−12 U1x = x almost surely – since

U−12 U1 is Haar distributed, continuity implies that V x = x for all V ∈ G. (This just requires showing that every point

is in the support of the Haar measure, which is true because the Haar measure is a volume form.)

But now we are almost done: again letting U1, U2 be iid from the Haar measure, U = U1U2 is also Haar, so

||E(U)|| = ||E(U1)E(U2)|| ≤ ||E(U)||2, which can only occur if ||E(U)|| = 0, hence E(U) = 0 as desired.

Proof of Theorem 28. Again consider the gauge-fixed theory, and now consider a rectangle with horizontal width

T and vertical height R. Take R ≤ T without loss of generality, and assume that our rectangle has corners

(0, 0), (T, 0), (T,R), (0, R). We again denote by Uj,k the matrix on the edge from (j, k) to (j, k + 1); the Wilson

loop we care about then satisfies

Wℓ = Tr
[
UT,0UT,1 · · ·UT,R−1U∗0,R−1U∗0,R2 · · ·U

∗
0,0

]
(the inverse is just the adjoint for a unitary matrix, but thinking about it as the adjoint helps us out if we want to

write things out in terms of matrix entries). If we now let Ua,bj,k denote the (a, b)th entry of Uj,k , we can write out

the trace as a sum

Wℓ =
∑

1≤a0,a1,··· ,a2R−1≤n
Ua0,a1T,0 U

a1,a2
T,1 · · ·U

aR−1,aR
T,R−1 U

aR+1,aR
0,R−1 U

aR+2,aR+1
0,R−2 · · ·Ua0,a2R−10,0 .
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Taking expectations of both sides, notice that the different horizontal stripes of vertical edges are independent, and

thus this expectation actually factors as a product. Each horizontal stripe only affects two of the terms in our product,

and so

E[Wℓ] =
∑

1≤a0,··· ,a2R−1≤n

R−1∏
j=0

E
[
U
aj ,aj+1
T,j U

a2R−j ,a2R−j−1
0,j

]
.

But now we can apply exponential decay of the Markov chains within each strip: we can write

E
[
U
aj ,aj+1
T,j U

a2R−j ,a2R−j−1
0,j

]
= E

[
U
aj ,aj+1
T,j U

a2R−j ,a2R−j−1
0,j

]
− E

[
U
aj ,aj+1
T,j

]
E
[
U
a2R−j ,a2R−j−1
0,j

]
by our previous lemma, since all matrix entries have expectation zero. And this right-hand side is bounded by C1e−C2T

since the two matrices are separated by a distance T , where C1, C2 depend only on G, β. We take a product of R of

these things and we have a big sum, so we find that

E[Wℓ] ≤ n2R(C1e−C2T )R = exp (R(logC1 + 2 log n)− C2RT ) .

So now if T ≥ C3 =
2(logC1+2 log n)

C2
, then the first term inside the exponential is at most 12C2RT and thus we have

E[Wℓ] ≤ exp
(
− 12C2RT

)
for sufficiently large T . We thus choose C0 ≥ 1 so large that |⟨Wℓ⟩| ≤ C0 exp

(
− 12C2RT

)
even for T < C3, since under the condition R ≤ T there are only finitely many choices of R and T (which are the only

things that our bounds above depend on) and thus we can always find a C0, as desired.

The proof in higher dimensions to get from mass gap to area law is somewhat similar, expanding out the trace and

using exponential decay. We’ll see that later on in the course – indeed, we’ll now move into general dimension in the

strong coupling (β small) regime. We’ll then specialize to d = 3, 4 and prove some results there.

6 October 8, 2025
Today, we’ll discuss mass gap in the strong coupling regime. We’ll first discuss one potential point of confusion: recall

that in the continuum, the Yang-Mills action is given by

S(A) = −
1

2g20

∫
R4

Tr

 ∑
0≤i<j≤3

ηiηj(∂iAj(x)− ∂jAi(x) + [Ai(X), Aj(x)])2
 dx, η0 = 1, η1 = η2 = η3 = −1.

This action is often reparameterized so that the fields Aj 7→ g0Aj are rescaled, so that ew now have

S(A) = −
1

2

∫
Tr

 ∑
0≤i<j≤3

ηiηj(∂iAj − ∂jAi + g0[Ai , Aj ])2
 dx.

Thus as g0 → 0, the fields decouple because we approach the electromagnetic theory and then we can do an appropriate

gauge-fixing. (That’s why g0 is called the coupling constant.) For g0 small we thus have “weak coupling,” and for g0
large we say that we have “strong coupling.” In lattice gauge theories, β plays the role of 1

g20
. Thus, β small indeed

corresponds to strong coupling and β large to weak coupling.

Fact 30

We know that small β should make the matrices at different edges more independent, so the notation may be

counterintuitive to probabilists. But this is where it all comes from – it’s not about the individual sites being

coupled, but rather the d fields (in d dimensions) being coupled to each other.
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We’ll discuss two results:

Theorem 31 (Osterwalder-Seiler 1978)

Consider lattice gauge theory on ΛN ↑ Zd for some d ≥ 2, and suppose the gauge group G is a subgroup of U(n).

Then there exists β0 > 0, depending only G on d , such that for all β < β0, the sequence of theories has mass

gap.

There are different approaches for proving this – this result was originally proved using cluster expansions, but we’ll

show a different, more probabilistic approach.

Definition 32

Let µ1, µ2 be two probability measures on (Ω,F). The total variation distance between µ1 and µ2 is given by

dTV(µ1, µ2) = sup
A∈F
|µ1(A)− µ2(A)|.

This quantity has lots of alternative characterizations as well: for example, we have

dTV(µ1, µ2) = inf
X∼µ1,Y∼µ2

P(X ̸= Y ),

where we’re allowed to couple X and Y in any arbitrary way as long as their marginals are specified. And for a third

description, suppose that µ is a measure on (Ω,F) such that µ1, µ2 have densities ρ1, ρ2 with respect to µ. (We can

always find such a µ, for example by setting µ = µ1 + µ2.) Then

dTV(µ1, µ2) =
1

2

∫
Ω

|ρ1(x)− ρ2(x)|dµ(x).

The proofs that these are all the same are a bit tricky but not too difficult.

Example 33

Let µ, µ′ be two probability measures on a product space Ωn. For 1 ≤ i ≤ n, let µi(·|(xj)j ̸=i) denote the conditional

law of Xi given Xj = xj for all other j , where X = (X1, · · · , Xn) is distributed according to µ. Define µ′i(·|(xj)j ̸=i)
similarly. Assume that for all x, y ∈ Ωn and all 1 ≤ i ≤ n, we have

dTV (µi(·|(xj)j ̸=i), µ′i(·|(yj)j ̸=i)) ≤
n∑
j=1

αi j1{xj ̸= yj}+ hi

for some nonnegative constants αi j , hi (assume αi i = 0).

The idea is that if we have Markov random fields, the conditional distributions should only depend on a few

neighboring coordinates, and this condition says that if the neighbors are the same, then the conditional distributions

are the same except for some coordinates (think of hi as being associated to the boundary values).

If s = max1≤i≤n
∑n
j=1 αi j < 1 (this is often called the Dobrushin condition), then the matrix Q = (αi j)ni,j=1

is substochastic, and in fact 1sQ is substochastic as well. Thus there exists some Markov transition matrix P on

{1, 2, · · · , n} such that Q ≤ sP elementwise; consider a random walk with those transition probabilities. Let τi j be

the first hitting time at j when the walk starts from i .
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Theorem 34

Take all of the notation above. Suppose Z ∼ µ and Z ∼ µ′, and let A ⊆ {1, · · · , n}. Let ν and ν ′ be the laws of

(Zi)i∈A and (Z′i )i∈A. Then

dTV(ν, ν
′) ≤

1

1− s
∑
i∈A

n∑
j=1

E [sτi j ] hj .

The idea is that if our system is a field on a grid, and the hjs are nonzero on the boundary, then in particular τi j
has to be at least the distance from a point i to the boundary. So all terms here will be exponentially small in that

distance, and this lets us compare Gibbs distributions under different boundary conditions.

Proof. This is a coupling argument. Construct two Markov chains X0, X1, · · · and X ′0, X
′
1, · · · as follows (remember

that our state space is some product space Ωn). First generate X0, X ′0 independently with X0 ∼ µ and X ′0 ∼ µ′. Then

at step k , given Xk and X ′k , we generate Xk+1 and X ′k+1 by “refreshing a coordinate in the best possible coupling” as

follows. Pick a coordinate i ∈ {1, · · · , n} uniformly at random, and let γ = µ(·|(Xk,j)j ̸=i) and γ′ = µ′(·|(Xk,j)j ̸=i).
Then there exists a joint law θ with marginals γ, γ′ (meaning (X, Y ) ∼ θ, X ∼ γ and Y ∼ γ′), coupled specifically so

that P(X ̸= Y ) = dTV(γ, γ
′). Generate (Xk+1,i , X ′k+1,i) from θ. Finally, keep all other coordinates the same, meaning

that Xk+1,j = Xk,j and X ′k+1,j = X
′
k,j for all j ̸= i .

Since we’re just regenerating from µ, µ′ at each step from the conditional distribution and we start X0, X ′0 according

to those distributions, we have Xk ∼ µ and X ′k ∼ µ′ for all k . Define the vector ℓk = (ℓk,1, · · · , ℓk,n) where

ℓk,i = P(Xk,i ̸= X ′k,i); our goal is to bound this vector. We know that

P(Xk+1,i ̸= X ′k+1,i |Xk , X ′k) =
(
1−
1

n

)
1{Xk,i ̸= X ′k,i}+

1

n
dTV(γ, γ

′),

since with probability (1− 1n ) the coordinate doesn’t change, and otherwise we generate from the best possible coupling.

Recall from the setup of Example 33 that we thus have the bound

P(Xk+1,i ̸= X ′k+1,i |Xk , X ′k) ≤
(
1−
1

n

)
1{Xk,i ̸= X ′k,i}+

1

n

 n∑
j=1

αi j1{Xk,j ̸= X ′k,j}+ hi

 ,
so taking expectations on both sides yields

ℓk+1,i ≤
(
1−
1

n

)
ℓk,i +

1

n

n∑
j=1

αi jℓk,j +
1

n
hi .

If we now define ℓ(i) = lim supk→∞ ℓk,i , we find that

ℓ(i) ≤
(
1−
1

n

)
ℓ(i) +

1

n

n∑
j=1

αi jℓ(j) +
1

n
hi =⇒ ℓ(i) ≤

n∑
j=1

αi jℓ(j) + hi .

Recalling that Q was our matrix of αi js and Q ≤ sP for some stochastic matrix P and s the maximum row sum, we

thus find that the vector ℓ of limsups satisfies ℓ ≤ Qℓ + h coordinate-wise, so that (I −Q)ℓ ≤ h . Using the matrix

norm

||M|| = max
1≤i≤n

n∑
j=1

|Mi j |

(we can check that indeed ||MN|| ≤ ||M|| · ||N||), we have that
∑∞
k=0Q

k converges because ||Q|| < 1, it is the inverse

of I −Q, and it has all nonnegative entries. Thus multiplying both sides of the boxed inequality by this sum maintains
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the inequality, and thus we have

ℓ ≤
∞∑
k=0

Qkh ≤
∞∑
k=0

skP kh

again by nonnegativity. This implies that

ℓ(i) ≤
∞∑
k=0

sk
n∑
j=1

p
(k)
i j hj ,

where p(k)i j is the (i , j)th entry of P k . Exchanging order of summation yields

ℓ(i) ≤
n∑
j=1

( ∞∑
k=0

skp
(k)
i j

)
hj .

But now if we let Z0, Z1, · · · be a Markov chain with transition matrix P , p(k)i j is the probability that Zk = j given

Z0 = i . So

∞∑
k=0

skp
(k)
i j =

∞∑
k=0

skP(Zk = j |Z0 = i)

= E

[ ∞∑
k=0

sk1{Zk = j}

∣∣∣∣∣Z0 = i
]

= E

 ∞∑
k=τj

sk

∣∣∣∣∣∣Z0 = i


where τj is the first hitting time of j . Furthermore, this last quantity is just 1
1−sE[s

τi j ]. Thus we’ve shown that

ℓ(i) ≤
1

1− s

n∑
j=1

E[sτi j ]hj .

To complete the proof, now we have for our particular coupling and any value of k that (remembering ν, ν ′ are the

laws on A)

dTV(ν, ν
′) ≤ P((Xk,i)i∈A ̸= (X ′k,i)i∈A ≤

∑
i∈A
P(Xk,i ̸= X ′k,i) =

∑
i∈A

ℓk,i ,

so then taking limsup over all k yields the desired result.

We can now apply this to our lattice gauge theories:

Start of proof of Theorem 31. Consider lattice gauge theory on ΛN , and let f1, f2 be two bounded gauge-invariant

observables supported on the sets S1, S2 ⊆ ΛN . (Actually f1, f2 don’t need to be gauge-invariant, so this is maybe an

indication that this cannot be the “physically relevant” result.) Let n = dist(S1, S2) be the graph distance between the

two sets. Assume S1 and S2 have bounded sizes and we’re taking n very large. Then we can put a “box” around

S1 of radius n/2 (more precisely, the union of points at most n/2 away from points in S1); for sufficiently large n we

have S2 outside this box. We then have

E[f1f2] = E [E[f1|everything outside the box]f2] ,

since f2 is dependent only on things outside the box. The point now is that for two different boundary conditions on

the box, if we have

|E[f1|boundary condition 1]− E[f1|boundary condition 2]| ≤ C1e−C2n,
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then because E[f1] itself is some weighted average of E[f1|boundary condition]s, then we also have

|E[f1|boundary condition]− E[f1]| ≤ C1e−C2n,

and thus plugging this back into the covariance expression E[f1f2] − E[f1]E[f2] shows that it must be exponentially

small. Thus we just want to prove this condition on conditional expectations.

Thus what we have is our arbitrarily-shaped region which we can call A, and we can let µ and µ′ be the conditional

laws of the lattice gauge theory in A under the two different boundary conditions – let U ∼ µ and U ′ ∼ µ′. (Here,

boundary conditions are specifications on the “boundary edges of A” which are part of plaquettes not in A.) For any

non-boundary edge e ∈ A where none of its neighboring edges (that is, edges with which e shares plaquettes) are

boundary edges, the conditional density of Ue given all other matrices has density

exp

(
−β
∑
p∋e

Re(Tr(I − Up))

)
;

that is, it retains the form of the original density because none of the relevant edges are being fixed by the boundary.

The same holds for U ′ as well. Thus if U, U ′ have the same neighboring configuration, the distribution is the same,

and if they have something different the total variation distance will still be small if β is small enough. And the his

will come in for the edges where a neighboring edge is on the boundary, which will allow us to use our proved bound

on total variation. We’ll do this next time!

7 October 13, 2025
Today, we’ll first prove a better version of what we showed last time:

Definition 35

Let (Ω,F , µ) be a probability space, and let ν be a probability measure on the product space (Ωn,Fn, µn) such

that ν has a density ρ with respect to µn. Let X ∼ ν. Then the marginal density (Xj)j ̸=i is defined by integrating

out the ith coordinate:

ρ−i((xj)j ̸=i) =

∫
ρ(x1, · · · , xn)dµ(xi).

The conditional density of Xi given (Xj)j ̸=i is

ρi(xi |(xj)j ̸=i =
ρ(x1, · · · , xn)
ρ−i((xj)j ̸=i

(where we define this quantity arbitrarily if the denominator is zero).
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Proposition 36

With the notation above, suppose the system admits a conditional dependency graph G on {1, · · · , n}, meaning

that ρ(xi |(xj)j ̸=i) is a function only of (xj)j∈N(i)∪{i} (that is, the conditional density depends only on i and its

neighbors in the graph). Let ∆ be the maximum vertex degree of G, and assume the Dobrushin condition

s = sup
1≤i≤n
x∈Ωn

|ρi(xi |(xj)j ̸=i)− 1| <
1

∆
.

For disjoint sets A,B ⊆ {1, · · · , n}, letXA = (Xi)i∈A andXB = (Xi)i∈B and define r = d(A,B) = mini∈A,j∈B d(i , j),

where d is the graph distance on G. Then for any measurable function f : ΩA → [−1, 1] and g : ΩB → [−1, 1],

|E[f (XA)g(XB)]− E[f (XA)]E[g(XB)]| ≤
2s r∆r |A| · |B|
1− s∆ .

In particular, this quantity will be exponentially decaying in the distance, and indeed we see that the conditional

density converges to 1 as β → 0 so this will be useful in the high-temperature regime.

Proof. Let D = {i ̸∈ B : d(i , B) = 1} be the set of indices that are just outside of B. We claim that for all

x, x ′ ∈ ΩB, we have

E[f (XA)|XB = x ]− E[f (XA)|XB = x ′] ≤
2s r∆r−1

1− s∆ |A||D|.

Then |D| ≤ ∆|B| because each element of B can have at most ∆ neighbors, so in particular this is at most the

right-hand side of our theorem. This then proves the desired bound by a similar argument to our proof from last

lecture, since first note that we can write the difference to the unconditional expectation as

E[f (XA)|XB = x ]− E[f (XA)] =
∫
(E [f (XA)|XB = x ]− E[f (XA)|XB = x ′]) dτB(x ′)

and so the left-hand side is also bounded by 2s
r−1∆r |A||B|
1−s∆ . Then

E[f (XA)g(XB)]− E[f (XA)]E[g(XB)] = E [(E[f (XA)|XB]− E[f (XA)]) g(XB)]

and now |g(XB)| is bounded by 1 so the result follows.

So now to prove the claim, we’ll do a similar coupling argment as last time. Fix some x, x ′ ∈ ΩB. Let τ, τ ′ be the

conditional distributions of X given XB = x and XB = x ′, respectively, and generate X0 ∼ τ, Y0 ∼ τ ′ independently

of each other. We can then define a Markov chain starting at (X0, Y0) which evolves as follows: from (Xk , Yk), we

choose a coordinate I uniformly from {1, · · · , n} \ B, and then generate (U, V ) ⊂ Ω2 so that U ∼ ρI(·|(Xk,j)j ̸=I and

V ∼ ρI(·|(Yk,j)j ̸=I are “resamplings of the Ith coordinate given the current value of Xk , Yk , and where we couple so

that P(U ̸= V ) is exactly the total variation density between the two conditional laws. We then let Xk+1,I = U and

Yk+1,I = V and keep all other coordinates the same.

By construction, each Xk is still distributed as τ and each Yk is distributed as τ ′ (since we never update the

coordinates in B). We wish to calculate the total variation distance between U and V . First of all note that if

Xk,j = Yk,j for all j ∈ N(I), then by assumption the conditional distributions U, V are exactly identical, so the total

variation distance is 0. And if not, then

P(U ̸= V ) =
1

2

∫ ∣∣∣ρI(z |(Xk,j)j ̸=I)− ρI(z |(Yk,j)j ̸=I)∣∣∣dµ(z),
but the quantity inside the absolute values is at most 2s by assumption and the triangle inequality, and thus the whole
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probability is at most s. Thus

P(U ̸= V ) ≤ s
∑
j∈N(i)

1{Xk,j ̸= Yk,j}

by a crude union bound, and thus we get the inequality (first case if coordinate i is not selected, and second case

otherwise)

P(Xk+1,i ̸= Yk+1,i |Xk , Yk) =
(
1−

1

n − |B|

)
1{Xk,i ̸= Yk,i}+

1

n − |B|s
∑
j∈N(i)

1
{
(Xk,j)j∈N(i) ̸= (Yk,j)j∈N(i)

}
≤
(
1−

1

n − |B|

)
1{Xk,i ̸= Yk,i}+

s

n − |B|
∑

j∈N(i)\B

1 {Xk,j ̸= Yk,j}+
s

m
1
{
(Xk,j)j∈N(i)∩B ̸= Yk,j)j∈N(i)∩B

}
.

But we can bound the last indicator by hi = 1{i ∈ D}, where recall D = {i : d(i , B) = 1}. So then define the vector

ℓk = (ℓk,i)i ̸∈B for ℓk,i = P(Xk,i ̸= Yk,i); taking expectations on both sides,

ℓk+1,i ≤
(
1−

1

m

)
ℓk,i +

s

m

∑
j∈N(i)\B

ℓk,j +
s

m
hi .

As before, letting ℓ = lim supk→∞ ℓk (so that ℓ(i) denotes the ith coordinate of this limsup), we have

ℓ ≤
(
1−

1

m

)
ℓ+

s

m
Qℓ+

s

m
h

where Q is the adjacency matrix of G restricted to {1, · · · , n}\B. This rearranges to (I−sQ)ℓ ≤ sh, and now we claim

that (I− sQ)−1 =
∑∞
k=0(sQ)

k . For this it’s sufficient to show that the right-hand side is convergent (because then we

get a telescoping sum for
∑∞
k=0(sQ)

k(I − sQ)), remembering that convergence is the same as absolute convergence

because our entries are nonnegative. But because Qk = (q(k)i j )1≤i ,j≤n is a power of the adjacency matrix, q(k)i j is the

number of k-step paths from i to j that avoid B, which is in particular at most ∆k . Thus skq(k)i j ≤ (s∆)k will decay

exponentially and this proves the claim; this means that (again using nonnegativity of entries so inequality is preserved)

ℓ ≤ (I − sQ)−1sh =
∞∑
k=0

sk+1Qkh,

so for any coordinate i ∈ A we have

ℓ(i) =

∞∑
k=0

∑
j ̸∈B

sk+1q
(k)
i j hj

=
∑
j ̸∈B

∞∑
k=0

sk+1q
(k)
i j 1{j ∈ D}

=
∑
j∈D

∞∑
k=0

sk+1q
(k)
i j .

But for any j ∈ D we know that q(k)i j = 0 for k < r −1 (since we cannot reach the set in that few steps) and q(k)i j ≤ ∆k
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otherwise. Thus

ℓ(i) ≤
∑
j∈D

∞∑
k=r−1

sk+1∆k

≤ |D|
∞∑

k=r−1
sk+1∆k+1

=
s r∆r

1− s∆ |B|.

So to conclude the proof of our claim, we have∣∣∣E[f (XA)|XB = x ]− E[f (XA)|XB = x ′]∣∣∣ = ∣∣∣E [f ((Xk,i)i∈A)− f ((Yk,i)i∈A] ∣∣∣
≤ 2P((Xk,i)i∈A ̸= (Yk,i)i∈A)

≤ 2
∑
i∈A
P(Xk,i ̸= Yk,i)

= 2
∑
i∈A

ℓk,i ,

and since k was arbitrary we take the limsup as k →∞ and apply the bound to get our result.

So we now see how we can prove mass gap (Theorem 31) from this:

Proof of Theorem 31. For edges e, f ∈ E(ΛN), say that e and f are neighbors if they belong to some common

plaquette. It is easy to see that this yields a conditional dependency graph for the model (because the contributions

to the density only depend on values on plaquettes), and the conditional density has the expression

ρ(Ue |(Uf )f ̸=e) =
1

Z(e)
exp

−β ∑
p∈P(e)

Re(Tr(I − Up))


where P(e) is the set of plaquettes in ΛN containing e, and where the normalizing constant is

Z(e) =

∫
G

exp

−β ∑
p∈P(e)

Re(Tr(I − Up))

 .
But the number of plaquettes in P(e) is uniformly bounded by something like 2d , so for any ε > 0 we can choose some

β0(d, G) so that for all β < β0 the conditional density is close to 1; that is, we can make
∣∣∣exp(−β∑p∈P(e) Re(Tr(I − Up))

)
− 1
∣∣∣ <

ε (which also implies |Z(e)− 1| < ε; thus for ε small enough this ensures the Dobrushin condition holds, proving ex-

ponential decay of correlations as desired.

Next, we’ll prove the area law with a similar argument:

Theorem 37

Suppose that there is no x ∈ Cn \ {0} fixed by all elements of G. Then there is some β ≤ β0(d, G) so that the

area law holds for all β ≤ β0(d, G).

Recall that in two dimensions, we proved this by taking a large T by R loop and gauge-fixed so that we only have

horizontal slices. We then further decomposed each slice into adjacent blocks which were Markov chains, and we used

exponential decay of correlations to bound terms from different sides of the rectangle. We don’t get a Markov chain

in higher dimensions anymore, so we use the following argument instead:
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Proof. Let e1, · · · , ed be the standard basis vectors of Rd , and let ℓ be the rectangular loop with vertices 0, T e1, Re2,

and Te1 + Re2. Define the oriented matrices along the lower edge

Uj,0 = U((j, 0, 0, · · · , 0), (j + 1, 0, 0, · · · , 0))

and along the upper edge

Uj,R = U((j, R, 0, · · · , 0), (j + 1, R, 0, · · · , 0))

for 0 ≤ j ≤ T − 1, except the avoid notational overlap let U((0, 0, 0, · · · , 0), (1, 0, 0, · · · , 0)) be written Ũ0,0. Also

define the matrices along the left edge

U0,k = U((0, k, 0, · · · , 0), (0, k + 1, 0, · · · , 0))

and right edge

UT,k = U((T, k, 0, · · · , 0), (T, k + 1, 0, · · · , 0))

for 0 ≤ k ≤ R − 1. Then the Wilson loop we are interested in can be written in this notation as

Wℓ = Tr
(
Ũ0,0U1,0 · · ·UT−1,0UT,0UT,1 · · ·UT,R−1U∗T−1,RU∗T−2,R · · ·U∗0,RU∗0,R−1 · · ·U∗0,1U∗0,0

)
,

and this trace can be written out as a huge sum∑
1≤a0,··· ,a2T+2R−1≤n

Ũa0,a10,0 Ua1a21,0 · · ·U
aT−1,aT
T−1,0 U

aT ,aT+1
T,0 · · ·

over products of matrix entries. But now for each j ∈ Z we can define Ej to be the set of edges in ΛN from

(x1, j, x3, · · · , xd) to (x1, j+1, x3, · · · , xd), and let E′ be the union of all such edges. Conditional on (U(e))e∈E(ΛN)\E′ , the

collections (U(e))e∈Ej are independent across different js, since they don’t have any common plaquettes. Additionally,

the conditional density of one such slab (U(e))e∈Ej given (U(e))e∈E′ satisfies the Dobrushin condition with some

deterministic s. So we have exponential decay within each slab as long as β is large enough (remember that in d = 2

we had it for all β because we always had Doeblin’s condition). So the rest of the proof is exactly the same as before:

taking the conditional expectation of Wℓ given (U(e))e∈E′ yields dependence in pairs, so that expectations factor and

then we get the necessary exponential decay for each one.

8 October 20, 2025
Today, we’ll discuss confinement in 3D gauge theories. It’s believed that confinement holds quite generally for three-

dimensional lattice gauge theories, and the area law has been proved for 3D U(1) theory with a different action called

the Villain action by Göpfert and Mack in 1982. But to prove confinement, remember that we don’t need something

as strong as the area law – we just need something better than the perimeter law. That’s what the following (new)

result says:
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Theorem 38

Let G be a compact Lie subgroup of U(n) for some n, and assume that zI ∈ G for all z ∈ C with |z | = 1 (meaning

that it “contains U(1)”) – for example, U(n) satisfies this but not SU(n) (though the following result should also

be true for SU(n)). Let ΛN ↑ Z3 be an increasing sequence of lattices and consider the usual lattice gauge theory

with gauge group G on ΛN with inverse coupling β. Take any rectangular loop ℓ with side lengths R ≤ T , and

pick N large enough that ℓ ⊆ ΛN . Then

|⟨Wℓ⟩| ≤ C1e−C2T logR

for positive constants c1, c2 depending only on G and β.

We’ll see in the proof where things go wrong if we don’t have U(1) as a subgroup – the actual mild necessary

condition conjectured is “there is no nonzero vector in the kernel of the Lie algebra,” but that hasn’t been worked out

yet.

To prove this, we’ll begin with the following simple lemma about probability measures on U(1):

Lemma 39

Take any w ∈ C and let µ be the probability measure on the unit circle U(1) with density proportional to

exp(Re(zw)) with respect to Haar measure. Then the measure is spread out in the sentence that the “variance

of the measure” is ∫∫
|z1 − z2|2dµ(z1)dµ(z2) ≥ Cmin

{
1,
1

|w |

}
for some universal constant C.

There are many possible proofs, but this particular one generalizes to other Lie groups (where maybe we care about

the real part of the trace of the product of two matrices – then the result is less obvious because it becomes less clear

what the projections look like).

Proof. For all x ∈ R, we have the Taylor approximation |e ix − i − ix | ≤ 1
2x
2, so that for all z ∈ U(1) and x ∈ R,

|z − ze ix | = |z(1− e ix)|

= |z(1− e ix + ix)− zix |

≥ |zix | − |z(1− e ix + ix)|

≥ |x | −
x2

2

by the reverse triangle inequality whenever the former term is larger. So for ε = min
{
1, 1√

|w |

}
≤ 1, we have

|z − ze±iε| ≥ ε−
1

2
ε2 ≥

1

2
ε

for all |ε| ≤ 1; that is, shifting by a small amount on the unit circle changes the distance by some noticeable amount.

If we then define ρ(z) = exp(Re(zw)) and define

Z =

∫
U(1)

ρ(z)dσ0(z)

for σ0 the normalized Haar measure (that is, the uniform distribution on the unit circle), then we have dZ
dσ0(z)

= 1
Z ρ.
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If we now define

ρ+(z) = ρ(ze iε), ρ−(z) = ρ(ze−iε),

then by invariance of σ0 we have that
∫
U(1) ρ

+(z)dσ0(z) =
∫
U(1) ρ

−(z)dσ0(z) = Z is the same normalizing constant.

Letting µ+, µ− be the shifted probability measures on U(1) given by dµ
+

dσ0
= 1
Z ρ
+ and dµ−

dσ0
= 1
Z ρ
−, we have

µ+(A) =
1

Z

∫
A

ρ(ze iε)dσ0(z),

then the change of variables z ′ = ze iε yields

µ+(A) =
1

Z

∫
Ae iε

φ(z ′)dσ0(z
′) = µ(Ae iε)

(which is not a surprise – we’re just rotating the density) and similarly µ−(A) = µ(Ae−iε). Thus for all z ∈ U(1) we

have √
ρ+(z)ρ−(z) = exp

(
1

2
Re(wz(e iε + e−iε)

)
= ρ(z) exp

(
1

2
Re(wz(e iε + e−iε − 2)

)
≥ ρ(z) exp

(
1

2
|wz(e iε + e−iε − 2)|

)
≥ ρ(z) exp

(
1

2
|w | · |e iε + e−iε − 2|

)
,

and now |e iε + e−iε − 2| ≤ |e iε − 1− iε|+ |e−iε − 1 + iε| ≤ ε by the inequality we’ve proved. So actually we have√
ρ+(z)ρ−(z) ≥ ρ(z)e−

1
2
ε2|w | ≥ ρ(z)e−1/2

by our choice of ε. So for all measurable sets A ⊆ U(1), we have

√
µ+(A)µ−(A) =

1

Z

√∫
A

ρ+(z)dσ0(z)

∫
A

ρ−(z)dσ0(z)

≥
1

Z

√
ρ+(z)ρ−(z)dσ0(z)

≥
e−1/2

Z

∫
A

ρ(z)dσ0(z)

= e−1/2µ(A),

second line by Cauchy-Schwarz in the reverse direction. So then for any z ∈ U(1), if we define the set {A = z ′ ∈
U(1) : |z − z ′| < 1

4ε}, then the above inequality shows that either µ+(A) or µ−(A) is at least e−1/2µ(A) (since the

geometric mean is at least this value); without loss of generality suppose it is µ+(A). Therefore

µ(A ∩ Ae iε) ≥ µ(A) + µ(Ae iε)− 1

= µ(A) + µ+(A)− 1

≥ µ(A)(1 + e−1/2)− 1.

We claim now that actually A∩Ae iε) must be empty; indeed if z ′ ∈ A∩Ae iε, then |z ′− z | < 1
4ε and |z ′− ze iε| < 1

4ε,
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meaning that |z − ze iε| < 1
2ε, which is impossible by our earlier bounds. Therefore

0 ≥ µ(A)(1 + e−1/2)− 1 =⇒ µ(A) ≤
1

1 + e−1/2
,

meaning we’ve gotten a bound on any 14ε-neighborhood of any given point. And now we’re almost done, since∫
|z − z ′|2dµ(z ′) ≥

1

16
ε2µ(Ac)

by only integrating over the part where |z−z ′| is large, and this is at least 1
16ε
2
(
1− 1

1+e−1/2

)
= Cε2 for some universal

constant C, as desired.

This proof didn’t have to use projections anywhere, and so it goes through basically verbatim for other Lie groups

as well.

Corollary 40

Suppose ξ is a U(1)-valued random variable with density proportional to ρ (as above). Then

|E[ξ]| ≤ 1− Cmin
{
1,
1

|w |

}
.

Proof. Let ξ1, ξ2 be iid copies of ξ. Then by a simple computation we have

|ξ1 − ξ2|2 = 2− 2Re(ξ1ξ2)

so taking expectations on both sides yields

E
[
|ξ1 − ξ2|2

]
= 2− 2E

[
Re(ξ1ξ2)

]
= 2− 2Re

(
E[ξ]E[ξ]

)
= 2− 2|E[ξ]|2.

Therefore |E[ξ]|2 ≤ 1− 12E[(|ξ1−ξ2|)
2] ≤ 1−Cmin

(
1, 1|w |

)
, and take square root on both sides and use

√
1− a ≤ 1− a2

to conclude.

We can now use this to prove the following result, which is a generalization of the famous Mermin–Wagner theorem

(using a different proof technique).

Theorem 41

Let Λ be a finite subset of Z2 (not Z3) and let E be the set of positively oriented nearest-neighbor edges with

both endpoints in Λ. Let (we)e∈E be some collection of complex numbers, and consider the probability measure γ

on U(1)Λ (that is, a complex number at each vertex) with density proportional to exp
(∑

e∈(x,y)∈E Re(weξxξy )
)

with respect to product Haar measure on ξ ∈ U(1)Λ. (This is called the XY model.) Then for all x ∈ Λ and all

R > 0 so that y = x + (R, 0) ∈ Λ, we have (for φ distributed as γ)

E[φxφy ] ≤ C1e−C2 logR,

where C1, C2 depend only on the maximum weight maxe∈E |we |. That is, correlation decays polynomially in

distance.
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The original result had the same w at all sites, and the symmetry was important in that argument (for confinement

we do really need arbitrary weights for the argument to go through). And some other proofs use tools like contour

integrals or other probabilistic arguments, but we’ll do our particular proof because it seems like it might generalize

to nonabelian groups. Indeed, something like this should be true not just for U(1); it should hold as long as we have

continuous symmetry. (Note that this result is not true for something like the Ising model, where we do have a phase

transition past where it doesn’t hold.)

Also, note that these correlations do not subtract off the E[φx ]E[φy ] term like we’ve had in some past exponential

decay results.

Start of proof. Fix x,R as above, and without loss of generality take Λ = x+{−N, · · · , N}2 for some large N. (Indeed,

we can put we = 0 for all extra edges when we expand the lattice, so we just get our original system coupled with

independent spins.) For all 0 ≤ k ≤ N, define yk = x + (k, 0), and define (for ease of notation)

Lk = {y ∈ Λ : ℓ∞(y , x) = k}

(so basically the boundary of the square centered at x which goes up to yk). Define the map τ : U(1)Λ → U(1)Λ

between configurations as follows. At the center, we define τ(ξ)x = ξx (keeping the value the same), and then at

each yk we define

τ(ξ)yk = ξyk ξyk−1 for 1 ≤ k ≤ N.

Then for all 1 ≤ k ≤ N and all y ∈ Lk \ {yk}, we define

τ(ξ)y = ξyξyk .

For any edge e ∈ E, either e connects two neighboring vertices in some Lk , or it connects a vertex in Lk to a vertex

in Lk−1 for some 1 ≤ k ≤ N; call the edges in the former set Ek and the edges in the latter set Fk ∪ {(yk−1, yk)} (so

we exclude the distinguished edge that we are most interested in). For any configuration we can then define (this is

like what appears in the density but without the real part)

f (ξ) =
∑

e∈(y,y ′)∈E

weξyξy ′

=

N∑
k=1

w(yk−1,yk )ξyk−1ξyk +

N∑
k=1

∑
e=(y,y ′)∈Ek

weξyξy ′ +

N∑
k=1

∑
e=(y,y ′)∈Fk

weξyξy ′ .

We now consider a different configuration χ = τ(ξ), and we will rewrite f in terms of χ instead of ξ. In the case

(y , y ′) ∈ Fk , we have

ξyξy ′ = ξyξyk−1 ξy ′ξyk ξyk ξyk−1 = χyχy ′ χyk

(everything is commutative here because it’s complex numbers – what helps for more complicated groups in the all-

identity case is that we can swap things around with traces), so that last term is easy to replace. Next if (y , y ′) ∈ Ek ,
we have to consider cases: if neither y , y ′ are yk , then

ξyξy ′ = ξyξyk ξy ′ξyk = χyχy ′ .

Besides that, we also have to consider the edges attached to yk going up and down: if y = yk , y
′ = yk + e2 then

ξyξy ′ = ξyk ξy ′ = χy ′ . Similarly if y ′ = yk , y = yk − e2, then ξyξy ′ = ξyξyk = χy .

Finally, the first term is easy because we just have ξyξy ′ = χyk by definition. So putting this all together, we find
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that

f (ξ) =

N∑
k=1

w(yk−1,yk )χyk +

N∑
k=1

∑
e=(y,y ′)∈Ek
y,y ′ ̸=yk

weχyχy ′ +

N∑
k=1

∑
e=(y,y ′)∈Fk

weχyχy ′ χyk

+

N∑
k=1

w(yk ,yk+e2)χyk+e2 +

N∑
k=1

w(yk−e2,yk )χyk+e2 ,

meaning that if we define the right-hand function as g(χ), then f = g ◦ τ . So what we’ll do is pick from the original

density, then apply τ ; the new configuration has the density on the right-hand side. But now if we consider χ at

y0, y1, · · · , yn and look at the conditional density given all other χs, then actually χyk and χyj never interact so all of

the values at different states are conditionally independent. So then χyk is a successive product of terms and thus we

end up multiplying conditionally independent variables to calculate correlations; densities then come in the form from

our corollary above, so the conditional expectation when multiplying k things together is bounded by something like

1− c
k . We’ll discuss some details of this next time!

9 October 22, 2025

Last time, we proved a result about an inhomogeneous U(1)-valued spin system on a lattice x + {−N, · · · , N}2, and

we’re trying to prove specifically that for y = x + (R, 0), we have∣∣E[φxφy ∣∣ ≤ e−C/L log(R+1)
for some universal constant C and where L = 1+maxe∈E |we |. What we did so far is define f (ξ) =

∑
e=(x,y)∈E wEξxξy

and then define a certain reparametrization τ , which lets us write f (ξ) fully in terms of χ = τ(ξ) (as we did at the

end of last lecture). We cal this new expression g, so that

g(χ) =

N∑
k=1

w(yk−1,yk )χyk +

N∑
k=1

∑
e=(y,y ′)∈Ek
y,y ′ ̸=yk

weχyχy ′ +

N∑
k=1

∑
e=(y,y ′)∈Fk

weχyχy ′ χyk

+

N∑
k=1

w(yk ,yk+e2)χyk+e2 +

N∑
k=1

w(yk−e2,yk )χyk+e2 .

We now claim that if φ is a random configuration with density proportional to eRe(f ), then the new spin configuration

ψ = τ(φ) has density proportional to eRe(g). (In effect, the point is that Haar measure means the change of variable

determinant constant will be 1.) To do that, we prove the following fact:

Lemma 42

The transformation τ is measure-preserving, meaning that∫
F (τ(ξ))

∏
y∈Λ

dσ0(ξy ) =

∫
F (ξ)

∏
y∈Λ

dσ0(ξy )

for any F and for σ0 normalized Haar measure on U(1).

Proof. Recall that we defined τ(ξ)y0 = ξy0 , then τ(ξ)yk = ξyk ξyk−1 , and finally (for all y ∈ Lk \ {yk}) τ(ξ)y = ξyξyk .
So in the left-hand integral, we can replace τ(ξ)y with ξy for all y ̸∈ {y0, · · · , yN} by doing a single change of variable
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and using invariance of σ0. Once we do that, our integrand now looks like

F
(
τ(ξ)y0 , · · · , τ(ξ)yN , τ(y)y ̸∈{y0,··· ,yN}

)
= F

(
ξy0 , ξy1ξy0 , ξy2ξy1 , · · · , ξyNξyN−1 , (ξy )y ̸∈{y0,··· ,yN}

)
.

If we now fix everything else besides the yks, we can observe that ξyN only appears in one place, so we can replace

ξyNξyN−1 by just ξyN by invariance. Then we do the same for ξyN−1 (since that now only shows up in one place), then

ξyN−2 , and so on, and that removes all of the extra factors and gets us the thing on the right-hand side, as desired.

So now we can apply this lemma by noting that∫
F (τ(ξ))eRe(f (ξ))

∏
y∈Λ

dσ0(ξy ) =

∫
F (τ(ξ))eRe(g(τ(ξ))

∏
dσ0(ξy )

=

∫
F (ξ)eRe(g(ξ))

∏
dσ0(ξy )

by applying our lemma, and now if we set F = 1 we see that the normalizing constants are the same:
∫
eRe(f ) =

∫
eRe(g).

Thus the expectation E[f (ψ)] =
∫
F (τ(ξ))eRe(f (ξ))∫
eRe(f (ξ)) is exactly

∫
F (ξ)eRe(g(ξ))∫
eRe(g(ξ) , proving our claim.

Returning to our main proof now, we now let φ ∼ eRe(f ) so that ψ = τ(φ) ∼ eRe(g). We then have

ψy0 = φy0 , ψyk = φykφyk−1 for k ≥ 1.

Thus for x = y0 and y = x + (R, 0) = yR, we have that (remember everything is still commutative here)

ψy1 · · ·ψyR = phiy1φy0φy2φy1 · · ·φyRφyR−1 = φy0φyR ,

so that the quantity we’re interested in involves a product of sequential ψs. Looking back at our expression for g, we

can now write it as

g(χ) =

N∑
k=1

w(yk−1,yk )χyk +

N∑
k=1

Mkχyk +R

for R a remainder term with no dependence on χy0 through χyN and where

Mk =
∑

e=(y,y ′)∈Fk

weχyχy ′ .

also has no dependence on χy0 through χyN . Thus we have conditional independence of the random variables

ψy0 , · · · , ψyN given all other ψy s, and under this conditioning ψy0 ∼ σ0 and each other ψyk has density proportional to

exp
(
Re
(
(w(yk−1,yk ) +Mk)ψyk

))
= exp

(
Re
(
(w(yk−1,yk ) +Mk)ψyk

))
But because all ws are bounded by our constant L, we can crudely bound the absolute value of the conjugated term

by Ck for some universal constant. Thus if E′ denotes the conditional expectation, we have by Corollary 40 that

|E′(ψyk )| ≤ 1− C0min
{
1,
1

C1kL

}
for some constants C0, C1. We can thus prove the result we want:

E′[φy0φyR ] = E′ [ψy1 · · ·ψyR ] = E′ [ψy1 ] · · ·E′ [ψyR ] ,

and plugging in our bound above yields the desired generalization of Mermin-Wagner.

Remark 43. This doesn’t work in higher dimensions – if we use the O(n) model we actually don’t have decay of

correlations at large β at all by the “infrared bound,” so in fact no argument of this type can work. So the question is
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how we can prove confinement for four-dimensional lattice gauge theories

From here, we can finally prove the confinement result we want:

Proof of Theorem 38. First we do the proof for G = U(1). Consider a rectangle of side lengths R ≤ T in three

dimensions, and now condition on all horizontal edges (so now we are conditioning on all edges sitting on parallel

planes cutting through the rectangle). Then the vertical edges within one slab are independent of the vertical edges in

another slab, and within each slab the vertical edges actually follow a density like in the lemma we just proved (thinking

of each edge as a spin). So the correlation between a pair of edges on the two vertical sides will decay as e−C logR for

some C, and we multiply this over all T edges to get the desired result. (Remember that now the R edges are fixed

because we’ve conditioned on horizontal edges.)

Now for the general case, recall that our density takes the form

exp

(
−β
∑
p

Re(Tr(I − Up))

)
.

Consider a new system now with space of configurations (G × U(1))E (so on each directed edge we have a matrix

along with a point on the unit circle, and we define U(y , x) = U(x, y)−1 and ξ(y , x) = ξ(x, y)−1). With this joint

system (U, ξ), now consider the density

exp

(
−β
∑
p

Re(Tr(I − ξpUp))

)
,

where similarly ξp is the product of the U(1) values along the plaquette. Specifically, suppose U is distributed according

to the original lattice gauge theory, and (V, ξ) is distributed according to this new lattice gauge theory. Then we can

define a new configuration ξV in the original space where (ξV )e = ξeVe (since G contains U(1)); we claim ξV has the

same distribution as U. If we prove this claim, then the result follows because the ξs just come out of the expectation

and so we can condition on all of the V s and get the intended decay.

But this claim is very similar to what we did before with the change of variables: if Z̃ is the normalizing constant

for the new model and Z is the one for the original model (with respect to the normalized Haar measure), we can

show that Z̃ = Z. Indeed, for any ξ, we can integrate over V and write∫
exp

(
−β
∑

Re(Tr(I − ξpVp))
)∫ ∏

e

dσ0(Ve) =

∫
exp

(
−β
∑

Re(Tr(I − Vp))
)∫ ∏

e

dσ0(Ve) = Z.

by invariance of Haar measure (replacing ξe1Ve1ξe2Ve2ξe3Ve3ξe4Ve4 by the version without ξs by a change of variable).

So if we then integrate over the base measure we get Z̃ = Z. The same logic then yields for any fixed ξ∫
f (ξU) exp

(
−β
∑

Re(Tr(I − ξpUp))
)∏

dσ0(Ue) =

∫
f (U) exp

(
−β
∑

Re(Tr(I − Up))
)∏

dσ0(Ue),

and so integrating over ξ yields the same thing and then dividing by the corresponding normalizing constants shows

expectations are equal, as desired.

The challenge is next to do this for nonabelian groups like SU(n) – it seems like we can generalize this argument,

but it’s not so clear yet how we actually do so.

Our next discussion is the deconfinement transition, showing that for large enough β we actually get the perimeter

law in four dimensions in U(1) theory. This requires some preparation – we have to study some discrete differential

geometry first, since it makes use of duality. (It would be nice to have a useful duality for nonabelian lattice gauge

theories – we can do some things with the character expansion, but it becomes a huge mess.)
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Definition 44

Take any n ≥ 1 and x ∈ Zn. There are n positively oriented edges coming out of x ; we denote them dx1, · · · , dxn.
For all 1 ≤ k ≤ n and any collection of indices 1 ≤ i1 < i2 < · · · < ik ≤ n, the edges dxi1 through dxik define a

positively oriented k-cell of Zn, which we denote dxi1 ∧ · · · ∧ dxik . (For example, vertices are 0-cells, edges are

1-cells, and plaquettes are 2-cells.)

The point of discrete differential geometry is to do bookkeeping in higher dimensions, since otherwise it’s very hard

to visualize. We use the convention that if j1, · · · , jk are obtained by applying a permutation π to i1, · · · , ik , then

dxj1 ∧ · · · ∧ dxjk = sgn(π)dxi1 ∧ · · · ∧ dxik ,

where −dxi1 ∧ · · · ∧ dxik is the negatively oriented version of that k-cell dxi1 ∧ · · · ∧ dxik .

Definition 45

Let R be a commutative ring (often we’ll take R or C or Z). An R-valued k-form on Zn is a map from the set of

k-cells into R, such that f (c) = 0 for all but finitely many k-cells c . We write this map as a sum over all possible

cells and points x

f (x) =
∑

1≤i1<···<ik≤n
fi1,··· ,ik (x)dxi1 ∧ · · · ∧ dxik ,

where fi1,··· ,ik (x) is f evaluated at the k-cell dxi1 ∧ · · · ∧ dxik . If k < 0 or k > N, the only k-form is denoted 0 (to

be compatible with various other definitions we’ll soon have).

So a 0-form is just a map from Zn into R, and a 1-form is a map from the set of positively oriented edges into R,

and so on.

Definition 46

Let h : Zn → R be a function. For each x ∈ Zn, define the difference operator ∂ih(x) = h(x + ei)− h(x). For a

k-form f (for some 0 ≤ k ≤ n − 1), the discrete exterior derivative df is a (k + 1)-form defined as follows:

df (x) =
∑

1≤i1<···<ik≤n

n∑
i=1

∂i fi1,··· ,ik (x)dxi ∧ dxi1 ∧ · · · ∧ dxik .

Notice that we do sum over (k + 1) indices, but many of the terms can be combined or simplified. Indeed, in the

inner sum if i is any of i1, · · · , ik then the term is just zero, and otherwise we can do some increasing rearrangement

while picking up some −1 factors. We’ll see a more concrete example next time and go from there!

10 October 27, 2025
Last time, we started discussing discrete differential geometry and considered the cell complex of Zn consisting of

k-cells dxi1 ∧ · · · ∧ dxik for 0 ≤ k ≤ n. The idea is that dxi represents an edge pointing in the +ei direction starting

from x , and −dxi is its reversal. Then dx1∧dx2 would be the plaquette traversing along (x, x+e1, x+e1+e2, x+e2),

and −dx1 ∧ dx2 would be that same plaquette in the reverse (clockwise) orientation. Then dx1 ∧ dx2 ∧ dx3 would be

a positively oriented cube, but it’s a little harder to think about what orientation means and it’s now just more of an

abstract concept.

35



More generally, for arbitrary i1, · · · , ik ≤ n, we said that dxi1 ∧ dxik = 0 if i1, · · · , ik are not all distinct, and

otherwise it is s times the increasing rearrangement where s is the sign of the permutation (so dx1 ∧ dx1 = 0 and

dx2 ∧ dx1 ∧ dx3 = −dx1 ∧ dx2 ∧ dx3). We’ll be using these conventions soon – we often do have situations where the

indices aren’t distinct or are out of order.

We defined R-valued k-forms in Definition 45 – here is a quick related definition:

Definition 47

The support of a k-form f , denoted supp f , is the set of all x ∈ Zn with fi1,··· ,ik (x) ̸= 0 for some i1, · · · , ik .

We also defined discrete exterior derivatives in Definition 46, and in particular the latter definition

df (x) =
∑

1≤j1<···<jk≤n

n∑
i=1

∂i fj1,··· ,jk (x)dxi ∧ dxj1 ∧ · · · ∧ dxjk

requires repeated and out-of-order indices. For example if f is a 0-form, then we get something like the ordinary

derivative

df (x) =

n∑
i=1

∂i f (x)dxi ,

but then with larger k we often have i equal to one of i1, · · · , ik . Indeed, writing g = df , we have

g(x) =
∑

1≤i1<···<ik+1≤n
gi1,··· ,ik+1(x)dxi1 ∧ · · · ∧ dxik+1 ,

and we’re curious what each component gi1,··· ,ik+1(x) looks like in terms of f . For k = n we know all components must

be zero because we never get distinct indices, and otherwise we have casework over all of the possible indices that

could have been the i in the definition:

gi1,··· ,ik+1(x) =
∑

1≤j≤k+1
(−1)j−1∂ij fi1,··· ,îj ,··· ,ik+1(x),

where the notation f
i1,··· ,îj ,··· ,ik+1(x) means that we omit the coordinate ij so that we only have k indices. (The factor

of (−1)j−1 comes from how many times we must swap i over to be in the right relative order, since (i , j1, · · · , jk+1) is

of the form (ij , i1, · · · , îj , · · · , ik+1).)

Example 48

Suppose k = 2 and n = 4, and we consider the 2-form with just two terms

f (x) = f12(x)dx1 ∧ dx2 + f13(x)dx1 ∧ dx3.

Then df (x) should be a 3-form, and specifically we have

df (x) =

4∑
i=1

(∂i f12(x)) dxi ∧ dx1 ∧ dx2 +
4∑
i=1

(∂i f13(x)) dxi ∧ dx1 ∧ dx3

= (∂3f12(x)) dx3 ∧ dx1 ∧ dx2 + (∂4f12(x)) dx4 ∧ dx1 ∧ dx2

+ (∂2f13(x)) dx2 ∧ dx1 ∧ dx3 + (∂4f13(x)) dx4 ∧ dx1 ∧ dx3

because the other terms have repeated indices, and then we can combine the first and third term and reorder up to
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signs to get

df (x) = (∂3f12(x)− ∂2f13(x)) dx1 ∧ dx2 ∧ dx3 + (∂4f12(x)) dx1 ∧ dx2 ∧ dx4 + (∂4f13(x)) dx1 ∧ dx3 ∧ dx4.

Definition 49

A k-form is closed if df = 0, and it is exact if f = dg for some g.

Lemma 50

For all f , we have ddf = 0.

This corresponds to the result from ordinary differential geometry saying that d2 = 0.

Proof. If f is a k-form for some k ≥ n − 1, then we already have ddf = 0 because the only k-form for k > n is 0.

Thus we can assume k < n − 1. Since the exterior derivative is a linear operator, we can check that

ddf (x) =
∑

1≤i1<···<ik≤n

∑
1≤i ,j≤n

∂j∂i fi1,··· ,ik (x)dxj ∧ dxi ∧ dxi1 ∧ · · · ∧ dxik ,

and we wish to show that all components are zero. But if i = j then this term is zero because of a repeated index,

and otherwise we claim the contributions from (i , j) and (j, i) cancel each other out. Indeed, we have a negative sign

coming from dxi ∧ dxj versus dxj ∧ dxi , so it suffices to check that ∂j∂i fi1,··· ,ik (x) = ∂i∂j fi1,··· ,ik (x). And this can just

be verified directly, since for any function h we have

∂i∂jh = ∂i(h(x + ej)− h(x))

= h(x + ej + ei)− h(x + ej)− h(x + ei) + h(x)

which is symmetric in i and j .

Definition 51

A set B ⊆ Zn is a hypercube if it is of the form ([a1, b1]× [an, bn]) ∩ Zn, where all ai , bi are integers and bi − ai
is the same for all i . The interior of B is B without its boundary.

Lemma 52 (Discrete Poincaré lemma)

Take any 1 ≤ k ≤ n − 1, and let R be any (commutative, though this is not necessary) ring. If f is an R-valued

closed k-form on Zn (meaning df = 0), then there exists an R-valued (k − 1)-form g with dg = f , such that

supp(g) is contained in the smallest hypercube containing supp(f ) in its interior.

In words, the previous result says “any exact form is closed,” and this says “any closed form is exact.” This would

not be true if our manifold had genus greater than 0, but it’s true in our current setting.

Proof. Let B be the smallest hypercube containing supp(f ) in its interior. Without loss of generality, suppose B =

[a, b]n ∩ Zn for integers a, b. For each a ≤ r ≤ b, define the slabs

Br = B ∩ (Zn−1 × {r}).
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We can now define the desired (k − 1)-form g as follows. Let gi1,··· ,ik−1(x) = 0 for all i1, · · · , ik−1 and all x ̸∈ B. Also,

if k ≥ 2 and the last coordinate is ik−1 = n, then set gi1,··· ,ik−1(x) = 0. Now if k = 1 or if ik−1 < n, suppose x ∈ Br .
We define the value of g inductively on the slab: for r = a again gi1,··· ,ik−1(x) = 0, and for the inductive step define

gi1,··· ,ik−1(x) = gi1,··· ,ik−1(x − en) + (−1)k−1fi1,··· ,ik−1,n(x).

(So if k = 1 we would have no indices on the g, and we have g(x) = g(x − en) + fn(x). Of course, we don’t really

need to distinguish these two cases because we’d automatically repeatedly get zero in the inductive step.)

This is supported on B (note: actually, we have to modify it a bit, and this is elaborated on more next
lecture), and now we need to check that it works – that is, we wish to show that h = dg is actually f . Fix indices

i1, · · · , ik and take x ∈ Br ; we will prove by induction on r that hi1,··· ,ik (x) = fi1,··· ,ik (x), and that’s enough because

h = f = 0 outside B. (Here, we use that dg(x) involves going only one step in the positive direction from x , so

we only end up getting nonzero things on the boundary because g is zero on all of the boundaries which matter and

otherwise supported on the interior.)

For case 1, suppose r = a and ik < n. Then dxi1 ∧ dxik is a k-cell contained in the slab Ba, but we’ve defined

h = 0 on that slab and f is zero on the slab by definition.

Next, for case 2, suppose r = a (though this isn’t actually necessary) and ik = n. Then

hi1,··· ,ik (x) =
∑
1≤j≤k

(−1)j−1∂jgi1,··· ,îj ,··· ,ik (x),

But we know gj1,··· ,jk (x) = 0 if jk = n, and ik = n, so the only way to get a nonzero contribution is if we take j = k in

that sum to cancel out the last index:

hi1,··· ,ik (x) = (−1)k−1∂ngi1,··· ,ik−1(x),

and by the recursive way we defined g we have ∂ngi1,··· ,ik (x) = (−1)k−1fi1,··· ,ik−1,n(x), so substituting this in yields

fi1,··· ,ik−1,n(x) = fi1,··· ,ik (x) as desired.

In case 3, now consider a < r ≤ b and ik = n. Then the same proof goes through as in case 2 – we don’t need

the induction. But finally we have case 4 where a < r ≤ b and ik < n. Then letting u = dh and v = df , we find that

u = ddg = 0 by construction and we are also given that v = df = 0 by assumption. Then for any x ∈ Br , setting

y = x − en ∈ Br−1, we get the equations

0 = ui1,··· ,ik ,n(y) = (−1)k∂nhi1,··· ,ik (y) +
∑
1≤j≤k

(−1)j−1∂ijhi1,··· ,îj ,··· ,ik ,n(y)

and

0 = vi1,··· ,ik ,n(y) = (−1)k∂nfi1,··· ,ik (y) +
∑
1≤j≤k

(−1)j−1∂ij fi1,··· ,îj ,··· ,ik ,n(y).

We claim the two sums on the right-hand side are actually equal, because

∂ijhi1,··· ,îj ,··· ,ik ,n(y)−∂ij fi1,··· ,îj ,··· ,ik ,n(y) =
(
h
i1,··· ,îj ,··· ,ik ,n(y + eij )− hi1,··· ,îj ,··· ,ik ,n(y)

)
−
(
f
i1,··· ,îj ,··· ,ik ,n(y + eij )− fi1,··· ,îj ,··· ,ik ,n(y)

)
,

and because y ∈ Br−1 and y + eij ∈ Br−1 as well (we’re not moving out of the slab), by the inductive hypothesis we

get that f = h on Br−1 so the whole term goes away. Thus we can take those two equations for h and f and subtract

them to get

0 = ∂nhi1,··· ,ik (y)− ∂nfi1,··· ,ik (y),
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which rearranges to

hi1,··· ,ik (y + en)− hi1,··· ,ik (y) = fi1,··· ,ik (y + en)− fi1,··· ,ik (y).

Now the terms with y are equal by inductive hypothesis, so the terms with y + en = x are also equal, completing the

induction and proof.

This is a pretty powerful tool – we’ll come to it soon, but this basically says that no matter what closed curve we

have, we can always find a surface bounding it in the lattice. And that’s why the inductive step is needed here. Next

time, we’ll discuss the discrete coderivative and Hodge dual and do the corresponding Poincaré lemma there as well.

11 October 29, 2025
We proved the discrete Poincaré lemma last time – we didn’t actually need to have a hypercube with all equal side

lengths, so we can instead consider
∏n
i=1[ai , bi ] ∩ Zn (and let the interior be the same thing but with open intervals

instead of closed intervals). In particular, note that we must actually have 1 ≤ k ≤ n− 1 (so it’s not true that f = dg

for any n-form f , even though f is automatically closed). But we have to elaborate a little bit more on one of the

details to complete the proof.

As a reminder, the key components of the proof of Lemma 52 are as follows (now allowing for a more general

hypercube): we define slabs Sr = Zn−1 × {r} for all r ∈ Z. For all x ∈ Sr with x ≤ an, we can let g(x) = 0. Then for

r > an, we define g(x) inductively via

gi1,··· ,ik−1(x) = gi1,··· ,ik−1(x − en) + (−1)k−1fi1,··· ,ik−1,n(x − en)

if ik−1 < n and 0 otherwise.

Fact 53

To avoid needing to write out these different cases, we’ll adopt the convention that for f =
∑
1≤i1<···<ik≤n fi1,··· ,ikdxi1∧

· · · ∧ dxik , we write fj1,··· ,jk = sfi1,··· ,ik if (i1, · · · , ik) is the increasing rearrangement of the distinct indices j1, · · · , jk
and s is the sign of the associated permutation. (We also write fj1,··· ,jk = 0 if the js are not distinct.)

With this definition, we indeed have dg = f , and this doesn’t even require the hypercube. Furthermore, for any

x = (x1, · · · , xn) with xi ̸∈ [ai , bi ] for some i < n we have inductively that g(x) = 0 (since we start off with zero

and we never get any nonzero contributions from the f term in the recursive formula). So now we just have to worry

about the nth coordinate. If xn ≤ an, then we do still have G(x) = 0. But if xn ≥ bn, nothing here ensures that g will

vanish, and in fact g doesn’t have to vanish as stated.

If xn ≥ bn+1, then fi1,··· ,ik−1,n(x−en) = 0 and thus g becomes a constant as we keep going up in the nth coordinate;

all we need to do is ensure that it is zero. We first claim that if k = 1, then we do actually always get g(x) = 0

when xn ≥ bn (so nothing goes wrong). By our logic we just have to check that g(x) = 0 on the slab Sbn ; indeed,

dg(x) = f (x) = 0 on the slab, and since g is a 0-form we have

dg(x) =

n∑
i=1

∂ig(x)dxi =

n∑
i=1

(g(x + ei)− g(x))dxi ,

so g must actually be constant on the slab Sbn because all directional derivatives vanish. And since we know g is zero

outside a finite box, that means g is zero everywhere, as desired. (So in particular this means the proof is completely

correct for n = 2.)
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But for 2 ≤ k ≤ n− 1 (and in particular n ≥ 3), we will need an induction. Supposing that the lemma holds up to

dimension (n − 1), the strategy is to produce a (k − 1)-form w possibly with infinite support with dw = 0, such that

(1) w(x) = g(x) except on the slab Sr−1, and (2) w vanishes outside the hypercube on Sbn−1. Then g′ = g − w will

do the job because dg′ = dg − dw = dg = f and g′ is indeed vanishing outside the hypercube.

Example 54

To illustrate what might be going wrong, suppose we have a big square in the xy -plane in three dimensions, and

then we attach perpendicular plaquettes to each of its edges (in either the xz or yz-directions). Suppose we let

our ring R just be Z/2Z to not worry about signs. Then if we have a 2-form f which is 1 on all of the attached

plaquettes and 0 on all other plaquettes, then this is closed (because if we add up the numbers on the sides of

any cube, we always get 0).

But if we try to find a g by our algorithm (which is a 1-form assigning values to edges), then g will be all

zero up until the slab containing our big square, and then we get 1s on the top edges of all of our perpendicular

plaquettes, since we are adding the values of f from one slab to the next. Then as we continue going up, g will

continue being 1 on those vertical columns, which is not good. So what we should do instead is modify things a

little bit to get finite support, and we do this by using the “vertical edges” popping out from the big square.

What we do is define a (k − 1)-form q on Zn−1 by just looking on the particular slab

q(y) = (−1)kg(y , bn).

Then dq = dg|Sbn = f |SBn = 0 (since we only look along the horizontal directions when computing dq), and q is

supported on
∏n−1
i=1 (ai , bi). But remember this time it does not mean q is constant, so we’re not immediately done.

Instead, by the inductive hypothesis, we have some (k − 2)-form p on Zn−1, supported only on
∏n−1
i=1 [ai , bi ], so that

dp = q. Therefore we can define w via the following: if x ∈ Sr for r ≥ bn, then w(x) = g(x). Otherwise if

x = (x1, · · · , xn−1, bn − 1), then wi1,··· ,ik−2,n = pi1,··· ,ik−2(x1, · · · , xn−1), and otherwise w = 0 everywhere. (So we’re just

defining w using p along the vertical edges pointing in the en direction.) We thus get g′ = g − w supported on the

hypercube, and so it only remains to show that dw = 0. Indeed, we break into cases.

1. For x ∈ Sr where r ≥ bn, we have dw(x) = dg(x) = f (x) = 0 so everything is okay (dw only looks in positive

directions).

2. For x ∈ Sr for some r ≤ bn − 2, we have

(dw)i1,··· ,ik (x) =

n∑
j=1

(−1)j−1∂ijwi1,··· ,îj ,··· ,ik (x).

For ik < n we have all terms restricted within a slab (since x + eij ∈ Sr ) and below bn − 1 we defined w to be

identically zero. Thus the whole sum here will vanish. On the other hand if ik = n, the only partial derivative

that can contribute is the last one, so that

(dw)i1,··· ,ik−1,n(x) = (−1)n−1(wi1,··· ,ik−1(x + en)− wi1,··· ,ik−1(x)),

but now the latter term is zero, and x+en ∈ Sr+1 is at level bn−1 or below, and the last index satisfies ik−1 < n

so wi1,··· ,ik−1(x + en) is also zero.

3. Finally for x ∈ Sbn−1, we again consider ik < n and ik = n separately. For ik < n again all partial derivatives

are zero because we stay within the slab Sbn−1, and w is only nonzero if it has an index n. And finally for the
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remaining case ik = n, we have for all 1 ≤ j ≤ k − 1 that

∂ijwi1,··· ,îj ,··· ,ik−1,n(x) = wi1,··· ,îj ,··· ,ik−1,n(x + eij )− wi1,··· ,îj ,··· ,ik−1,n(x)

= p
i1,··· ,îj ,··· ,ik−1(x

′ + eij )− pi1,··· ,îj ,··· ,ik−1(x
′)

= ∂ijpi1,··· ,îj ,··· ,ik−1(x
′)

where x ′ is the first (n − 1) coordinates of x . Furthermore we also have a term ∂nwi1,··· ,ik−1(x) = wi1,··· ,ik−1(x +

en)− wi1,··· ,ik−1(x) = gi1,··· ,ik−1(x + en)− 0. So we can now plug this all back into our definition of dw to find

(dw)i1,··· ,ik−1,n(x) =

k−1∑
j=1

(−1)j−1∂ijpi1,··· ,îj ,··· ,ik−1(x
′) + (−1)k−1gi1,··· ,ik−1(x + en)

= qi1,··· ,ik−1(x
′) + (−1)k−1gi1,··· ,ik−1(x + en)

= (−1)kgi1,··· ,ik−1(x + en) + (−1)k−1gi1,··· ,ik−1(x + en)

= 0.

Thus our modification satisfies all of our requirements and we’ve finished the proof.

Remark 55. Even this proof, we can modify it a bit so we don’t need the “interior” condition: support of g should be

contained in the smallest cube containing the support of f .

This result is useful for certain “duality arguments” that we’ll soon see. For that, we’ll need to introduce another

notion called the codifferential or coderivative.

Definition 56

For any function h, define ∂ih(x) = h(x) − h(x − ei). For a k-form f with 1 ≤ k ≤ n, the codifferential or

coderivative δ is defined via δf being the (k − 1)-form

δf (x) =
∑

1≤i1<···<ik≤n

k∑
ℓ=1

(−1)ℓ∂iℓ fi1,··· ,ik (x)dxi1 ∧ · · · ∧ d̂xiℓ ∧ · · · ∧ dxik .

In coordinates, we can write down g = δf and we want to compute gi1,··· ,ik−1(x) for any choice of i indices. We

have to group together terms where we have some additional index, and the formula works out to

gi1,··· ,ik−1(x) = −
n∑
i=1

∂i fi ,i1,··· ,ik−1(x).

Pictorially, what this says is the following. For a 1-form (numbers on edges), the differential operator gives us a

2-form which is numbers on plaquettes given by adding and subtracting numbers along the edges. Meanwhile, the

codifferential must go from a 2-form (numbers on plaquettes) to a 1-form, and what it does is add and subtract the

values of all plauqettes that contain our particular edge. So in general the codifferential yields some linear combination

of all of the (k + 1)-cells containing our k-cell.
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Definition 57

Let ∗Zn be the dual lattice of Zn, meaning that it is the set of midpoints (x1 + 1
2 , · · · , xn +

1
2) of n-cells in Zn.

For any y ∈ ∗Zn, let dyi = (y , y − ei) point in the negative direction instead. A dual k-cell is the (n − k)-cell
defined as follows. For n-cells we have

∗(dx1 ∧ ∗ ∧ dxn) = y = (x1 +
1

2
, · · · , xN +

1

2
),

and more generally

∗(dxi1 ∧ · · · ∧ dxik ) = sdyj1 ∧ · · · ∧ dyjn−k ,

where j1, · · · , jn−k are the increasing rearrangement of the remaining indices and s is the sign of the permutation

(i1, · · · , ik , j1, · · · , jn−k) (so here the is are increasing and separately the js are increasing).

Example 58

In two dimensions, the dual of dx1 would be ∗dx1 = dy2 (so we take our right-pointing edge and rotate it 90

degrees clockwise around the midpoint); similarly the dual of dx2 is actually −dy1. And in three dimensions, the

dual of dx1 would be a plaquette, and it’s dy2 ∧ dy3, which is the plaquette perpendicularly bisecting that edge

dx1.

Definition 59

We similarly define the dual of a dual cell via

∗(dyj1 ∧ · · · ∧ dyjn−k ) = (−1)k(n−k)sdxi1 ∧ · · · ∧ dxik

for s the sign of the permutation (i1, · · · , ik , j1, · · · , jn−k) since the sign of the permutation (j1, · · · , jn−k , i1, · · · , in−k)
is (−1)k(n−k) times the sign of (i1, · · · , ik , j1, · · · , jn−k).

Definition 60

The dual of a k-form f is the (n − k)-form ∗f on the dual lattice, given by

∗f (y) =
∑

1≤i1<···<ik≤n
fi1,··· ,ik (x)sdyj1 ∧ · · · ∧ dyjn−k .

That is, we take each k-cell and put the value we had on the k-cell on the same dual cell with carefully adjusted

signs (and this is okay because
(
n
k

)
=
(
n
n−k
)
).

Our definitions here are carefully set up so that ∗ ∗ f = (−1)k(n−k)f for all f . And next time, we’ll use this to write

the coderivative in terms of the derivative so that we won’t have to reprove the Poincaré lemma.

12 November 3, 2025
Last time, we discussed the Hodge dual and coderivative operator.
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Lemma 61

Let f be a k-form for 1 ≤ k ≤ n. Then the coderivative can be written

δf = (−1)n(k+1)+1∗d∗f (y),

where y = ∗(dx1 ∧ · · · ∧ dxn) is the dual of x .

(We can check that the dimensions work out correctly when we apply ∗, then d , then ∗ – we do get a (k−1)-form.)

Proof. Recall the definition

∗f (y) =
∑

1≤i1<···<ik≤n
fi1,··· ,ik (x)sdyj1 ∧ · · · ∧ dyjn−k

for s the corresponding sign of the permutation. Thus taking the derivative on both sides, we have

d∗f (y) =
∑

1≤i1<···<ik≤n

∑
1≤i≤n

∂i fi1,··· ,ik (x)sdyi ∧ dyj1 ∧ · · · ∧ dyjn−k .

Let’s think now about what happens if we try to take ∗ on both sides. If i ̸∈ {i1, · · · , ik}, then we always have

i ∈ j1, · · · , jn−k}, meaning that dyi ∧ dyj1 ∧ · · · ∧ dyjn−k = 0 and we don’t have to consider those terms. And if i = iℓ
for some ℓ, then

∗(dyi ∧ dyj1 ∧ · · · ∧ dyjn−k ) = (−1)k(n−k)+n−k+ℓ−1sdxi1 ∧ · · · ∧ d̂xiℓ ∧ · · · ∧ dxik .

The reason for the power of −1 is that it is the sign of the permutation (iℓ, j1, · · · , jn−k , i1, · · · , îℓ, ik) (since it takes

(n − k + ℓ − 1) swaps to put iℓ back where it’s omitted, and then (n − k) swaps to move each i past all of the js).

Therefore

∗d∗f y = (−1)k(n−k)+n−k−1
∑

1≤i1<···<ik≤n

k∑
ℓ=1

(−1)ℓ∂iℓ fi1,··· ,ik (x)dxi1 ∧ · · · ∧ d̂xiℓ ∧ · · · ∧ dxik

= (−1)n(k+1)−1δf (x),

where in the last step we use that k(n − k) + n − k − 1 = n(k + 1) − 1 − k(k + 1) and the latter term is always

even.

The utility of this is that we automatically get the Poincaré lemma for the coderivative using the one for the exterior

derivative:

Proposition 62 (Poincaré lemma for the coderivative)

Take any 1 ≤ k ≤ n − 1, and let f be an R-valued k-form on Zn (for some ring R) with δf = 0. Then there

exists some (k +1)-form h such that f = δh and where supp(h) is contained in the smallest hypercube containing

supp(f ).

Proof. Since δf = 0, the lemma above implies that d ∗f = 0. Letting B be the smallest hypercube containing supp(f ),

we can define ∗B to be the dual hypercube {∗(dx1 ∧ · · · ∧ dxn) : x ∈ B}, and by construction we have supp(∗f ) ⊆ ∗B.

Therefore the (usual) Poincaré lemma implies the existence of an (n − k − 1)-form g on ∗Zn with dg = ∗f and

supp(g) ⊆ ∗B; we can then define h = (−1)−(k−1)(n−k+1)−k(n−k)−nk−1 ∗ g. Then we can again directly check that
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supp(h) ⊆ B, and using that ∗ ∗ f = (−1)k(n−k)f yields

∗h = (−1)−k(n−k)−nk−1g.

Therefore

δh = (−1)nk+1 ∗ d ∗ h = (−1)−k(n−k) ∗ dg = (−1)−k(n−k) ∗ (∗f ) = f ,

as desired.

We can now give a geometric interpretation of some of our results. Taking the ring to be {0, 1}, any 1-form is

a set of edges and a 2-form is a set of plaquettes. If f is a 1-form, then δf is a function on vertices, and δf = 0

means that every vertex has an even number of incident edges. That must mean that f is a union of closed loops

(start with any vertex and follow some edge we haven’t used, and repeat until we’ve used everything up; we can’t get

stuck). What we’re saying now is that there is some collection of plaquettes h such that δh = f ; what this means is

that the number of plaquettes adjacent to each edge of f is odd. And that’s exactly what a surface bounded by each

loop encodes. Thus this proves that “for any closed loop, we can find a surface whose boundary is that loop, and we

can contain it in the smallest hypercube containing that loop.”

Definition 63

For k-forms f , g, we define the inner product

(f , g) =
∑
x∈Zn

∑
1≤i1<···<ik≤n

fi1,··· ,ik (x)gi1,··· ,ik (x)

Note that this is the first time we’ve really actually used the ring structure of the k-forms.

Lemma 64

For any (k + 1)-form f and any k-form g (for 0 ≤ k ≤ n − 1, we have

(f , dg) = (δf , g).

Proof. Let h = δf and substitute in the formula for the coderivative (the version in coordinates stated after Defini-

tion 56). We find that

(h, g) = −
∑
x∈Zn

∑
1≤i1<···<ik≤n

n∑
i=1

∂i fi ,i1,··· ,ik (x)gi1,··· ,ik (x)

= −
∑
x∈Zn

∑
1≤i1<···<ik≤n

n∑
i=1

(fi ,i1,··· ,ik (x)− fi ,i1,··· ,ik (x − ei))gi1,··· ,ik (x)

= −
∑
x∈Zn

∑
1≤i1<···<ik≤n

n∑
i=1

fi ,i1,··· ,ik (x)gi1,··· ,ik (x) +
∑
x∈Zn

∑
1≤i1<···<ik≤n

n∑
i=1

fi ,i1,··· ,ik (x − ei)gi1,··· ,ik (x)

(all forms are finitely-supported, so there’s no issue with moving sums around). But now reindexing the second sum

by a change of variable x 7→ x + ei doesn’t change the overall sum, and then we can combine them back together

again to get

(h, g) =
∑
x∈Zn

∑
1≤i1<···<ik≤n

n∑
i=1

fi ,i1,··· ,ik (x)∂igi1,··· ,ik (x).
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We only need to consider the case where all indices i , i1, · · · , ik are distinct (otherwise the contribution is zero); let

j1 < j2 < · · · < jk+1 be the increasing rearrangement of them. Then we have i = jℓ for some ℓ, and then each term in

the sum can be written

fi ,i1,··· ,ik (x)∂igi1,··· ,ik (x) = (−1)ℓ−1fj1,··· ,jk+1(x)∂jℓgj1,··· ,ĵℓ,··· ,jk+1(x)

and then summing this over all indices and all ℓ yields exactly the definition of (f , dg) as desired.

So this proof is basically “summation by parts” similarly to how we normally do “integration by parts.”

This is all of the “bookkeeping” we’ll do for now – this discrete differential geometry has been very useful for a lot

of Professor Chatterjee’s work. We’ll now think about the Villain action, which is easier to think about for abelian

gauge theories. Specifically, we’ll think about U(1) lattice gauge theory on Zd for d ≥ 2.

Definition 65

Let Λ ⊆ Zd be finite, and let E be the set of positively oriented edges with both vertices in Λ and P the set of all

plaquettes. We previously considered the configuration space U(1)E , and now we’ll replace that with the space

[−π, π)E (via the correspondence of e iθ(e) on the unit circle to the angle θ). For any (x, y) ∈ E, we then also

define θ(y , x) = −θ(x, y) (so that e iθ(y,x) is the inverse of e iθ(x,y). For a plaquette with vertices x1, x2, x3, x4 in

counterclockwise order, define

θ(p) = θ(x1, x2) + θ(x2, x3) + θ(x3, x4) + θ(x4, x1)

(note that this quantity may not be in [−π, π)). Then for a given β > 0, define the Villain action

Sβ(θ) = −
∑
p∈P
log

[∑
n∈Z
exp

(
−
β

2
(θp − 2πn)2

)]
.

This series is always rapidly convergent so there are no problems, and furthermore this takes care of the issue of

making a choice of interval [−π, π) – because of the 2π-periodicity inside the sum it doesn’t actually matter. (This is

actually the heat kernel on the circle for Brownian motion, and that’s how we generalize for other groups.)

Previously in U(1) theory the Wilson action tries to make each plaquette variable close to 1, and this does the

same – θp will try to concentrate around some multiple of 2π under the Villain action to make this sum close to its

maximum value. And the point is that the Villain action works quite well with discrete differential geometry and duality

properties.

Lemma 66

The Villain action Sβ is gauge-invariant.

Proof. Take any configuration θ ∈ [−π, π)E . (This corresponds to the configuration U ∈ U(1)E with U(e) = e iθ(e)

for all e.) For any gauge transformation g ∈ U(1)Λ, let V = Ug, meaning that V (x, y) = g(x)U(x, y)g(y)−1. So if

ξ ∈ [−π, π)E represents V and η ∈ [−π, π)Λ represents g, the gauge transformation equation means that

e iξ(x,y) = e i(η(x)+θ(x,y)−η(y)) =⇒ ξ(x, y) ≡ η(x) + θ(x, y)− η(y) mod 2π.
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Therefore for any plaquette as in the definition of the Villain action, we have

ξp = ξ(x1, x2) + ξ(x2, x3) + ξ(x3, x4) + ξ(x4, x1)

≡ θ(x1, x2) + θ(x2, x3) + θ(x3, x4) + θ(x4, x1) mod 2π

because all of the ηs cancel out (each one is added once and subtracted once). This means ξp ≡ θp mod 2π, and

therefore ∑
n∈Z
exp

(
−
β

2
(θp − 2πn)2

)
=
∑
n∈Z
exp

(
−
β

2
(ξp − 2πn)2

)
.

Applying this to every plaquette, the Villain action stays the same under this transformation, as desired.

This action also makes it possible to “scale to the continuum limit:”

Theorem 67

(Note: this was corrected during the subsequent lecture.) Take d ∈ {2, 3, 4} and g0 > 0. Let A =
∑d
j=1 Ajdxj

be a compactly supported smooth u(1)-valued 1-form on Rd . For any ε ∈ (0, 1), define the configuration

θ(x, x + εej) = −i log(eεAj (x)),

where we use the convention that log e ix = ix for −π ≤ x < π. (We’re writing it this way because εAj may not

necessarily be in [−π, π).) This means we have e iθ(x,x+εej ) = eεAj (x). Now for the Villain action, we need to make

a small modification

S̃β(θ) = −
∑
p∈P

(
log

(∑
n∈Z
exp

(
−
β

2

(
θp − 2πn)2

)))
− log

(∑
n∈Z
exp

(
−
β

2
(−2πn)2

)))

(this just makes it so that we get a finite sum over plaquettes because θp = 0 outside of a finite region). Let

β = εd−4

g20
. If d < 4, then we have limε→0 S̃β(ε)(θ) = SE(A), and if d = 4 then limε→0 S̃β(ε)(θ) = κSE(A) for the

constant

κ = 1−
4π2

g20

∑
n∈Z n

2e−2π
2n2/g20∑

n∈Z e
−2π2n2/g20

(and we can choose a slightly modified g′0 to get the desired constant instead). Meanwhile if d ≥ 5, we actually

just get limε→0 S̃β(ε)(θ) = 0. Furthermore we indeed have κ > 0.

Start of proof. In this proof, O(εα) will denote any quantity whose absolute value is bounded by Cεα for some C

depending only on d, g0, and A. We have

e iθ(x,x+εej ) = eεAj (x) = e i(−iεAj (x)),

which means that θ(x, x + εej) ≡ −iεAj(x) mod 2π. Around a plaquette, we therefore get by a similar calculation as

before that

θp ≡ −iε(Aj(x1) + Ak(x2)− Aj(x4)− Ak(x1)) mod 2π.

Thus we can write down the Villain action in terms of Ajs:∑
n∈Z
exp

(
−
β

2
(θp − 2πn)2

)
=
∑
n∈Z
exp

(
−
β

2
(−iε(Aj(x1) + Ak(x2)− Aj(x4)− Ak(x1))− 2πn)2

)

=
∑
n∈Z
exp

(
εd−2

2g20

(
Aj(x1) + Ak(x2)− Aj(x4)− Ak(x1)−

2πin

ε

)2)
.
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Now because A is smooth we have Aj(x1) + Ak(x2)− Aj(x4)− Ak(x1) = ε(∂jAk(x)− ∂kAj(x)) + O(ε2), and we can

plug this in to get ∑
n∈Z
exp

(
εd

2g20

(
∂jAk(x)− ∂kAj(x) +O(ε)−

2πin

ε2

)2)
.

Expanding out the square here yields that for any fixed n this summand is

exp

(
−
2εd−4π2n2

g20

)
exp

(
εd

2g20
(∂jAk(x)− ∂kAj(x) +O(ε))2 −

2πiεd−2n

g20
(∂jAk(x)− ∂kAj(x) +O(ε))

)
.

Now note that the O(ε) term doesn’t depend on n, so if we add the summands for some specific n and −n together,

everything except the last term is the same and we can use e ix + e−ix = 2cos x (because those two angles are exactly

negatives). Therefore we get a total contribution of

2 exp

(
−
2εd−4π2n2

g20

)
exp

(
εd

2g20
(∂jAk(x)− ∂kAj(x) +O(ε))2

)
cos

(
2πεd−2n

g20
(∂jAk(x)− ∂kAj(x) +O(ε))

)
.

We’ll see how to get estimates for this next time!

13 November 5, 2025

We were proving convergence of the Villain action to the Yang-Mills action last time, and in particular (see above) we

had a sum over nonnegative integers n with a cosine term in the summand (specifically the summand we care about

is 2 exp
(
− 2εd−4π2n2

g20

)
exp

(
εd

2g20
(∂jAk(x)− ∂kAj(x) +O(ε))2

)
cos
(
2πεd−2n
g20
(∂jAk(x)− ∂kAj(x) +O(ε))

)
.). Continuing

the proof now, we now have to consider three separate cases:

1. d = 4. By a Taylor approximation, we can write the second exponential as 1 + ε4

2g20
(∂jAk − ∂kAj)2 +O(ε5), and

we can write the cosine term as 1− 2πε4n2
g40
(∂jAk − ∂kAj)2 +O(ε5)n2 +O(ε8)n4 (here we use that cosine has all

bounded derivatives, so we don’t need to go on after this). So multiplying these together and also substituting

d = 4 into the first exponential, we get

2 exp

(
−
2π2n2

g20

)(
1 + ε4

(
1

2g20
−
2π2n2

g40

)
(∂jAk − ∂kAj)2 +O(ε5)n2 +O(ε8)n4

)
,

and we can combine the two last error terms into just an O(ε5)n4 term. So now we will sum over all n. Defining

the constants K1 =
∑
n∈Z exp

(
− 2π2n2

g20

)
and K2 =

∑
n∈Z exp

(
− 2π2n2

g20

)(
1
2g20
− 2π2n2

g40

)
, we get

∑
n∈Z
exp

(
−
β

2
(θp − 2πn)2

)
=

∞∑
n=0

2 exp

(
−
2π2n2

g20

)(
1 + ε4

(
1

2g20
−
2π2n2

g40

)
(∂jAk − ∂kAj)2 +O(ε5)n4

)
= K1 +K2ε

4 (∂jAk − ∂kAj)2 +O(ε5),

where we use that the exponential decays very fast so the sum
∑
n4 exp

(
− 2π2n2

g20

)
is finite. Remember that all

of this has been for a specific plaquette (with edges in the j, k direction). Let P ′ be the set of all plaqeuttes

with θp nonzero or ∂jAk(x)− ∂kAj(x) nonzero. Then our modified action sums over all plaquettes and looks like
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(remember β = 1
g20

)

S̃β(θ) = −
∑
p∈P ′
log
(
K1 +K2ε

4 (∂jAk − ∂kAj)2 +O(ε5)
)
− log(K1)

= −
∑
p∈P ′
log

(
1 +

K2
K1
ε4 (∂jAk − ∂kAj)2 +O(ε5)

)
because remember that the subtracted off term just has θp = 0 so the sum is exactly the definition of K1. But

now by the expansion of the log this is exactly (now writing out the sum over plaquettes more explicitly)∑
x∈Z4

∑
j,k

(∂jAk(x)− ∂kAj(X))2 +O(ε5)|P ′|.

But now |P ′| = O(ε−4) because A was assumed to be compactly supported, so the result follows and K2K1 exactly

results in the desired constant 1
2g20
κ. (And we’ll show why κ is nonzero later.)

2. d = 2, 3. Returning to the summand above, notice that for n ≥ 1 this whole summand is bounded by C1e−C2ε
d−4n2

(since the second exponential and cosine are basically bounded) and so actually we only need to consider the

n = 0 term. That is, ∑
n∈Z
exp

(
−
β

2
(θp − 2πn)2

)
= exp

(
−
β

2
θ2p

)
+O

(
C1e

−C2εd−4
)
,

and this main term can be Taylor expanded as

exp

(
−
β

2
θ2p

)
= exp

(
εd

2g20
(∂jAk − ∂kAj +O(ε))2

)
= 1 +

εd

2g20
(∂jAk − ∂kAj)2 +O(εd+1).

On the other hand, we also have to subtract off the K1 term, which looks like∑
n∈Z
exp

(
−
β

2
(−2πn)2

)
=
∑
n∈Z
exp

(
−
π2εd−4

g20
n2
)
= 1 +O

(
C1e

−C2εd−4
)
.

So all errors are pretty small and the rest of the proof goes through like in the d = 4 case.

3. d ≥ 5. In this case all terms in the summand will contribute because we have a positive ε power in both

exponentials. We have

exp

(
εd

2g20
(∂jAk(x)− ∂kAj(x) +O(ε))2

)
= 1 +

εd

2g20
(∂jAk − ∂kAj)2 +O(εd+1)

as before. For the other terms we have

cos

(
2πεd−2n

g20
(∂jAk(x)− ∂kAj(x) +O(ε))

)
= 1−

2π2ε2d−4n2

g40
(∂jAk − ∂kAj)2 +O(ε4d−8)n4 +O(ε2d−3)n2,

and now we have to multiply these two expansions together. But what saves us now is that 2d − 4 > d , so

we no longer have two different leading-order terms and so we won’t get this nonzero κ factor. Unfortunately

K1, K2 are now dependent on ε, and so the calculation still takes some work. Substituting in our expansions,

the summand now looks like

exp

(
−
2εd−4π2n2

g20

)(
1 +

(
εd

2g20
−
2πε2d−4n2

g40

)
(∂jAk − ∂kAj)2 +O(εd+1) +O(ε2d−3)n2 +O(ε4d−8)n4

)
,

where the other terms are negligible because of our value of d . This time, we need to separate out K2 into two
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different terms because of the different orders of ε: define

K1(ε) =
∑
n∈Z
exp

(
−
2εd−4π2n2

g20

)
,

and similarly

K2(ε) =
∑
n∈Z

n2 exp

(
−
2εd−4π2n2

g20

)
, K3(ε) =

∑
n∈Z

n4 exp

(
−
2εd−4π2n2

g20

)
.

We thus have∑
n∈Z
exp

(
−
β

2
(θp − 2πn)2

)

= K1(ε) +

(
εd

2g20
K1(ε)−

2π2ε2d−4

g40
K2(ε)

)
(∂jAk − ∂kAj)2 +O(εd+1)K1(ε) +O(ε2d−3)K2(ε) +O(ε4d−8)K3(ε).

So like before, taking log and subtracting off log(K1(ε)), and using that all of the exponents here are positive

because d ≥ 5, the result of that calculation ends up being

log

(
1 +

(
εd

2g20
−
2π2ε2d−4

g40

K2(ε)

K1(ε)

)
(∂jAk − ∂kAj)2 +O(εd+1) +O(ε2d−3)

K2(ε)

K1(ε)
+O(ε4d−8)

K3(ε)

K1(ε)

)
.

But now viewing our sums K1, K2, K3 as Riemann sum approximations, we have (using δ = ε(d−4)/2 as the

spacing)

lim
ε→0

ε(d−4)/2K1(ε) =

∫ ∞
−∞
exp

(
−
2πx2

g20

)
dx,

and similarly (note the slightly different factor in the exponents of ε because we need to compensate for the

powers of n)

lim
ε→0

ε3(d−4)/2K2(ε) =

∫ ∞
−∞

x2 exp

(
−
2πx2

g20

)
dx,

lim
ε→0

ε5(d−4)/2K3(ε) =

∫ ∞
−∞

x4 exp

(
−
2πx2

g20

)
dx.

Thus K2(ε)K1(ε)
= O(ε−(d−4)) and K3(ε)K1(ε)

= O(ε−(2d−8)), so as ε→ 0 the error terms are negligible and we can repeat

the argument from d = 4 to take the appropriate limit, but the K2
K1

term actually still appears in the leading

correction, and if we calculate the Gaussian integral it actually cancels out exactly with the other term εd

2g20
. So

instead we get that the action converges to a constant for d ≥ 5.

Furthermore, the quantity
κ(g̃0)

2g̃20
=
1

2g̃20
−
2π2

g̃40

∑
n2e−2π

2n2/g̃20∑
e−2π

2n2/g̃20

goes to ∞ (resp. 0) as g̃0 → 0 (resp. g̃0 →∞) by Riemann sum approximation, so we can always tune it so that we

get the correct constant 1
2g20

.

That concludes the proof of the scaling limit result, and the point of all of this is that we want to get the dual of

4D lattice gauge theory with the Villain action. For this, we define a function φβ : [−π, π)→ R

φβ(x) =
∑
n∈Z
exp

(
−
β

2
(x − 2πn)2

)
.

We can prove that φβ(x) is C∞ on the open interval (−π, π) and in fact lifts to a smooth function on the unit circle
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because

φ
(k)
β (x) =

∑
n∈Z

dk

dxk
exp

(
−
β

2
(x − 2πn)2

)
=
∑
n∈Z

pk,β(x − 2πn) exp
(
−
β

2
(x − 2πn)2

)
for polynomials pk,β. Taking the limit of this expression as x → π, we get

∑
n∈Z pk,β(π − 2πn) exp

(
−β2 (n − 2πn)

2
)
,

and then replacing n 7→ n + 1 shows that it is also the limit of the kth derivative as x → −π. So all derivatives “wrap

around” on both sides and so we lift to a smooth function as desired.

For such functions, we can derive facts about their Fourier transforms: for a function f : [−π, π)→ R with those

properties above (C∞ and agreement of limiting kth derivatives at both endpoints for all k ≥ 0), we can define the

Fourier coefficient
f̂ (n) =

∫ π
−π
f (x)e inxdx

for all n ∈ Z.

Lemma 68

The Fourier coefficient f̂ (n) satisfies |f̂ (n)| = o(|n|−α) for any α > 0, so the coefficients are in fact rapidly

decaying.

Proof. By integration by parts,

f̂ (n) =
f (x)e inxdx

in

∣∣∣∣π
−π
−
1

in

∫ π
−π
f ′(x)e inxdx

and the boundary term is zero because e inπ = e−inπ and f (π) = f (−π). So f̂ (n) = O(|n|−1) as n → ∞, and then

repeat the same integration by parts on f ′ and so on (an arbitrary number of times).

What this means is that the sum
1

2π

∑
n∈Z

f̂ (n)e−inx

is a well-defined smooth function on [−π, π) (by the dominated convergence theorem).

Lemma 69

The function above is actually exactly f (x); that is, we have the Fourier inversion formula

f (x) =
1

2π

∑
n∈Z

f̂ (n)e−inx .

Applying this to our function φβ, we’ll see why the Villain action is actually nice:

Lemma 70

We have

φ̂β(n) =

√
2π

β
e−n

2/(2β).

Proof. We wish to compute

φ̂β(n) =

∫ π
−π
φβ(x)e

inxdx

=
∑
m∈Z

∫ π
−π
exp

(
−
β

2
(x − 2πm)2 + inx

)
dx
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and now we can replace inx with in(x−2πm) because e2πi = 1. So now by a change of variables on the inner integral,

we have ∑
m∈Z

∫ −2πm+π
−2πm−π

exp

(
−
β

2
y2 + iny

)
dy

which is just an integral over the whole real line, and we can evaluate the resulting Gaussian integral.

So we have a nice Fourier transform, and we’ll use this next time to work towards the dual of 4D U(1) theory.

14 November 10, 2025

We’ll be continuing to think about U(1) lattice gauge theory on some hypercube Λ of Z4 – specifically, we’ll consider

the Villain action Sβ with free boundary conditions. Configurations are then of the form θ ∈ [−π, π)E for E the set

of positively oriented edges (with both endpoints in Λ); letting P be the set of plaquettes with all vertices in Λ, we’re

considering the probability density

exp(−Sβ(θ)) = exp

(
−

(
−
∑
p∈P
log

(∑
n∈Z
exp

(
−
β

2
(θp − 2πn)2

))))
.

We can simplify this a bit because we have a sum of exponentials, which cancels out the log and thus yields

exp(−Sβ(θ)) =
∏
p∈P

(∑
n∈Z
exp

(
−
β

2
(θp − 2πn)2

))
;

we will call the term inside the product φβ(θp). To calculate the normalizing constant, we must compute

Z =

∫
[−π,π)E

e−Sβ(θ)dθ =

∫
[−π,π)E

∏
p∈P

φβ(θp)dθ

=
1

(2π)|P|

∫
[−π,π)E

∏
p∈P

(∑
n∈Z

φ̂β(n)e
−inθp

)
dθ

where we’ve substituted in the expression for φβ using the Fourier coefficients from last time. Now we can use the

distributivity (noting that we only have a finite product of plaquettes but an infinite sum over n)

Z =
1

(2π)|P|

∫
[−π,π)E

∑
n∈ZP

(∏
p∈P

φ̂β(np)e
−inpθp

)
dθ,

where we’ve really used that the Fourier coefficients are rapidly decaying in n to allow this operation. Now again using

the rapid decay of these coefficients and that P is a finite set, we have a countable sum so we can move it past the

integral by the dominated convergence theorem:

Z =
1

(2π)|P|

∑
n∈ZP

∫
[−π,π)E

(∏
p∈P

φ̂β(np)e
−inpθp

)
dθ

=
1

(2π)|P|

∑
n∈ZP

(∏
p∈P

φ̂β(np)

)∫
[−π,π)E

exp

(
−
∑
p∈P

inpθp

)
dθ.
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Now for any configuration θ ∈ [−π, π)E , we can define an R-valued 1-form on Z4, which we will also call θ =
∑4
j=1 θjdxj ,

by

θj(x) =

θ(x, x + ej) if (x, x + ej) ∈ E,

0 otherwise.

For a plaquette p ∈ P with vertices x, x + ej , x + ej + ek , x + ek (for 1 ≤ j < k ≤ 4), we have (remember dθ is a

2-form)

dθj,k(x) = ∂jθk(x)− ∂kθj(x)

= θk(x + ej)− θk(x)− θj(x + ek) + θj(x)

= θ(x + ej , x + ej + ek)− θ(x, x + ek)− θ(x + ek , x + ek + ej) + θ(x, x + ej)

= θp;

that is, the 2-form dθ keeps track of the values θp (for plaquettes in P; the others don’t matter). Now for any n ∈ Zp,
define the R-valued 2-form on Z4 (also called n) as

nj,k(x) =

np if p ∈ P,

0 Otherwise.

(remember that p is exactly determined by x, j, k). With these definitions, the sum we care about is really an inner

product on 2-forms ∑
p

npθp = (dθ, n) = (θ, δn)

(and that’s why we don’t have to worry about dθ outside of P, since we’ve extended n to be zero outside). But now

(θ, δn) =
∑
e∈E

θ(e)δn(e)

because θ is zero for all other edges outside of E, and here remembering that δn(e) = δnj (x) for e = (x, x + ej).

Plugging this into our previous formula, we find that the integral now factors:

Z =
1

(2π)|P|

∑
n∈ZP

(∏
p∈P

φ̂β(np)

)∫
[−π,π)E

exp

(
−i
∑
e∈E

θ(e)δn(e)

)
dθ

=
1

(2π)|P|

∑
n∈ZP

(∏
p∈P

φ̂β(np)

)∏
e∈E

∫
[−π,π)

exp (−iθ(e)δn(e)) dθ.

Now each δn(e) is an integer, and we know that
∫ π
−π e

−ikxdx = 2π if k = 0 and 0 otherwise. Thus we really have

Z = (2π)|E|−|P|
∑
n∈ZP

δn(e)=0 ∀e∈E

∏
p∈P

φ̂β(np).

We now claim that if δn(e) = 0 for all e ∈ E, then actually δn = 0 everywhere as a 2-form. For any edge e = (x, x+ej),

we have

δnj(x) = −
4∑
i=1

∂ini j(x) =

4∑
i=1

(ni j(x − ei)− ni j(x))

by the formula for the coderivative; this is exactly the difference between the values on the plaquettes on the two sides

of e (and summing over all directions except j). But if e is not in our hypercube, all plaquettes containing e will be

outside the hypercube as well, so this whole sum will indeed be zero. Thus δnj(x) is always zero in all such cases, and
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thus we can really simplify to

Z = (2π)|E|−|P|
∑
n∈ZP
δn=0

∏
p∈P

φ̂β(np).

(Remember that δn = 0 means n can be thought of as a signed combination of plaquettes in a closed surface.) This

whole argument is fairly general, so we can do this whole thing with other actions (like the Wilson action). But what’s

important now is that we have an explicit formula for those coefficients from Lemma 70 φ̂β(n) =
√
2π
β exp

(
− n22β

)
, so

Z = (2π)|E|−|P|
(
2π

β

) 1
2
|P| ∑
n∈ZP
δn=0

exp

(
−
1

2β

∑
p∈P

n2p

)
.

Call N the set of all n ∈ ZP with δn = 0, and let A be the set of all Z-valued 1-forms α supported on the dual

hypercube ∗Λ, such that ∗dα(p) = 0 for all plaquettes outside P. (This is almost true for anything in ∗Λ, except it

might go slightly outside at the very boundary.) We can then define an equivalence relation

α ∼ α′ if d(α− α′) = 0;

by discrete Poincaré this is equivalent to saying that there is some 0-form γ supported on ∗Λ with α′ = α+dγ. Letting

A0 = A/ ∼ (whose elements we typically write as [α]).

Lemma 71

The map ξ : [α] 7→ ∗dα is a bijection between A0 and N . (This is well-defined because the result only depends

on dα.)

This lemma will allow us to transfer a sum over N to a sum over A0. And A is perhaps easier to think about than

N , where it’s important to note that the dual of a plaquette is also a plaquette in four dimensions.

Proof. We’ve already observed that the map is well-defined. Note that for any α ∈ A, remembering that δ is some

sign times ∗d∗,
δ(∗dα) = (−1)(··· )∗d∗∗dα,

and now because ∗∗f = (−1)(··· )f this simplifies to (−1)(··· )∗ddα = 0 because d2 = 0. Furthermore, by assumption,

∗dα(p) = 0 for all p ∈ P. Thus ∗(dα) is indeed always an element of N , so ξ indeed maps A0 into N .

Next, we prove this map is surjective. For any n ∈ N , we have δn = 0 and so there is some Z-valued 3-form m on

Z4 such that n = δm and m is supported on Λ. We can then define α = ∗(−m) (this may not be unique, but that’s

okay); this is a Z-valued 1-form on the dual lattice ∗Z4 supported on ∗Λ. Then

n = δm = (−1)4(3+1)+1∗d∗m = −∗d∗m = ∗d∗(−m) = ∗dα,

and α ∈ A because all conditions are satisfied. Thus we can indeed reach any n with this map. (Note that we use

crucially that we are in four dimensions here.)

Finally, we prove injectivity, which is easier. If ∗dα = ∗dα′, then ∗d(α−α′) = 0, and therefore d(α−α′) = 0 and

[α] = [α′].
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So now for any n ∈ ZP with δn = 0, we can find some α ∈ A such that n = ∗dα. Then∑
p∈P

n2p =
∑
x∈Z4

∑
1≤j<k≤4

njk(x)
2

=
∑
y∈∗Z4

∑
1≤j<k≤4

dαjk(y)
2

= (dα, dα).

(Remember that we might get a sign coming from the permutation when we take ∗, but we square things here so

there’s nothing to worry about.) That yields the following normalizing constant:

Lemma 72

For the Villain action, we have

Z = (2π)|E|−|P|
(
2π

β

) 1
2
|P| ∑
[α]∈A0

exp

(
−
1

2β
(dα, dα)

)
.

Thus we can consider the dual model, which is a probability measure on A0 (which notably is a discrete set) with

probability mass at [α] ∈ A0 proportional to exp
(
− 1
2β (dα, dα)

)
. That is, the model selects, for each edge in Λ∗,

an integer, and this is kind of like the integer Gaussian free field but it’s valued on edges rather than vertices. And

the key now is that for β large this becomes close to the “comfortable region” where we are in the high-temperature

regime and thus things are actually tractable!

Example 73

What we can do now is write Wilson loop expectations in terms of this new model. Let ℓ be a rectangular Wilson

loop in Λ of the form which first goes in the +ej , then +ek , then −ej , then −ek directions (for j < k), and suppose

it has n vertices x0, x1, · · · , xn and then returns to xn+1 = x0. The Wilson loop expectation is then

Wℓ(θ) =

n∏
j=0

e iθ(xj ,xj+1)

Lemma 74

We can alternatively express

Wℓ(θ) = exp

−i∑
p∈Σ

θp

 ,
where Σ is the set of plaquettes enclosed by the rectangle ℓ.

This crucially uses the abelian nature of the loop – this is basically a discrete version of Green’s theorem.

Proof. Define a 2-form η on Z4 by η(p) = 1 if p ∈ Σ and 0 otherwise. Then because dθ is exactly encoding the

values of θ on plaquettes, ∑
p∈Σ

θp = (dθ, η) = (θ, δη),

and now δη (a signed linear combination of plaquettes next to each edge) is exactly −1 for all edges on the bottom

and right and +1 on the top and left. So then exp
(
−i
∑
p∈Σ θp

)
= Wℓ(θ) as desired.
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So now we can go back to what we were doing before: we want to evaluate the expectation of Wℓ, and

⟨Wℓ⟩ =
Zℓ
Z
, Zℓ =

∫
[−π,π)E

Wℓ(θ)e
−Sβ (θ)dθ.

Proceeding in exactly the same way as before, we can compute

Zℓ =
1

(2π)|P|

∑
n∈ZP

(∏
p∈P

φ̂β(np)

)∫
[−π,π)E

exp

−i∑
p∈P

npθp − i
∑
p∈Σ

θp

 dθ.
So in other words, we now have either np or np + 1 for each plaquette, depending on whether p ∈ Σ or not. But then

by a change of variables for only the plaquette variables in Σ, this can be rewritten as

Zℓ =
1

(2π)|P|

∑
n∈ZP

 ∏
p∈P\Σ

φ̂β(np)

∏
p∈Σ

φ̂β(np − 1)

∫
[−π,π)E

exp

(
−i
∑
p∈P

npθp

)
dθ

= (2π)|E|−|P|
∑

n∈Zp ,δn=0

 ∏
p∈P\Σ

φ̂β(np)

∏
p∈Σ

φ̂β(np − 1)

 .
Plugging in the value of φ̂, this simplifies to

(2π)|E|−|P|
(
2π

β

) 1
2
|P| ∑
n∈Zp ,δn=0

exp

− 1
2β

∑
p∈P\Σ

n2p −
1

2β

∑
p∈Σ
(np − 1)2

 .
Defining the disorder operator

Dℓ(m) = exp

 1
β

∑
p∈Σ

mp −
|Σ|
2β

 ,
we can thus write this entire expression inside the n-sum as Dℓ(m) exp

(
− 1
2β

∑
p∈P m

2
p

)
. Transferring in the exact

same way as we did for Z, we now get the following:

Lemma 75

We have

Zℓ = (2π)
|E|−|P|

(
2π

β

)| 1
2
|P ∑
[α]∈A0

Dℓ(∗dα) exp
(
−
1

2β
(dα, dα)

)
.

So dividing Zℓ by Z makes all factors cancel out, and we get the following result:

Theorem 76

We have the equality of expectations

⟨Wℓ(θ)⟩ = ⟨Dℓ(∗dα)⟩∗,

where θ is chosen from the lattice gauge theory and α is chosen from the dual theory.

15 November 12, 2025

We proved last time that for a rectangular loop ℓ in Λ under U(1) lattice gauge theory with the Villain action and free

boundary condition, we can write ⟨Wℓ⟩ in terms of a certain dual model defined on the state space A0 (an equivalence
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quotient of Z-valued 1-forms on ∗Z4 with ∗dα(p) = 0 for all p not in the dual lattice, where α ∼ α′ if dα = dα′).

Specifically, with the probability measure µ0 proportional to exp
(
− 1
2β (dα, dα

)
on A0, we have ⟨Wℓ⟩ = ⟨Dℓ⟩∗, where

Dℓ(α) = exp
(
1
β

∑
p∈Σ ∗dα(p)−

|Σ|
2β

)
was the disorder operator.

Remark 77. Note that we didn’t really use the fact that it’s a rectangular loop – we could run this argument for any

general loop as well if we choose a surface bounded by it, and we can double-check that the result Dℓ doesn’t depend

on the choice of bounding surface and so we still get this relationship between the primal and dual model.

Also, we can think of ∗dα(p) = 0 as being “zero boundary conditions” on the dual lattice when we expand out by
1
2 unit in all directions.

So now we want to compute ⟨Dℓ⟩∗, and it’s very much like a Gaussian measure but it’s supported only on integers.

Thus, we’ll define a new model to help us:

Example 78

In the Gaussian U(1) model, let U be the space of all R-valued (rather than Z-valued) 1-forms on ∗Λ such that

∗dα(p) = 0 for all p ̸∈ P . This is a finite-dimensional vector space over R, and we similarly define a quotient

relation α ∼ α′ if d(α − α′) = 0. To define a Gaussian space, first fix ε > 0 and define γε to be the Gaussian

measure on U with density proportional to exp
(
− 1
2β (dα, dα)−

ε
2β (α,α)

)
(so that we’re actually integrable after

quotienting).

Write ||α|| = (α,α)1/2 for convenience, and let H be the space of all R-valued 1-forms on ∗Z4, not necessarily

with finite support, where ||α|| <∞. Then H is a Hilbert space under this inner product, and U is a finite-dimensional

closed subspace of H. Let Π be the orthogonal projection onto U .

Lemma 79

For any ε > 0, the restriction of the map Π(δd + ε) : H → H to U maps into U , and it is self-adjoint, positive

definite, and invertible. Furthermore, the covariance matrix of γε is exactly β times the inverse of this map.

Proof. Clearly Π(δd + ε) maps into U because Π projects onto U . Let S denote this restriction Π(δd + ε)|U . Now for

any α,α′ ∈ U we have

(α,Sα′) = (α,Π(δd + ε)α′) = (α, (δd + ε)α′)

because α is already in U anyway so the projection doesn’t change the inner product, and now by summation by parts

this becomes (dα, dα′) + ε(α,α′). So from this we see clearly that the map is self-adjoint and positive definite; for

invertibility note that Sα = 0 implies (α,Sα) = 0 and therefore we must have (α,α) = 0, hence α = 0. So S is

injective, and since we have a finite-dimensional space S is invertible. Finally from this formula, the probability density

of γε is proportional to exp
(
− 1
2β (dα, dα)−

ε
2β (α,α)

)
= exp

(
− 1
2β (α,Sα)

)
, as desired.

Now let Vε be this covariance (Π(δd + ε)|U)−1; since we have a Gaussian random vector we have the characteristic

function for γε ∫
e i(α,η)dγε(α) = exp

(
−
β

2
(η, Vεη)

)
for all η supported on ∗Λ and we want to understand what happens to this as ε → 0. (Eventually, we’ll essentially

restrict this probability measure to integer points, but we haven’t done that yet.) For this, first define the subspaces

V0 = {α ∈ U : dα = 0} , U0 = V⊥0 in U .

(so we can think of U0 as choosing one element of each equivalence class, now that we’re in the continuous setting).
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Lemma 80

The map Πδd maps U into U0, and furthermore Πδd |U0 is self-adjoint, positive definite, and invertible.

The point is that on U0 we can actually take ε→ 0 without problems.

Proof. For α ∈ U and η ∈ V0, we have

(η,Πδdα) = (η, δdα) = (dη, dα) = 0

by the same logic as before (removing the projection and then using summation by parts). Thus Πδdα is orthogonal

to V0, meaning it maps into U0.
Next, let T be the restriction of Πδd to U0. Proceeding like before, for α,α′ ∈ U0 we have

(α, Tα′) = (α′,Πδdα′) = (α, δdα′) = (dα, dα′),

which proves self-adjointness and positive semidefiniteness. Now if (α, Tα) = 0 we must have (dα, dα) = 0, meaning

that α ∈ V0 but also α ∈ U0 so we must have α = 0 by orthogonality; thus we actually have positive definiteness and

this proves invertibility as well.

If we add on an ε to this, we also get the following:

Corollary 81

For all ε > 0, the operator Π(δd + ε) maps U0 into U0, and the restriction to U0 is invertible. Thus the same

claims also hold for Vε.

Proof. Take α ∈ U0. Then Π(δd + ε)α = Πδdα+ εα is the sum of two terms in U0, hence in U0. And Πδ(dα+ ε) is

injective on the bigger space U , so it is also injective on U0, hence invertible. Thus the inverse of this on U0, which is

Vε, also satisfies those same properties.

Lemma 82

There exists some c > 0 such that ||dα|| ≥ c ||α|| for all α ∈ U0.

Proof. It suffices to prove the result when ||α|| = 1 by scaling. But by compactness this means it suffices to show

that dα ̸= 0 for all α ∈ U0 for all ||α|| = 1, which is true by orthogonality to V0.

Corollary 83

There is some C such that for all ε > 0 and all α ∈ U0, ||Vεα|| ≤ C||α||.

Proof. Take any α ∈ U0 and take c as above. For any ε > 0 we can define η = Vεα; note that η ∈ U0 and therefore

(α, η) = (α, Vεα) = (V
−1
ε η, η) = (η, V −1ε η) = (η,Π(δd + ε)η),

and this last expression is ||dη||2 + ε||η||2 ≥ ||dη||2 ≥ c2||η||2. Therefore by Cauchy-Schwarz,

||α|| · ||η|| ≥ (α, η) ≥ c2||η||2

and so ||η|| ≤ 1
c ||α||, as desired (we can take C = 1

c2 ).
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Lemma 84

Let V denote the inverse of the restriction (Πδd |U0). Then for all η ∈ U , we have the limit of the characteristic

functions

lim
ε→0

∫
e i(α,η)dγε(α) =

exp
(
−β2 (η, V η)

)
if η ∈ U0,

0 if η ∈ U \ U0.

So we have a sequence of characteristic functions which converges to something which is not a characteristic

function (since it’s vanishing everywhere except a subspace) – instead it’s the characteristic function on a quotient

space. What we’re basically doing as ε → 0 is getting something uniform in the orthogonal direction (think about

having density e−x
2

in R2).

Proof. Recall that
∫
e i(α,η)dγε(α) = exp

(
−β2 (η, Vεη)

)
. First note that for any η ∈ V0, we have Π(δd + ε)η = εη

because dη = 0. Therefore applied to V0 we just have the simple expression

Vεη = (Π(δd + ε))
−1η = ε−1η.

So for any η ∈ U we can do the orthogonal decomposition η = η0 + η1 with η0 ∈ U0 and η1 ∈ V0, and we get

(η, Vεη) = (η0, Vεη0) + (η0, Vεη1) + (η1, Vεη0) + (η1, Vεη1)

= (η0, Vεη0) + 2(η0, Vεη1) + (η1, Vεη1)

= (η0, Vεη0) + 2ε
−1(η0, η1) + ε

−1(η1, η1)

≥ 0 + 0 + ε−1||η1||2.

Thus this whole quantity tends to infinity if η1 ̸= 0, so as long as we move out of U0 the thing appearing in the

exponent of the characteristic function goes to infinity and thus we do indeed get zero.

On the other hand, if we’re inside U0, write ξε = Vεη (we know this is an element of U0) and so η = V −1ε ξε =

Π(δd+ε)ξε. Now remembering that ||ξε|| is uniformly bounded by C||η|| by the previous lemma, if ξ is any subsequential

limit of ξε as ε ↓ 0, then this expression shows η = Π(δd + ε)ξ, so ξ = V η. Therefore ξε converges to Vη, meaning

that (η, Vεη) converges to (η, V η) and this is what we wanted.

Remark 85. To explain why we’re taking this approach, we have some lattice of integer points, and we have a restriction

of the Gaussian measure not to the lattice but to certain fibers. The issue is that if we just define a Gaussian measure

here, we may not contain the projections of the integer points if we directly take the Gaussian measure on U0, since

it’s difficult to connect it to the integer model (where the αs are all integers, and we don’t want to get non-integer

valued forms if we just project to U0).

We’ll now use the Poisson summation formula to get the desired restriction to integers (in some sense).

Theorem 86 (Poisson summation formula)

Let f : R → C be a Schwartz function (meaning that the function and its derivatives are rapidly decaying faster

than any polynomial). Then ∑
n∈Z

f (n) =
∑
n∈Z

f̂ (2πn)

for f̂ (t) =
∫∞
−∞ e

itx f (x)dx the Fourier transform (which is also Schwartz).
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Proof. Define the “periodization” function g : [−π, π)→ C via g(x) =
∑
n∈Z f

(
x
2π + n

)
. We can check that

g(k)(x) =
1

(2π)k

∑
n∈Z

f (k)
( x
2π
+ n
)
,

meaning that

lim
x→π

g(k)(x) =
1

(2π)k

∑
n∈Z

f (k)
(
1

2
+ n

)
=

1

(2π)k

∑
n∈Z

f (k)
(
−
1

2
+ n

)
= lim
x→−π

g(k)(x),

so the periodization has left and right boundary derivatives agreeing and thus we can write g(x) = 1
2π

∑
n∈Z e

−inx ĝ(n).

Plugging in x = 0, we see that∑
n∈Z

f (n) = g(0) =
1

2π

∑
n∈Z

ĝ(n)

=
1

2π

∑
n∈Z

∫ ∞
−∞

∑
m∈Z

f
( x
2π
+m

)
e inxdx

=
1

2π

∑
n∈Z

∑
m∈Z

∫ ∞
−∞

f
( x
2π
+m

)
e inxdx

=
∑
n∈Z

∑
m∈Z

∫ 1/2
−1/2

f (y +m)e2πinydy.

But now we can replace y with y +m in the exponential, which doesn’t change the value, and then do another change

of variable to write the integral over the whole real line:

∑
n∈Z

∑
m∈Z

∫ m+1/2
m−1/2

f (y)e2πinydy =
∑
n∈Z

f̂ (2πn),

completing the proof.

This is often used in comparing continuous to discrete models, and we’ll see that soon!

16 November 17, 2025

Let’s start with a quick review. We’ve been working with the U(1) gauge theory on a four-dimensional hypercube

Λ, and considering a rectangular loop ℓ we’ve previously shown that the Wilson loop expectation ⟨Wℓ⟩ agrees with

the expectation ⟨Dℓ⟩∗ in the dual model, where the disorder operator Dℓ = Dℓ(α) takes in an integer-valued 1-form

supported on the dual lattice ∗Λ (meaning that it’s nonzero only on edges that are in a slightly-enlarged hypercube

around Λ) and where ∗dα(p) = 0 for all plaquettes p inside Λ. (As a reminder, dα is a 2-form on the dual lattice, so

∗dα is a (4− 2)-form on the original lattice.) And in fact we can write this set of allowed 1-forms A in another way:
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Lemma 87

Say that Λ = [a1, b1]×· · ·× [a4, b4]. The dual lattice ∗Λ is the shifted lattice [a1+ 12 , b1+
1
2 ]×· · ·× [a4+

1
2 , b4+

1
2 ],

while Λ∗ is instead the slightly enlarged lattice [a1 − 1
2 , b1 +

1
2 ] × · · · × [a4 −

1
2 , b4 +

1
2 ]. Let E∗ is the set of all

edges with both endpoints in Λ∗, and its boundary ∂E∗ is then the subset of edges with both endpoints having a

neighbor outside Λ∗. Then A is the set of all Z-valued 1-forms on ∗Z4 such that α(e) ̸= 0 only if e ∈ E∗ \ ∂E∗.

(We won’t prove this in class because it’s rather technical, but it’s in the notes.) This is a much nicer description

than what we had before – it makes it clear that we’re basically just working with the internal edges of a slightly

enlarged cube. Recall also that we had the equivalence relation α ∼ α′ ⇐⇒ d(α − α′) = 0, and we defined the

quotient space A0 = A/ ∼; we then defined the dual model as a probability measure µ0 on A0 with probability mass

function proportional to exp
(
− 1
2β (dα, dα)

)
. (The quotient space is countable, and we can confirm that we get a

finite sum because of the derivations we’ve done earlier for the duality formula and the partition function.)

So this is almost like a Gaussian measure except it’s forced to be integer-valued. Thus, let U be the set of R-valued

1-forms on ∗Z4 supported on ∗Λ, such that ∗dα(p) = 0 for all p ̸∈ P ; we can equivalently write this as RE∗\∂E∗ . We

can then define the Gaussian measures γε on U with density proportional to exp
(
− 1
2β (dα, dα)−

ε
2β (α,α)

)
(this ε

factor is there to make things integrable), and we also have the analogous object to A0, which is

U0 = {α ∈ U : (α, η) = 0 for all η ∈ U with dη = 0}

(This gets us one object from each equivalence class, because α′ = α+ η for some η with dη = 0.) The analog to γε
is then µε, which is the probability mass function on A (not A0) proportional to exp

(
− 1
2β (dα, dα) ε2β (α,α)

)
, again

the ε term makes things decay fast so that we have a valid probability measure. Let {zq}∞q=1 be positive real numbers

such that
∞∑
q=1

2

zq
= 1;

define the partial sums aN =
∑N
q=1

2
zQ

. Let E∗0 = E∗ \ ∂E∗ be the internal edges, and let Q = {1, 2, · · · , }E∗0 and

QN = {1, 2, · · · , N}E
∗
0 be assignments of positive integers to those edges Then for any q ∈ Q, we can define

c(q) =
∏
e∈E∗0

2

zq(e)
.

Now for any α ∈ U = RE∗0 , we can define

ρN(α) =
∑
q∈QN

c(q)
∏
e∈E∗0

(
1 + aNzq(e) cos (2πq(e)α(e))

)
,

which is just some nonnegative function.

Lemma 88

With the notation above, and for any τ ∈ U , let f (α) = e2πi(α,τ). Then for all ε > 0, we have that the discrete

dual model with µε can be written as

⟨f ⟩∗ε = lim
N→∞

∫
U f (α)ρN(α)dγε(α)∫
U ρN(α)dγε(α)

.

The point is that µε cannot have a density with respect to γε (which is a real Gaussian measure), but we can

approximate it with something of the sort. So the quantity on the left side is an expectation with respect to the
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integer measure, but the integrals on the right are with respect to real 1-forms. (This is kind of like approximating

by an integer-valued Gaussian by something times the continuous Gaussian density, where that something gets spikier

and spikier.)

Proof. We have that f µε is a Schwarz function, so (letting Zε be the normalizing constant for µε)

⟨f ⟩∗ε =
∑
α∈ZE

∗
0

f (α)µε(α)

=
1

Zε

∑
α∈ZE

∗
0

f̂ µε(2πα)

=
1

Zε

∑
α∈ZE

∗
0

∫
U
e2πi(α,η)f (η) exp

(
−
1

2β
(dη, dη)−

ε

2β
(η, η)

)
dη

=
1

Zε

∑
α∈ZE

∗
0

∫
U
e2πi(α+τ,η) exp

(
−
1

2β
(dη, dη)−

ε

2β
(η, η)

)
dη

by a higher-dimensional generalization of the Poisson summation formula we discussed last time. And now if we take

f to be identically 1 (that is, take τ = 0), the left-hand side is 1 and so we can solve for Zε: we thus find that

⟨f ⟩∗ε =
∑
α∈ZE

∗
0

∫
U e
2πi(α+τ,η)dγε(η)∑

α∈ZE
∗
0

∫
U e
2πi(α,η)dγε(η)

.

But we have already made the evaluation that∫
U
e2πi(α,η)dγε(η) = exp

(
−2π2β(α, Vεα)

)
for some positive definite operator Vε, so if we sum this left-hand side over all α we know that it converges and in fact∑

α∈A

∫
U
e2πi(α,η)dγε(η) = lim

N→∞

∑
α∈AN

∫
U
e2πi(α,η)dγε(η);

the same is true in the numerator. This means that in fact we have

⟨f ⟩∗ε = lim
N→∞

∑
α∈AN

∫
U e
2πi(α+τ,η)dγε(η)∑

α∈AN

∫
U e
2πi(α,η)dγε(η)

= lim
N→∞

∫
U e
2πi(τ,η)

∑
α∈AN e

2πi(α,η)dγε(η)∫
U
∑
α∈AN e

2πi(α,η)dγε(η)
,

, so now we just need to show that the sum we have in the integrand is proportional to the ρN we had before. But

indeed ∑
α∈AN

e2πi(α,η) =
∑
α∈AN

∏
e∈E∗0

e2πiα(e)η(e)

=
∏
e∈E∗0

 N∑
q(e)=−N

e2πiq(e)η(e)


=
∏
e∈E∗0

1 + N∑
q(e)=1

cos(2πq(e)η(e))

 ,
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where the second line is by the distributive property because AN = {−N, · · · , N}E
∗
0 . And finally we can write

1 +

N∑
q(e)=1

cos(2πq(e)η(e)) =

N∑
q(e)=1

2

zq(e)

(
1

aN
+ zq(e) cos (2πq(e)η(e))

)
,

substituting this in and bringing out the aNs yields the result.

We’ll now start working some more with this ρN to understand what we can say about it – it’s not supposed to

converge to anything as N →∞, again because µε shouldn’t have a density with respect to γε.

Definition 89

For any α ∈ A = ZE∗0 , define the edge-support of α, denoted E(α), to be the set of all edges e ∈ E∗0 where

α(e) ̸= 0. For two edges e, e ′ ∈ ZE∗0 , let dist(e, e ′) be the minimum of the Euclidean distances between the

vertices of the edges (in particular this can be zero for different edges if there is a common vertex). Similarly for

two subsets of vertices E,E′ ⊆ E∗0 , we can define dist(E,E′) to be the minimum of dist(e, e ′) over all e ∈ E and

e ′ ∈ E′.
We say that a set of 1-forms E ⊂ A is an ensemble if for all distinct α,α′ ∈ E , the edge-supports E(α) and

E(α′) are disjoint, and we say that E is a k-ensemble if for all distinct α,α′, we have dist(E(α), E(α′)) ≥ 2k/2.

We will only need to take k = 1 in our case (meaning we need vertices from E(α) and E(α′) to not be overlapping

and also not be side-by-side), but in more generality we may need higher k .

Lemma 90

Take any N ≥ 1. Given any q ∈ QN = {1, · · · , N}E
∗
0 , there exists a finite set Γ(q) which indexes strictly positive

coefficients {cγ}γ∈Γ(q), 1-ensembles {Eγ}γ∈Γ(q) (possibly the same for different γ), and strictly positive coefficients

{Kγ(η)}γ∈Γ(q),η∈Eγ , so that∏
e∈E∗0

(
1 + aNzq(e) cos(2πq(e)α(e))

)
=
∑
γ∈Γ(q)

cγ
∏
η∈Eγ

(
1 +Kγ(η) cos(2π(α, η))

)
,

and furthermore we have that Kγ(η) ≤ 3N1(η)
∏
e∈E(η) zq(e) for N1(η) the number of edges e ∈ E∗0 of distance at

most 1 from E(η) (so this is the size of the support, expanded by a little bit).

In particular, taking a combination over all q will get us the ρN we had above. Notice that we have a product over

all e in the left-hand side, and different edges may interact (since they have common vertices or plaquettes). But on

the right-hand side, the product is a product over 1-forms with disjoint support, and because the supports are even

separated by a bit more there is no interaction between different ηs.

Start of proof. The key fact is the following identity: for real numbers K1, K2, θ1, θ2 ∈ R, we have (by the sum-to-

product formula)

(1 +K1 cos θ1)(1 +K2 cos θ2)

=
1

3
(1 + 3K1 cos(θ1)) +

1

3
(1 + 3K2 cos(θ2)) +

1

6
(1 + 3K1K2 cos(θ1 − θ2)) +

1

6
(1 + 3K1K2 cos(θ1 + θ2)) .

Since our object of interest is

I =
∏
e∈E∗0

(
1 + aNzq(e) cos (2πq(e)α(e))

)
,
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we can write it in the form ∑
γ∈Γ

cγ
∏
η∈Eγ

(
1 +Kγ(η) cos(2π(α, η)

)
,

where Γ is just a single element {0}, we have the constant c0 = 1, the ensemble is the set E0 = {ηe}e∈E∗0 where

ηe(e
′) = q(e) if e = e ′ and 0 otherwise, and K0(γe) = aNzq(e). Now E0 is an ensemble, but it is not a 1-ensemble;

thus, we will gradually make it into one by repeatedly using the identity we wrote down (and we keep track of things

to make sure the constants don’t blow up too much).

This is an inductive construction: in the first step, take any distinct a, b ∈ E∗0 with d(a, b) <
√
2 (that is,

d(a, b) ≤ 1). We can then observe that(
1 + aNzq(a) cos(2πq(a)α(a))

)(
1 + aNzq(b) cos(2πq(b)α(b))

)
=
1

3

(
1 + 3aNzq(a) cos(2πq(a)α(a))

)
+
1

3

(
1 + 3aNzq(b) cos(2πq(b)α(b))

)
+
1

6

(
1 + 3a2Nzq(a)zq(b) cos(2π(q(a)α(a)− q(b)α(b)))

)
+
1

6

(
1 + 3a2Nzq(a)zq(b) cos(2π(q(a)α(a) + q(b)α(b)))

)
.

So we can now take this four-term expression and substitute it back into our product; we’ll now have four different

ensembles. Indeed, we will have Γ′ = {1, 2, 3, 4}, the first ensemble E1 will consist of {ηe}e ̸=b (so we threw out

one of the one-forms of E0), E2 will consist of {ηe}e ̸=a, E3 = {ηe}e ̸=a,b ∪ {ξ1} for the form ξ1 = ηa − ηb, and

E4 = {ηe}e ̸=a,b ∪ {ξ2} for the form ξ1 = ηa + ηb. None of these ensembles witness the problem between a and b, and

everything is still an ensemble.

But now we just keep repeating this: whenever there is a pair of edges a, b of this form, we do this to remove the

problem, and so our ensembles will grow like a tree downward. Furthermore, notice that |Ei | < |E| for all i = 1, 2, 3, 4

in the above argument, since the size of the ensemble decreases by 1 in all cases. The inductive hypothesis is then as

follows: if we’ve arrived at some Γ and collection {Eγ}γ∈Γ, and at least one Eγ is not a 1-ensemble, then there exist

some distinct 1-forms η, η′ ∈ Eγ with dist(E(η), E(η′)) <
√
2. This means there is some a ∈ E(η) and b ∈ E(η′) with

dist(a, b) <
√
2; we can then break up (1 + Kγ(η) cos(2π(α, η)))(1 + Kγ(η′) cos(2π(α, η′))) in the same way and

substitute in; this replaces Eγ with Eγ1 , Eγ2 , Eγ3 , Eγ4 where Eγ1 = E \ {η′}, Eγ2 = E \ {η}, Eγ3 = (E \ {η, η′})∪{η− η′},
and Eγ4 = (E \ {η, η′}) ∪ {η + η′}. And at each such step, the ensemble sizes decrease, so this process must stop

at some point if we have reached a collection of 1-ensembles. We’ll show next time how to get the bound on the

constants Kγ(η)!

17 November 19, 2025

We’ll start today by explaining “how to send ε to zero.” Recall that we had defined U = RE∗0 and decomposed it into

the orthogonal spaces V0 = {α ∈ U} and U0 = V⊥0 ; we also had a discrete analog A = ZE∗0 and A0 = A/ ∼ where

α ∼ α′ if dα = dα′. We’ll now choose a specific representative from each equivalence class, letting A0 be one

minimum norm element from each class (all norms are integers here).

Remember that we had a probability measure µ0 on A0 with probability mass proportional to exp
(
− 1
2β ||dα||

2
)
,

and we also defined the probability measure on A with probability mass function exp
(
− 1
2β ||dα||

2 − ε
2β ||α||

2
)
. We then

also have the analogs of these in the continuous space: γε is the measure on U with probability density proportional

to exp
(
− 1
2β ||dα||

2 ε
2β ||α||

2
)
, and so analogously we now also define γ0 to be the measure on the subspace U0 with

probability density proportional to exp
(
− 1
2β ||dα||

2
)
.
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The goal will be to relate the µs to the γs fully rigorously through a rather complicated lemma. Recall that we

have expectations ⟨f ⟩∗ =
∫
A0 f dµ0.

Proposition 91

Let η0 be a random 1-form with law γ0. Let B0 = A0 ∩ U0 (note that A0 is the minimum norm element among

integer-valued 1-forms; A0 would actually be U0 if we were minimizing over real-valued 1-forms instead). Take

any τ ∈ U0 and let f (α) = e(τ,α) for α ∈ U (this is the kind of function we want to take the expectation of, since

we care about this disorder operator Dℓ(α) which depends only on dα, and using the adjoint rule δτ is always in

U0). Then

⟨f ⟩∗ =
∑
α0∈B0 E

[
f (η0)e

2πi(α0,η0)
]∑

α0∈B0 E
[
e2πi(α0,η0)

] .

This means that heuristically we can treat dµ0dγ0 =
∑
α0)
e2πi(α0,η) as the density of the discrete model with respect

to the continuous model at any point η ∈ U0. (So at integer points, (α0, η) is always an integer, so this is like a sum

of delta masses.) We can think of A0 as the “closest harmonic approximation,” but in that framework it’s hard to see

why integer-valued forms would be sent to integer-valued forms.

Lemma 92

Sample the random element ηε ∼ γε, and let η0,ε, η1,ε be its projections onto the orthogonal subspaces U0 and

V0. Then η0,ε and η1,ε are independent 1-forms with covariance matrices βVε (recall that Vε = (Π(δd + ε))−1)

and βε−1I on U0 and V0. Then as ε→ 0, we have η0,ε converging in distribution to η0 ∼ γ0.

Proof. Since we have Gaussian forms, we just need to calculate variances. Fix (α,α′) ∈ U ; let Π0 be the projection

to U0, and define α0 = Π0α, α1 = (I − Π0)α, and similarly define α′0, α
′
1. Now we compute the linear combinations

(using that Π0 is self-adjoint)

E
[
((α, η0,ε) + (α

′, η1,ε))
2
]
= E

[
((α,Π0ηε) + (α

′, (I − Π0)ηε))2
]

= E
[
((α0, ηε) + (α

′
1, ηε))

2
]

= E
[
(α0 + α

′
1, ηε)

2
]

Now α′1 ∈ V0, so dα′1 = 0, and therefore Π(δd + ε)α′1 = εα
′
1. Thus applying the inverse yields Vεα′1 = ε

−1α′1; using

this and orthogonality simplifies the expectation to

((α0 + α
′
1), Vε(α0 + α

′
1)) = (α0, Vεα0) + ε

−1||α′1||2.

And now for any Gaussian vector supported on a subspace of Rn, (α, x)2 for any α ∈ Rn will be exactly the quadratic

form αT V α for V the covariance on that subspace. So this covariance formula gives us exactly what we are claiming.

Lemma 93

There is some constant c0 > 0, possibly dependent on Λ, such that ||dα|| ≥ c0||α|| for all α ∈ A0.

We proved a similar result for U0, but A0 is a discrete set and we’re taking specifically the minimum-norm elements

so things are a bit more complicated.
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Proof. For α ∈ A0, consider its projection α1 = Π0α, which is now real-valued, and α2 = (I − Π0)α. Since dα2 = 0

and α2 is supported on ∗Λ (this is true for any form supported only on the interior edges), there exists a 1-form κ

supported on ∗Λ with α2 = dκ by the Poincaré lemma. We thus get an integer approximation η(e) = ⌊κ(e)⌋; let

θ = α− dη. We know that α− dκ would be α1, and θ is an integer-valued approximation of that quantity. We know

that θ ∈ A and θ ∼ α, so ||θ|| ≥ ||α|| since we took the minimum norm element. Now

||θ − α1|| = ||α− dη − α1||

= ||α2 − dη||

= ||dκ− dη||

≤ C

for some constant C because η and κ differ by at most 1 on each edge. So ||θ|| ≤ ||α1||+ C, and since α1 ∈ U0 we

have ||α1|| ≤ C1||dα1|| because we’ve already proven the analogous result on the full subspace. And ||dα|| = ||dα1||
because α ∼ α1, so putting this together we get

||α|| ≤ ||θ|| ≤ C1||dα||+ C,

and furthermore ||α||2 and ||dα||2 are always nonnegative integers, and if ||dα|| = 0 then ||α|| = 0 since α must be

specifically 0 (the minimum-norm element in that equivalence class). So in fact we have the bound ||α|| ≤ (C1+C)||dα||,
as desired.

Lemma 94

Let f : A → C be a function with subexponential growth, meaning that |f (α)| ≤ C1eC2||α||, which is constant on

equivalence classes. Then

⟨f ⟩∗ = lim
ε→0
⟨f ⟩∗ε.

The plan is to use this result and then relate ⟨f ⟩∗ to some result with γε, and then take the limit of that as ε→ 0.

Proof. In this proof, C,C0, C1, · · · will be arbitrary positive constants depending only on β and Λ. For any α ∈ A0, we

have [α] = α + B for B = {η ∈ A : dη = 0}. For any η ∈ B, define α′ = α + η and notice that (because α, α′ are

equivalent)

||dα′||2 + ε||α′||2 = ||dα||2 + ε||α||2 + ε||η||2 + 2ε(α, η).

The sum in the numerator we are interested in looks like∑
α∈A

f (α) exp

(
−
1

2β
||dα||2 + ε||α||2

)
=
∑
α∈A0

∑
η∈B

f (α+ η) exp

(
−
1

2β
(||dα||2 + ε||α||2 + ε||η||2 + 2ε(α, η)

)

=
∑
α∈A0

∑
η∈B

f (α) exp

(
−
1

2β
(||dα||2 + ε||α||2 + ε||η||2 + 2ε(α, η)

)
.

Remember Λ∗0 is the set of interior vertices of Λ∗. Define a function which separates out the ε factor

gε(α) = ε
1
2
|λ∗0|
∑
η∈B
exp

(
−
ε

2β
(||α||2 + ||η||2 + (2α, η)

)
,
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so that the expectations in the discrete model are related by

⟨f ⟩∗ε =
⟨f gε⟩∗

⟨gε⟩∗
,

and we want to show that as ε→ 0 this just approaches ⟨f ⟩∗ on the right-hand side.

Now we claim that η ∈ B if and only if η = dθ for some unique 0-form θ supported in the interior vertices Λ∗0.

Indeed, for any such θ we know that the 1-form dθ vanishes outside E∗0 (we only get nonzero edges if one of the

adjacent vertices is in the interior), meaning that indeed dθ ∈ B because ddθ = 0. On the other hand, if η ∈ B, then

there exists some Z-valued 0-form θ with η = dθ. And η(e) = 0 for all e ̸∈ E∗ and also for e ∈ ∂E∗, so θ must be

constant on the boundary and outside and finitely supported, hence zero on all of those points. This proves the claim;

uniqueness is because η = dθ = dθ′ =⇒ d(θ − θ′) = 0, so θ = θ′ for 0-forms because we’re finitely supporetd.

So therefore we can write gε(α) by replacing η with dθ:

gε(α) = ε
1
2
|λ∗0|

∑
θ∈ZΛ

∗
0

exp

(
−
ε

2β
(||α||2 + ||dθ||2 + 2(α, dθ)

)
.

We can now further simplify this by taking a rescaled lattice

= ε
1
2
|λ∗0|

∑
θ∈
√
εZΛ

∗
0

exp

(
−
1

2β
(ε||α||2 + ||dθ||2 + 2

√
ε(α, dθ)

)
.

But as ε → 0, we claim this actually converges to an integral where there is no involvement of α by Riemann sum

approximation (since those terms go away). Thus gε(α) converges to a constant and thus we have ⟨f ⟩∗ε → ⟨f ⟩∗.
What’s left is just to verify that the conditions of the dominated convergence theorem actually apply, and that’s why

we proved all of the various technical details we did before.

Indeed, define the summand as hε(α, θ) and now extend it to all real forms by saying that for θ ∈
√
εZΛ∗0 , define

Bθ0 to be the cube with center θ0 and sidelength
√
ε (this partitions RΛ∗0). We can then define the piecewise constant

function hε(α, θ) = hε(α, θ0) for any θ ∈ Bθ0 . The sum of interest is then
∫
RΛ0 hε(α, θ)dθ. We want to say that we

can apply Fubini’s theorem to get

⟨f gε⟩∗ =
∫
A0
f (α)gε(α)dµ0(α) =

∫
A0

∫
RΛ
∗
0

f (α)hε(α, θ)dθdµ0(α).

(On its own, h wouldn’t cause any problems because it is always nonnegative, but f is complex-valued.) Indeed, for

any fixed ε > 0 and θ0 ∈
√
εZΛ∗0 , we can take any θ ∈ Bθ0 in its surrounding cube so that

hε(α, θ) = hε(α, θ0) = exp

(
−
1

2β

(
ε||α||2 + ||dθ0||2 + 2

√
ε(α, dθ0)

))
≤ exp

(
−
1

2β

(
0 + C||θ0||2 + 2

√
ε(α, dθ0)

))
≤ exp

(
−
C

2β
||θ0||2 −

√
ε

β
(δα, θ0)

)
,

where in the second line we used that by compactness, there is some C > 0 such that ||dθ||2 ≥ c ||θ||2 (since

dθ = 0 =⇒ θ = 0). And now ||θ − θ0|| ≤ C
√
ε implies ||θ||2 ≤ 2||θ − θ0||2 + 2||θ0||2 ≤ 2||θ0||2 + Cε, and also

|(δα, θ0)− (δα, θ)| ≤ C
√
ε||α||. This means we can substitute in to replace θ0 by θ in our upper bound, yielding

hε(α, θ) ≤ C1eC2ε||α||+C3ε exp
(
−
C

β
||θ||2 −

√
ε

β
(δα, θ)

)
.

We want a uniform bound over all ε ∈ (0, ε0) (for ε0 to be chosen later), and the trick is that we can of course bound
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this as

hε(α, θ) ≤ 2C1eC2ε||α||+C3ε exp
(
−
C

β
||θ||2

)
cosh

(√
ε

β
(δα, θ)

)
≤ 2C1eC2ε0||α||+C3ε0 exp

(
−
C

β
||θ||2

)
cosh

(√
ε0
β
(δα, θ)

)
.

If we now integrate this whole quantity H(α, θ) , we want to show we get something absolutely convergent to apply

the dominated convergence theorem, and we handle the resulting Gaussian integral: we end up finding that∫
H(α, θ)dθ = C1e

C2ε0||α||+C3ε0+C4ε0||δα||2 ≤ C1eC2ε0||α||+C3ε0+C5ε0||α||
2

since we have a Gaussian integral with independent components. Taking ε0 ≤ 1 without loss of generality, if we do

the double integral we get∫∫
|f (α)|H(α, θ)dθ dµ0(α) ≤

∑
α∈A0

∫
C1e

C2||α||+C3+C5ε0||α||2C6e
−C7||dα||2

≤
∑
α∈A0

∫
C1e

C2||α||+C3+C5ε0||α||2C6e
−C8||α||2

so for ε0 small enough that C5ε0 is smaller than C8, this is finite and we can move the limit inside the integral; H(α, θ)

has no dependence on ε so it indeed shows the finiteness we wanted.

We’ll use this to prove Proposition 91 next time (so far, we haven’t actually made any explicit references to this

B0 yet).

18 December 1, 2025

We’ll continue with the 4D U(1) deconfinement proof we did before break – for these last two days, we’ll take some

little things for granted so that we can get to the full proof involving renormalization. Our end goal is to show the

perimeter law ⟨Wℓ⟩ ≥ C1e
−C2length(ℓ) for large enough β, and the first step has been to move to a dual lattice ∗Λ –

in fact the more important lattice to think about is the “slightly enlarged by 12 ” Λ
∗. Let’s again remind ourselves of

notation: defining E∗ to be all edges of this larger lattice, ∂E∗ the boundary edges, and E∗0 the internal edges, we have

the spaces A = ZE∗0 and U = RE∗0 (the 1-forms supported on the internal edges). Defining the equivalence relation

α ∼ α′ if d(α− α′) = 0, we can decompose U = U0 ⊕ U⊥0 for U⊥0 = V0 the set of α in U with dα = 0, and where we

have the explicit characterization

U0 = {α ∈ U : δα(x) = 0 for all x ∈ Λ∗0 = Λ∗ \ ∂Λ∗}.

It turns out we can also have the equivalent characterization

U0 = {α ∈ U : α = Πδτ for some τ},

where recall that Π is the orthogonal projection onto U (this is just setting the edges outside to zero). The subtle

detail is that δα only vanishes on the internal vertices even though α is supported on the edges of E∗0 , so we can’t

just use the ordinary Poincaré lemma. So now U0 contains one element of each equivalence class, and it’s also the

smallest-norm element of the class.
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Meanwhile on the integer-valued side, we similarly defined A0 to be a subset of A of one smallest-norm element per

equivalence class. The dual model we care about for our problem is a probability measure µ0 on the countable set A0 (or

equivalently we could think of it as one on equivalence classes) with probability mass proportional to exp
(
− 1
2β ||dα||

2
)
.

(Our gauge group in the dual model is now Z with addition, but we need to go to the quotient space of orbits to get

summability because we now don’t have compactness.) Recall that we had the operator Dℓ : A0 → (0,∞) defined by

Dℓ(α) = exp

− 1
β

∑
p∈Σ
∗dα(p)−

|Σ|
2β


where Σ is the set of plaquettes enclosed by the rectangular loop ℓ, and where ∗dα(p) = dα(∗p) (since the dual of a

plaquette is a plaquette in four dimensions). Visually, remember that Σ is a collection of nicely aligned rectangles, but

∗p is taking each of those and spinning it around to the other dimensions around the midpoint – they are not forming

a perfect tiling. And what we proved earlier on is that

⟨Wℓ⟩ = ⟨Dℓ⟩∗;

in particular this proves that the Wilson loop is always positive, even though the Wilson loop is a complex-valued

random variable.

Remark 95. Notice that we don’t necessarily have uniqueness of the infinite-volume limit even in the primal limit

(subsequential limits exist but they may not agree), so this dual lattice construction only really makes sense for finite

boxes. And that’s also why we’re obtaining all of our estimates for finite boxes and then showing that they don’t

depend on the actual boxes, and in fact the value of ⟨Wℓ⟩ may not even be known to be unique in the limit. What

our inequalities are then saying is that for any such subsequential limit and any Λ we must have ⟨Wℓ⟩ satisfying that

inequality.

So now we want to compare to the continuum setup: we define a Gaussian measure γε on the real-valued U now

with density proportional to exp
(
− 1
2β ||dα||

2 + ε||α||2
)

(which is nondegenerate for any positive ε > 0). Letting γε
be randomly drawn from γε and taking its projections η0,ε, η1,ε onto U0,V0 respectively, we proved last time that η0,ε
and η1,ε are independent and η1,ε is mean zero and has covariance matrix βε−1I (which makes sense, since for ε = 0

it should be completely spread out and not well-defined). Meanwhile η0,ε converges in distribution to η0 following the

Gaussian measure γ0 on U0 with density proportional to exp
(
− 1
2β ||dα||

2
)
. We’ll now compare µ0 (discrete) with γ0

(continuum) and try to get the theorem out of that.

To do so, we defined µε to have probability mass function exp
(
− 1
2β (||dα||

2 + ε||α||2
)
, which is a discrete analog

of γε. Letting ⟨f ⟩∗ε be
∫
f dµε and ⟨f ⟩∗ =

∫
f dµ0, we proved last time that if f is a function of subexponential growth

and is constant on equivalence classes, then we can obtain ⟨f ⟩∗ as the limit of ⟨f ⟩∗ε (this is the analog of γ0,ε converging

to γ0 in distribution, but it requires more work because we were on the discrete set). The main idea is that if ε is very

small, then the measure µε is almost uniform on each equivalence class. But µε is somehow nicer because it’s on all

of A, while A0 is not such a nice object.

So the first crucial step of our comparison procedure is a rigorous version of the heuristic identity dµ0(η) ∝(∑
α∈A∩U0 e

2πi(α,η)
)
dγ0(η) (which is saying that we have a density with respect to the continuum model). This is

basically the statement of Proposition 91 above: for any function of the form e(τ,α) for τ ∈ U0, we have

⟨f ⟩∗ =
∑
α0∈B0 E

[
f (η0)e

2πi(α0,η0)
]∑

α0∈B0 E
[
e2πi(α0,η0)

] .

with both sums absolutely convergent. The key observation compared to last time is that B0 = A0 ∩ U0 is actually

A ∩ U0, since if we take anything in A ∩ U0 it must be the unique smallest-norm element in its equivalence class, so
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it is in A0. (Of course this still doesn’t explain why A∩ U0 has elements other than the all-zero form, but the lemma

says that it must be.)

Proof of Proposition 91. We know that ⟨f ⟩∗ = limε→0⟨f ⟩∗ε. Letting mε be the probability mass function of µε, we

know that f mε is a Schwartz function (because mε is quadratically decaying in the exponent) and so by the Poisson

summation formula

⟨f ⟩∗ε =
∑
α∈A
(f mε)(α)

=
∑
α∈A

f̂ mε(2πα)

=
1

Zε

∑
α∈A

∫
U
f (κ)e2πi(α,κ) exp

(
−
1

2β
||dκ||2 + ε||κ||2

)
dκ.

Similarly taking f = 1 we get a formula for the normalizing constant, so in fact

⟨f ⟩∗ε =
∑
α∈A E[f (ηε)e2πi(α,ηε)]∑
α∈A E[e2πi(α,ηε)]

.

Now taking ε → 0, we claim that basically the terms go to zero unless α ∈ A ∩ U0 so we end up needing to restrict

our sum. We know that ηε = η0,ε + η1,ε is a sum of two independent parts, and f is constant on equivalence classes

because e(τ,α) = e(τ,α
′) for any α ∼ α′ (since α′ − α is in the orthogonal complement of U0 ∋ τ). So in fact

E[f (ηε)e2πi(α,ηε)] = E[f (η0,ε)e2πi(α,η0,ε)e2πi(α,η1,ε)]

= E[f (η0,ε)e2πi(α,η0,ε)]E[e2πi(α,η1,ε)]

= E[f (η0,ε)e2πi(α,η0,ε)] exp
(
−
2π2β

ε
||α1||2

)
,

where α = α0 + α1 under the decomposition into the subspaces U0, V0 and where (α, η1,ε) = (α1, η1,ε). But now as

ε→ 0 this whole thing converges to E[f (η0)e2πi(α,η0 ] if α1 = 0 and zero otherwise, so we must have α ∈ U0. What’s

left is to use the dominated convergence to show that it’s okay to take the limit within the sum, and we won’t go

through the details of that here.

So we’re getting closer to a point where we can replace our expectations with something smooth, which is going

back to something we did earlier in the class. We choose a sequence of positive real numbers {zq}q≥1 with
∑
q
2
zq
= 1

and let Q = {1, 2, · · · , }E∗0 . For q ∈ Q we then let c(q) =
∏
e∈E∗0

2
zq(e)

; analogously we can do a finite approximation

QN = {1, · · · , n}E
∗
0 and define aN =

∑N
q=1

2
zq

. We can then define the function ρN on U via

ρN(α) =
∑
q∈QN

c(q)
∏
e∈E∗0

(
1 + aNzq(e) cos(2πiα(e)q(e))

)
.

Lemma 96

For τ ∈ U0 we define the function f (α) = eτ(α), and let ηε have law γε and decomposition η0,ε + η1,ε. Our

expectation of interest then satisfies

⟨f ⟩∗ = lim
N→∞

lim
ε→0

E[f (η0,ε)ρN(ηε)]
E[ρN(ηε)]

.
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This is almost what we proved before but with the ε and N interchanged, and we’re phrasing things in this way

because we do want to make use of the η0,εs (we’ll see soon).

Proof. Defining AN = {−N, · · · , N}E
∗
0 , we know from what we’ve already proven that

⟨f ⟩∗ = lim
N→∞

∑
α∈AN∩U0 E[f (η0)e

2πi(α,η0)]∑
α∈AN∩U0 E[e

2πi(α,η0)]

because we know that our previous numerator and denominator with the full As converged. But AN are each finite

sets (and nonempty for large enough N), so we can in fact take the ε limit for any fixed N; this means

⟨f ⟩∗ = lim
N→∞

lim
ε→0

∑
α∈AN E[f (η0)e

2πi(α,ηε)]∑
α∈AN E[e

2πi(α,ηε)]
.

Crucially here (by the same logic as before), we don’t need to take intersections with U0 anymore since as ε→ 0 the

terms that aren’t in U0 are going away anyway, so we can actually sum over all terms in AN . But this is now nice

because we can write it as an E∗0-fold sum over {−N, · · · , N}, and then the remaining calculation to get to the form

of ρN has already been previously done.

So the density of µ0 now takes ρN(ηε), then sends ε → 0, and then takes N → ∞. We’re going to keep

reinterpreting this density step by step further, since ρN is still very spiky. Remember that for each (integer-valued)

α ∈ A we define the support E(α) = {e ∈ E∗0 : α(e) ̸= 0} and say that E ⊆ A form an ensemble if E(α)∩E(α′) = ∅
for all disjoint α,α′ ∈ E and a k-ensemble if dist(E(α), E(α′)) ≥ 2k/2. (In particular, 1-ensembles mean that plaquettes

cannot contribute to different forms simultaneously.) We previously proved this result in Lemma 90, but we’ll rearrange

the quantifiers in a slightly different way which is nicer for us:

Lemma 97

For all q ∈ Q, there is a finite set Γ(q) which indexes strictly positive coefficients {cγ}γ∈Γ(q) and 1-ensembles

{Eγ}γ∈Γ(q), such that for any N ≥ 1, there are strictly positive coefficients {KNγ (ξ)}γ∈Γ(q),η∈Eγ so that for all

α ∈ U we have ∏
e∈E∗0

(
1 + aNzq(e) cos(2πq(e)α(e))

)
=
∑
γ∈Γ(q)

cγ
∏
ξ∈Eγ

(
1 +KNγ (ξ) cos(2π(α, ξ))

)
,

and furthermore we have that KNγ (ξ) ≤ 3N1(ξ)
∏
e∈E(ξ) zq(e) for N1(η) the number of edges e ∈ E∗0 of distance at

most 1 from E(η).

Remember that our proof involved putting together ensembles together by replacing products with finite sums of

products using a strange cosine identity. We want to consider products of 1-forms in U0, so we want to be able to

simplify the expectation when ξ is drawn from a Gaussian measure γ0; that’s easier to do on the right-hand side than

on the left-hand side. (We’ll do some kind of conditioning on certain edges of α in a renormalization step, and it’ll be

done in a way where the replacement of KNγ becomes very small instead of very big.)

So now without loss of generality we can assume all Γ(q)s are disjoint (since they’re just indexing sets) and let

Γ =
⋃
q∈Q Γ(q) and ΓN =

⋃
q∈QN Γ(q). We get the following corollary:
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Corollary 98

Our density can be written as

ρN(α) =
∑
γ∈ΓN

cγ
∏
ξ∈Eγ

(
1 +KNγ (ξ) cos(2π(α, ξ))

)
.

Of course, as written it’s not clear that this is positive yet, but our goal will be to chip away at that and end up

with something positive. We can replace ρN by the following simpler object: let E0γ = Eγ ∩ U0 (remember Eγ is always

some collection of integer-valued 1-forms), and define analogously

ρ0N(α) =
∑
γ∈ΓN

cγ
∏
ξ∈E0γ

(
1 +KNγ (ξ) cos(2π(α, ξ))

)
.

The point will be to show that we can actually replace ρN by ρ0N , and at that point we can take away the ε:

Lemma 99

We have that

⟨f ⟩∗ = lim
N→∞

E[f (η0)ρ0N(η0)]
E[ρ0N(η0)]

.

What’s nice is that even if ρ0N is not that much nicer than ρN , the next step we take will be able to be carried out

with this modified density, and we’ll see that next time! It’ll basically come down to a Girsanov-type “completing the

square,” where the Dℓ factor will be used to do a change of variable to express the numerator and denominator as

certain shifts. But that factor will be exactly what is needed to give us the perimeter law, and the ratio of ρN with the

shift will be lower bounded accordingly.

19 December 3, 2025

Last time, we showed that the dual expectation ⟨Dℓ⟩∗ can be written in the form limN→∞ limε→0
E[Dℓ(η0,ε)ρN(ηε)]
E[ρN(ηε)] , where

η0 ∼ γ0 is a Gaussian 1-form (on the subspace U0 with density proportional to exp
(
− 1
2β ||dα||

2
)
) and ρN is some

positive linear combination of
∏
(1 + KNγ (ξ) cos(2π(α, ξ))) for various 1-ensembles (meaning these ensembles are

sufficiently separated from each other). But ρN(α) can take both positive and negative values and the KNs can be

very large, so we don’t have a guarantee on the sign with this.

The lemma we claimed last time is that ρN can be replaced by ρ0N , in which each Eγ is replaced by Eγ ∩ U0.

Proof of Lemma 99. For any function f : U → C which is constant on equivalence classes, we have (with the same

notation as last time)

E[f (η0,ε)ρN(ηε)] =
∑
γ∈ΓN

cγE

f (η0,ε)∏
ξ∈Eγ

(1 +KNγ (ξ) cos(2π(ηε, ξ)))


=
∑
γ∈ΓN

cγ
∑
E⊂Eγ

∏
ξ∈E

KNγ (ξ)

E
f (η0,ε)∏

ξ∈E
cos (2π(ηε, ξ))


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by expanding out the product by distributivity. Now using cos(x) = e ix+e−ix

2 and again expanding out, we end up with

∑
γ∈ΓN

cγ
∑
E⊂Eγ

∏
ξ∈E

KNγ (ξ)

 1

2|E|

∑
σ∈{−1,1}E

E

f (η0,ε) exp
2πi∑

ξ∈E
σξ(ηε, ξ)


=
∑
γ∈ΓN

cγ
∑
E⊂Eγ

∏
ξ∈E

KNγ (ξ)

 1

2|E|

∑
σ∈{−1,1}E

E [f (η0,ε) exp (2πi(ηε, ασ))]

where ασ =
∑
ξ∈E σξξ. We want to show that Eγ can be replaced with Eγ ∩ U0, so now the claim is that if E \ U0 is

nonempty then this whole contribution is actually zero. Indeed, if κ ∈ E \ U0, then (by our alternate characterization

of U0) there is some x ∈ Λ∗0 such that δκ(x) = 0. Therefore there must be some e ∈ E∗0 incident to x with κ(e) ̸= 0,
but that implies that no other edge incident to x is in E(ξ) for ξ ∈ E , ξ ̸= κ (by the ensemble property). So

δασ(x) = σκδ(κ(x)) ̸= 0,

which means we must have ασ ̸∈ U0 for all possible signs σ. But if we’re not in U0, then as ε→ 0 we have

1

2|E|

∑
σ∈{−1,1}E

E [f (η0,ε) exp (2πi(ηε, ασ))]→ 0 as ε→ 0

because ηε breaks up into η0,ε and η1,ε, and the huge-variance part of η1,ε makes the expectation vanish in the limit

if ασ always has a nonzero component in that direction. Thus we can indeed take intersections with U0 and get the

desired result.

We can think of this as saying that we’ve now evaluated the limit ε→ 0 and found which terms contribute in that

limit, and now we have

⟨Dℓ⟩∗ = lim
N→∞

E[Dℓ(η0)ρ0N(η0)]
E[ρ0N(η0)]

, Dℓ(α) = exp

 1
β

∑
p∈Σ

dα(∗p)−
|Σ|
2β

 .
We can write this in a more convenient form: instead of Σ being the set of plaquettes enclosed by our loop, we write

down the 2-form σ on ∗Z4 with σ(p) = 1 if p ∈ ∗Σ and σ(p) = 0 otherwise. Then by a direct computation we have

Dℓ(α) = exp

(
1

β
(dα, σ)−

1

2β
||σ||2

)
,

and (dα, σ) = (α, δσ) is actually an observable of the form we’ve been studying, since δσ ∈ U0. (Indeed we just need

our loop to not touch the boundary, so then δσ is a 1-form and nonzero only inside with δ of it equal to zero, so it

satisfies our condition of being of the form f (α) = e(α,τ) for τ ∈ U0.) So we can apply our earlier results, and so what

we get is that

⟨Dℓ⟩∗ = lim
N→∞

E
[
exp

(
1
β (dη0, σ)−

1
2β ||σ||

2
)
ρ0N(η0)

]
E[ρ0N(η0)]

,

so we basically have a linear tilting factor to our Gaussian measure. In such cases we can do a change of variables

(completing the square) and get the following:
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Lemma 100

Let τ = −δ∆−1Λ∗ σ and κ = −ΠΛ∗δd∆−1Λ∗ σ. Then we have

⟨Dℓ⟩∗ = exp
(
1

2β
||dτ − ΠΛ∗dτ ||2 −

1

2β
||κ||2

)
lim
N→∞

E[ρ0N(η0 + τ)]
E[ρ0N(η0)]

,

where ∆Λ∗ is the Hodge Laplacian with zero boundary conditions on Λ∗ (explained below).

Explicitly, we define ∆ = δd + dδ to be an operator on real-valued k-forms, and for any hypercube Λ∗ we have a

projection operator ΠΛ∗ on k-forms defined by only keeping the interior k-cells

ΠΛ∗α(c) =

α(c) if all vertices of c are in Λ∗ but not all in the boundary of Λ∗,

0 otherwise.

Then ∆Λ∗ = ΠΛ∗∆. This object is actually not so complicated: if we’re working with 0-forms, then this just reduces to

the usual Laplacian as we understand it. And if f =
∑
1≤i1<cdots<ik≤n fi1,··· ,ikdxi1 ∧· · ·∧dxik , then actually we just apply

∆ component-wise. Thus inverting it is also easy because we just need to invert the usual discrete Laplacian using

the discrete Green’s function. And thus here τ is just some 1-form determined by the loop, but it’s weird because it’s

not supported on some set of edges just around the loop because of that Green’s function term – it can be nonzero

throughout the hypercube.

Letting U(Λ∗) be the range of ΠΛ∗ for some fixed k , we have the set of all k-forms that are nonzero on any

non-interior k-cells of Λ∗, and we have the following fact:

Lemma 101

The map ∆Λ∗ : U(Λ∗)→ U(Λ∗) is a linear bijection.

Proof. U(Λ∗) is a finite-dimensional vector space and the operator maps it into itself, so we just need to prove

injectivity. If ∆Λ∗(α) = 0 for some α ∈ U(Λ∗), then

(α,∆Λ∗α) = 0 =⇒ (α,ΠΛ∗∆α) = 0 =⇒ (α,∆α) = 0,

but this means (α, (δd +dδ)α) = 0 and so ||dα||2+ ||δα||2 = 0 by summation by parts; this implies that α = dτ = δξ

for some τ, ξ, and thus (α,α) = (dτ, δξ) = (τ, δδξ) = 0, and therefore α = 0. So injectivity proves bijectivity.

Our point now is to do a renormalization transform to understand the ratio, and this is a particularly instructive

idea. We have

ρ0N(η0) =
∑
γ∈ΓN

cγ
∏
ξ∈E0γ

(1 +KγN(ξ) cos(2π(η0, ξ))),

and so

ρ0N(η0 + τ) =
∑
γ∈ΓN

cγ
∏
ξ∈E0γ

(1 +KγN(ξ) cos(2π(η0, ξ) + θξ)), θξ = 2π(τ, ξ).

Let’s understand what happens with these general phase terms θξ. We’ll consider a renormalization

ξ→ ξ, KγN(ξ)→ RγN(ξ),
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so that for any fixed γ we have the exact equality

E

∏
ξ∈E0γ

(1 +KγN(ξ) cos(2π(η0, ξ) + θξ))

 = E
∏
ξ∈E0γ

(1 + RγN(ξ) cos(2π(η0, ξ) + θξ))


so that RγN(ξ) is now small so that everything is always positive inside the product (and thus we can apply things like

Jensen’s inequality). Indeed,

E

∏
ξ∈E0γ

(1 +KγN(ξ) cos(2π(η0, ξ) + θξ))

 = lim
ε→0
E

∏
ξ∈E0γ

(1 +KγN(ξ) cos(2π(η0,ε, ξ) + θξ))


= lim
ε→0
E

∏
ξ∈E0γ

(1 +KγN(ξ) cos(2π(ηε, ξ) + θξ))


first because η0,ε converges in distribution to η0, and then because ξ ∈ U0. If we now define the 1-form ηε via

ηε(e) =
1

6

∑
p∈P ∗
p∋e

∑
e ′∈p,e ′ ̸=e

se,e ′ηε(e
′),

where for any (positively oriented) edges e ̸= e ′ in the same plaquette (there’s always a unique one), we define

se,e ′ = −1 if e, e ′ have the same orientation when traversing p as a loop and 1 otherwise. Notice that ηε(e) has no

dependence on ηε(e) itself, only on the neighboring edges; the point of this definition is the following:

Lemma 102

Because ηε has density exp
(
− 1
2β ||dα||

2 + ε||α||2
)
, we have that conditionally on {ηε(e ′)}e ′∈E∗0\{e}, we have

ηε(e) ∼ N
(
6ηε(e)

6 + ε
,
β

6 + ε

)
.

Thus when we evaluate our expected value of interest, take any γ ∈ ΓN and any ξ ∈ E0γ . Call e, e ′ neighbors if

dist(e, e ′) <
√
2 (this can only happen within a single collection); the maximum degree of this graph is at most some

universal constant C because we’re in 4 dimensions, and thus the resulting graph is (C + 1)-colorable by a greedy

algorithm. Therefore there is some subset Bξ ⊆ E(ξ), such that for all distinct e, e ′ ∈ Bξ, we have dist(e, e ′) ≥
√
2

and also ∑
e∈Bξ

ξ(e)2 ≥
1

c + 1
||ξ||2

(by picking the best possible color for this sum-of-squares quantity). We will therefore define

ξ(e) = 0 if e ∈ Bξ, ξ(e) =
1

6

∑
p∈P ∗
p∋e

∑
e ′∈p
e ′∈Bξ

se,e ′ξ(e
′) otherwise.

Notice that this is a pretty inefficient way to write the sum – even though we have a double sum, there can only

actually ever be at most one nonzero contribution total because all of the edges in Bξ are supposed to be at least
√
2

apart, and that’s not true for disjoint edges in any plaquettes containing e. And we will also define

RNγ (ξ) = K
N
γ (ξ) exp

−π2β
3

∑
e∈Bξ

ξ(e)2

 .

74



We’ll see soon that plugging in these renormalized values exactly gives us the desired identity above, and furthermore

this R is small because we previously proved the bound KNγ (ξ) ≤ 3N1(ξ)
∏
e∈E(ξ) z|ξ(e)| (where we previously chose our

qs so that
∑

2
zq
= 1, and now we make the specific choice zq = eβ0q

2
for the exact value of β0 which makes this

sum true); thus we can prove that in fact

KNγ (ξ) ≤ eβ1||ξ||
2

for some β1 depending on β0. So for β chosen large enough we can make RNγ (ξ) small, since we’re multiplying by

something at most exp
(
−π

2β
3 ·

1
c+1 ||ξ||

2
)
.

So to show why this renormalization identity is true, the point is that conditioned on everything outside BBξ
it’s not that hard to work this out: we’re interested in

E

∏
ξ∈E0γ

(1 +KγN(ξ) cos(2π(ηε, ξ) + θξ))

 = ∑
E⊆E0γ

∏
ξ∈E

KNγ (ξ)

2−|E| ∑
σ∈{−1,1}E

E

exp
i∑

ξ∈E
(2πσξ(ηε, ξ)− σξθξ


by doing the same expansion over all subsets. Now for a nonempty E ⊆ E0γ , we can evaluate the innermost sum by

defining (this is a disjoint union)

BE =
⋃
ξ∈E
Bξ.

Note that e, e ′ ∈ BE are always at least
√
2 apart, either by the 1-ensemble property or the definition of individual Bξs.

Thus if we take this inner expectation (ignoring the phase term)

E

exp
i∑

ξ∈E
(2πσξ(ηε, ξ)

 = E
exp

i∑
ξ∈E

∑
e∈E(ξ)

2πσξηε(e)ξ(e)

 ,
which is a double sum, we can only take the terms with e corresponding to BE , and so we can consider the conditional
expectation

E

exp
i∑

ξ∈E

∑
e∈BE

2πσξηε(e)ξ(e)

∣∣∣∣∣∣{ηε(e)}e∈BcE


and plug that in instead by the tower law. But in this conditional expectation, we know that the ηε(e)s for e within

BE become conditionally independent and we can evaluate it exactly: we get that it evaluates to

exp

∑
ξ∈E

∑
e∈BE

(
12πiσξηε(e)ξ(e)

6 + ε
−
2π2βξ(e)2

6 + ε

) .
So we get some terms that suppress our large constants KN , and furthermore the way we defined things we exactly

get (ηε, ξ) = (ηε, ξ). So now we can trace our steps back with ξ instead of ξ, and that gives us the desired identity

with the second fraction terms suppressing the factors of KNγ .

So in summary, expanding out the cosines and then taking conditional expectations lets us integrate out some

coordinates with respect to the Gaussian measure. In the end, things seem like they depend on the full ηε, but they

don’t actually depend on the values in BE because ξ is zero at the edges in BE . That gets us from the “weird” oscillatory

ρ0N to a nice positive quantity.
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