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This will be a course about lattice gauge theories. Lecture notes will be posted on Canvas as the course goes on.
Lattice gauge theories are discrete versions of Euclidean Yang-Mills theories (or what the latter thing is really
“supposed to be”), and the purpose of Euclidean Yang-Mills theories, briefly, is constructing quantum field theories.
There's an approach where we construct first a probabilistic object (random field or random distribution) and then
using tools from functional analysis construct a quantum field theory. (Just like any quantum system, this involves
producing a Hilbert space and a time-evolution group or Hamiltonian, where the vectors are states and a group of
unitary operators U(t) describes how the states evolve over time.) In quantum field theory the Hilbert space is quite
complicated, and there is a well-developed machinery of converting a Markov process to a quantum system: given a

two-sided stationary Markov process {X;}:cr, we define the time-evolution semigroup

Pef(x) = E[f(Xt)|Xo = x].

tH and once we've extracted H we can construct (with

We can then typically find some Hamiltonian H where P, = e~
some machinery called Stone's theorem)

Ut — e—I'tH

So things connect to probability in a different way from the “probability in quantum mechanics,” and lattice gauge
theories are just about the rigorous discrete objects we can construct (and hopefully one day take a scaling limit to
get Euclidean, then quantum Yang-Mills).

This is all rather abstract, so we'll do something a bit more concrete now:

Definition 1

Let G be a compact matrix Lie group contained in U(n) for some n (such as SU(n) or SO(n)), and let g be its
Lie algebra. A g-valued 1-form A = 377 Aidx; on R™3 is a 4-tuple A = (Ao, A1, A, As) of smooth g-valued
functions. The curvature form £ of A is the 2-form

F= Y Fjdxndx

0<i<j<3

where F,‘j = G,AJ- - 8JA, + [A,‘, AJ]

For example, if the Lie group is U(n), the Lie algebra is the space of skew-Hermitian matrices, and so to form a
g-valued 1 form we have four such matrices at each point in R*, in a way smoothly varying in each coordinate. So

derivatives make sense and we can get a curvature form which is a collection of six matrices.



Definition 2

The Yang-Mills action associated to a g-valued 1-form is

1
SA:——/Tr Y mimiFi(x)? | dx,
(A) 29(2) - nin; Fij(x)

0<i<j<3

where o = 1 and 7, = m2 = 13 = —1 (this is usually called the Minkowski signature).

To put this in the framework of the program we just mentioned, we need to write down a Euclidean version of
this action S(A). For this, we will perform “Wick rotation,” which is a heuristic process where we replace t by —it
everywhere (here t = xp is the first coordinate). If we make such a substitution, f dx = f dxodxi1dx>dx3 gains a —i
factor, a%) gains a %, = | factor, and A = Z?:o A;dx; stays the same if we replace Ag by iAg. Thus Fj, has no change
if 1 <, k <3, and for the others

Foj = 80A; — 0;A0 — [Ao, Ajl

changes to i8pA; — i8;A0 — i[Ao, Aj] = iFo;. So actually nn;Fi;(x)? has all of its negative factors canceling out nicely,

and what we end up with is (we are also supposed to multiply what we end up with by /)

1
SE(A)=—5= | Tr| > F(x)?]| dx.

295 Jre 0<i<j<3

SIKUS
So what we'll want to do with the Euclidean theory is to construct some kind of probability measure on the space of all
A —that is, on all g-valued 1-forms — with density proportional to exp(—Sg(A)) “with respect to Lebesgue measure.”

That's what we'll focus on in this course through a discretization.

Much like the discrete version of Brownian motion is random walk, lattice gauge theories are certain lattice
approximations that may allow us to understand the limiting object. We'll now be working in general d-dimensional

space instead of R* as we did above — we can similarly make the definitions for A, F, S(A), and Sg(A) in RY.

Definition 3
Let G be as before and let A C Z be a finite set. Suppose that for any two adjacent vertices x, y € A, there is a
matrix U(x, y) € G, and we impose the constraint that U(y, x) = U(x, y)~!. Such an assignment of matrices is

called a configuration for the theory.

Definition 4
A plaquette is a square bounded by four edges (this is the definition for any d > 2). For each plaquette p € A
(meaning all four edges lie in A) with vertices x1, x2, X3, X4 in anticlockwise order (let x; be lexicographically smallest

and x> the next smallest), define
Up = U(x1, x2)U(x2, x3)U(x3, xa)U(xa, x1).
The Wilson action on this configuration is then

Sa(U) =D Re(Tr(/ — Up)).

peEN

(We're using free boundary conditions here.)




To see how this relates to Euclidean Yang-Mills theories, fix some 8 > 0 and let uag be the probability measure
on the space of configurations G(A) (that is, assignments of matrices to the edges of the lattice) defined as

1
pnp = fefﬁsA(U)dU/\(U),

where dop(U) is the product normalized Haar measure on G(A) (this makes sense since G is a compact Lie group and
G(N) = GEW for E(A) the set of positively oriented edges in A) and Z is the appropriate normalizing constant.

Theorem 5

Let A= ZJC'I=1 Ajdx; be a compactly supported smooth g-valued 1-form on RY (for any d > 2), and let 1, --- , 4
be standard basis vectors. We define a configuration on the lattice €Z9 as follows: for any directed edge of the
form (x, x + €;), define

U(x, x + ggj) = e
(and so U(x+e€ej, x) = U(x, x+e¢;)~1). We can now define (because A is compactly supported the sum is finite)

S(U) = > Re(Tr(I = Up)).

peeZd
Then
Se(A) = lim g52e?™*S(V).
e—0

(Indeed, Aj is zero outside a compact set, so U, are all the identity and the contribution to the total trace is
zero outside of that compact set.) It's believed that we might actually need some loge type factors in d = 4 (via
renormalization group arguments), but it's not entirely clear how that actually works out.

We'll need a four-term version of the Baker-Campbell-Hausdorff formula:

Lemma 6

Let A and B be square (complex) matrices of order n with entries all of absolute value at most K. For all t € [0, 1],
we have

t2 = t4
e et® = exp (t(A +B) + E[A, B] + T (A [A B]] + [B.[B, A]]) — 52 ([A [B. A B]]]) + O(t5)> :

where O(t°) means a matrix whose entries have absolute value at most Ct°, where C depends only on K and n.

(The actual Baker-Campbell-Hausdorff formula is an infinite series version of this which doesn't always converge,
but our version here makes sense.)

Proof sketch. Call the quantity inside the exponential on the right-hand side h(t), and let g(t) = e"® . Since
h(t) = O(t), we have
h(t)?>  h(t)*  h(t)*
g(t) =1+ h(t)+ (2) + (6) + (24) + O(t°),

and then plugging in h(t) and keeping track of all coefficients verifies what we want. For example,

h(t)?> = t?(A+ B)? + %t3((A +B)A Bl +[A BlI(A+B)) +---,

and if we collect all terms together we get the same expansion as if we write out e“e’? as a power series (for example,
in both cases the coefficient of t* is ¢ (A® + 3A2B + 3AB? + B?)). O



Lemma 7
Let Bi,- -, Bm be skew-Hermitian matrices (we specialize like this because all of our matrices will be skew-

Hermitian) with absolute values of entries at most K. Then for all t € [0, 1],

m 2
t
efBl...eth:eXp tz Bj+§ Z [BJ‘,B;(]+R +O(t5),

j=1 1<j<k<m

where R = O(t3) and R is skew-Hermitian.

We'll in particular want to apply this to our plaquettes (so m = 4 when we multiply along the four edges).

Proof. We prove this by induction on m; for m = 2 this follows from the following lemma, since [A, B] is skew-Hermitian
if A, B are skew-Hermitian. And for the inductive step, we have by the inductive hypothesis
-1

etBr. . etBri — exp(tA) + O(t°), A= B, + Z [B;, Bk] + @

1 1<j<k<m—1

3

-,
Il
N ~+

for some skew-Hermitian @ with Q = O(t?). So now we can apply the previous lemma to e“eB» and get the result,

since again commutators of A and B,,, will all be skew-Hermitian. O
Corollary 8
Let By,---, Bn be as above. Then for all t € [0, 1],
2
1 n 2 4 - 5
tB tBm)) — L B .
Re(Tr(/ — &P etfm)) = —>Tr t; Bi+ 1<§<m[8,,Bj] + Tr|O(t );B, +O(t°).

Proof. From the previous lemma, we can again take a power series approach and write

4
e et =+ 3" %(tz Bi + %2 > [Bi. B+ R)k + O(t°).
k=1 i i<j
But the blue part is skew-Hermitian, hence has all imaginary eigenvalues; therefore the traces of its odd parts are pure
imaginary and the traces of its even parts are real. So when we take the real part of the trace, only the kK = 2, 4 terms
will survive, and out of those the only parts that give us nontrivial contributions up to O(t*) are the ones listed above.
(Indeed, the only cross-term involving R that may matter is between t 3 B; and R, which is indeed absorbed into the
term O(t*) >_ B;.) O

Proof sketch of Theorem 5. Take some x € €Z9 and fix some 1 < j < k < d. Consider the plaquette p being formed

from x; = X, x = x +€6;, X3 = X +€¢j +€¢, and x4 = x + €e,. We have

Re(Tr(l — Up)) = Re(Tr(l — U(x1, x)U(xe, x3)U(x3, Xa)U(Xa, x1))),

eA;(x) .

and we defined U(x, x+¢c¢j) = e So substituting these values in and applying our lemma, we can show that the

approximation works — we'll do this next time. O
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Last time, we set up the following framework: A = 27:1 Ajdx; is a smooth compactly-supported g-valued 1-form on

RY, which we discretize by defining for any x € €Z9 the matrices
U(x, x + g¢j) = eA4X)

along the edges of our lattice. We were then trying to prove that limg_o go’zs"*“S(U) is the Euclidean Yang-Mills
action Sg(A), so that the Wilson action is a proper discretization.

Proof of Theorem 5. Writing out the proof sketch from last time in more detail, we again need to make use of

Corollary 8. The Wilson action is the sum over all plaquettes of the lattice
S(U) = Re(Tr(l = Up))
P

(this sum is nonzero only finitely often, so this is well-defined). Like last time, we fix some x € €Z9 and consider p
formed by x; = x, X0 = x + €¢j, X3 = X + €€ + €€, and x4 = x + €ex. Our corollary then says that

Re(Tr(/ — Up)) = Re(Tr(l — U(x1, x2)U(x2, x3)U(x3, Xa)U(Xa, x1)))
— Re (TI’ (/ _ ez—:Aj(xl)esAk(xz)efeAj(xz;)efsAk(xl)))

where notice that we had to take the inverse for U(xs, x4) and U(xs, x1) because we're defining things in terms of
the positively oriented edges. Applying Corollary 8 yields that

Re(Tr(/ — Up)) = —%Tr

(6 (AJ(X) + Ak(X2) - AJ‘(X4) — Ak(X))

+ 5 (1A0), Al = [A0a). AG)] = [4(x0), Ax(x0)] = [AkGe), A ()] = [Axbe). AdGa)] + [Aj<x4>,Ak(xl>])> 1
+ T [O(6)(A/(x) + Aclxe) = Aj(xe) = Ax(x))] + O(€).

Now Aj(x1) = Aj(x), Ak(x1) = Ak(x), and then we linearize the other terms: Ax(x2) = Ax(x + €¢j) = Ax(x) +
€0jAk(x) + O(£?), and similarly A;(xa) = Aj(x) + €8kA;(x) + O(g?). Thus the sum of all four of these terms is just
£(8;Ak(x)—8kAj(x))+O(£2); in particular we see that we can absorb the Tr [O(e*)(A;(x) + Ax(x2) — Aj(xa) — Ac(x))]
term as part of the O(&®) error. And similarly the commutators can be simplified: [A;(x1), Ax(x2)] is just [A;(x), Ax(x)]+
O(e), and if we do this with all six commutators the leading contributions add up to 2[A;(x), Ac(x)]. Thus plugging
everything in,
+O(e°).

2
Re(Tr(l — Up)) = —%Tr <62 (61Ak(x) - akAj(X)) + 62[AJ(X), Ac(x)] + 0(83)>

So when we expand out the squares, all errors are of order at least €2, and we indeed get

Re(TH(/ — Uy) = 5 Tr [(8144(6) — 0 () + A0, ACIY] +0(e%) =~ Tr(Fi(x0?) +O(e?).



meaning that substituting back into the action,

d
d—4 _ & : 2 d+1
elS(U) = -5 > Z Tr(Fix(x)?) + O(e91).
x€Zd 1<j<k<d
But we're summing over all plaquettes in eZ? corresponding to a bounded region of nonzero (/ —U,)s, and the number
of nonzero terms is O(g~9); hence the error term is O(g). And the main term is just a Riemann sum approximation

converging to [ D ik Tr(Fk(x)?), which is the Yang-Mills action as desired if we add in the factor of g;2. O

Remark 9. This is a similar argument to what appears when going between Brownian motion and Gaussian random
walk, but the trouble is that we can't make a “Cameron-Martin” type argument to go from smooth A to general A

since things aren't Gaussian here.

We'll turn now to gauge transforms:

Definition 10
Let A= 3" A;dx be a g-valued 1-form. A smooth gauge transform U is a smooth map from R? into G. (In

the language of differential geometry, consider the trivial principal bundle and take a section.)

Gauge transforms form a group under pointwise multiplication, and the group acts on smooth 1-forms in the

following way: U acts on A as
AY(x) = U(x)AX)U(x) ™t = (dU(x))U(x) "L

More explicitly in coordinates, we have
d
AV =3 AV (x)dxg, AY(X) = U()A(x)U() ™ = (GUE))UG)
j=1

(That is, 8;U(x) = lime—o 2(U(x + €¢j) — U(x)) as matrices.) We proved last year that this is actually an element
of the Lie algebra for any smooth gauge transform, so AV is another smooth 1-form and in fact (by a calculation)
(AV)V = AVU.

We'll now want to similarly get a gauge transform for the discrete setting and justify why it is a proper discretization.
For any finite lattice A C Z9 and lattice gauge theory on A, the group of gauge transforms is just G" (that is, no
conditions on smoothness — we just assign a group element to each vertex). For a configuration U € G(A) and a
gauge transform g € G", we define

U9(x,y) = g(x)U(x,y)g(y) "

So this is a much more transparent description of the action of a gauge transform: the new matrix attached to the
edge pre-multiplies by g at the left endpoint and post-multiplies by g at the right endpoint. By a direct calculation we
have that because U(y,x) = U(x, y)™ !,

U9(y,x) = g Uy, x)g(x) " = (g()U(x, y)a(y) ™) = U9(x, ») 71,

and we can also similarly check that (U9)" = U". The last thing we'll do for the continous-to-discrete description is
show that these gauge transforms are the right discretization as well.

Recall that for any U € U(N), we can write U = VDV* for some unitary matrix V' € U(n) and some diagonal
matrix D = diag(e®, ---, e/%) with all ; € (—m, 7) (and this is unique up to permuting things) — this is the spectral
decomposition. We can then define

log U = Vdiag(ify, - -, i0,)V*



uniquely because of the constraints above.

Theorem 11
Let A be a smooth compactly supported g-valued 1-form on RY, and let g € C*(R?,G) be a smooth gauge
transform that is the identity matrix / outside a compact region. Define the discretization on the lattice as before
with U(x, x +e¢;) = e4X). Letting A9, U9 be as before (so A9 is defined in the continuous way, and U9 is defined
in the discrete way). If we let Bj(x) = L log U9(x, x + €¢;), then

sup HAjg(x)fBj(x)H =0.

xe€ezd,1<<d

(Here, the norm denotes Euclidean norm on the entries of the matrix.)

(In fact, the norm will be O(g), as we'll see in the proof.) To prove this result, we'll need the following lemma:

Lemma 12

Let U € U(n) be such that ||[U— /|| < 3. ThenlogU = >3, (’_ku)k, and the series converges absolutely with
respect to the norm.

Proof. The absolute convergence is clear because |[UV|| < [||U|] - ||V]| and thus the sum converges exponentially
fast. To show that it's actually equal to log U as we defined before, write U = VDV* so that logU = VAV* with
A = diag(ify, - -+, i6,). Letting log now denote the analytic branch of the logarithm in C \ (—oo, 0] agreeing with In

on [0, 00), we have a power series at 1 given by

loQZ:_Z%
k=1

with radius of convergence 1. So

U =117 =Tr((U = D*(U = 1))
— i“_ o ei9J|2
Jj=1

by the spectral decomposition, and we know the left-hand side is at most %. Thus each term is at most %, meaning

each e'% is within % of 1 and in particular none of them are equal to —m. Thus by the choice of branch of log, we get
. i0;

i6; = log el = — PP (ki )% S0 the rest of the proof just follows from the spectral decomposition and writing out

each term (/ — U)X in the sum in terms of V and our diagonal matrices. O

Proof of Theorem 11. Take any x € €Z9 and 1 < j < d. By definition we have

U9(x, x +€€) = g(x)U(x, x +e¢)g(x +e¢) !
= g(x)e" Mg (x +eg)
= g(x)(I +eAj(x) + O(e?))g(x +ee) !
(here again the constant in O(&?) doesn’t depend on x or € because things are compactly supported); expanding this

out yields
U9(x, x + €)= g(x)g(x + e6)) " + eg(x)A;(x)g(x + €¢) ! + O(g?).



We know that g(x)g(x)™t =1 = 8;(9(x))g(x)* + g(x)d;(g(x)~') = 0 by taking a derivative, so 8;(g(x)~!) =
—g(x)71(8;9(x))g(x)~L. Thus linearizing, we get

g(x +eg) ™t = g(x) 7t —eg(x)TH(89(x))g(x) 7" + O(e?),

and we don't have to worry about singularities when taking inverses because everything is a unitary matrix here.

Substituting this back in, we get

U9(x, x +eej) = g(x) [9(x) 7" = €g(x)718;(9(x))g(x) ] + €g(x)Ai(x)g(x) ™" + O(€?)
=1 —€8;(9(x))g(x) 7" +eg(x)Ai(x)g(x) ™" + O(€?)
= |+ eA7(x) + O(g?).

But by definition U9(x, x +¢€¢;) is a unitary matrix and it's very close to the identity, and the O(e?) bounds are uniform
in x. So for € small enough we can apply our lemma above, and we get

0o [ g 2\\k
log U9(x, x +€¢gj) = — Z (—ed) (X)k+ o) = sAf(X) +O(e?),

k=1

as desired. O

When people tried to get convergence to continuum limits in constructive field theory, they tried to choose gauge
transforms to make all of the bond variables close to the identity. But this program has not been completed yet, and
it's one of the first steps for the Yang-Mills existence problem. We'll see more of this later on.

Now that we've defined gauge transforms, we can understand gauge-invariant observables and gauge fixing. For
A C Z9 and a function f : G(A) — C, we can define the expected value of f as

() = /G o (Odms)

We say that an observable is gauge-invariant if f(U9) = f(U) for all U, g (that is, f is constant on orbits of the
gauge transform). There's a physical reason to care only about these observables, but mathematically we also care
because we can always produce gauge-invariant observables with the same expectation as a given observable with a

certain prescription.

Definition 13
A loop in Z9, usually denoted ¢, is a sequence of points Xxg, X1, - -+ , Xk such that Xj, Xj+1 are neighbors for all
0 <j < k—1and xg is a neighbor of xx. The Wilson loop observable for a loop entirely contained within A is
defined as

Wy(U) = Tr(U(x0, x1)U(x1, x2) - - - U(xk—1, Xk )U (XK, X0))-

There is a continuous analog of this definition (where we take the gauge connection A and perform parallel
transport of A around a loop), though it is a bit more complicated to define since it's the Wick-ordered exponential of

the connection rather than just the exponential. And this quantity is indeed gauge-invariant, because

We(U9) = Tr(g(x0)U(x0, x1)g(x1) " g(x1)U(x1, x2)g(x2) - g(xcU (X, X0) 9(X0) ™).

and now all of the g factors cancel out except the first and last and trace is invariant under conjugation, meaning we
end up with W,(U) as desired.
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We started discussed gauge-invariant observables last time, and specifically we considered the Wilson loop observable
W,(U) associated to a loop £ in Z?. For a plaquette p, note that Tr(U,) is itself a Wilson loop observable, so the
Wilson action Sa(U) = >, Re(Tr(/ — U,)) is therefore gauge-invariant. This implies that the measure up g for the
lattice gauge theory is also invariant under gauge transforms; that is,

/ F(U) i (U) = / F(U)dung(U).

Indeed, we can see this by letting o denote the product (normalized) Haar measure on G(A), so that we always have

/ F(U9)don(U) = / F(U)don(U)

since the gauge transform retains the independence and the distribution on each vertex of A. Therefore it is also true
that

/ f(U9)e P dap(U) = / f(U9)e P dan(U)
— [ e P2 o),

by first using that S is gauge-invariant and then using our identity above. Dividing through by the normalizing constant
Z then yields the result.

Remark 14. [attice models are “very real models” in a certain way: people use simulations of some other lattice models
to estimate the radius of elementary particles, among other things. And these are the best available approximations
to the true values verified by experiments. (For example, SU(3) lattice gauge theory should describe the theory of
hadrons or quarks; the pure gauge theory is just about the strong force, but if we add the particles and put in more
things we do get things that aren’t just toy models.) The point is also to construct a non-perturbative Yang-Mills
theory because perturbation theory has its limits, and our best available understanding of that comes through these

lattice gauge theories as discrete approximations.

Example 15
We also mentioned last time that it “suffices mathematically to look at gauge-invariant functions,” which we'll

elaborate on now.

Let f : G(A) — C be any function such that (|f|) < co. We can then define a new function which is the “random

gauge transform”

hU) = / F(U9) [T do(g(x)).

XEN
(The notation do(g(x)) means that each coordinate of our transform is distributed according to the Haar measure.)
We claim that h is gauge-invariant and also that (h) = (f) under the lattice gauge theory. Indeed, we have

h(U9) = F(U9)Y) [T da(g'(x)) = F(U9) T] da(g'(x)).

XEN xEN

but since the Haar measure is left- and right-invariant this is the same as f(U9) [,cp do(g'(x)) = h(U). (Intuitively,

applying a gauge transform and then applying a random one is just a random gauge transform.) And to show that h



has the same expectation as f, we compute

(h) = } / h(U)e PV do, (U) = % / ( / FU 1 do(g(x))) e P dan (V).

xeN

Since f has finite expectation under the lattice gauge theory, we can swap the order of integration and use Fubini's

%/ </ f(Ug)eﬁs/\(U)do—A(U)) [ dotax))

XEN

theorem to get

But we just showed that the lattice gauge theory is invariant under gauge transforms, so this just simplifies to (replacing

U9 with U)
%//f(U)e‘ﬁsA(U)dU/\(U)HdU(g(X)) = <f>/Hd"(9(X))'

which is just (f) since the Haar measure is normalized.
Last year, we talked about some gauge-fixing procedures in the continuum, and now we'll talk about a more unified

way of doing so in the discrete setting. The following is the main result that will be helpful for us:

Proposition 16
Let I be a subset of the positively oriented edges E£(A) such that the undirected versions of the edges in I" form
no loops. Let G(A, ) be the set of configurations U € G(A) where U(x, y) = | for all (x,y) € I'. Then defining

dinrp(U) = Zi exp (~BSA(U)) don (V).

where dop 4 (U) = []x,)eemnr do(U(x,y)) is product Haar measure on all edges except those in I". Then for

any gauge-invariant f with {|f]) < oo, we have

() = /G op, [WHnra(V)

In other words, we take our original measure and condition on all edges in [ to be the identity, and that still gets
us valid expectations while using a simpler theory. And this has important consequences: in lattice gauge theory we
often care about mass gap and quark confinement, both of which hold for two-dimensional theories. And indeed any

two-dimensional theory can be reduced to a collection of independent Markov chains, which is what we'll use.

Proof. Let V(x,y) be iid (random matrices) from o for all (x,y) € E(A)\ . Extend V to an element of G(A, ") by
setting all V/(x, y) = I for (x,y) € I'. Let g(x) be iid from o for all x € A (so that we have a random gauge transform),
and let W = V9 be that gauge transform applied to V. We claim that the matrices W(x, y) are now all iid from o for
all (x,y) € E(N).

To prove this, we first show that for (x, y) € ', the W(x, y) are iid from o. Indeed,

W(x,y) = g(x)V(x,y)g(y) ™ = g(x)g(y) ",

and we claim we can order the elements of I" as (x1, y1), (x2,¥2), -+ such that for all n, at most one of x, and y, is
among the previous vertices xi, Y1, X2, Y2, -, Xp—1, ¥n—1. Indeed, if the undirected graph induced by I is connected
(meaning it is a tree), then we first let (x1, y1) be any element of I, and then once we've chosen the first (n — 1)
elements in the ordering, we choose (x;, y,) from among the remaining edges (if any) such that at least one of x,, y,
is in the set of previously observed vertices. By connectedness we will always have such an edge available until T is

exhausted, since the undirected graph formed by the first n edges is always connected. And we can't have both x,, v,

10



in the set of previously observed vertices, because otherwise we would form a cycle (by first taking the previous path
between x, and y, in that connected graph so far, and then connecting that with our edge (x,, y,)). So we can indeed
do the ordering we requested for a single connected component. And finally, if the undirected graph is not connected,
we just separate the edges into connected components and do them one after another.

The point of this ordering is to show that each W(x,, y,) is independent of all previous ones, and that each W(x, y)
is distributed iid from o, so (W(x, y))x.y)er is indeed overall iid from o. So our goal is to prove that conditionally
given W(x1, 1), -+, W(Xa—1, ¥n—1), the matrix W(x,, y,) is always distributed according to o. For this, it suffices
to prove the stronger statement that given g(x1), g(y1), -, g(xa—1), 9(¥n—1) (which together determine all previous
W (x;,yi)s), we have W (x,, yn) ~ . But now W (x,, ¥») = 9(xa)g(ya)}; if both x, and y, are both not in the previous
set of vertices then g(x,)g(y,)~! is Haar distributed and independent of the rest, and even if one of x, and y, are
in the set but the other is not, then g(x,)g(y,)~! still conditionally follows ¢ by the invariance of the Haar measure.
This proves our claim that W(x, y) are iid from o for all (x,y) € T.

For the remaining edges, note that for (x,y) € E(A)\ I, we have

W(x,y) = g(x)V(x,y)g(y) ™

and the V/(x, y)s are iid from the Haar measure. So conditional on the gauge transform g, {W(x, y)}(x)eenr are
also iid from o, again by invariance. So in fact these are independent of g (while the W(x, y)s in ' are deterministic
functions of g), and thus all W are indeed iid from .

To complete the proof of the theorem, let h: G(A) — C be any gauge-invariant function. We then have

/ h(U)don ) = E[H(V)] = E[h(V9)]
G(/\,I—)

by gauge-invariance of h, and this last quantity is exactly E[h(W)]. But W is iid Haar, so this last quantity is exactly
fG(/\) h(U)daop(U).

In particular, if we take any gauge-invariant f : G(A) — C and let h(U) = f(U)e P>*Y) then h is also gauge-
invariant and thus [ f(U)e PrUdap r(U) = Jom f(U)e PnUdap(U). And there’s one last step to complete
the proof: taking f to be identically 1 yields Zr = Z, so that dividing by the appropriate normalizing constants on
each side proves the desired result. O

We'll now turn to mass gap and quark confinement, and we won't go into the physical details of what exactly these

mean for now, only the mathematical formulations.

Mass gap is equivalent to exponential decay of correlations — recall from last year that to construct a quantum

field theory, we need a self-adjoint operator H. We then say that we have a mass gap if there is a positive spectral
gap between 0 and the next smallest eigenvalue. We then get a quantum operator e/t
tH

with a corresponding
Markov process with semigroup e~ ', and we get exponential mixing if the gap is of positive size. And in fact
the connection between “exponential mixing” and “exponential decay” comes in gauge-fixing — if we fix everything
going in a particular coordinate direction (which we can call “time”), the (time-)slices evolving over that coordinate

yield a Markov process.

On the other hand, we can also have theories with massless particles which will then not have a mass gap. So we'll

discuss all that later.
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Definition 18

Let Ay 1 Z9, and consider the lattice gauge theory on Ay. Let f : G(Ay) — C be a gauge-invariant observable;
we say that f is supported on a set of directed edges E if f(U) has no dependence on U(x, y) for any (x,y) &€ E
(so for example a plaquette variable is supported only on its four bordering edges). We then say the theory (that is,
the sequence of theories on Ay, Ay, - - ) has exponential decay of correlations if for all gauge-invariant bounded
functions f;, f> supported on finite S;, So € Z9 and all N large enough so that S;, So € Ay, we have

(f) — (f)(R)] < Crem@xdet®ns),

where C; may depend on G, d, G, f1, >, |S1], |S2| but not N, while C; may depend on 3, d, G but not f, f, or N.

Here dist(Sy, S») is the minimum graph distance between points in the two sets.

4 October 1, 2025

Last time, we began discussing exponential decay of correlations (also called mass gap). We often discuss mass gap in
terms of infinite-volume Gibbs measures, but we stated our version in Definition 18 to avoid some of those technical
details. (From this version, we can essentially prove that the infinite-volume Gibbs measure is unique, in that it uniquely
determines the gauge-invariant expectations, since we can think about how expectations depend on boundary values
on the box and show that the contributions of those effects are small. But we're trying to not introduce notation for
boundary conditions here for simplicity.)

The Yang-Mills mass gap problem requires us to prove that the continuous-time Hamiltonian has a gap in the
spectrum, which is more complicated than this discrete statement. But even for something like SU(3) lattice gauge
theory on Z* (or any nonabelian gauge group — it's expected not to be true for abelian gauge groups), it would be a
big deal and a big step towards proving that conjecture. It's open to try to prove this for large enough 3, and we'll

see how to do so for small B soon.

Remark 19. The reason that decay of correlations are called “mass” is that if we consider the massive scalar free
field (which is the quantum field theory which describes free bosons with mass m), the mass is exactly the gap in the
spectrum in that model. And in systems of particles in general, that generalizes in some way. We can add mass terms

to our lattice gauge theories too, but it breaks the gauge symmetry.

We'll prove this in two dimensions shortly, where things are much easier to do. First, though, there's also a related

problem of quark confinement, which we'll state as a math problem:

Definition 20

Let Ay 1 Z9, and consider the lattice gauge theory on Ay. We say that the theory (that is, the sequence of
theories) confines quarks if there exists a function V : (0, 00) — R with V(x) — oo as x — oo, such that for any
rectangular loop £ C Ay with side lengths R < T, we have that

[(We)| < Ce”RIT,

with C depending only on 3, d, G. In the special case where V(R) o R, this identity is called Wilson's area law

(since we then have exponential decay of expectations dictated by the area enclosed by £).
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The idea is that in physics, we don't understand why quarks and antiquarks are always bound together rather than
freely existing in nature. The hypothesis is that the potential energy between those objects must grow to infinity
as R — oo so that conservation of energy does not allow them to move apart too much, and Wilson showed in
quantum field theory calculations that if V' is a potential of a quark-antiquark pair separated by R, then this Wilson
loop expectation should behave as written as T grows. (This comes from taking the quantum Yang-Mills model,
introducing the quark-antiquark pair as fermions via Grassmann variables, and then taking the masses to infinity.)

This is also an open problem — both this and mass gap do not have convincing physics arguments beyond numerical

simulations in four dimensoins.

Fact 21

Remember that the product of matrices along a Wilson loop is always unitary, so the product itself is not actually
getting smaller and smaller. But the point is that when we take the expectation of the trace, it will indeed get
quite small — we can prove that under fairly general conditions we have [(W,)| < Cre~2(R+T) This is because
by conditioning on all matrices outside the loop, the remaining matrices are almost independent and have some
uniformly bounded densities with respect to the Haar measure. Of course, this “perimeter law” is weaker than the

conjectured “area law."

We'll prove that the area law always holds for d = 2, and we'll also be able to prove that it holds in general
dimension for small enough 3. But the important open question is again for SU(3) theory on Z* and large enough 3,
or even any non-abelian theory in place of SU(3). And real-world models are supposed to correspond to very large G

in some sense (in fact 8 — oo in ideal models).

Fact 22
Professor Chatterjee has a theorem that a stronger version of mass gap implies confinement, under the assumption
that G has nontrivial center (which is a necessary condition). But both mass gap and quark confinement seem to

be very hard, and it's not clear which one is easier to prove.

We'll now turn to the proofs for d = 2 — we'll need some notation related to Markov chains.

Example 23
Let (S, S) be a measurable space, and let u be a (not necessarily finite) measure on this space. Let Xg, X1, - - -

be a Markov chain on S with transition kernel p with respect to u, meaning that
P(Xn1 € AlX, =x) = /Ap(x,y)du,(y).

(If we're concerned about conditioning on x here, we can in fact make sense of that via regular conditional
probabilities on Polish spaces, which we're always working on.) Let p”(x, y) be the n-step transition density (that
is, the probability density function with respect to u of X, given Xy = x), so that (by Chapman-Kolmogorov)

p"(x,y) =/S~--/Sp(x,X1)p(X1,xQ)~-~p(xnfz,xnfl)p(xnfl,y)du(xl)~-~du(xn71).

Let v be an invariant probability measure for this chain, and assume that v has some density f with respect to u,
meaning that [ f(x)p(x, y)du(x) = f(y).

The following result gives us a way to show exponentially fast mixing of such a Markov chain:

13



Theorem 24 (Doeblin condition, special case)
Take the notation above. Suppose there is some € > 0 such that the transition density satisfies p(x, y) > ef(y)

for all x, y (this is true for example for random walk on a compact group). Then for all x € S, we have

/S (%, y) — F()|du(y) < 2(1—€)".

Continuous state spaces can be difficult to analyze, so this is a particularly useful result in that setting. And we

can see from the bound that the proof is not too complicated:

p(x.y)—€f(y)

i— - Then g(x,y) is nonnegative and

Proof. Let q(x,y) =

[ ateniaut) = 7 ([ steniaut) —= [ riautn ) = e =1

so ¢ is also a transition density (though we won't use this). Defining g"(x, y) in the same way that we defined p"(x, y)
as an n-step transition, we can similarly show that [ ¢"(x,y)du(y) =1 for all n and x.
We claim that f is also an invariant density for g; that is, for all y we have [ f(x)q(x,y)du(y) = f(y). Indeed,

1
[ ratxnaut) = - ([ r0ontxnaut — e [ r6ormduto)
1

= ﬁ(f()/) —ef(y))

=f(y).
Thus, we claim that we can actually write

P (x.y)=(1-¢)"q"(x,y) +(1—(1—¢)")f(y).
We can prove this by induction: by definition it's true for n = 1, and now if this holds for n = k — 1, we have
k _ k—1
P ) = [ P00 2oz y)d(2)

= /S (L= ' ) + (1= (1 =) Hf(2) (1 - €)a(z, y) +f(v)) du(2).

Expanding out the cross-terms, the product of gs gets us (1 —£)¥q*(x, y). But then all other terms, by the fact that
f is an invariant measure for ¢, just yield constant multiples of f(y), so that summing up the coefficients yields the
inductive hypothesis.

And now we're done, since plugging in this expression for p” into the left-hand side of the theorem yields

/Slp”(x,y) — fW)ldu(y) = /5(1 —€)"(q"(x,y) = F(¥))duly),
and by the triangle inequality this is bounded by
(1" [ 1@+ 1Dl = (0= er(1+ 1)
because g" is nonnegative (this is the only place where we use this fact), which is the desired claim. O

In the language of total variation distance, this result is saying that (1 —¢€)" is a bound for TV between p" and the
stationary distribution. And probabilistically, the idea with this proof is that at each step we either toss an e-coin to
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end up at the stationary distribution or take a step from g; once we end up heads we are automatically at stationarity.

Corollary 25

With the notation and condition in the theorem above, let g; be the joint density of (X, X1, -+, X;) and g, the
joint density of (Xj,---, Xk), where i < j < k. Also let g be the joint density of Xo,---, X;, Xj,---, Xk). (All
densities are with respect to the product u measure.) Assume that Xy has some density h. Then if / and j are
far apart, g is “approximately” g; x g, in the following total variation sense:

/5.../5|9(X0,... X X oxk) — G (%0, xi)ga (g, L xa) d(xo) - dp(x) di(xg) - - du(xi) < 4(1—ey .

Proof. We have g1(xg, -+, %) = h(x0)p(x0, x1) - - - p(Xi—1, %;), and we also have
g(x0, X0, X, xk) = h(x0)p(x0, x1) -+ P(Xi—1, X)) P~ (X1, ) P(X}, Xjr1) +* P(Xk—1, Xk )

(note the big jump in the middle). The joint density of the latter random variables is then g»(xj, - -, xx) =
w(x)P(X, Xjt1) -+ P(Xk—1, Xk), where w = [o h(Xo)p!(x0, X)di(xo) is the density of X;. Thus we only have one
term that's different when we substitute things in:

lg(x0, - 2 Xiy Xjo w0t X)) — gi(xo, - ,Xi)gz(va"' X |

= [h(x0)p(X0, x1) - - - P(xi=1, %) (P~ (X1, ;) — w(x))p(xj, Xj+1) -+ P(Xk—1, i)+
so that if we integrate both sides what we need to bound is
/S~--/Sh(Xo)p(Xo.X1) s pOxi—1 )P (6 x5) = W) PO x1) - P01, k) A (x0) -+ () dp(xg) - du(xic).

If we integrate out xk, we just have a probability kernel and so that variable disappears. Then we can successively

integrate out all other variables up to x;y1, so that all we have left is
[ [ A)pto )Pl X015 ) = o) i) - ) ).
It suffices to show now that for all x;,
[ 197 ) = wl)ldag) < 41— e
because once we substitute that in we can integrate out all of the remaining variables as well. We already know that
J 1P~ (xi, %) — F(x;)|du(x;) < 2(1 — ey, so it suffices to prove that [|w(x) — f(x;)|du(x) < 2(1 —ey~'; in fact
we can show that [ |w(x;) — f(x;)|du(x;) < 2(1 —e). This is because

w(x) = / h(x0 )P (%0, %) dpi(x0).

so substituting this in and applying Jensen's inequality to bring the absolute value inside, we have
[ 1w~ o)) < [ [ 1o0)1p6,%) ~ FO)Iduto)duto)

Integrating over J first and using Doeblin’s theorem shows that this is bounded by [ h(x0)2(1 —e)Ydu(x) = 2(1 —€y,
which completes the proof. O

So the point here is that if we have a function of a bunch of variables in two very separated time intervals and

want to understand the correlations, we only care about the distance between the closest points, and that's very
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related to exponential decay of correlations. More precisely, for any function F of (Xg,---, X;) and any function G of
(Xj, -+, Xk) where |F|, |G| <1, we have

E[FG] — E[F]E[G]
- /F(XO' e x)G(XG X)X X X Xk) — gu(Xo, e X3 ) GG, e xk))d(xo) - - dp (X)) d(X) - - - du(xk).
But then taking absolute values and then using our bounds from the previous result shows that
Cov(F,G) = |E[FG] — E[FIE[G]| < 4(1 —e)'~".

So we'll see next time how to use gauge fixing to reduce a two-dimensional system to such a system of Markov chains

and prove our desired results for d = 2.

5 October 6, 2025

Last time, we were discussing mass gap in 2D lattice gauge theories. We'll prove the following result today:

Theorem 26
Consider lattice gauge theories with free boundary conditions on Ay 1 Z?, and assume that G is a compact Lie

subgroup of U(n) for some n. Then this sequence of theories has a mass gap at any 8 > 0.

In other words, we get exponential decay of correlations with constant not depending on N.

Proof. It suffices to consider the gauge-fixed theory, in which the matrices attached to all horizontal edges are the
identity / — horizontal edges contain no loops, so this is valid. (We can do this same thing in any dimension, but it
will not help us as much.) For any plaquette p of vertices (x,y), (x+1,y), (x+ 1,y +1),(x,y + 1), we have

Up = U((x,y), (x + Ly )U((x +1,y), (x + Ly + 1)U,y + 1), Ux + 1,y + 1)) HU((x,p), (x,y +1)) 7
=U((x+1Ly), (x+ Ly +1))U((x.y), (x,y + 1))~
= U(ext1,)U(exy))
where we introduce the notation that e,, = ((x,y), (x,y + 1)) is the vertical edge pointing upward from (x, y).

Now fix some N. For each y € Z, let S(y) be the set of all x € Z so that the plaquette we described above is

within Ay. We can then write the action as

Sn(U) =" > Re(Tr(l — Ue1,)U(e, y) ™).

YEZ xeS(y)

Since Ay is finite, all of these are finite sums. Since S(y) C Z, the set S(y) is always a union of connected components
(under the usual graph structure on Z). Let C(y) be the set of such components, and for each C = {x,--- ,x+ k} €
C(y), define

k
Sc(U) = Re (Tr (I = Ulexsjs1y)U(Eerin) ) -
j=0

But now two components (and two components belonging to different ys) don't interact with each other (because
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x + k 4+ 1 won't be in any other component), so the action is just a sum of terms of this form:

Sh=3. Y Sc(u).

YEZ CeC(y)

So now let U be a random configuration drawn from the lattice gauge theory. For any C = {x,x+1,--- ,x + k}, we

then define the collection of random variables

U(C) = {U(exy). -+ Ulextrtry)}-

Assume for simplicity that every edge in Ay is in at least one plaquette (otherwise it doesn't contribute to the action
so U on that edge is just a Haar matrix). The previous decomposition then says that the U(C)s are independent of

each other, and the density of U(C) is proportional to

k
exp | =0 Z Re (Tr (/ - U(eX+j+1,y)U(ex+jyy)7l))
j=0

To simplify notation, let Uy, Us, -+, Uks1 be random elements of G with joint density (relative to Haar measure)
proportional to exp (—;3 > o Re (Tr (/ _ Uj+1Uj‘1)>). We claim that this is a Markov chain with kernel

P(V,W) = C texp (—BRe (Tr (I —WVv1))),
where C is a normalizing constant that doesn’t depend on V/, since by invariance of Haar measure u we have
C= / exp (—BRe (Tr (1 =WV™1))) du(W) = / exp (—BRe (Tr (I — W))) duw(W).
G G

So we have a random walk on a group, and each time we're multiplying by a random matrix chosen by this specified
density. The fact that C doesn't depend on V thus means that if U; is Haar distributed, and U,, Us, - - - are generated
from this Markov kernel, then we indeed have the correct specified joint density for (U, Ua, - -+, Uks1).

But now we are almost done: P(V, W) is a strictly positive continuous function on G x G, and G is compact. Thus
there is some € > 0 (depending only on G and () such that P(V,W) > ¢ for all V,W. This means that Doeblin's
condition is satisfied — we can check that w is an invariant measure for this Markov chain, and thus we have exponential
decay of correlations. (We can complete the proof on our own.) O

Remark 27. We can get some bounds from this proof, but they'll be exponentially bad in B even if G is of a fixed
size. Doeblin usually doesn’t give sharp bounds, so we may need something else if we wanted the “correct constants”

for exponential decay.

Next, the area law also holds, but only under an additional assumption on G:

Theorem 28
Suppose, in addition to the assumptions of Theorem 26 (in particular, d = 2), that there is no nonzero x € C"

fixed by all elements of G. Then the sequence of theories satisfies the area law.

(We should also be able to prove that if this additional condition is not satisfied, then Wilson's area law cannot
hold, so this is necessary.) Groups like U(n) or SO(3) satisfy this “irreducibility-type condition,” which is basically

saying that the standard representation has no one-dimensional invariant subspace.
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Lemma 29
Let U be Haar distributed on G, and let E(U) be the matrix of expected values of the entries of U. If G fixes no

nonzero elements of C”, then E(U) is identically zero.

(In fact this is an “if and only if" statement: if G fixes a nonzero vector, then the expected value of Ux = x is
E(U) times x, so E(U) can't be zero.)

Proof. Let ||M|| denote the £2 operator norm of an n x n matrix; that is,
[IM[] = sup{|[Mx]| : x € C" - [|x|| = 1} = sup{|[Mx]| : x € C" : [|x|| < 1}.

This is indeed a norm and it satisfies the submultiplicativity condition |[|[MN|| < ||M]| - |[|N||. First notice that
[|E(U)|| <1, since if Uy, Us, -+ are iid Haar and x € C" of norm at most 1 is fixed, then the law of large numbers
says that + > 7 | Ujx converges to E(U)x almost surely as n — oo, and therefore

. . 1 n 1 n
IEW)x|] % lim || U] < — > 1IUxl € 1,
Jj=1 Jj=1

and taking a supremum over all x yields the result. We now further claim that [|E(U)|| < 1; suppose not so that
[|E(U)|| = 1. Then there exists some x € C" with ||x|| = 1 and ||E(U)x|| = 1 (by compactness the supremum is
achieved). If we now let Uy, Us be iid Haar, we have for our chosen x that

E[|[Usx — Uax|2) = E [[[Usx? + | Uax = 2(Usx. Uax)]
=2 —2E[(U;x, Usx)]
=2 — 2(E(U1)x, E(U>)x)

because all terms in the inner product depend only linearly on the entries of each individual matrix, and this last quantity
is then 2 — 2||E(U)x||? = 0. Thus we must have U;x = Upx with probability 1, so U; *U;x = x almost surely — since
U2_1U1 is Haar distributed, continuity implies that Vx = x for all VV € G. (This just requires showing that every point
is in the support of the Haar measure, which is true because the Haar measure is a volume form.)

But now we are almost done: again letting Uy, Us be iid from the Haar measure, U = U;U, is also Haar, so
IE(W)|| = [|E(UL)E(Us)]| < |E(U)||?, which can only occur if ||[E(U)|| = 0, hence E(U) = 0 as desired. O

Proof of Theorem 28. Again consider the gauge-fixed theory, and now consider a rectangle with horizontal width
T and vertical height R. Take R < T without loss of generality, and assume that our rectangle has corners
(0,0),(T,0),(T.R),(0,R). We again denote by U, the matrix on the edge from (j, k) to (j, kK + 1); the Wilson

loop we care about then satisfies
Wg =Tr I:UT’OUT’I tee UT,R*1US,R71US,R2 R USO]

(the inverse is just the adjoint for a unitary matrix, but thinking about it as the adjoint helps us out if we want to
write things out in terms of matrix entries). If we now let Uj"kb denote the (a, b)th entry of U, we can write out
the trace as a sum

— 40,81 /a1,d [ [3R-1,4R | JAR+1,AR [ AR+2,dR+1 [ [90,32R-1
We = Z Ure Ur'y Urr-1 Uor-1" Uor-2 Voo™

1<agp,a1,,ar-1<n
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Taking expectations of both sides, notice that the different horizontal stripes of vertical edges are independent, and
thus this expectation actually factors as a product. Each horizontal stripe only affects two of the terms in our product,
and so
R-1
Ewl= Y. [IE[vproi
1<ao,,ar-1<n j=0

But now we can apply exponential decay of the Markov chains within each strip: we can write
]E U;i{)aﬁ»l Ugij—J,azRfjfl} — E |:U;’9_J’)aj+1 Ugyzjgﬁ,azR—J—1:| _ E I:U;i_jv,jajﬂ} E |:UO&7’2JFLJ,82R—]—1:|

by our previous lemma, since all matrix entries have expectation zero. And this right-hand side is bounded by C;e~ "

since the two matrices are separated by a distance T, where Cy, Cs depend only on G,3. We take a product of R of

these things and we have a big sum, so we find that
E[W,] < n*f(Cre T)R = exp (R(log C; + 2log n) — CoRT).

Sonow if T > C3 = %ﬁmogn) then the first term inside the exponential is at most %CQRT and thus we have
E[W,] < exp (—1CoRT) for sufficiently large T. We thus choose Co > 1 so large that [(W;)| < Coexp (—2CoRT)
even for T < C3, since under the condition R < T there are only finitely many choices of R and T (which are the only
things that our bounds above depend on) and thus we can always find a Cq, as desired. O

The proof in higher dimensions to get from mass gap to area law is somewhat similar, expanding out the trace and
using exponential decay. We'll see that later on in the course — indeed, we'll now move into general dimension in the

strong coupling (B small) regime. We'll then specialize to d = 3,4 and prove some results there.

6 October 8, 2025

Today, we'll discuss mass gap in the strong coupling regime. We'll first discuss one potential point of confusion: recall

that in the continuum, the Yang-Mills action is given by

S(A) = —2198 /R4 Tr Z nin(8iA;(x) — GAI(X) + [A(X), A | dx, mo=1, m=m=mn3=—1

0<i<j<3

This action is often reparameterized so that the fields A; — goA; are rescaled, so that ew now have

1

S(A) = =3

/Tr > nmi(8iA; — A + golAi AD? | dx.

0<i<j<3
Thus as gg — 0, the fields decouple because we approach the electromagnetic theory and then we can do an appropriate
gauge-fixing. (That's why gq is called the coupling constant.) For go small we thus have “weak coupling,” and for go
large we say that we have “strong coupling.” In lattice gauge theories, 3 plays the role of g—lg. Thus, B small indeed
corresponds to strong coupling and G large to weak coupling.

We know that small B should make the matrices at different edges more independent, so the notation may be
counterintuitive to probabilists. But this is where it all comes from — it's not about the individual sites being
coupled, but rather the d fields (in d dimensions) being coupled to each other.
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We'll discuss two results:

Theorem 31 (Osterwalder-Seiler 1978)

Consider lattice gauge theory on Ay 1 Z9 for some d > 2, and suppose the gauge group G is a subgroup of U(n).
Then there exists By > 0, depending only G on d, such that for all B < By, the sequence of theories has mass
gap.

There are different approaches for proving this — this result was originally proved using cluster expansions, but we'll
show a different, more probabilistic approach.

Definition 32

Let w1, wo be two probability measures on (€2, F). The total variation distance between w; and o is given by

drv(p1, p2) = sup [u1(A) — u2(A)l.
AcF

This quantity has lots of alternative characterizations as well: for example, we have

drv(py, ko) = X Minf
~1,

£ BX#Y),

where we're allowed to couple X and Y in any arbitrary way as long as their marginals are specified. And for a third
description, suppose that u is a measure on (2, F) such that w1, u» have densities py, p» with respect to p. (We can
always find such a u, for example by setting u = w1 + p2.) Then

drvlimsz) = 5 [ 10260 = p2001du(x).

The proofs that these are all the same are a bit tricky but not too difficult.

Example 33

Let u, 1’ be two probability measures on a product space Q". For 1 < i < n, let u;(-|(xj)jzi) denote the conditional
law of X; given X; = x; for all other j, where X = (X1, ---, X,) is distributed according to . Define w/(-|(x;)jxi)
similarly. Assume that for all x,y € Q" and all 1 </ < n, we have

drv (i (109) ). 7 C107)j0)) <D agl{xg # yi} + hi
j=1

for some nonnegative constants a;;, h; (assume a;; = 0).

The idea is that if we have Markov random fields, the conditional distributions should only depend on a few
neighboring coordinates, and this condition says that if the neighbors are the same, then the conditional distributions
are the same except for some coordinates (think of h; as being associated to the boundary values).

If s = maxi<i<n Zle ajj < 1 (this is often called the Dobrushin condition), then the matrix Q = (a[j)szl
is substochastic, and in fact %Q is substochastic as well. Thus there exists some Markov transition matrix P on
{1,2,---,n} such that Q < sP elementwise; consider a random walk with those transition probabilities. Let 7;; be

the first hitting time at j when the walk starts from i.
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Theorem 34
Take all of the notation above. Suppose Z ~ u and Z ~ u/, and let AC {1,---,n}. Let v and v/ be the laws of
(Zi)iea and (Z])jea. Then

1 n
dTV(l/, 1//) S E Z ZE [ST’/] hJ

i€A j=1

The idea is that if our system is a field on a grid, and the h;s are nonzero on the boundary, then in particular 7;;
has to be at least the distance from a point / to the boundary. So all terms here will be exponentially small in that

distance, and this lets us compare Gibbs distributions under different boundary conditions.

Proof. This is a coupling argument. Construct two Markov chains Xg, X1, --- and X, X{,--- as follows (remember
that our state space is some product space 2"). First generate Xo, X} independently with Xo ~ @ and X} ~ /. Then
at step k, given X, and Xj, we generate X,,1 and X, by “refreshing a coordinate in the best possible coupling” as
follows. Pick a coordinate i € {1,---,n} uniformly at random, and let v = wu(:|(Xk,)j=i) and v = w'(-|(Xkj)jzi)-
Then there exists a joint law 6 with marginals v,y (meaning (X,Y) ~ 6, X ~« and Y ~ '), coupled specifically so
that P(X # Y) = drv(v.7'). Generate (Xiy1,i, X)) from 6. Finally, keep all other coordinates the same, meaning
that Xky1, = Xk and Xj ;= X ; forall j # .

Since we're just regenerating from p, ' at each step from the conditional distribution and we start Xg, X{ according
to those distributions, we have X, ~ u and X ~ p’ for all k. Define the vector £, = (£x1, -+ ,%kn) where
L = P(Xk; # X ;); our goal is to bound this vector. We know that

1 1
Pkt # Xion, P X0 = (1= 3) 1060 # X0, + Somv(n )

since with probability (1— %) the coordinate doesn't change, and otherwise we generate from the best possible coupling.

Recall from the setup of Example 33 that we thus have the bound

1 1<
P(Xko1s 2 Xhons P X0 < (1 3) 1000 2 X0+ 5 | Sty # X0, + 1
j=1
so taking expectations on both sides yields
1 1o 1
Liy1,i < (1 - n) Ly i+ - ;a/jzk,j + Ehi-
If we now define £(;y = limsup,_,, £x,i;, we find that
1 1 ¢ 1 :
E(,') <(1l- " Z(,‘) + B Z;OLUEU) + Ehi — Z(,‘) < Z}OL,‘]Z(J) + h;.
j= i=

Recalling that @ was our matrix of aj;s and Q < sP for some stochastic matrix P and s the maximum row sum, we
thus find that the vector £ of limsups satisfies £ < Q£ 4+ h coordinate-wise, so that | (/ — Q)¢ < h| Using the matrix

norm N
IM]] = max Y [My|

1<i<n 4 1

j=

(we can check that indeed [|[MN|| < [[M]|-[|N]|), we have that >_3° ; QX converges because ||Q|| < 1, it is the inverse
of I — @, and it has all nonnegative entries. Thus multiplying both sides of the boxed inequality by this sum maintains
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the inequality, and thus we have
[ee] (o]
L<) Q<) s Phh
k=0 k=0
again by nonnegativity. This implies that

e(,) < Z Zp(k)h

is the (/,/)th entry of PX. Exchanging order of summation yields

<y (Z SkPEJm)
Jj=

where p( )

But now if we let Zg, Z1, -+ be a Markov chain with transition matrix P, pfjk) is the probability that Z, = j given
Zo=1. So

> s =D S P(Ze=1Z0=1)
k=0

k=0

8

E Y s"1{Zk=j}|Zo =i
k=0

=E iskZO:i

k=T;

where 7; is the first hitting time of j. Furthermore, this last quantity is just 7 E[STU] Thus we've shown that

1 n
e(i) < 1—5s _ZIE[STU]hJ"
j=

To complete the proof, now we have for our particular coupling and any value of k that (remembering v, v/ are the

laws on A)

drv(v, V') S P((Xk.i)iea # (Xk.)iea < ZP(Xk,/ # Xii) = Zék,/,

i€A icA

so then taking limsup over all k yields the desired result. O
We can now apply this to our lattice gauge theories:

Start of proof of Theorem 31. Consider lattice gauge theory on Ay, and let fi, » be two bounded gauge-invariant
observables supported on the sets Sy, S» C Ay. (Actually fi, f don’t need to be gauge-invariant, so this is maybe an
indication that this cannot be the “physically relevant” result.) Let n = dist(S1, S») be the graph distance between the
two sets. Assume S; and S, have bounded sizes and we’re taking n very large. Then we can put a “box" around
S of radius n/2 (more precisely, the union of points at most n/2 away from points in Sy); for sufficiently large n we

have S, outside this box. We then have
E[fif5] = E [E[f;|everything outside the box]f],

since f» is dependent only on things outside the box. The point now is that for two different boundary conditions on
the box, if we have

|E[f; |boundary condition 1] — E[f;|boundary condition 2]| < Cie~ ",
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then because E[fi] itself is some weighted average of E[f;|boundary condition]s, then we also have
|E[f; |boundary condition] — E[f]] < Cie~",

and thus plugging this back into the covariance expression E[fif;] — E[fi]E[f>] shows that it must be exponentially
small. Thus we just want to prove this condition on conditional expectations.

Thus what we have is our arbitrarily-shaped region which we can call A, and we can let u and u’ be the conditional
laws of the lattice gauge theory in A under the two different boundary conditions — let U ~ p and U’ ~ u'. (Here,
boundary conditions are specifications on the “boundary edges of A" which are part of plaquettes not in A.) For any
non-boundary edge e € A where none of its neighboring edges (that is, edges with which e shares plaquettes) are
boundary edges, the conditional density of U. given all other matrices has density

exp (—52 Re(Tr(/ — U,,))) ;

poe

that is, it retains the form of the original density because none of the relevant edges are being fixed by the boundary.
The same holds for U" as well. Thus if U, U’ have the same neighboring configuration, the distribution is the same,
and if they have something different the total variation distance will still be small if 3 is small enough. And the h;s
will come in for the edges where a neighboring edge is on the boundary, which will allow us to use our proved bound

on total variation. We'll do this next time! O

7 October 13, 2025

Today, we'll first prove a better version of what we showed last time:

Definition 35
Let (Q, F,u) be a probability space, and let v be a probability measure on the product space (27, F", u") such
that v has a density p with respect to u". Let X ~ v. Then the marginal density (X;);; is defined by integrating

out the rth coordinate:

p—i((x)j2i) = /p(X1.-~-  xn)d(x;).
The conditional density of X; given (X);; is

P(Xl, 'Xn)

pi(xi| ()ji = o i((x)ji

(where we define this quantity arbitrarily if the denominator is zero).
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Proposition 36
With the notation above, suppose the system admits a conditional dependency graph G on {1,---, n}, meaning
that p(x;|(x;);»i) is a function only of (x;)jen(iyuiy (that is, the conditional density depends only on / and its
neighbors in the graph). Let A be the maximum vertex degree of G, and assume the Dobrushin condition

s= sup piCul0)i) — 1 < 7.

1<i<n A
xeQ"

For disjoint sets A, B C {1, ---, n}, let Xa = (Xj)ica and Xg = (Xj)icg and define r = d(A, B) = minjeajes d(i,J),
where d is the graph distance on G. Then for any measurable function f : Q4 — [~1,1] and g : Q8 — [-1, 1],
2s"A"A| - |B|

[E[f(Xa)9(Xe)] = Elf (Xa)IE[g(Xe)l| < ——%

In particular, this quantity will be exponentially decaying in the distance, and indeed we see that the conditional

density converges to 1 as 8 — 0 so this will be useful in the high-temperature regime.

Proof. Let D = {i ¢ B : d(i,B) = 1} be the set of indices that are just outside of B. We claim that for all

x,x" € QB, we have

, 25"Ar—1
BIF(Xa)Xe = x] ~ Bl (Xa)Xa = X] < 20

Then |D| < A|B| because each element of B can have at most A neighbors, so in particular this is at most the

|AIDI.

right-hand side of our theorem. This then proves the desired bound by a similar argument to our proof from last

lecture, since first note that we can write the difference to the unconditional expectation as

E[f(Xa)lXs = x] = E[f(Xa)] = /(E [F(Xa)IXp = x] = E[f(Xa)|Xs = X]) dT5(x')

and so the left-hand side is also bounded by %. Then
E[f(Xa)9(Xg)] — E[f (Xa)lE[g(Xg)] = E[(E[f(Xa)|Xe] — E[f(Xa)]) 9(Xg)]

and now |g(X3g)| is bounded by 1 so the result follows.

So now to prove the claim, we'll do a similar coupling argment as last time. Fix some x, x’ € QB. Let T, 7/ be the
conditional distributions of X given Xg = x and Xg = x’, respectively, and generate Xo ~ T, Yy ~ 7’ independently
of each other. We can then define a Markov chain starting at (Xo, Yo) which evolves as follows: from (X, Yk), we
choose a coordinate / uniformly from {1,---,n}\ B, and then generate (U, V) C Q2 so that U ~ p;(:|(Xk,);j» and
V'~ p;(:|(Ykj)ji are “resamplings of the /th coordinate given the current value of Xy, Yk, and where we couple so
that P(U # V) is exactly the total variation density between the two conditional laws. We then let Xyx41, = U and
Yk+1,1 = V and keep all other coordinates the same.

By construction, each X is still distributed as 7 and each Yj is distributed as 7’ (since we never update the
coordinates in B). We wish to calculate the total variation distance between U and V. First of all note that if
Xkj = Yk, for all j € N(I), then by assumption the conditional distributions U, V' are exactly identical, so the total

variation distance is 0. And if not, then

PU£V) =5 [ [orel(Xes)ien) = pr(zlVig)yon)|du2)

but the quantity inside the absolute values is at most 2s by assumption and the triangle inequality, and thus the whole
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probability is at most s. Thus
P(U # V) § S Z 1{Xk,j 75 kaj}

JEN(i)

by a crude union bound, and thus we get the inequality (first case if coordinate / is not selected, and second case

otherwise)
1
P(Xks1,i # Yir1.il X, Yi) = (1 - n|B> { Xk, # Yi.i} + | |5 Z L{(Xkj)jeney # Yei)jene
JEN()
1 5 5
< (1 - n|B> W Xki # Yii} + n|B|jeNZ(/;\B T{Xkj # Y} + El {(Xkj)jening # Ys)jenins } -

But we can bound the last indicator by h; = 1{/ € D}, where recall D = {i : d(i, B) = 1}. So then define the vector
L = (Lk.i)igs for £x i =P(Xk i # Yk,i); taking expectations on both sides,

1 5
Liyr,i < (1 - m> Ly i+ p= Z Lrj+—

JEN(N\B

As before, letting £ = lim sup,_,, £« (so that £() denotes the ith coordinate of this limsup), we have
t< (1—>e+ Qe+ S

where Q is the adjacency matrix of G restricted to {1, ---, n}\ B. This rearranges to (/ —sQ)¢ < sh, and now we claim
that (/ —sQ)™1 = 3"32 o (sQ)X. For this it's sufficient to show that the right-hand side is convergent (because then we
get a telescoping sum for Y 3 o(sQ)*(/ — sQ)), remembering that convergence is the same as absolute convergence
because our entries are nonnegative. But because Q¥ = (q,(f))lg,-,jgn is a power of the adjacency matrix, q(k) is the
number of k-step paths from i to j that avoid B, which is in particular at most AX. Thus s q(k) < (sA)X will decay

exponentially and this proves the claim; this means that (again using nonnegativity of entries so inequality is preserved)
oo
L<(I=sQ)tsh=> sk1Qkh,
k=0
so for any coordinate i € A we have

o) — Z Z 5k+1qu

k=0 j¢B

_ Zisk+l (k)l{j € D}

j@B k=0

_ Z Zsk+1 (k)_

JED k=0

But for any j € D we know that q,.(jk) = 0 for k < r—1 (since we cannot reach the set in that few steps) and q,.(jk) < Ak
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otherwise. Thus

e(/) < Z i Sk+1Ak

JED k=r—1

0
|D| Z Sk+1Ak+1
k=r—1
sTAT

1 —5A|B|'

IN

So to conclude the proof of our claim, we have

E[f(Xa)IXp = x] — E[f(Xa)|X5 = X]

= ‘]E [F((Xk.i)iea) — F((Yk,i)ieal
< 2P((Xk.i)iea # (Yi.i)iea)
< QZP(Xk,/ # Yii)

icA

= 22&@

icA
and since k was arbitrary we take the limsup as kK — oo and apply the bound to get our result. O

So we now see how we can prove mass gap (Theorem 31) from this:

Proof of Theorem 31. For edges e, f € E(Ap), say that e and f are neighbors if they belong to some common
plaquette. It is easy to see that this yields a conditional dependency graph for the model (because the contributions

to the density only depend on values on plaquettes), and the conditional density has the expression

P(Uel(Ur)rre) = % exp | =B > Re(Tr(I - Up))
peP(e)

where P(e) is the set of plaquettes in Ay containing e, and where the normalizing constant is

Z(e) = / exp | =B > Re(Tr(l = Up))
¢ peP(e)
But the number of plaquettes in P(e) is uniformly bounded by something like 2d, so for any € > 0 we can choose some
Bo(d, G) so that for all 3 < By the conditional density is close to 1; that is, we can make ‘exp (—5 Zpep(e) Re(Tr(l — Up))) — 1‘ <
€ (which also implies |Z(e) — 1| < €; thus for € small enough this ensures the Dobrushin condition holds, proving ex-

ponential decay of correlations as desired. O

Next, we'll prove the area law with a similar argument:

Theorem 37
Suppose that there is no x € C" \ {0} fixed by all elements of G. Then there is some 3 < Bo(d, G) so that the
area law holds for all B8 < Bo(d, G).

Recall that in two dimensions, we proved this by taking a large T by R loop and gauge-fixed so that we only have
horizontal slices. We then further decomposed each slice into adjacent blocks which were Markov chains, and we used
exponential decay of correlations to bound terms from different sides of the rectangle. We don't get a Markov chain

in higher dimensions anymore, so we use the following argument instead:
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Proof. Let ey, --- , ey be the standard basis vectors of R?, and let £ be the rectangular loop with vertices 0, T e;, Res,
and Te; + Rey. Define the oriented matrices along the lower edge

Ujo =U(0.0,0,---,0),G+1,0,0,---,0))

and along the upper edge
Upr=U.RO---.0),0+1R0,--,0))

for 0 < j < T — 1, except the avoid notational overlap let U((0,0,0,---,0),(1,0,0,---,0)) be written Uy o. Also
define the matrices along the left edge

Uo.x = U((0, k,0,---,0),(0,k+1,0,---,0))

and right edge
Urx=U{T, k,0,---,0),(T,k+1,0,---,0))

for 0 < k < R—1. Then the Wilson loop we are interested in can be written in this notation as
W = TF(Uo,oULo o Uro10UroUry - UrroiUr 1 gUT o g Ug rUS o1 US,1US,0),
and this trace can be written out as a huge sum

> ORI U U
1<ao, a1 42r-150
over products of matrix entries. But now for each j € Z we can define E; to be the set of edges in Ay from
(x1.4,%3, -+, Xg) to (x1,j+1,x3,- -+, xg), and let E’ be the union of all such edges. Conditional on (U(e))ece(ny)\e'» the
collections (U(e))eck, are independent across different Js, since they don’t have any common plaquettes. Additionally,
the conditional density of one such slab (U(e))ece, given (U(e))ecer satisfies the Dobrushin condition with some
deterministic s. So we have exponential decay within each slab as long as 3 is large enough (remember that in d = 2
we had it for all B because we always had Doeblin's condition). So the rest of the proof is exactly the same as before:
taking the conditional expectation of W, given (U(e))ece yields dependence in pairs, so that expectations factor and

then we get the necessary exponential decay for each one. O

8 October 20, 2025

Today, we'll discuss confinement in 3D gauge theories. It's believed that confinement holds quite generally for three-
dimensional lattice gauge theories, and the area law has been proved for 3D U(1) theory with a different action called
the Villain action by Gopfert and Mack in 1982. But to prove confinement, remember that we don't need something
as strong as the area law — we just need something better than the perimeter law. That's what the following (new)

result says:
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Theorem 38
Let G be a compact Lie subgroup of U(n) for some n, and assume that z/ € G for all z € C with |z| = 1 (meaning
that it “contains U(1)") — for example, U(n) satisfies this but not SU(n) (though the following result should also
be true for SU(n)). Let Ay 1 Z2 be an increasing sequence of lattices and consider the usual lattice gauge theory
with gauge group G on Ay with inverse coupling 3. Take any rectangular loop £ with side lengths R < T, and
pick N large enough that £ C Ay. Then

[(We)| < Cre~©2TIo9R

for positive constants ¢y, ¢ depending only on G and 3.

We'll see in the proof where things go wrong if we don't have U(1) as a subgroup — the actual mild necessary
condition conjectured is “there is no nonzero vector in the kernel of the Lie algebra,” but that hasn't been worked out
yet.

To prove this, we'll begin with the following simple lemma about probability measures on U(1):

Lemma 39
Take any w € C and let u be the probability measure on the unit circle U(1) with density proportional to

exp(Re(zw)) with respect to Haar measure. Then the measure is spread out in the sentence that the “variance

// |z1 — z2du(z1)du(z2) > C min {1, |V1V|}

of the measure” is

for some universal constant C.

There are many possible proofs, but this particular one generalizes to other Lie groups (where maybe we care about
the real part of the trace of the product of two matrices — then the result is less obvious because it becomes less clear

what the projections look like).
Proof. For all x € R, we have the Taylor approximation |e — i — ix| < %XQ, so that for all z € U(1) and x € R,
|z —ze™| = |z(1 — &™)

= |z(1 — ™ + ix) — zix|

> |zix| — |z(1 — e™ 4 ix)|

> =%
x| — 2

- 2
by the reverse triangle inequality whenever the former term is larger. So for € = min {1, \/H} <1, we have

w
, 1 1
+ie 2
z—ze >e——€g° > =¢

for all |e] < 1; that is, shifting by a small amount on the unit circle changes the distance by some noticeable amount.

If we then define p(z) = exp(Re(zw)) and define
2= [ pz)doo(z)
u(1)

for og the normalized Haar measure (that is, the uniform distribution on the unit circle), then we have #%Z) = %p.
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If we now define
pt(2) = p(ze®), p (2) = p(ze "),

then by invariance of gy we have that fU(l) o (2)dog(z) = fU(l) o (2)dog(z) = Z is the same normalizing constant.

Letting u™, u™ be the shifted probability measures on U(1) given by % = %p* and % = %p*, we have

1 .
W) = 5 [ plze)doo(2)
Z Ja
then the change of variables z/ = ze'® yields

ut(A) = Z ) (2')doo(Z') = u(Ae)

(which is not a surprise — we're just rotating the density) and similarly u=(A) = u(Ae~'¢). Thus for all z € U(1) we

have
_ 1 — i€ —i€
Vot (2)p=(z) = exp §Re(wz(e + e %)
1 — i€ —i€
= p(z) exp iRe(WZ(e +e -2
1 »
> p(z)exp | S|wz(e® + e —2)|
L i€ —i€
2 p(z)exp | S|w|-[e® +e™* —2[ |,
and now |e® + e~ € —2| < |e'® — 1 — jg| + |e7" — 1 + ig| < € by the inequality we've proved. So actually we have
07 (2)p(2) > p(2)e 21" > p(z)e /2

by our choice of €. So for all measurable sets A C U(1), we have

(A (A) = é\/ / o+ (2)doo(2) / o~ (2)doo(2)
> 2o @0 (@) doo(2)

e—1/2

. / p(2)don(2)
= e 2p(A),

>

second line by Cauchy-Schwarz in the reverse direction. So then for any z € U(1), if we define the set {A = Z' €
U(1) : |z — 2| < %€}, then the above inequality shows that either u*(A) or = (A) is at least e */2u(A) (since the
geometric mean is at least this value); without loss of generality suppose it is u*(A). Therefore
w(AN Ae®) > u(A) + u(Ae®) — 1
= pu(A) +u'(A) -1
> p(AYL+e ) 1.

We claim now that actually AN Ae®) must be empty; indeed if 2/ € AN Ae, then |2/ — z| < %e and |2/ — ze®®| < ze,
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meaning that |z — ze’| < %5, which is impossible by our earlier bounds. Therefore

-1/2y _ -
0> u(A)(1+e/)—-1 = u(A < 1o 12

meaning we've gotten a bound on any %s—neighborhood of any given point. And now we're almost done, since
/12 / 1 2 c
7= ZPdu() = S u(A°)
by only integrating over the part where |z— 2’| is large, and this is at least %52 (1 — ﬁ) = Ce? for some universal
constant C, as desired. O

This proof didn't have to use projections anywhere, and so it goes through basically verbatim for other Lie groups

as well.

Corollary 40

Suppose £ is a U(1)-valued random variable with density proportional to p (as above). Then

IE[¢]] <1— Cmin {1, 1}_

|wl

Proof. Let &1, &> be iid copies of £&. Then by a simple computation we have
€1 — &) =2 — 2Re(&:62)
so taking expectations on both sides yields
E [|¢&1 — &°] =2~ 2E [Re(6:62)]
—2_2Re (E[g]m)

=2 - 2|E[¢]|*.

Therefore [E[¢]]? < 1-1E[(|¢1—¢5])?] < 1-Cmin (1 i) and take square root on both sides and use v/1 —a < 1—4

" vl

to conclude. ]

We can now use this to prove the following result, which is a generalization of the famous Mermin—\Wagner theorem

(using a different proof technique).

Theorem 41

Let A be a finite subset of Z? (not Z3) and let E be the set of positively oriented nearest-neighbor edges with
both endpoints in A. Let (w,)ece be some collection of complex numbers, and consider the probability measure «y
on U(1)" (that is, a complex number at each vertex) with density proportional to exp (Zee(w)eE Re(wegxg))
with respect to product Haar measure on £ € U(1)". (This is called the XY model.) Then for all x € A and all
R > 0so that y = x+ (R,0) € A, we have (for ¢ distributed as -y)

E[pxd,] < Cre~C2logk,

where Ci, C, depend only on the maximum weight maxecg |We|. That is, correlation decays polynomially in

distance.
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The original result had the same w at all sites, and the symmetry was important in that argument (for confinement
we do really need arbitrary weights for the argument to go through). And some other proofs use tools like contour
integrals or other probabilistic arguments, but we'll do our particular proof because it seems like it might generalize
to nonabelian groups. Indeed, something like this should be true not just for U(1); it should hold as long as we have
continuous symmetry. (Note that this result is not true for something like the Ising model, where we do have a phase
transition past where it doesn't hold.)

Also, note that these correlations do not subtract off the E[¢x|E[@,] term like we've had in some past exponential
decay results.

Start of proof. Fix x, R as above, and without loss of generality take A = x+{—N, --- , N}? for some large N. (Indeed,
we can put we = 0 for all extra edges when we expand the lattice, so we just get our original system coupled with
independent spins.) For all 0 < k < N, define yx = x + (k, 0), and define (for ease of notation)

Ly ={y e N:£2(y,x) = k}

(so basically the boundary of the square centered at x which goes up to yx). Define the map 7 : U(1)N — U(1)"
between configurations as follows. At the center, we define 7(£)x = £« (keeping the value the same), and then at
each y, we define

7€)y, =€,6,, for L< k<N

Then forall 1 < k < Nandall y € L\ {yk}, we define

T(g)y = gyg

For any edge e € E, either e connects two neighboring vertices in some Ly, or it connects a vertex in Ly to a vertex
in Lx_1 for some 1 < k < N, call the edges in the former set Ex and the edges in the latter set Fx U {(yk_1,¥x)} (so
we exclude the distinguished edge that we are most interested in). For any configuration we can then define (this is

like what appears in the density but without the real part)

&)= > wéé
ec(y.y')EE
N L N L N B
=Y Wb &+, D webEi+Y Y wehEy
k=1 k=1 e=(y.y")€Ek k=1 e=(y.y")EFk

We now consider a different configuration x = 7(€), and we will rewrite f in terms of x instead of £. In the case
(v,y") € Fk, we have

&8y = &8 88 &nbves = Xy Xy Xy
(everything is commutative here because it's complex numbers — what helps for more complicated groups in the all-

identity case is that we can swap things around with traces), so that last term is easy to replace. Next if (v, y’) € Ex,

we have to consider cases: if neither y, y’ are yj, then
&8 =68, &by = Xy Xy

Besides that, we also have to consider the edges attached to yx going up and down: if vy = yk, ¥’ = yx + e then
§,€, =¢,&, =X, Similarly if y' = yi, ¥y = yk — e, then §,€,, = £,€, =X,
Finally, the first term is easy because we just have 5},57/ =X, by definition. So putting this all together, we find
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that

N N N
FEO =) Wy Xn 3, D wWeXyXy+ Y. D WeXyXy Xon
k=1

k=1 e=(y,y')€Ex k=1 e=(y,y")EFk
VY #Yi
N N
+ g W(yk,yk+e2)ka+€2 + E :W(yk*e2vJ/k)X,\/k+ezv
k=1 k=1

meaning that if we define the right-hand function as g(x), then f = go 7. So what we'll do is pick from the original
density, then apply 7; the new configuration has the density on the right-hand side. But now if we consider x at
Yo, Y1, -+, ¥n and look at the conditional density given all other xs, then actually x,, and Xx,, never interact so all of
the values at different states are conditionally independent. So then x,, is a successive product of terms and thus we
end up multiplying conditionally independent variables to calculate correlations; densities then come in the form from
our corollary above, so the conditional expectation when multiplying k things together is bounded by something like
1 — £. We'll discuss some details of this next time! O

O October 22, 2025

Last time, we proved a result about an inhomogeneous U(1)-valued spin system on a lattice x + {—N,---, N}?, and
we're trying to prove specifically that for y = x + (R, 0), we have

|]E[¢X¢7y‘ < g~ C/Llog(R+1)

for some universal constant C and where L = 14 maxecge |we|. What we did so far is define f(§) = Ze:(w)eE we€i€y
and then define a certain reparametrization 7, which lets us write (&) fully in terms of x = 7(£) (as we did at the

end of last lecture). We cal this new expression g, so that

N N N
90D =D Wy )X+, DL WX F ) Y WX Xy X
k=1

k=1 e=(y,y")€Ex k=1 e=(y,y')eFk
V.Y # Yk
N N
+ E :W(Yk,}/k+52)x)/k+62 + E :W(}/k*EZVYk)XYk‘Fez'
k=1 k=1

We now claim that if ¢ is a random configuration with density proportional to eRe(f) then the new spin configuration
¥ = 7(¢) has density proportional to eRel9), (In effect, the point is that Haar measure means the change of variable
determinant constant will be 1.) To do that, we prove the following fact:

Lemma 42

The transformation T is measure-preserving, meaning that

/ F(r©) [] doo(€,) = / F©) ] doole,)

YEN yen

for any F and for og normalized Haar measure on U(1).

Proof. Recall that we defined 7(€),, = &,,, then 7(€),, = £,,€,,_,, and finally (for all y € Li\ {y}) 7(§), = £,&,,.
So in the left-hand integral, we can replace 7(§), with £, for all y &€ {yo,--- ., yn} by doing a single change of variable
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and using invariance of 3. Once we do that, our integrand now looks like

F (T(g)yov B T(&)y/vv T(y)yi{}/ow“ ,}/N}) =F (gyovghgv Shav R g)ﬁv%' (£Y))/€{YOY'-- ,yN}) :

If we now fix everything else besides the yxs, we can observe that £, only appears in one place, so we can replace
&y, by just &, by invariance. Then we do the same for §,,_, (since that now only shows up in one place), then

&, and so on, and that removes all of the extra factors and gets us the thing on the right-hand side, as desired. [J

So now we can apply this lemma by noting that

/ F(T(g))eRe(f(ﬁ)) H dUo(Sy) _ / F(T(g))eRe(Q(‘r(E)) H dUO(gy)

YeN
:/F(g)eRe(g(i))Hdao(gy)

by applying our lemma, and now if we set F = 1 we see that the normalizing constants are the same: f eRe(f) = f eRe(9),
, Re(F(€)) Re(9(¢)) : ,
Thus the expectation E[f ()] = % is exactly % proving our claim.

Returning to our main proof now, we now let ¢ ~ eRe(f) so that ¢ = T(P) ~ eRe(9) \We then have

’lpyo = d)yov '(pyk = ¢yk¢yk71 for k > 1.

Thus for x = yp and y = x + (R, 0) = ygr, we have that (remember everything is still commutative here)

Yy, Py = ph/yld)iyod)nqbiyl' e qj}@?% = d)imqb}/f?v

so that the quantity we're interested in involves a product of sequential 9s. Looking back at our expression for g, we

can now write it as
N N

9) =Y Wy rpoXn + > MiXy, + R
k=1 k=1

for R a remainder term with no dependence on x,, through x,, and where

My = Z WeXy Xy -
e=(y.y")eFk

also has no dependence on ¥, through x,,. Thus we have conditional independence of the random variables

Yy, -+ Py, given all other 9, s, and under this conditioning %, ~ 0 and each other ¢,, has density proportional to

exp (Re ((W(Yk—lyJ/k) + Mk)@)) = exp (Re ((W(ykfl,yk) + Mk)"/jyk))

But because all ws are bounded by our constant L, we can crudely bound the absolute value of the conjugated term
by Ck for some universal constant. Thus if E' denotes the conditional expectation, we have by Corollary 40 that

, 1
|E' (¢y,)] <1 - Comin {1, ClkL}
for some constants Cp, C;. We can thus prove the result we want:
E/[d)iyod))/ﬁ?] =F [’l/)h e 'LPYR] =F ['l/)}ﬁ] - E [¢YR] )

and plugging in our bound above yields the desired generalization of Mermin-Wagner.

Remark 43. This doesn't work in higher dimensions — if we use the O(n) model we actually don't have decay of
correlations at large B at all by the “infrared bound,” so in fact no argument of this type can work. So the question is
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how we can prove confinement for four-dimensional lattice gauge theories
From here, we can finally prove the confinement result we want:

Proof of Theorem 38. First we do the proof for G = U(1). Consider a rectangle of side lengths R < T in three
dimensions, and now condition on all horizontal edges (so now we are conditioning on all edges sitting on parallel
planes cutting through the rectangle). Then the vertical edges within one slab are independent of the vertical edges in
another slab, and within each slab the vertical edges actually follow a density like in the lemma we just proved (thinking
of each edge as a spin). So the correlation between a pair of edges on the two vertical sides will decay as e=¢'°9R for
some C, and we multiply this over all T edges to get the desired result. (Remember that now the R edges are fixed
because we've conditioned on horizontal edges.)

Now for the general case, recall that our density takes the form

exp (ﬁz Re(Tr(/ — Up))> .

Consider a new system now with space of configurations (G x U(1))E (so on each directed edge we have a matrix
along with a point on the unit circle, and we define U(y,x) = U(x,y)™ ! and £(y, x) = &(x,y)~1). With this joint

system (U, £), now consider the density

exp (‘52 Re(Tr(/ — gpup))> '

where similarly &, is the product of the U(1) values along the plaquette. Specifically, suppose U is distributed according
to the original lattice gauge theory, and (V, §) is distributed according to this new lattice gauge theory. Then we can
define a new configuration £V in the original space where (§V). = €.Ve (since G contains U(1)); we claim £V has the
same distribution as U. If we prove this claim, then the result follows because the £s just come out of the expectation
and so we can condition on all of the Vs and get the intended decay.

But this claim is very similar to what we did before with the change of variables: if Z is the normalizing constant
for the new model and Z is the one for the original model (with respect to the normalized Haar measure), we can

show that Z = Z. Indeed, for any &, we can integrate over V/ and write
/exp (=83 Re(Tr( - &,V5) /H dog(Ve) = /exp (=83 Re(Tr(1 - v,))) /H dog(Ve) = Z.

by invariance of Haar measure (replacing £, Ve, €e, Ve, € Ve, €e, Ve, by the version without €s by a change of variable).

So if we then integrate over the base measure we get Z = Z. The same logic then yields for any fixed &

[ fevyexn (-6 3 Re(Ttr ~ €Un) [T don(Ue) = [ F(U)exw (=6 3 Re(Titt — p))) T] don(e)

and so integrating over £ yields the same thing and then dividing by the corresponding normalizing constants shows

expectations are equal, as desired. O

The challenge is next to do this for nonabelian groups like SU(n) — it seems like we can generalize this argument,
but it's not so clear yet how we actually do so.

Our next discussion is the deconfinement transition, showing that for large enough G we actually get the perimeter
law in four dimensions in U(1) theory. This requires some preparation — we have to study some discrete differential
geometry first, since it makes use of duality. (It would be nice to have a useful duality for nonabelian lattice gauge

theories — we can do some things with the character expansion, but it becomes a huge mess.)
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Definition 44

Take any n > 1 and x € Z". There are n positively oriented edges coming out of x; we denote them dxy,--- , dx,.
For all 1 < k < n and any collection of indices 1 < i; < ih < --- < iy < n, the edges dx; through dx; define a
positively oriented k-cell of Z", which we denote dx; A --- A dx;. (For example, vertices are 0-cells, edges are

1-cells, and plaquettes are 2-cells.)

The point of discrete differential geometry is to do bookkeeping in higher dimensions, since otherwise it's very hard

to visualize. We use the convention that if ji,--- ,jx are obtained by applying a permutation 7 to i1, -+, ik, then
dxj, A+ Adxj, =sgn(m)dx, A---Adx,

where —dx; A --- A dx;, is the negatively oriented version of that k-cell dx;, A --- A dXx;,.

Definition 45
Let R be a commutative ring (often we'll take R or C or Z). An R-valued k-form on Z" is a map from the set of
k-cells into R, such that f(c) = 0 for all but finitely many k-cells c. We write this map as a sum over all possible

cells and points x
F)= > fai(X)dxi Ao Adxg,

1<in<--<ik<n
where fi, ... ; (x) is f evaluated at the k-cell dx; A--- Adx;,. If k <0 or k> N, the only k-form is denoted 0 (to

be compatible with various other definitions we'll soon have).

So a 0-form is just a map from Z" into R, and a 1-form is a map from the set of positively oriented edges into R,

and so on.

Definition 46
Let h: Z" — R be a function. For each x € Z", define the difference operator 8;h(x) = h(x + e;) — h(x). For a
k-form f (for some 0 < k < n — 1), the discrete exterior derivative df is a (k + 1)-form defined as follows:

df(x) = Z Z Oifiy.... i (x)dxi A dxiy A -+ A dx, .

1<in<-<ik<n i=1

Notice that we do sum over (k 4+ 1) indices, but many of the terms can be combined or simplified. Indeed, in the
inner sum if / is any of i1,-- -, ix then the term is just zero, and otherwise we can do some increasing rearrangement

while picking up some —1 factors. We'll see a more concrete example next time and go from there!

10 October 27, 2025

Last time, we started discussing discrete differential geometry and considered the cell complex of Z" consisting of
k-cells dx; A--- Adx, for 0 < k < n. The idea is that dx; represents an edge pointing in the +e¢; direction starting
from x, and —dx; is its reversal. Then dx; A dx, would be the plaquette traversing along (x, x+e1, x+e1+ e, x+ &),
and —dxy A dxo would be that same plaquette in the reverse (clockwise) orientation. Then dx; A dxo A dx3 would be
a positively oriented cube, but it's a little harder to think about what orientation means and it's now just more of an

abstract concept.
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More generally, for arbitrary i, -+, < n, we said that dx; A dx;, = 0 if i, -+, i are not all distinct, and
otherwise it is s times the increasing rearrangement where s is the sign of the permutation (so dx; A dx; = 0 and
dxo Adxg A dxs = —dxy A dxo A dxs). We'll be using these conventions soon — we often do have situations where the
indices aren't distinct or are out of order.

We defined R-valued k-forms in Definition 45 — here is a quick related definition:

Definition 47
The support of a k-form f, denoted supp f, is the set of all x € Z" with f; ..., (x) # 0 for some iy, - - -, ig.

We also defined discrete exterior derivatives in Definition 46, and in particular the latter definition

n
df(x) = Z Z:6,'75-1,...,J-k(><)d><,-/\dxj1 A A dxj,
1<ji << <n i=1
requires repeated and out-of-order indices. For example if f is a 0-form, then we get something like the ordinary
derivative .
df(x) =Y 8if (x)dx;,
i=1

but then with larger k we often have / equal to one of iy, --- , k. Indeed, writing g = df, we have

g(X) = Z iy, i1 (X)dX,‘l ARRRRA dXI'k+1'

1<ih<-<ig+1<n

and we're curious what each component g; ... (x) looks like in terms of f. For k = n we know all components must

kel
be zero because we never get distinct indices, and otherwise we have casework over all of the possible indices that

could have been the i in the definition:

i+ iy (x) = Z (_1)1.7161) f,1 T (%),

1<<k+1
where the notation f, T i (x) means that we omit the coordinate j; so that we only have k indices. (The factor
of (=1)~! comes from how many times we must swap i over to be in the right relative order, since (i, ji, - ,jkt11) is
of the form (ij, it -+ .-+ ikp1).)
Example 48

Suppose k =2 and n =4, and we consider the 2-form with just two terms

f(x) = fia(x)dx1 A dxo + f13(x)dx1 A dxs.

Then df(x) should be a 3-form, and specifically we have

4 4
df(x) = > (8fia(x)) dxi A dxa A dxa + D (8ifia(x)) dxi A dxa A dxs
i=1 i=1

= (05f12(x)) dx3 A dxy A dxo + (O4f12(X)) dxq A dxy A dxo
+ (82f13(x)) dxa A dx1 A dxs + (04f13(X)) dxa A dxq1 A dx3

because the other terms have repeated indices, and then we can combine the first and third term and reorder up to

36



signs to get

df (x) = (03fia(x) — Oafi3(x)) dx1 A dxo A dxs + (O4f12(x)) dxa A dxo A dxq + (O4fi3(X)) dxa A dxs A dxq.

Definition 49
A k-form is closed if df = 0, and it is exact if f = dg for some g.

Lemma 50
For all f, we have ddf = 0.

This corresponds to the result from ordinary differential geometry saying that d? = 0.

Proof. If f is a k-form for some k > n — 1, then we already have ddf = 0 because the only k-form for k > nis 0.

Thus we can assume k < n — 1. Since the exterior derivative is a linear operator, we can check that
ddf(x)= Y > 90if i (X)dx; A dxi Adxiy A+ A d,,
1<ih<-<ix<n1<i,j<n

and we wish to show that all components are zero. But if /i = j then this term is zero because of a repeated index,
and otherwise we claim the contributions from (7, j) and (j, /) cancel each other out. Indeed, we have a negative sign
coming from dx; A dx; versus dx; A dx;, so it suffices to check that 8;0if; ... j,(x) = 8;0;f;, ... i, (x). And this can just

be verified directly, since for any function h we have

8,8Jh = 8,(h(x + ej) — h(X))
= h(x + ¢ + &) — h(x + ¢) — h(x + &) + h(x)

which is symmetric in i and J. O

Definition 51
A set B C Z" is a hypercube if it is of the form ([a1, b1] X [an, by]) NZ", where all a;, b; are integers and b; — a;
is the same for all /. The interior of B is B without its boundary.

Lemma 52 (Discrete Poincaré lemma)
Take any 1 < k < n—1, and let R be any (commutative, though this is not necessary) ring. If f is an R-valued
closed k-form on Z" (meaning df = 0), then there exists an R-valued (k — 1)-form g with dg = f, such that

supp(g) is contained in the smallest hypercube containing supp(f) in its interior.

In words, the previous result says “any exact form is closed,” and this says “any closed form is exact.” This would

not be true if our manifold had genus greater than 0, but it's true in our current setting.

Proof. Let B be the smallest hypercube containing supp(f) in its interior. Without loss of generality, suppose B =
[a, b]" NZ" for integers a, b. For each a < r < b, define the slabs

B, = BN (Z" ' x {r}).
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We can now define the desired (k — 1)-form g as follows. Let gj, ... i,_,(x) =0 for all iy,---, ik—1 and all x & B. Also,
if k > 2 and the last coordinate is ik_1; = n, then set gj,.... j,_,(x) = 0. Now if k =1 or if ik_1 < n, suppose x € B,.
We define the value of g inductively on the slab: for r = a again g, ... j,_,(x) = 0, and for the inductive step define

iy, i1 (X) = Giy, - ik (X - eﬂ) + (_1)k_1ﬁ1,-'~,ik71,ﬂ(x)'

(So if k =1 we would have no indices on the g, and we have g(x) = g(x — e,) + f1(x). Of course, we don't really
need to distinguish these two cases because we'd automatically repeatedly get zero in the inductive step.)

This is supported on B (note: actually, we have to modify it a bit, and this is elaborated on more next
lecture), and now we need to check that it works — that is, we wish to show that h = dg is actually f. Fix indices
i1, -+, Ik and take x € B,; we will prove by induction on r that hj... j (x) = fi,... i (x), and that's enough because
h = f = 0 outside B. (Here, we use that dg(x) involves going only one step in the positive direction from x, so
we only end up getting nonzero things on the boundary because g is zero on all of the boundaries which matter and
otherwise supported on the interior.)

For case 1, suppose r = a and ix < n. Then dx; A dx;, is a k-cell contained in the slab B,, but we've defined
h = 0 on that slab and f is zero on the slab by definition.

Next, for case 2, suppose r = a (though this isn't actually necessary) and ix = n. Then

hh,-»-,ik(x) = Z (_1)1_16]91'1,‘"f,-",l’k(x)’
1<j<k
But we know gj, ... j, (x) =0 if jx = n, and ik = n, so the only way to get a nonzero contribution is if we take j = k in

that sum to cancel out the last index:
) . — k=1 ) )
hiy e i (X) = (=1) " 0ngiy - i (%),

and by the recursive way we defined g we have 8,9;.... ;i (x) = (—=1)*"1f,... i ,.»(x), so substituting this in yields
fiyriyn(X) = fi .. i (x) as desired.

In case 3, now consider a < r < b and ix = n. Then the same proof goes through as in case 2 — we don't need
the induction. But finally we have case 4 where a < r < b and ik < n. Then letting u = dh and v = df, we find that
u = ddg = 0 by construction and we are also given that v = df = 0 by assumption. Then for any x € B,, setting

Yy =x—e, € B,_1, we get the equations

0= Uy sonly) = (1 Ouhy )+ 3 (10 =)
1<k
and
0= Vi in(y) = (=1 8 . i, () + Z (-1)Y7 ', foe i ienY)-
1<k

We claim the two sums on the right-hand side are actually equal, because

Ouhy 5w N0 o )= (B s e =h D)= Fe) =g 0))

Iyl n ij

and because y € B,_; and y +¢; € B,_; as well (we're not moving out of the slab), by the inductive hypothesis we
get that f = h on B,_1 so the whole term goes away. Thus we can take those two equations for h and f and subtract

them to get

O = anhil,---,ik(y) - anﬁl,"',ik(y)'
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which rearranges to
hiy, e ic(y + €n) = i iy (v) = fiy i (v + €0) = iy i (V).

Now the terms with y are equal by inductive hypothesis, so the terms with y + e, = x are also equal, completing the

induction and proof. O

This is a pretty powerful tool — we'll come to it soon, but this basically says that no matter what closed curve we
have, we can always find a surface bounding it in the lattice. And that's why the inductive step is needed here. Next

time, we'll discuss the discrete coderivative and Hodge dual and do the corresponding Poincaré lemma there as well.

11 October 29, 2025

We proved the discrete Poincaré lemma last time — we didn’t actually need to have a hypercube with all equal side
lengths, so we can instead consider [, [a;, bi] N Z" (and let the interior be the same thing but with open intervals
instead of closed intervals). In particular, note that we must actually have 1 < k < n—1 (so it's not true that f = dg
for any n-form f, even though f is automatically closed). But we have to elaborate a little bit more on one of the
details to complete the proof.

As a reminder, the key components of the proof of Lemma 52 are as follows (now allowing for a more general
hypercube): we define slabs S, = Z"~! x {r} for all r € Z. For all x € S, with x < a,, we can let g(x) = 0. Then for
r > a,, we define g(x) inductively via

gilv"'xik—l(X) = Gir, i1 (X - en) + (_1)k_1ﬁ1,"',fk—1,f7(x - en)

if ix_1 < n and 0 otherwise.

To avoid needing to write out these different cases, we'll adopt the convention that for f =32, .. _; <, fi. . i dXi A
-+~ AN dxj,, we write fj .. j, = sfi ..j if (i1, -+, k) is the increasing rearrangement of the distinct indices ji, - - -, Jjk

and s is the sign of the associated permutation. (We also write f, ... j, = 0 if the js are not distinct.)

With this definition, we indeed have dg = f, and this doesn't even require the hypercube. Furthermore, for any
X = (xq, -+, X%,) with x; & [a;, bj] for some i < n we have inductively that g(x) = 0 (since we start off with zero
and we never get any nonzero contributions from the f term in the recursive formula). So now we just have to worry
about the nth coordinate. If x, < a,, then we do still have G(x) = 0. But if x, > b,, nothing here ensures that g will
vanish, and in fact g doesn't have to vanish as stated.

If x, > bp+1, then f ... j,_,.n(x—en) = 0 and thus g becomes a constant as we keep going up in the nth coordinate;
all we need to do is ensure that it is zero. We first claim that if kK = 1, then we do actually always get g(x) = 0
when x, > b, (so nothing goes wrong). By our logic we just have to check that g(x) = 0 on the slab S, ; indeed,

dg(x) = f(x) = 0 on the slab, and since g is a O-form we have

n n
dg(x) = > _8ig(x)dxi = > (g(x + &) — g(x))dx;,
i=1 i=1
so g must actually be constant on the slab S, because all directional derivatives vanish. And since we know g is zero

outside a finite box, that means g is zero everywhere, as desired. (So in particular this means the proof is completely
correct for n=2.)
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But for 2 < k < n—1 (and in particular n > 3), we will need an induction. Supposing that the lemma holds up to
dimension (n — 1), the strategy is to produce a (k — 1)-form w possibly with infinite support with dw = 0, such that
(1) w(x) = g(x) except on the slab S,_1, and (2) w vanishes outside the hypercube on S, 1. Then ¢ = g — w will
do the job because dg’ = dg — dw = dg = f and ¢’ is indeed vanishing outside the hypercube.

Example 54

To illustrate what might be going wrong, suppose we have a big square in the xy-plane in three dimensions, and
then we attach perpendicular plaquettes to each of its edges (in either the xz or yz-directions). Suppose we let
our ring R just be Z/27Z to not worry about signs. Then if we have a 2-form f which is 1 on all of the attached
plaquettes and O on all other plaquettes, then this is closed (because if we add up the numbers on the sides of
any cube, we always get 0).

But if we try to find a g by our algorithm (which is a 1-form assigning values to edges), then g will be all
zero up until the slab containing our big square, and then we get 1s on the top edges of all of our perpendicular
plaquettes, since we are adding the values of f from one slab to the next. Then as we continue going up, g will
continue being 1 on those vertical columns, which is not good. So what we should do instead is modify things a

little bit to get finite support, and we do this by using the “vertical edges” popping out from the big square.

What we do is define a (k — 1)-form g on Z"~! by just looking on the particular slab

a(y) = (=1)*g(y, bn).

Then dg = dgls,, = fls,, = 0 (since we only look along the horizontal directions when computing dq), and q is
supported on Hf;ll(af, b;). But remember this time it does not mean ¢ is constant, so we're not immediately done.
Instead, by the inductive hypothesis, we have some (k — 2)-form p on Z"~!, supported only on ]_[,'7;11 [a;, bi], so that
dp = q. Therefore we can define w via the following: if x € S, for r > b,, then w(x) = g(x). Otherwise if
X =(xq, -, Xp—1, bp— 1), then Wy, ... i, ,.n = Pir.ico(X1, -+, Xa—1), and otherwise w = 0 everywhere. (So we're just
defining w using p along the vertical edges pointing in the e, direction.) We thus get ¢ = g — w supported on the

hypercube, and so it only remains to show that dw = 0. Indeed, we break into cases.
1. For x € S, where r > by, we have dw(x) = dg(x) = f(x) = 0 so everything is okay (dw only looks in positive

directions).

2. For x € S, for some r < b, — 2, we have

n
(dw)iy i () =D (1Y 715, W T
For ik < n we have all terms restricted within a slab (since x + e € S,) and below b, — 1 we defined w to be
identically zero. Thus the whole sum here will vanish. On the other hand if ix = n, the only partial derivative

that can contribute is the last one, so that

(dW)ilv"'yik—lvn(X) = (71)n71(Wf1,“',/k71 (X + en) = Wi i (X))'

but now the latter term is zero, and x+e, € S,11 is at level b, — 1 or below, and the last index satisfies ix_1 < n

SO W .. (x + ep) is also zero.

k-1

3. Finally for x € Sp,—1, we again consider ik < n and ix = n separately. For ix < n again all partial derivatives

are zero because we stay within the slab Sp,_1, and w is only nonzero if it has an index n. And finally for the
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remaining case ix = n, we have for all 1 <j < k — 1 that

(X + eij) - Wil,-“,Tj,--uikq,n(X)

(x')

i . -~ . X) = . -~ .
lj iy lk—1,n iy lk—1,n

7 (X' +e)-—p

e k=1 My k-1

— A. . /
- arjp,'lv...,a'...,,'kfl (X )

where x’ is the first (n — 1) coordinates of x. Furthermore we also have a term O,w;, ... j,_, (x) = wj, .. ;,_, (x +

en) — Wi oo iy (X) = Gy i, (X + €1) — 0. So we can now plug this all back into our definition of dw to find

k—1
(dW)Ii,“',I'kan(X) = Z(il)jilalvjph’...'E'...’,'kil (X/) + (71)kilg/'1,“~ ,I‘kfl(x + en)

Jj=1
G )+ (D (ot e)
= (_1)kgl'1,'",l'k71(x + en) + (_1),(719/1,-“,!}71 (X + en)
=0.

Thus our modification satisfies all of our requirements and we've finished the proof.

Remark 55. Even this proof, we can modify it a bit so we don't need the “interior” condition: support of g should be

contained in the smallest cube containing the support of f.

This result is useful for certain “duality arguments” that we'll soon see. For that, we'll need to introduce another

notion called the codifferential or coderivative.

Definition 56
For any function h, define 8;h(x) = h(x) — h(x — e;). For a k-form f with 1 < k < n, the codifferential or
coderivative § is defined via §f being the (k — 1)-form

k
SF) = > S (D) B (X)dxi A Adxiy A A dx,.

1<ih <-<ix<n =1

In coordinates, we can write down g = 0f and we want to compute gj ... ;_, (x) for any choice of i indices. We

have to group together terms where we have some additional index, and the formula works out to
n
v, ik—r (X) = - Z affl',l’ln" Jk—1 (X)
i=1

Pictorially, what this says is the following. For a 1-form (numbers on edges), the differential operator gives us a
2-form which is numbers on plaquettes given by adding and subtracting numbers along the edges. Meanwhile, the
codifferential must go from a 2-form (numbers on plaquettes) to a 1-form, and what it does is add and subtract the
values of all plaugettes that contain our particular edge. So in general the codifferential yields some linear combination

of all of the (k + 1)-cells containing our k-cell.
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Definition 57

Let *Z" be the dual lattice of Z", meaning that it is the set of midpoints (x; + % S X+ %) of n-cells in Z".
For any y € «Z", let dy; = (y,y — ¢;) point in the negative direction instead. A dual k-cell is the (n — k)-cell
defined as follows. For n-cells we have

1 1
*(dxl/\*/\dx,,):y:(xl+§,--~ ,XN+§),

and more generally
w(dxiy Ao Adx,) = sdy, A AN dy, .

where j1, -+, jn_k are the increasing rearrangement of the remaining indices and s is the sign of the permutation
(i1, ik, 1, -+, Jn—k) (so here the js are increasing and separately the js are increasing).
Example 58

In two dimensions, the dual of dx; would be *dx; = dy» (so we take our right-pointing edge and rotate it 90
degrees clockwise around the midpoint); similarly the dual of dx, is actually —dy;. And in three dimensions, the
dual of dx; would be a plaquette, and it's dy> A dys, which is the plaquette perpendicularly bisecting that edge

Xm.

Definition 59

We similarly define the dual of a dual cell via

#(dyy A+ Ady;, ) = (=D Fsdx A~ A dxg,

for s the sign of the permutation (i1, -« , ik, j1, "+, Jao_x) Since the sign of the permutation (j1, -« , ok, i1, -+ » fn—k)
is (—1)K(=k) times the sign of (i, , ik, j1, " +Jjn—k)-
Definition 60

The dual of a k-form f is the (n — k)-form *f on the dual lattice, given by
xf(y) = Z fir i (X)sdyjy A<= AN dy,
1<in<--<ik<n

That is, we take each k-cell and put the value we had on the k-cell on the same dual cell with carefully adjusted

signs (and this is okay because () = (,",)).

Our definitions here are carefully set up so that ** f = (—1)k("=K)f for all . And next time, we'll use this to write

the coderivative in terms of the derivative so that we won't have to reprove the Poincaré lemma.

12 November 3, 2025

Last time, we discussed the Hodge dual and coderivative operator.
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Lemma 61
Let f be a k-form for 1 < k < n. Then the coderivative can be written

6f = (—1)" kD Hsdsf(y),

where y = #(dxy A -+ A dx,) is the dual of x.

(We can check that the dimensions work out correctly when we apply *, then d, then * —we do get a (k—1)-form.)

Proof. Recall the definition
xf(y) = Z fir i (X)sdyjy A= AN dyj,

1<in<--<ik<n
for s the corresponding sign of the permutation. Thus taking the derivative on both sides, we have

d+f(y) = Z Z Oifiy.. i (X)sdyi Ndyj, A+ Ndy;, .

1<ih<--<ik<n1<i<n
Let's think now about what happens if we try to take % on both sides. If i & {i, - ,ix}, then we always have

i € j1, -+ ,Jjn—k}, meaning that dy; A dy;, A--- A dyj,_, =0 and we don't have to consider those terms. And if i = i

for some £, then
w(dy; Ady, A Ady, ) = (—1)KO Tkt Tg g A A dxg A A dx,.

The reason for the power of —1 is that it is the sign of the permutation (ig, j1, "+, Jn—k, i1, " ; ix) (since it takes
(n— k+4£—1) swaps to put j, back where it's omitted, and then (n — k) swaps to move each i past all of the js).

Therefore

k
sdsfy = (—1)K=RTr=k=l N N 1) (O dx, A Adxg A A d,

1<ip<-<ik<n £=1

_ (*l)n(k+1)716f(X),
where in the last step we use that k(n— k) +n—k—1=n(k+1) —1— k(k+ 1) and the latter term is always

even. O

The utility of this is that we automatically get the Poincaré lemma for the coderivative using the one for the exterior

derivative:

Proposition 62 (Poincaré lemma for the coderivative)
Take any 1 < k < n—1, and let f be an R-valued k-form on Z" (for some ring R) with 6f = 0. Then there

exists some (k + 1)-form h such that f = §h and where supp(h) is contained in the smallest hypercube containing

supp(f).

Proof. Since 6f = 0, the lemma above implies that d*f = 0. Letting B be the smallest hypercube containing supp(f),
we can define *B to be the dual hypercube {x(dx; A--- A dx,) : x € B}, and by construction we have supp(xf) C *B.
Therefore the (usual) Poincaré lemma implies the existence of an (n — k — 1)-form g on *Z" with dg = *f and
supp(g) C *B; we can then define h = (—1)~(k=Dn=k+1)=k(n=k)=nk=1 4 g Then we can again directly check that

43



supp(h) C B, and using that % x f = (—1)k("=Kf yields
xh = (_1)—k(n—k)—nk—1g'

Therefore
6h=(-1)""sdxh=(-1)"*"Mxdg=(—1)"K0 « (xf) = f,

as desired. O

We can now give a geometric interpretation of some of our results. Taking the ring to be {0, 1}, any 1-form is
a set of edges and a 2-form is a set of plaquettes. If f is a 1-form, then df is a function on vertices, and 6f = 0
means that every vertex has an even number of incident edges. That must mean that f is a union of closed loops
(start with any vertex and follow some edge we haven't used, and repeat until we've used everything up; we can't get
stuck). What we're saying now is that there is some collection of plaquettes h such that §h = f; what this means is
that the number of plaquettes adjacent to each edge of f is odd. And that's exactly what a surface bounded by each
loop encodes. Thus this proves that “for any closed loop, we can find a surface whose boundary is that loop, and we

can contain it in the smallest hypercube containing that loop.”

Definition 63

For k-forms f, g, we define the inner product

D=3 ¥ il i)

XEZN 1< <-<ik<n

Note that this is the first time we've really actually used the ring structure of the k-forms.

Lemma 64
For any (k + 1)-form f and any k-form g (for 0 < k < n— 1, we have

(f.dg) = (67, g).

Proof. Let h = §f and substitute in the formula for the coderivative (the version in coordinates stated after Defini-
tion 56). We find that

SO D DD LT TR AN )

XEZN 1<h < <ik<n i=1

- Z Z Z(ﬁ,/lw",fk (X) - f;',l'lw",lvk (X - el’))gliw",fk(x)

XEZN 1< <-<ix<n i=1

- Z Z Z f;'rilv'"v’.k (X)gil,"',/k(x) + Z Z Z ﬁyil,"',ik(x - e/)gi1,"',/k(x)

XEZN 1< <-<ix<n i=1 XEZN 1< <-<ix<n i=1

(h,9)

(all forms are finitely-supported, so there's no issue with moving sums around). But now reindexing the second sum
by a change of variable x — x + ¢; doesn't change the overall sum, and then we can combine them back together
again to get

)= 3 3 i (08 ().

XEZN 1< <-<ix<n i=1
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We only need to consider the case where all indices /, i, -, ix are distinct (otherwise the contribution is zero); let
1 < Jo < -+ < jk+1 be the increasing rearrangement of them. Then we have j = j; for some £, and then each term in
the sum can be written

f;',il,"' Lk (X)afgil,"' ik (X) = (_1)e_1fjlv"' Jk+1 (X)ajggjlv 'A (X)

Jor Jkr
and then summing this over all indices and all £ yields exactly the definition of (f, dg) as desired. O

So this proof is basically “summation by parts” similarly to how we normally do “integration by parts.”
This is all of the “bookkeeping” we'll do for now — this discrete differential geometry has been very useful for a lot
of Professor Chatterjee's work. We'll now think about the Villain action, which is easier to think about for abelian

gauge theories. Specifically, we'll think about U(1) lattice gauge theory on Z? for d > 2.

Definition 65

Let A C Z¢ be finite, and let E be the set of positively oriented edges with both vertices in A and P the set of all
plaquettes. We previously considered the configuration space U(1)€, and now we'll replace that with the space
[, m)E (via the correspondence of e/®(¢) on the unit circle to the angle 8). For any (x,y) € E, we then also
define 6(y, x) = —6(x,y) (so that e®) is the inverse of e®¥)  For a plaquette with vertices x, X2, X3, X3 in

counterclockwise order, define
0(p) = 0(x1, x2) + 6(x2, x3) + 0(x3, Xa) + 0(xa4, X1)

(note that this quantity may not be in [—m, )). Then for a given 8 > 0, define the Villain action

Z exp (—g(ep - 27rn)2>] :

ne7Z

Sp(8) == _log

peEP

This series is always rapidly convergent so there are no problems, and furthermore this takes care of the issue of
making a choice of interval [—m, ) — because of the 2m-periodicity inside the sum it doesn’t actually matter. (This is
actually the heat kernel on the circle for Brownian motion, and that's how we generalize for other groups.)

Previously in U(1) theory the Wilson action tries to make each plaquette variable close to 1, and this does the
same — 6, will try to concentrate around some multiple of 27 under the Villain action to make this sum close to its
maximum value. And the point is that the Villain action works quite well with discrete differential geometry and duality

properties.

Lemma 66

The Villain action Sg is gauge-invariant.

Proof. Take any configuration 8 € [—m, m)E. (This corresponds to the configuration U € U(1)E with U(e) = e™®(®)
for all e.) For any gauge transformation g € U(1)", let V = U9, meaning that V(x,y) = g(x)U(x,y)g(y)" . So if
¢ € [-m, m)F represents V and n € [—m, )" represents g, the gauge transformation equation means that

elty) = o/ MI+H)=1)) — ¢(x, y) = n(x) + 0(x, y) — n(y) mod 2.
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Therefore for any plaquette as in the definition of the Villain action, we have

Ep = E(x1, %) +E€(x0, x3) + £(x3, Xa) + &(xa, X1)
=0(x1, x2) + 0(x2, x3) + 0(x3, X4) + 0(x4, x1) mod 27

because all of the ns cancel out (each one is added once and subtracted once). This means &, = 6, mod 27, and

therefore 5 5
Zexp (—2(9p - 27rn)2> = Z exp (—2(£p - 27rn)2> :
nez nezZ
Applying this to every plaquette, the Villain action stays the same under this transformation, as desired. ]

This action also makes it possible to “scale to the continuum limit:"

Theorem 67
(Note: this was corrected during the subsequent lecture.) Take d € {2,3,4} and go > 0. Let A = Zj’zl Ajdx;
be a compactly supported smooth u(1)-valued 1-form on RY. For any € € (0, 1), define the configuration

0(x, x + €¢;) = —ilog(eA ™),

where we use the convention that log e = ix for —m < x < 7. (We're writing it this way because €A; may not
necessarily be in [—7, ).) This means we have e®(x*+e¢) = ¢Ai(x)  Now for the Villain action, we need to make

a small modification

HOEEY (Iog <Z - (_S (8~ 27”’)2))) e (Z o <_§(_2m)z) ) >

peP neZ neZ

(this just makes it so that we get a finite sum over plaquettes because 6, = 0 outside of a finite region). Let
B = ;0 If d < 4, then we have lime_,0 Sp(e)(0) = Se(A), and if d = 4 then lime_,o Sp(e)(0) = kSe(A) for the
constant

o212 /42
) A2 ZnEZ n2e—2mn /95
k=1—-—
2 _om2n2/g2

90 ZneZ € /6

(and we can choose a slightly modified g, to get the desired constant instead). Meanwhile if d > 5, we actually

just get lim._q 55(6)(9) = 0. Furthermore we indeed have k > 0.

Start of proof. In this proof, O(e%*) will denote any quantity whose absolute value is bounded by Ce* for some C
depending only on d, gg, and A. We have

ei@(x,x+aej) — eEAJ(X) — ef(—ieAJ(x))
which means that 8(x, x + €¢;) = —ieAj(x) mod 27. Around a plaquette, we therefore get by a similar calculation as

before that
0p = —ie(Ai(x1) + Ax(x2) — Aj(xa) — Ak(x1)) mod 2.

Thus we can write down the Villain action in terms of A;s:

S (510, ~ 2m?) = S (-5 (i) + Aut) = Ay(a) = A) - 270

nez nez

d—2 N 2
=Y e (’;gg (00 + ) = A — o) - 77 ) .

nez
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Now because A is smooth we have A;(x1) + Ax(x2) — Aj(xa) — Ax(x1) = €(8;Ak(x) — BkAj(x)) + O(g?), and we can
plug this in to get

%exp( <8Ak( ) — OkA(x) + O(e )—21_””> )

Expanding out the square here yields that for any fixed n this summand is

-2

27r/£ n

d—4,.2 .2 d
exp (‘ 2ETZr : ) e (zeggijk(x) — Bk Ai(x) + O(€))? - (9A(x) = By () + O“”) |

0
Now note that the O(g) term doesn’t depend on n, so if we add the summands for some specific n and —n together,
everything except the last term is the same and we can use e’ + e~ = 2 cos x (because those two angles are exactly

negatives). Therefore we get a total contribution of

d—4,.2,.2 d d—2
2exp (—2’5927”’) exp (;gQ(@Ak(x) — B A(x) + O(e))2> cos (2”92”(81-Ak(x) — BkA(x) + 0(5))) .
0 0 0

We'll see how to get estimates for this next time! ]

13 November 5, 2025

We were proving convergence of the Villain action to the Yang-Mills action last time, and in particular (see above) we
had a sum over nonnegative integers n with a cosine term in the summand (specifically the summand we care about
. d—4..2 .2 d d-2 . .

is 2 exp (72%) exp (;fgg(ajAk(x) — Ok A(X) + 0(5))2) cos (MT”(@AK(X) — B A (x) + O(e))) ). Continuing
the proof now, we now have to consider three separate cases:

1. d =4. By a Taylor approximation, we can write the second exponential as 1 + 23 (6 Ak — OkA;)? 4+ O(€%), and
we can write the cosine term as 1 — 27’5 n’ (8jAk — BkAj)? + O(%)n* + O(e®)n* (here we use that cosine has all
bounded derivatives, so we don't need to go on after this). So multiplying these together and also substituting
d = 4 into the first exponential, we get

2 2,2 1 2 2,2
2exp < 7;211 ) <1 +e* < 7r4n > (8 Ak — BkA)? + O(°)n? + O(s8)n4> ,

0 290 9

and we can combine the two last error terms into just an O(g®)n* term. So now we will sum over all n. Defining
_ 2m2n? o om2n2 1 5
the constants Ky = >, ., exp (— ”gg” ) and Ko = o exp (— "gg” ) (ng — 7’90” ) we get

2.2
Zexp (—'B(GP - 27rn)2> Z2exp ( n ) (1 +¢* (12 — 27r4n> (0;Ak — akAJ')2 + O(E5)n4)
2 % 295 %

neZ

= Ky + Koe®* (8jAk — Bk A))? + O(€°),

where we use that the exponential decays very fast so the sum >~ n*exp (—2’;#) is finite. Remember that all
0
of this has been for a specific plaquette (with edges in the j, k direction). Let P’ be the set of all plageuttes

with 8, nonzero or 9;Ax(x) — OkA;(x) nonzero. Then our modified action sums over all plaquettes and looks like
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(remember 8 = )
90

55(6) = — > log (Kl + Kog® (8,Ak — BkA)) + 0(55)) ~log(K1)
pEP!

K
= — Z |og (1 + ?264 (ajAk — akAj)2 + O(ES)>
1

peP’

because remember that the subtracted off term just has 6, = 0 so the sum is exactly the definition of K. But

now by the expansion of the log this is exactly (now writing out the sum over plaquettes more explicitly)

DD (GAX) — BkAI(X))? + O(e%)|P].

X€Z4 .k

But now |P’| = O(e~*) because A was assumed to be compactly supported, so the result follows and £2 exactly
Ki

results in the desired constant i&. (And we'll show why k is nonzero later.)

0
. d = 2,3. Returning to the summand above, notice that for n > 1 this whole summand is bounded by C; e Cae? 0
(since the second exponential and cosine are basically bounded) and so actually we only need to consider the
n =0 term. That is,

2P (‘g(ep - 27”7)2> = exp (—g%) +0(Cee),
nezZ

and this main term can be Taylor expanded as
B\ _ e’ A , 2\ _ e A 32 d+1
exp 92 | =exp 5(0jAk — OkA; +0(€))” | = 1+ == (0jAk — OkA;)” + O(e“).
2°P 295 29;

On the other hand, we also have to subtract off the K; term, which looks like

d—4

2o <§(2””)2> =2 o <7T2;2 n2> —1+0(Cre ™).
0

nez nez

So all errors are pretty small and the rest of the proof goes through like in the d = 4 case.

..d > 5. In this case all terms in the summand will contribute because we have a positive € power in both

exponentials. We have
e 2 e 2 d+1
exp TQZ(GJ'A;((X) —OkAi(x) +0(e))° ) =1+ 2792(@‘/4;( — OkA))=+0(e?™)
) 0

as before. For the other terms we have

27r2€2d74 2

Tn(ajAk — kA2 + O(%8)n* + O(29-3)n2,

cos <2“222”(@Ak(x) _ B A(X) + O(a))) =1

0

and now we have to multiply these two expansions together. But what saves us now is that 2d — 4 > d, so
we no longer have two different leading-order terms and so we won't get this nonzero k factor. Unfortunately
K1, K> are now dependent on €, and so the calculation still takes some work. Substituting in our expansions,
the summand now looks like

2gd—472 2 d  ppg2d—4,2
exp (_5927Tn> (1 + (2‘692 _ 7TEg4 n ) (& A — akAj)z +O(5d+1) +O(82d—3)n2 +O(84d—8)n4> ’
0 0 0

where the other terms are negligible because of our value of d. This time, we need to separate out K, into two
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different terms because of the different orders of e: define
Ed 47r2 n2
Ki(e) = S exp ( ) |
nezZ g

and similarly

Dgd—472 2 Dgd—472 2
Ka(e) = Zn exp( — 2 ) . Ks(e) = Zn exp( ) :
0

nez nez go
We thus have

Z exp (—2(9,3 — 27rn)2>

neZ
d d—
= Ki(e) + (2898 Ki(g) — %2:;?1@(50 (0jAk — OkA)? + O(e"™H Ky (e) + O ) Ka(e) + O(e*8)K3(e).

So like before, taking log and subtracting off log(K1(g)), and using that all of the exponents here are positive

Kol

But now viewing our sums Kj, K2, K3 as Riemann sum approximations, we have (using § = gld=%/2 35 the

spacing) ,
o 2
lim e(@=9/2K, () = / exp (— 72( ) dx,
e—0 — 00 gO

and similarly (note the slightly different factor in the exponents of € because we need to compensate for the

oo 2 2
lim e3=4/2K, () = / x2 exp (— 72( )dx,
e—0 00 95

because d > 5, the result of that calculation ends up being

gd  2om2gd—4 Kz(s))
log ( 1+ ;A — 0kA)? 4+ O(e
g ( (290 go K ( ) ( ] k — k ) (

Ka(e)
Ki(e)

powers of n)

9] 2 2
lim e>(9=9/2K5(e) = / x* exp <— W; ) dx.
- 9

=0 00 0

Thus ?2(5) = 0(e~(9%) and K3(€) = 0(e~4-8)) s0 as € — 0 the error terms are negligible and we can repeat
the argument from d = 4 to take the appropriate limit, but the % term actually still appears in the leading

correction, and if we calculate the Gaussian integral it actually cancels out exactly with the other term £ So

293 °

instead we get that the action converges to a constant for d > 5.

Furthermore, the quantity
k(Jo) 1 2m2 Y pPe 2%

208 232 g3 S e2mr/g

goes to oo (resp. 0) as gg — 0 (resp. go — oo) by Riemann sum approximation, so we can always tune it so that we

1
get the correct constant 37

That concludes the proof of the scaling limit result, and the point of all of this is that we want to get the dual of

4D lattice gauge theory with the Villain action. For this, we define a function ¢g : [-7, m) = R

ds(x) = Zexp <_§(X — 27rn)2> :

neZ

We can prove that ¢g(x) is C* on the open interval (—m, ) and in fact lifts to a smooth function on the unit circle
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because

k
000 = X gz 00 (<50 2m0 ) = 3 st - 2mn)exp (5 x - 2mn)?)

neZ nez

for polynomials py . Taking the limit of this expression as x — m, we get > ., pxg(m™ — 2mn) exp (—g(n - 27rn)2),
and then replacing n+— n+ 1 shows that it is also the limit of the kth derivative as x — —m. So all derivatives “wrap
around” on both sides and so we lift to a smooth function as desired.

For such functions, we can derive facts about their Fourier transforms: for a function f : [—m, ) — R with those
properties above (C* and agreement of limiting kth derivatives at both endpoints for all k > 0), we can define the

Fourier coefficient .
f(n) :/ f(x)e™dx
—T

for all n € Z.

Lemma 68
The Fourier coefficient £(n) satisfies |#(n)] = o(|n|~®) for any a > 0, so the coefficients are in fact rapidly

decaying.

Proof. By integration by parts,
R f /nxd ™
() = )T

1 (" :
——/f@ﬁ%ﬂ

in . inJ g

and the boundary term is zero because "™ = e~'"™ and f(mw) = f(—m). So £(n) = O(|n|"!) as n — oo, and then

repeat the same integration by parts on f" and so on (an arbitrary number of times). O

What this means is that the sum )
o Z f(n)e '™
nezZ

is a well-defined smooth function on [—m, w) (by the dominated convergence theorem).

Lemma 69

The function above is actually exactly f(x); that is, we have the Fourier inversion formula

ﬂ@:%zywyw

nez

Applying this to our function ¢g, we'll see why the Villain action is actually nice:

Lemma 70
We have

Boln) = || e/,

Proof. We wish to compute
dp(n) = | ¢p(x)e™dx
U

- Z /7r exp (—g(x —2mm)? + inx) dx

meZ
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and now we can replace inx with in(x —2mm) because €>™ = 1. So now by a change of variables on the inner integral,

we have
—2Tm+m ﬁ
Z/ exp (—y2+iny> dy
mez —2mTm—m 2
which is just an integral over the whole real line, and we can evaluate the resulting Gaussian integral. 0

So we have a nice Fourier transform, and we'll use this next time to work towards the dual of 4D U(1) theory.

14 November 10, 2025

We'll be continuing to think about U(1) lattice gauge theory on some hypercube A of Z* — specifically, we'll consider
the Villain action Sg with free boundary conditions. Configurations are then of the form 6 € [—7, )€ for E the set
of positively oriented edges (with both endpoints in A); letting P be the set of plaquettes with all vertices in A, we're

considering the probability density
exp(—Sp(0)) =exp | — | — Z log Zexp —é(e —27n)? :
2 1%
pEP nez
We can simplify this a bit because we have a sum of exponentials, which cancels out the log and thus yields
exp(—Sgp(6 H (Zexp( (6, —2mn) >> ;
pPEP \n€Z

we will call the term inside the product ¢g(6,). To calculate the normalizing constant, we must compute

Z= / e @ dp = / 11 ¢0(00)d6
77\',7\') T, 1|'

pEP
(27r)\7’|/ H (;Z%(n)e ing, >

pEP

where we've substituted in the expression for ¢g using the Fourier coefficients from last time. Now we can use the
distributivity (noting that we only have a finite product of plaquettes but an infinite sum over n)

1 iy —in,
= (2m)/P] /[—7\',7|')E Z (H dp(ny)e Pep> do,

neZP \peP

where we've really used that the Fourier coefficients are rapidly decaying in n to allow this operation. Now again using
the rapid decay of these coefficients and that P is a finite set, we have a countable sum so we can move it past the

integral by the dominated convergence theorem:

27r)\77\ > /[_M)E (H éﬁ(np)e—mpep> de

nezr pEP
(zﬂ)\m > (H Go(np >/ exD( > ingf )
nezZP \peP ™’ peEP
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Now for any configuration 6 € [—m, 7)E, we can define an R-valued 1-form on Z*, which we will also call § = Zle 0idx;,
by
O(x,x+¢) if (x,x+e¢)€E,

0;(x) = _
0 otherwise.

For a plaquette p € P with vertices x, x + €, x + € + ex, x + e, (for 1 < j < k < 4), we have (remember d0 is a
2-form)

dej,k(X) = 619k(X) — 6k9j(x)
= Gk(x + ej) - Qk(X) — GJ(X + ek) + GJ‘(X)
=0(x+e,x+e+e)—0(x,x+e)—0(x+e,x+e+e)+0(x,x+¢)
= Qp;

that is, the 2-form d6 keeps track of the values 6, (for plaquettes in P; the others don't matter). Now for any n € Z”,
define the R-valued 2-form on Z* (also called n) as

n, ifpep,
njk(x) = _
0  Otherwise.
(remember that p is exactly determined by x,Jj, k). With these definitions, the sum we care about is really an inner

product on 2-forms

>y, = (d6, n) = (6.6n)
p
(and that's why we don’t have to worry about d outside of P, since we've extended n to be zero outside). But now

(6.6,) = > _6(e)dn(e)

ecE

because 6 is zero for all other edges outside of E, and here remembering that dn(e) = §,,(x) for e = (x,x + ¢).

Plugging this into our previous formula, we find that the integral now factors:

1 A .
‘- (2m)Pl NGZZ; (pl; ¢B(”p)> /[_MF)E exp (—/ée(e)én(e)> do
1 A .

Now each dn(e) is an integer, and we know that [” e~"**dx = 27 if k =0 and 0 otherwise. Thus we really have

Z=emEr N ] de(np).

nezP pEP
dn(e)=0 VecE

We now claim that if dn(e) = 0 for all e € E, then actually 6n = 0 everywhere as a 2-form. For any edge e = (x, x+¢j),

we have . A
Sni(x) = = > Biny(x) = Y _(n(x — &) = nyj(x))
i=1 =1

by the formula for the coderivative; this is exactly the difference between the values on the plaquettes on the two sides
of e (and summing over all directions except j). But if e is not in our hypercube, all plaquettes containing e will be
outside the hypercube as well, so this whole sum will indeed be zero. Thus dn;(x) is always zero in all such cases, and
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thus we can really simplify to

Z=(@m)= "3 [T do(ny)

nezZ? peP
dn=0

(Remember that §n = 0 means n can be thought of as a signed combination of plaquettes in a closed surface.) This
whole argument is fairly general, so we can do this whole thing with other actions (like the Wilson action). But what's

important now is that we have an explicit formula for those coefficients from Lemma 70 qsg(n) = ,/%’r exp (—%) o)

Z = (2m)IEI=IPI (27T>2P| > exp - AR
b nez” 26 ’

peP
on=0

Call AV the set of all n € ZP with 6n = 0, and let A be the set of all Z-valued 1-forms o supported on the dual
hypercube *A, such that xda(p) = 0 for all plaquettes outside P. (This is almost true for anything in %A, except it
might go slightly outside at the very boundary.) We can then define an equivalence relation

a~a if dla-a)=0;

by discrete Poincaré this is equivalent to saying that there is some 0-form 7y supported on *A with o’ = a+d-y. Letting

Ao = A/ ~ (whose elements we typically write as [a]).

Lemma 71

The map £ : [a] — *da is a bijection between Ay and N. (This is well-defined because the result only depends
on da.)

This lemma will allow us to transfer a sum over A/ to a sum over Ag. And A is perhaps easier to think about than
N, where it's important to note that the dual of a plaquette is also a plaquette in four dimensions.

Proof. We've already observed that the map is well-defined. Note that for any o € A, remembering that § is some
sign times *dx,
d(xda) = (—1)sdsxda,

and now because *xf = (—1)()f this simplifies to (—1)")xdda = 0 because d®> = 0. Furthermore, by assumption,
xda(p) =0 for all p € P. Thus x(da) is indeed always an element of A/, so £ indeed maps Ag into V.

Next, we prove this map is surjective. For any n € A/, we have §n = 0 and so there is some Z-valued 3-form m on
Z* such that n = 6m and m is supported on A. We can then define o = *(—m) (this may not be unique, but that’s
okay); this is a Z-valued 1-form on the dual lattice *Z* supported on *A. Then

n=2aom=(-1)*C D dim = —xdxm = xd*(—m) = xda,

and o € A because all conditions are satisfied. Thus we can indeed reach any n with this map. (Note that we use
crucially that we are in four dimensions here.)

Finally, we prove injectivity, which is easier. If xda = xda’, then xd(a — a’) = 0, and therefore d(a — a’) = 0 and
[a] = [o]. O
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So now for any n € Z” with §n = 0, we can find some o € A such that n = *da. Then

2om=2 D mklx

pEP x€Z* 1<j<k<4

Z Z daji(y)?

yexZ* 1<j<k<4

= (da, dav).

(Remember that we might get a sign coming from the permutation when we take %, but we square things here so

there's nothing to worry about.) That yields the following normalizing constant:

Lemma 72

For the Villain action, we have

2m 2IP! 1
Z = (2m)IE=IPI () Z exp <—(da, da)) .
B [a]€Ao 26

Thus we can consider the dual model, which is a probability measure on Ag (which notably is a discrete set) with
probability mass at [a] € A proportional to exp (—%(da, da)). That is, the model selects, for each edge in A*,
an integer, and this is kind of like the integer Gaussian free field but it's valued on edges rather than vertices. And
the key now is that for B large this becomes close to the “comfortable region” where we are in the high-temperature

regime and thus things are actually tractable!

Example 73
What we can do now is write Wilson loop expectations in terms of this new model. Let £ be a rectangular Wilson
loop in A of the form which first goes in the +e¢;, then +e, then —e;, then —ey directions (for j < k), and suppose

it has n vertices xp, X1, - - - , X, and then returns to x,+1 = xg. The Wilson loop expectation is then

n
WZ(G) — H e/G(XJ’X/ﬂ)
Jj=0

Lemma 74
We can alternatively express
Wo(0) =exp [ =i ) 6,
peT

where ¥ is the set of plaquettes enclosed by the rectangle £.

This crucially uses the abelian nature of the loop — this is basically a discrete version of Green's theorem.

Proof. Define a 2-form m on Z* by n(p) = 1 if p € ¥ and 0 otherwise. Then because df is exactly encoding the

values of 6 on plaquettes,

>0, = (do. ) = (6,6m),

peEX
and now 7 (a signed linear combination of plaquettes next to each edge) is exactly —1 for all edges on the bottom
and right and +1 on the top and left. So then exp (—i )" 5 6,) = W,(6) as desired. O
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So now we can go back to what we were doing before: we want to evaluate the expectation of W,, and
Zy _s
Wp)=—, Zp= W, (8)e #(0)do.
4 [—m,m)E

Proceeding in exactly the same way as before, we can compute

(H‘%(’%))/{ )EeXp _iznpep—/zep do.

peEP peEP pPEL

1
2= Gyl 2

nezZ”?

So in other words, we now have either n, or n, 4+ 1 for each plaquette, depending on whether p € & or not. But then

by a change of variables for only the plaquette variables in ¥, this can be rewritten as

Zy = W Z H q@B(np) H q@B(np — ].) /[W'W)E exp (I Z np9p> de

neZP \ peP\x PEL peP

= (ZW)IEHP‘ Z H (i)ﬁ(np) H dsﬁ(”p —1)

neZP,5n=0 \ peP\Z pEL

Plugging in the value of @, this simplifies to

1Pl
21 2 1 1
[EI-IPI [ 22 _ 2 _ = _1)2
e (F) X (-5 X -
nEZP,6n=0 peEP\L pPEX
Defining the disorder operator
1 ]
Dy(m)=exp | = m, — —
pEX

we can thus write this entire expression inside the n-sum as Dy(m) exp (—% > pep mf,). Transferring in the exact

same way as we did for Z, we now get the following:

Lemma 75
We have
e 27\ 1
Zy = (2m) (ﬁ) Z Dy(xda) exp <2'6(da, da)) .

[a]eAq

So dividing Z; by Z makes all factors cancel out, and we get the following result:

Theorem 76

We have the equality of expectations
(We(6)) = (De(xdar))”,

where 6 is chosen from the lattice gauge theory and « is chosen from the dual theory.

15 November 12, 2025

We proved last time that for a rectangular loop £ in A under U(1) lattice gauge theory with the Villain action and free
boundary condition, we can write (W) in terms of a certain dual model defined on the state space Ag (an equivalence
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quotient of Z-valued 1-forms on *Z* with *da(p) = 0 for all p not in the dual lattice, where a ~ o’ if da = da').
Specifically, with the probability measure wg proportional to exp (—%(da, da) on Ag, we have (Wj) = (D,)*, where

Dy(a) = exp (% > pex ¥da(p) — %) was the disorder operator.

Remark 77. Note that we didn't really use the fact that it's a rectangular loop — we could run this argument for any
general loop as well if we choose a surface bounded by it, and we can double-check that the result D, doesn’'t depend
on the choice of bounding surface and so we still get this relationship between the primal and dual model.

Also, we can think of xda(p) = 0 as being “zero boundary conditions” on the dual lattice when we expand out by

L unit in all directions.

So now we want to compute (D,)*, and it's very much like a Gaussian measure but it's supported only on integers.

Thus, we'll define a new model to help us:

Example 78

In the Gaussian U(1) model, let U be the space of all R-valued (rather than Z-valued) 1-forms on %A such that
xda(p) = 0 for all p ¢ P. This is a finite-dimensional vector space over R, and we similarly define a quotient
relation o ~ o if d(a — ') = 0. To define a Gaussian space, first fix € > 0 and define 7, to be the Gaussian
measure on U with density proportional to exp (—%(da, do) — 55(a, a)) (so that we're actually integrable after

quotienting).

Write ||a|| = (a, a)'/? for convenience, and let H be the space of all R-valued 1-forms on *Z*, not necessarily
with finite support, where ||a|| < co. Then H is a Hilbert space under this inner product, and U is a finite-dimensional
closed subspace of H. Let I1 be the orthogonal projection onto U.

Lemma 79
For any € > 0, the restriction of the map M(dd +€) : X — H to U maps into U, and it is self-adjoint, positive

definite, and invertible. Furthermore, the covariance matrix of . is exactly B times the inverse of this map.

Proof. Clearly M(dd + €) maps into U because I projects onto U. Let S denote this restriction M(dd + €)[,;. Now for
any a, ' € U we have
(a, Sa') = (o, M(6d + €)a’) = (a, (6d + €)a’)

because a is already in U anyway so the projection doesn’t change the inner product, and now by summation by parts
this becomes (da, da’) + €(a, &’). So from this we see clearly that the map is self-adjoint and positive definite; for
invertibility note that Sa = 0 implies (o, Sa) = 0 and therefore we must have (a,a) = 0, hence « = 0. So S is
injective, and since we have a finite-dimensional space S is invertible. Finally from this formula, the probability density
of 7y is proportional to exp (—%(da, do) — 55(a, oz)) =exp (—%(a, Sa)), as desired. O

Now let V. be this covariance (1M(dd +€)|;;)~*; since we have a Gaussian random vector we have the characteristic

function for .

/ei(am)d%(a) = exp <—§(77, Vm))

for all m supported on A and we want to understand what happens to this as € — 0. (Eventually, we'll essentially

restrict this probability measure to integer points, but we haven't done that yet.) For this, first define the subspaces
Vo={acU:da=0}, U=V inlU.

(so we can think of Uy as choosing one element of each equivalence class, now that we're in the continuous setting).
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Lemma 80
The map MNdd maps U into Uy, and furthermore Mdd|y, is self-adjoint, positive definite, and invertible.

The point is that on Uy we can actually take € — 0 without problems.

Proof. For o € U and 1 € Vy, we have
(n,Néda) = (n,0da) = (dn, da) =0

by the same logic as before (removing the projection and then using summation by parts). Thus NMdda is orthogonal
to Vy, meaning it maps into Up.
Next, let T be the restriction of M6d to Uy. Proceeding like before, for o, o’ € Uy we have

(a, Td') = (!, Ndda’) = (o, 6da’) = (dax, da’),

which proves self-adjointness and positive semidefiniteness. Now if (o, Ta) = 0 we must have (do, da) = 0, meaning
that o € V), but also a € Uy so we must have o = 0 by orthogonality; thus we actually have positive definiteness and

this proves invertibility as well. O

If we add on an ¢ to this, we also get the following:

Corollary 81
For all € > 0, the operator M(dd + €) maps Uy into Uy, and the restriction to Uy is invertible. Thus the same

claims also hold for V;.

Proof. Take a € Up. Then MN(dd + €)a = Mdda + a is the sum of two terms in Uy, hence in Up. And M(da +€) is
injective on the bigger space U, so it is also injective on Uy, hence invertible. Thus the inverse of this on Uy, which is

V., also satisfies those same properties. O

Lemma 82

There exists some ¢ > 0 such that ||da|| > cl||a|| for all a € Uy.

Proof. It suffices to prove the result when ||a|| = 1 by scaling. But by compactness this means it suffices to show
that da # 0 for all @ € Uy for all ||a|| = 1, which is true by orthogonality to Vg. O
Corollary 83

There is some C such that for all ¢ > 0 and all a € Uy, ||Vea|| < Clla].

Proof. Take any a € Uy and take ¢ as above. For any € > 0 we can define n = V.a; note that n € Uy and therefore
(@) = (e, Vea) = (V. In.m) = (0. VM) = (0, 1(8d +€)n),
and this last expression is ||dn||? + €||n||? > ||dn||? > c?||n||?. Therefore by Cauchy-Schwarz,

lled] - [Iml] = (e, m) > [In]|?

and so [|n|| < |||, as desired (we can take C = %). .
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Lemma 84

Let V denote the inverse of the restriction ([1dd|y,). Then for all n € U, we have the limit of the characteristic
functions

exp (~5(n,Vm)) if n €U,

Iir%/e’(“’”)dfyg(a) = ‘
ifneld\U.

=

So we have a sequence of characteristic functions which converges to something which is not a characteristic
function (since it's vanishing everywhere except a subspace) — instead it's the characteristic function on a quotient
space. What we're basically doing as € — 0 is getting something uniform in the orthogonal direction (think about
having density e in R2).

Proof. Recall that [ e®Mdry,(a) = exp (—%(n,\/an)). First note that for any n € Vy, we have M(dd + €)n = en
because dn = 0. Therefore applied to Vy we just have the simple expression

Ven = (N(3d +¢€))"'n=¢"'n.
So for any n € U we can do the orthogonal decomposition n = ng + 11 with 19 € Uy and m; € Vy, and we get

(n,Vem) = (no, Vemo) + (o, Vemn) + (1, Vemo) + (m1, Vemn)
= (Mo, Vemo) + 2(mo, Vem1) + (M1, Vemn)
= (Mo, Vemo) + 26~ (10, m) + & (11, m)
>0+0+eYml>

Thus this whole quantity tends to infinity if 71 # 0, so as long as we move out of Uy the thing appearing in the
exponent of the characteristic function goes to infinity and thus we do indeed get zero.

On the other hand, if we're inside Uy, write & = V.n (we know this is an element of Up) and so n = V. 1§ =
M(dd+e)ée. Now remembering that ||£|| is uniformly bounded by C||n]|| by the previous lemma, if £ is any subsequential
limit of & as € | 0, then this expression shows n = M(dd + €)&, so £ = V'n. Therefore & converges to V;,, meaning
that (n, Vcn) converges to (1, Vn) and this is what we wanted. O

Remark 85. To explain why we're taking this approach, we have some lattice of integer points, and we have a restriction
of the Gaussian measure not to the lattice but to certain fibers. The issue is that if we just define a Gaussian measure
here, we may not contain the projections of the integer points if we directly take the Gaussian measure on Uy, since
it's difficult to connect it to the integer model (where the as are all integers, and we don't want to get non-integer
valued forms if we just project to Uy ).

We'll now use the Poisson summation formula to get the desired restriction to integers (in some sense).

Theorem 86 (Poisson summation formula)

Let f : R — C be a Schwartz function (meaning that the function and its derivatives are rapidly decaying faster

> f(n)=>_F(2mn)

neZ neZ

for f(t) = [*°_ e'™Ff(x)dx the Fourier transform (which is also Schwartz).

—00

than any polynomial). Then
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Proof. Define the “periodization” function g : [-m, ) — C via g(x) = >, F (% + n). We can check that
1 X
(k) () — ey (X
g7 ) (2m)k % (27r + n) '

meaning that

1 1
im g — E (k) | =
)!—>| 7r g (X) (271 )k f <2 f7>

= lim ¢g®(x),

X——T

so the periodization has left and right boundary derivatives agreeing and thus we can write g(x) = i Y onez e~"™g(n).

Plugging in x = 0, we see that

() = 9(0) = 5= 3" 4(n)

nez nez

ZWZ/ Zf —er) ™ dx

nez

ZZ/ f—i-m) '™ dx
n€EZ meZ
1/2

—ZZ/ f(y+m) 27””ydy

neZ meZ
But now we can replace y with y + m in the exponential, which doesn’t change the value, and then do another change
of variable to write the integral over the whole real line:

m+1/2

ZZ/ f(y)ez’””ydy:Zf(%rn),

neZ mezZ nez

completing the proof. ]

This is often used in comparing continuous to discrete models, and we'll see that soon!

16 November 17, 2025

Let's start with a quick review. We've been working with the U(1) gauge theory on a four-dimensional hypercube
A, and considering a rectangular loop £ we've previously shown that the Wilson loop expectation (W;) agrees with
the expectation (D,)* in the dual model, where the disorder operator D, = Dy(a) takes in an integer-valued 1-form
supported on the dual lattice *A (meaning that it's nonzero only on edges that are in a slightly-enlarged hypercube
around A) and where xda(p) = 0 for all plaquettes p inside A. (As a reminder, da is a 2-form on the dual lattice, so
xdais a (4 — 2)-form on the original lattice.) And in fact we can write this set of allowed 1-forms A in another way:
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Lemma 87

Say that A = [a1, by] X - - - X [as, bs]. The dual lattice *A is the shifted lattice [a;+ 3, b1+ 3] X -+ - X [as+ 3, ba+ 3],
while A* is instead the slightly enlarged lattice [a; — % bi+ 3] x -+ x [ag — % by + 3]. Let E* is the set of all
edges with both endpoints in A*, and its boundary OE™ is then the subset of edges with both endpoints having a
neighbor outside A*. Then A is the set of all Z-valued 1-forms on *Z* such that a(e) # 0 only if e € E* \ OE*.

(We won't prove this in class because it's rather technical, but it's in the notes.) This is a much nicer description
than what we had before — it makes it clear that we're basically just working with the internal edges of a slightly
enlarged cube. Recall also that we had the equivalence relation o ~ o <= d(a — ') = 0, and we defined the
quotient space Ag = A/ ~; we then defined the dual model as a probability measure g on Ag with probability mass
function proportional to exp (—%(da, da)). (The quotient space is countable, and we can confirm that we get a
finite sum because of the derivations we've done earlier for the duality formula and the partition function.)

So this is almost like a Gaussian measure except it's forced to be integer-valued. Thus, let U be the set of R-valued
1-forms on *Z* supported on *A, such that xda(p) = 0 for all p & P; we can equivalently write this as RE™\9E"  We
can then define the Gaussian measures . on U with density proportional to exp (—%(da, da) — 55(a, a)) (this €

factor is there to make things integrable), and we also have the analogous object to Ag, which is
Uy ={aecl:(a,n) =0 forall m € U with dn =0}

(This gets us one object from each equivalence class, because o’ = a + 7 for some n with dn = 0.) The analog to 7,
is then w,, which is the probability mass function on A (not Ag) proportional to exp (—%(da, doe)%(a, a)), again

the € term makes things decay fast so that we have a valid probability measure. Let {zq}goz1 be positive real numbers

such that

=2

> 2o

il
define the partial sums ay = 221:1 %. Let £y = E*\ OE* be the internal edges, and let Q@ = {1,2,---,}5 and
Oy ={1,2,---, N}Eo be assignments of positive integers to those edges Then for any g € Q, we can define

@) =] =

ecE} ZCl(e)
Now for any a € U = REs, we can define

on(e) = > c(q) [ (1 + anzge) cos (2ma(e)ale))) ,

qeQn eckE;

which is just some nonnegative function.

Lemma 88
With the notation above, and for any 7 € U, let f(a) = e2mi(eT) Then for all € > 0, we have that the discrete

dual model with u. can be written as

o L f@en(@)d(@)
(e = M, T (@) dve(@)

The point is that u. cannot have a density with respect to 7. (which is a real Gaussian measure), but we can

approximate it with something of the sort. So the quantity on the left side is an expectation with respect to the

60



integer measure, but the integrals on the right are with respect to real 1-forms. (This is kind of like approximating
by an integer-valued Gaussian by something times the continuous Gaussian density, where that something gets spikier

and spikier.)

Proof. We have that fue is a Schwarz function, so (letting Z¢ be the normalizing constant for )

> fla)pe(a)
anEs
= Zi > Fue(2ma)

aezo

. 1
=5 2 /uezm("‘”)f(n) exp <2ﬁ(dn, dn)

(fle

€

2ﬁ(n,n)) dn

aEZES
_ 1 Z / 2mi(atT) gy (—1(6177, dn) — i("?. 77)> dn
& ez Y 20 i

by a higher-dimensional generalization of the Poisson summation formula we discussed last time. And now if we take
f to be identically 1 (that is, take 7 = 0), the left-hand side is 1 and so we can solve for Z,: we thus find that

Saezts Ju €T dye(m)

F): = : .
v Pezts Ju €M dve(n)

But we have already made the evaluation that
[ e ar.n) = exp (~2n%6(a Vo)
u

for some positive definite operator V;, so if we sum this left-hand side over all o we know that it converges and in fact
Z / 62"i(°"")d’vs(?7) = lim Z / e2m(a'n)d’78(77)§

u N—oo u
acA acAy

the same is true in the numerator. This means that in fact we have
<f>* _ ||m ZQE.AN fZ/{ 627ri(('1+T'7]) d’YE(T])
¢ N—oo ZOLE.AN fl/{ 627”(&'?7) d’YE(n)
. fu e27ri(7',n) EaEAN e27r/'(o¢,'r]) d’Yg('fl)
N—oo fu ZaeAN 62’”(“”’)6/’75(?7)

, SO now we just need to show that the sum we have in the integrand is proportional to the py we had before. But

indeed

Z eQm’(a,n) _ Z H 627”'0((6’)77(9)

acAy acAy e€kE]

N

SIS emaene

ecE; \q(e)=—N

N
=JI [1+ D cos2ra(e)n(e))

eckE; g(e)=1
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where the second line is by the distributive property because Ay = {—N,---, N}£s. And finally we can write

N o2 o/
1+ Z cos(2mq(e)n(e)) = Z (+Zq(e) cos(27rq(e)'r](e))),

a(e=1 gler=1 Zale) NN
substituting this in and bringing out the ays yields the result. O

We'll now start working some more with this py to understand what we can say about it — it's not supposed to

converge to anything as N — oo, again because e shouldn't have a density with respect to ..

Definition 89
For any a € A = ZFo, define the edge-support of a, denoted E(a), to be the set of all edges e € E§ where
a(e) # 0. For two edges e, e € ZFo, let dist(e, €’) be the minimum of the Euclidean distances between the
vertices of the edges (in particular this can be zero for different edges if there is a common vertex). Similarly for
two subsets of vertices E, E' C Ef, we can define dist(E, E’) to be the minimum of dist(e, ¢’) over all e € E and
e ekF.

We say that a set of 1-forms £ C A is an ensemble if for all distinct a, &’ € £, the edge-supports E(a) and
E(a') are disjoint, and we say that £ is a k-ensemble if for all distinct o, o, we have dist(E(ca), E(a)) > 2/2,

We will only need to take kK = 1 in our case (meaning we need vertices from E(a) and E(a) to not be overlapping

and also not be side-by-side), but in more generality we may need higher k.

Lemma 90
Take any N > 1. Given any g € Qy = {1,---, N}Fo, there exists a finite set [(q) which indexes strictly positive
coefficients { ¢, }yer(q), 1-ensembles {&,}ycr(q) (possibly the same for different <), and strictly positive coefficients
{Kfy("l)}wer(q),ne&,v so that

I1 (1+aqu(e) cos(27rq(e)oz(e))) - Y o] (1+ Ky(n)cos(27r(oe,77))),

e€k; Yel(q) mMEEy

and furthermore we have that K,(n) < 3M®) [eee(n) Zate) for Ni(n) the number of edges e € Eg of distance at
most 1 from E(n) (so this is the size of the support, expanded by a little bit).

In particular, taking a combination over all g will get us the py we had above. Notice that we have a product over
all e in the left-hand side, and different edges may interact (since they have common vertices or plaquettes). But on
the right-hand side, the product is a product over 1-forms with disjoint support, and because the supports are even

separated by a bit more there is no interaction between different 7s.

Start of proof. The key fact is the following identity: for real numbers K1, K2,01,6> € R, we have (by the sum-to-

product formula)
(14 Ky cosb1)(1+ Kacosbs)
= % (14 3Kjcos(61)) + % (1+ 3K cos(6,)) + % (14 3K1Kycos(6, —62)) + % (1+3K1Kscos(6; + 6,)) .
Since our object of interest is

| = H (1 + anZg(e) cos(27rq(e)a(e))),

eCE;
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we can write it in the form

S I (1+ Ko cos(en(am).

el ne&y
where T is just a single element {0}, we have the constant cg = 1, the ensemble is the set & = {ne}eck; where
ne(e’) = q(e) if e = €’ and 0 otherwise, and Ko(Ve) = anZqee). Now & is an ensemble, but it is not a 1-ensemble;
thus, we will gradually make it into one by repeatedly using the identity we wrote down (and we keep track of things
to make sure the constants don't blow up too much).
This is an inductive construction: in the first step, take any distinct a,b € Ej with d(a, b) < /2 (that s,
d(a, b) < 1). We can then observe that

(1 + anZoa) cos(27rq(a)oc(a))) (1 + anZo(s) cos(27rq(b)a(b))>

= 1(1 + 3anZzq(a) cos(27rq(a)a(a))) + %(1 + 3anZq(p) cos(27rq(b)a(b)))

3
+ é(l + 3a,2\,zq(a)zq(b) cos(2m(q(a)a(a) — q(b)a(b))))
+ %(1 + 3a,2\,zq(a)zq(b) cos(2m(q(a)a(a) + q(b)a(b)))).

So we can now take this four-term expression and substitute it back into our product; we'll now have four different
ensembles. Indeed, we will have " = {1,2,3,4}, the first ensemble & will consist of {ne}esp (SO we threw out
one of the one-forms of &), & will consist of {Ne}era €3 = {Me}erap U {&1} for the form & = ma — M, and
Es = {MeterapU{&} for the form &1 = 1, + 7. None of these ensembles witness the problem between a and b, and
everything is still an ensemble.

But now we just keep repeating this: whenever there is a pair of edges a, b of this form, we do this to remove the
problem, and so our ensembles will grow like a tree downward. Furthermore, notice that |£j| < |€] forall i=1,2,3,4
in the above argument, since the size of the ensemble decreases by 1 in all cases. The inductive hypothesis is then as
follows: if we've arrived at some I" and collection {€y},er, and at least one &, is not a 1-ensemble, then there exist
some distinct 1-forms n, 7' € &, with dist(E(n), E(n')) < v/2. This means there is some a € £(n) and b € E(n') with
dist(a, b) < v/2; we can then break up (1 + Ky(n)cos(2m(a, n)))(1 + Ky(n') cos(2m(a, 7'))) in the same way and
substitute in; this replaces &, with &y, &y,, €y, Ey, Where £y, = EN{N'}, &y, =EN{n} Ey, = EN{N. T HU{n—7"},
and &, = (EN\{n.7"}) U{n+n'}. And at each such step, the ensemble sizes decrease, so this process must stop
at some point if we have reached a collection of 1-ensembles. We'll show next time how to get the bound on the
constants K(n)! O

17 November 19, 2025

We'll start today by explaining “how to send € to zero.” Recall that we had defined & = R and decomposed it into
the orthogonal spaces Vo = {a € U} and Uy = V3"; we also had a discrete analog A = ZE and Ag = A/ ~ where
a~ o' if do = da’. We'll now choose a specific representative from each equivalence class, letting Ag be one
minimum norm element from each class (all norms are integers here).

Remember that we had a probability measure pg on Ag with probability mass proportional to exp (f%HdaHQ),

and we also defined the probability measure on A with probability mass function exp (f%HdaH2 - %||a|\2). We then
also have the analogs of these in the continuous space: 7, is the measure on U with probability density proportional

to exp (—%HdaHQ%HaHQ), and so analogously we now also define 7y to be the measure on the subspace Uy with

probability density proportional to exp (—%HdaHQ).
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The goal will be to relate the us to the «ys fully rigorously through a rather complicated lemma. Recall that we

have expectations (f)* = [, fduo.

Proposition 91

Let mp be a random 1-form with law «yg. Let By = Ag NUp (note that Ag is the minimum norm element among
integer-valued 1-forms; Ag would actually be Uy if we were minimizing over real-valued 1-forms instead). Take
any T € Uy and let f(a) = e(™® for a € U (this is the kind of function we want to take the expectation of, since
we care about this disorder operator Dy(a) which depends only on da, and using the adjoint rule 7 is always in

Uo). Then '
ZaoeBo E [f(no)e27rl(ao,”lo)]

S coem E [0

(f) =

This means that heuristically we can treat Z—fjg = Zao) e2mi(@0.m) 35 the density of the discrete model with respect
to the continuous model at any point n € Uy. (So at integer points, (ag, ) is always an integer, so this is like a sum
of delta masses.) We can think of 4q as the “closest harmonic approximation,” but in that framework it's hard to see

why integer-valued forms would be sent to integer-valued forms.

Lemma 92

Sample the random element n, ~ -y, and let mg e, M1, be its projections onto the orthogonal subspaces Uy and
Vo. Then noe and 7y are independent 1-forms with covariance matrices BV; (recall that V. = (M(6d +€))™1)
and Be~ 1/ on Uy and Vy. Then as € — 0, we have g converging in distribution to 79 ~ 7.

Proof. Since we have Gaussian forms, we just need to calculate variances. Fix (o, @) € U; let Ty be the projection
to Up, and define ag = Mo, a1 = (I — Mp)x, and similarly define af, &j. Now we compute the linear combinations

(using that Mg is self-adjoint)

E [((et, Mome) + (o, (1 = Mo)7e))?]
E [((Olo, Me) + (allv 7)6))2}
E [(a0 + o}, 7e)?]

E [((OL, Noe) + (a/’ 771,8))2]

Now o € Vy, so day = 0, and therefore M(8d + €)a) = eay. Thus applying the inverse yields ooy = e~ ta; using

this and orthogonality simplifies the expectation to
(a0 + @), Ve(ao + @))) = (@0, Vearo) + € |o |2

And now for any Gaussian vector supported on a subspace of R”, (a, x)? for any a € R” will be exactly the quadratic

form a" Vo for V the covariance on that subspace. So this covariance formula gives us exactly what we are claiming.
O

Lemma 93

There is some constant ¢y > 0, possibly dependent on A, such that ||dal| > ¢ol|a|| for all & € Ap.

We proved a similar result for Uy, but Agq is a discrete set and we're taking specifically the minimum-norm elements

so things are a bit more complicated.
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Proof. For a € Ag, consider its projection a; = Moa, which is now real-valued, and ax = (/ — Mg)a. Since das =0
and ay is supported on *A (this is true for any form supported only on the interior edges), there exists a 1-form
supported on *A with ap = dk by the Poincaré lemma. We thus get an integer approximation n(e) = |k(e)]; let
0 = a— dn. We know that a — dx would be a1, and 8 is an integer-valued approximation of that quantity. We know

that 6 € A and 0 ~ o, so ||6]| > ||a|| since we took the minimum norm element. Now

16 — ol = [Ja — dn — a|
= |l — dnl|
= ||dk — dn||
<C

for some constant C because n and k differ by at most 1 on each edge. So ||6|| < ||az|| + C, and since a; € Uy we
have ||a1]| < Ci||da;]| because we've already proven the analogous result on the full subspace. And ||da|| = ||day]]

because o ~ aq, so putting this together we get
llall <116 < Cilldall + C,

and furthermore ||a||? and ||da||? are always nonnegative integers, and if ||da|| = O then ||a|| = O since o must be
specifically 0 (the minimum-norm element in that equivalence class). So in fact we have the bound ||a|| < (C14+C)||da]l,
as desired. O

Lemma 94
Let f : A — C be a function with subexponential growth, meaning that |f(a)| < C;e<!l?ll which is constant on
equivalence classes. Then

(F)* = lim ()2

e—0

The plan is to use this result and then relate (f)* to some result with -y, and then take the limit of that as ¢ — 0.

Proof. In this proof, C, Cy, Cq, - -+ will be arbitrary positive constants depending only on 8 and A. For any o € Aq, we
have [a] = a+ B for B={ne€ A:dn=0}. Foranyn e B, define o’ = o + 1 and notice that (because o, o’ are

equivalent)
ldo!|P +elle/I|> = ||da|” + el |al]* + €]In][* + 2 (e, 7).
The sum in the numerator we are interested in looks like

Y fla) e (—215|da||2+e||an2) = Y fat e (—21[3<|da||2+s||a|2 T el +2a(a,n>)

acA acEAy neEB

IDBICIE (‘21[3('d0‘"2 +el|al]? + &l n| ] +2e<a,n)) .

acAy neB

Remember Aj is the set of interior vertices of A*. Define a function which separates out the € factor

6e(a) =2 S0 (= S5l + 1 + 2am) ).

neB
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so that the expectations in the discrete model are related by

(fge)*
(Ge)*

and we want to show that as € — 0 this just approaches (f)* on the right-hand side.

(fle =

Now we claim that n € B if and only if n = d6f for some unique 0-form 6 supported in the interior vertices Ag.
Indeed, for any such 6 we know that the 1-form dé vanishes outside E} (we only get nonzero edges if one of the
adjacent vertices is in the interior), meaning that indeed d6 € B because ddf = 0. On the other hand, if n € B, then
there exists some Z-valued 0-form 6 with n = d6. And n(e) = 0 for all e € E* and also for e € 9E*, so 6 must be
constant on the boundary and outside and finitely supported, hence zero on all of those points. This proves the claim;
uniqueness is because n = df = df’ = d(0 —6') =0, so 6§ = €' for O-forms because we're finitely supporetd.

So therefore we can write ge(a) by replacing n with d6:

ge(a) = 251 3 exp (5 (lall + [108IF + 2(a 09)).

o€z

We can now further simplify this by taking a rescaled lattice

e 1
_ il 1 2 2
=¢ E exp ( 25(5||a|| + ||d6]|* + 2v/e(a, d9)> .

0e ez

But as € — 0, we claim this actually converges to an integral where there is no involvement of a by Riemann sum
approximation (since those terms go away). Thus ge(a) converges to a constant and thus we have (f); — (f)*.
What's left is just to verify that the conditions of the dominated convergence theorem actually apply, and that's why
we proved all of the various technical details we did before.

Indeed, define the summand as he(c, 6) and now extend it to all real forms by saying that for 8 € /eZ"o, define
By, to be the cube with center 6, and sidelength /€ (this partitions R"). We can then define the piecewise constant
function he(a, 0) = he(a, 0p) for any 6 € By,. The sum of interest is then fRAO he(a, 8)d6. We want to say that we

can apply Fubini's theorem to get

(rae) = [, @lgedua(a) = [ [ el 8)dbauolcr).

(On its own, h wouldn't cause any problems because it is always nonnegative, but f is complex-valued.) Indeed, for

any fixed € > 0 and 6y € /€Z"o, we can take any 6 € Bg, in its surrounding cube so that

(ellall2 + [| 06612 + 2v/E(ar, d90))>

m\‘“t“ﬁ\“

he(a, 0) = he(a, 6g) = exp (
< exp (5 (0l + 2vE(ax 06o)
NG

< exp (—25|eo||2 - 5(6a,eo>) ,

where in the second line we used that by compactness, there is some C > 0 such that [|d6][? > c||6]|*> (since

dd =0 = 6 =0). And now |6 — || < C+/€ implies [|0]|*> < 2|10 — 60l|? + 2]|60]|> < 2||60]|?> + Ce, and also
[(6ax, 80) — (0, 8)] < Cy/e]|a||. This means we can substitute in to replace 6y by 6 in our upper bound, yielding
C
he(ar, 8) < CpeCeellali+Cae oy <_ﬁ||9||2 - %(50(, 9)) .

We want a uniform bound over all € € (0, g9) (for & to be chosen later), and the trick is that we can of course bound
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this as
he(ax, 6) < 2C; eC2ellall+Cae oy (—g||9|2> cosh (\gg(éa, 9))

< 2C, eCzeollali+Cago gy (—g|9||2> cosh (\/5%(505, 9)) .

If we now integrate this whole quantity H(a, 8) , we want to show we get something absolutely convergent to apply

the dominated convergence theorem, and we handle the resulting Gaussian integral: we end up finding that
/H(a 0)do = CleC2€o|\CXH+C380+C4EOH50¢H2 < CleCzeoHCXH+C360+C580HC¥\\2

since we have a Gaussian integral with independent components. Taking €5 < 1 without loss of generality, if we do
the double integral we get

//|f(a)|H(a,0)d9 d,u,o(O() < Z /CleC2HO¢H+C3+C560HaH2C6e—C7HdaH2

a€cAy

2 2
<y /Cleczuan+c3+c5ef>nan CoeCellal
acAog

so for €9 small enough that Cseg is smaller than Cg, this is finite and we can move the limit inside the integral; H(a, 6)

has no dependence on € so it indeed shows the finiteness we wanted. O

We'll use this to prove Proposition 91 next time (so far, we haven't actually made any explicit references to this
By yet).

18 December 1, 2025

We'll continue with the 4D U(1) deconfinement proof we did before break — for these last two days, we'll take some
little things for granted so that we can get to the full proof involving renormalization. Our end goal is to show the
perimeter law (W) > Cie~C'endth(® for |arge enough B, and the first step has been to move to a dual lattice *A —
in fact the more important lattice to think about is the “slightly enlarged by % A*. Let's again remind ourselves of
notation: defining E* to be all edges of this larger lattice, OE* the boundary edges, and Ej the internal edges, we have
the spaces A = ZFo and I = R0 (the 1-forms supported on the internal edges). Defining the equivalence relation
a~a if dla—a')=0, we can decompose U = Uy & Us- for U~ = Vp the set of a in U with da = 0, and where we
have the explicit characterization

Uy ={a el :da(x) =0 for all x € A = A"\ ON*}.
It turns out we can also have the equivalent characterization
Uy ={a el : o =TT for some T},

where recall that I is the orthogonal projection onto U (this is just setting the edges outside to zero). The subtle
detail is that doar only vanishes on the internal vertices even though a is supported on the edges of Ej, so we can't
just use the ordinary Poincaré lemma. So now Uy contains one element of each equivalence class, and it's also the

smallest-norm element of the class.
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Meanwhile on the integer-valued side, we similarly defined Aq to be a subset of A of one smallest-norm element per
equivalence class. The dual model we care about for our problem is a probability measure pg on the countable set Ag (or
equivalently we could think of it as one on equivalence classes) with probability mass proportional to exp (—%HdaHQ).
(Our gauge group in the dual model is now Z with addition, but we need to go to the quotient space of orbits to get

summability because we now don't have compactness.) Recall that we had the operator D, : Ag — (0, c0) defined by

2|

Dy(cr) = exp —é Z *da(p) — B

pEL
where ¥ is the set of plaquettes enclosed by the rectangular loop £, and where xda(p) = da(xp) (since the dual of a
plaquette is a plaquette in four dimensions). Visually, remember that ¥ is a collection of nicely aligned rectangles, but
xp is taking each of those and spinning it around to the other dimensions around the midpoint — they are not forming

a perfect tiling. And what we proved earlier on is that
(We) = (Do)

in particular this proves that the Wilson loop is always positive, even though the Wilson loop is a complex-valued

random variable.

Remark 95. Notice that we don’t necessarily have uniqueness of the infinite-volume limit even in the primal limit
(subsequential limits exist but they may not agree), so this dual lattice construction only really makes sense for finite
boxes. And that's also why we're obtaining all of our estimates for finite boxes and then showing that they don't
depend on the actual boxes, and in fact the value of (W) may not even be known to be unique in the limit. What
our inequalities are then saying is that for any such subsequential limit and any N we must have (W,) satisfying that

inequality.

So now we want to compare to the continuum setup: we define a Gaussian measure . on the real-valued U now
with density proportional to exp (—%Hda“z +5||a||2) (which is nondegenerate for any positive € > 0). Letting 7,
be randomly drawn from <, and taking its projections g ¢, M1, onto Uy, Vo respectively, we proved last time that ng ¢
and my ¢ are independent and 7; ¢ is mean zero and has covariance matrix Be 1/ (which makes sense, since for € = 0
it should be completely spread out and not well-defined). Meanwhile 7o ¢ converges in distribution to ng following the
Gaussian measure 7y on Uy with density proportional to exp (—$||da|\2). We'll now compare ug (discrete) with g
(continuum) and try to get the theorem out of that.

To do so, we defined pe to have probability mass function exp (—%(Hdo«c”2 + €||a||2>, which is a discrete analog
of ve. Letting ()% be [ fdue and (f)* = [ fduo, we proved last time that if f is a function of subexponential growth
and is constant on equivalence classes, then we can obtain (f)* as the limit of (f)* (this is the analog of o . converging
to 7o in distribution, but it requires more work because we were on the discrete set). The main idea is that if € is very
small, then the measure u, is almost uniform on each equivalence class. But u. is somehow nicer because it's on all
of A, while Ag is not such a nice object.

So the first crucial step of our comparison procedure is a rigorous version of the heuristic identity dug(n) o
(ZaeAmuo 62”’(""”)) dvo(n) (which is saying that we have a density with respect to the continuum model). This is

basically the statement of Proposition 91 above: for any function of the form e(™® for T € Uy, we have

ZaoeBo E [f(nO)GQﬂ'/(ao,no)]
anEBo E [eQW"(Olo,’ﬂo)]

with both sums absolutely convergent. The key observation compared to last time is that By = Ag N Uy is actually

(F)" =

A N Uy, since if we take anything in AN Uy it must be the unique smallest-norm element in its equivalence class, so

68



it is in Ag. (Of course this still doesn't explain why A NUy has elements other than the all-zero form, but the lemma

says that it must be.)

Proof of Proposition 91. We know that (f)* = lims_,o(f)%. Letting m. be the probability mass function of w., we
know that fm; is a Schwartz function (because m; is quadratically decaying in the exponent) and so by the Poisson

summation formula

(A2 ="> (fme)(c)

acA

=" fme(2ma)

acA

_i 27i(e,K) _i 2 2
-2 Z/uf(n)e exp( 5510l + ellel ) d.

€ acA

Similarly taking f = 1 we get a formula for the normalizing constant, so in fact

ZaEA E[f(ns ) e27rf(o¢,'n5)]
ZaEA ]E[621r/'(a,n5)]

Now taking € — 0, we claim that basically the terms go to zero unless a € A N Uy so we end up needing to restrict
our sum. We know that m = Mo + M1.¢ is @ sum of two independent parts, and f is constant on equivalence classes

(fle =

because e(™® = (") for any a ~ o’ (since & — a is in the orthogonal complement of Uy > 7). So in fact

E[f (1) e>™(@ )] = B[ (110.¢) >/ (*) e/ (xm)]
= E[f (o) e (>R[]

. 2712
— Blf(m e @ exp (-2 au?).

where o = g + a1 under the decomposition into the subspaces Up, Vo and where (o, m1¢) = (a1, M1¢). But now as
€ — 0 this whole thing converges to E[f(n9)e®™(®™] if a; = 0 and zero otherwise, so we must have a € Uy. What's
left is to use the dominated convergence to show that it's okay to take the limit within the sum, and we won't go

through the details of that here. O

So we're getting closer to a point where we can replace our expectations with something smooth, which is going

back to something we did earlier in the class. We choose a sequence of positive real numbers {z;}4>1 with 3_, Z% =1

and let Q = {1,2,---,}0. For g € Q we then let c(q) = HeeEg Z%); analogously we can do a finite approximation
q(e
oyv=A{1,--- ,n}ES and define ay = Equl Z% We can then define the function py on U via

on(e) = D c(q) [] (1 + anzge) cos(2miale)q(e))) .

qeQN eEES

Lemma 96
For 7 € Uy we define the function f(a) = e™(@ and let 7. have law -y, and decomposition MNoe + Mie- Our
expectation of interest then satisfies

e o E[f(noe)on(ne)]
= I ™ Elon(n)]
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This is almost what we proved before but with the € and N interchanged, and we're phrasing things in this way

because we do want to make use of the 7g s (we'll see soon).
Proof. Defining Ay = {—N,---, N}E, we know from what we've already proven that

 — i ZaeANmL{o E[f(no)?2Wi(a'nO)]
N=oo Y oeannu, E[62T(@m)]

because we know that our previous numerator and denominator with the full As converged. But Ay are each finite

sets (and nonempty for large enough N), so we can in fact take the € limit for any fixed N; this means

Elf e2mi(a.me)
(FY* = lim lim Zacay El (no2)7ri(oc ) !
N—o0 €0 ZaEAN Ele 7e)]

Crucially here (by the same logic as before), we don't need to take intersections with Uy anymore since as € — 0 the
terms that aren't in Uy are going away anyway, so we can actually sum over all terms in Ay. But this is now nice
because we can write it as an E§-fold sum over {—N,---, N}, and then the remaining calculation to get to the form

of py has already been previously done. ]

So the density of uo now takes pn(me), then sends € — 0, and then takes N — oo. We're going to keep
reinterpreting this density step by step further, since pp is still very spiky. Remember that for each (integer-valued)
a € A we define the support E(a) = {e € E§ : a(e) # 0} and say that £ C A form an ensemble if E(a)NE(a') = &
for all disjoint o, &’ € £ and a k-ensemble if dist(E(a), E(c’)) > 25/2. (In particular, 1-ensembles mean that plaquettes
cannot contribute to different forms simultaneously.) We previously proved this result in Lemma 90, but we'll rearrange

the quantifiers in a slightly different way which is nicer for us:

Lemma 97
For all g € Q, there is a finite set [(q) which indexes strictly positive coefficients {cy},er(q) and 1-ensembles
{&y}yer(q). such that for any N > 1, there are strictly positive coefficients {KY(&)}yer(q)nee, so that for all

o € U we have

H (1 + anZg(e) cos(27rq(e)a(e))) = Z Cy H (1 + Kl,"(g) cos(27r(a,£))>,

ecE; YEM(q)  £€&y

and furthermore we have that KgV(g) < 3M©) [eee(e) Zace) for Ni(n) the number of edges e € Eg of distance at
most 1 from E(7).

Remember that our proof involved putting together ensembles together by replacing products with finite sums of
products using a strange cosine identity. We want to consider products of 1-forms in Uy, so we want to be able to
simplify the expectation when £ is drawn from a Gaussian measure yg; that's easier to do on the right-hand side than
on the left-hand side. (We'll do some kind of conditioning on certain edges of « in a renormalization step, and it'll be
done in a way where the replacement of K,’YV becomes very small instead of very big.)

So now without loss of generality we can assume all T'(g)s are disjoint (since they're just indexing sets) and let

M=Ugeol(q) and Ty = Uyeq, M(q). We get the following corollary:
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Corollary 98

Our density can be written as

on(@) = Y o [T @+ KY(€) cos(2m(, €))) .

yEly EE&Y

Of course, as written it's not clear that this is positive yet, but our goal will be to chip away at that and end up
with something positive. We can replace py by the following simpler object: let 52 =&y NUy (remember &, is always

some collection of integer-valued 1-forms), and define analogously

() = o [] (1+KJ () cos(2m( €))) -

veln  €e&?

The point will be to show that we can actually replace py by p?v, and at that point we can take away the €:

Lemma 99

We have that E[f(10)0%(n0)]
. Mo )Pn To
) = M =R )]

What's nice is that even if p, is not that much nicer than py, the next step we take will be able to be carried out
with this modified density, and we’ll see that next time! It'll basically come down to a Girsanov-type “completing the
square,” where the D, factor will be used to do a change of variable to express the numerator and denominator as
certain shifts. But that factor will be exactly what is needed to give us the perimeter law, and the ratio of py with the

shift will be lower bounded accordingly.

19 December 3, 2025

E[De(m0.e)on(ne)]
Elon(ne)]

Mo ~ Yo is a Gaussian 1-form (on the subspace Uy with density proportional to exp (—%Hda||2)) and py is some

Last time, we showed that the dual expectation (D,)* can be written in the form limy_ .o lime_o , where

positive linear combination of J](1 + K,Q’(g) cos(2m(a, £))) for various 1-ensembles (meaning these ensembles are
sufficiently separated from each other). But py(a) can take both positive and negative values and the KVs can be
very large, so we don't have a guarantee on the sign with this.

The lemma we claimed last time is that py can be replaced by p?\,, in which each &, is replaced by &, NUy.

Proof of Lemma 99. For any function f : U/ — C which is constant on equivalence classes, we have (with the same

notation as last time)

Elf(no.c)on(me)l = D o/E | F(noe) [T 1+ KLY (€) cos(2m(ne, €)))

veln £e&y
=3 o > | TIKY© | E | (o) [] cos (2m(ne. €)
YElN ECEy \&e€ £e€
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by expanding out the product by distributivity. Now using cos(x) = % and again expanding out, we end up with

oY (TR ) 50 X E|fma e |20 o)

yely  ECE \E€€ oe{-1,1}¢ e
1 .
=> o> [[IK@) 55 X Elf(me) exp (2mi(ne a0))]
yelny  ECEy \E€€ oe{-1,1}¢

where a, = deg o¢€. We want to show that &, can be replaced with & MUy, so now the claim is that if £\ Uy is
nonempty then this whole contribution is actually zero. Indeed, if K € £ \ Uy, then (by our alternate characterization
of Up) there is some x € Aj such that dx(x) = 0. Therefore there must be some e € E§ incident to x with k(e) # 0,
but that implies that no other edge incident to x is in E(&) for £ € £, # k (by the ensemble property). So

das(x) = 0xd(k(x)) # 0,

which means we must have a, & Uy for all possible signs . But if we're not in Uy, then as € — 0 we have

1

PGl Z E [f(no,e) exp (2mi(Ne, @s))] = 0 ase — 0

oce{-1,1}¢
because m. breaks up into Mg and M1, and the huge-variance part of 11 makes the expectation vanish in the limit
if o, always has a nonzero component in that direction. Thus we can indeed take intersections with Uy and get the

desired result. O

We can think of this as saying that we've now evaluated the limit € — 0 and found which terms contribute in that
limit, and now we have
|

Di(er) = exp éz da(xp) — =

0
(Dy)* = lim E[Dg(n0) 0% (M0)] b |25

N—oo  E[0Q(n0)]

We can write this in a more convenient form: instead of ¥ being the set of plaquettes enclosed by our loop, we write

down the 2-form ¢ on *Z* with o(p) = 1 if p € *X and o(p) = 0 otherwise. Then by a direct computation we have

Dy(a) = oxp (;(da, o) |o||2) ,

and (da, o) = (o, 60) is actually an observable of the form we've been studying, since do € Uy. (Indeed we just need
our loop to not touch the boundary, so then do is a 1-form and nonzero only inside with ¢ of it equal to zero, so it
satisfies our condition of being of the form f(a) = el for T € Uy.) So we can apply our earlier results, and so what

we get is that

o= 1m [exp (4 (dno. o) = 3511011 ) o (mo)]
) — lIm
N—roo E[of,(0)]
so we basically have a linear tilting factor to our Gaussian measure. In such cases we can do a change of variables

(completing the square) and get the following:
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Lemma 100

Let 7 = —5A7\}a and Kk = —I'I/\*édA/(*la. Then we have

. (1 2 L2 i EloR(mo+7)]
(Duy = e gllar el — 5aliel?) fim ZEER

where Ap- is the Hodge Laplacian with zero boundary conditions on A* (explained below).

Explicitly, we define A = dd + dd to be an operator on real-valued k-forms, and for any hypercube A* we have a
projection operator N« on k-forms defined by only keeping the interior k-cells

a(c) if all vertices of ¢ are in A* but not all in the boundary of A*,
Maa(c) =

0 otherwise.
Then Ap- = IMa<A. This object is actually not so complicated: if we're working with 0-forms, then this just reduces to
the usual Laplacian as we understand it. And if £ =), _yorscii<p T i dXiy A+ Adx;,, then actually we just apply
A component-wise. Thus inverting it is also easy because we just need to invert the usual discrete Laplacian using
the discrete Green's function. And thus here T is just some 1-form determined by the loop, but it's weird because it's
not supported on some set of edges just around the loop because of that Green's function term — it can be nonzero
throughout the hypercube.

Letting U(A*) be the range of M- for some fixed k, we have the set of all k-forms that are nonzero on any

non-interior k-cells of A*, and we have the following fact:

Lemma 101
The map Ap- : U(N*) — U(N*) is a linear bijection.

Proof. U(A*) is a finite-dimensional vector space and the operator maps it into itself, so we just need to prove
injectivity. If Ap«(a) = 0 for some a € U(A*), then

(a,Ap) =0 = (o, Mp-Aa) =0 = (o, Aa) =0,

but this means (a, (6d + dd)a) = 0 and so ||da||? + ||6a||> = 0 by summation by parts; this implies that a = dT = §¢
for some 7, &, and thus (o, a) = (d7,6£) = (7,00€) = 0, and therefore o = 0. So injectivity proves bijectivity. O

Our point now is to do a renormalization transform to understand the ratio, and this is a particularly instructive
idea. We have

ol(mo) = Y o [T (1 + K () cos(2m(mo, €))),

Yeln £egl

and so
P +7) =Y o [J @+ KY(€) cos(2m(mo, &) + 6¢)), 6 = 2m (T, £).

YEMN €&

Let’'s understand what happens with these general phase terms 6. We'll consider a renormalization

£—=¢& KL = RY(8),
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so that for any fixed v we have the exact equality

E | [T+ KY(&) cos(2m(mo, &) +6¢)) | =E | [ (1 + RY(€) cos(2m(mo, &) + 6¢))
=2 £esy

so that RX,(&) is now small so that everything is always positive inside the product (and thus we can apply things like

Jensen's inequality). Indeed,

E | [] 1+ KY(&) cos(2m(mo, €) +6¢)) | = lim [T (1 + KY(€) cos(2m(moe. ) + 6¢))
el ==

=ImE | [T (1 + KY(&) cos(2m(ne, €) + 6¢))

=0
[¢ee

first because g converges in distribution to 79, and then because £ € Up. If we now define the 1-form 7, via

n.(e) = é Z Z Se.eMe(€),

peEP* e'ep,e'#e
poe

where for any (positively oriented) edges e # €’ in the same plaquette (there's always a unique one), we define
See = —1 if e, € have the same orientation when traversing p as a loop and 1 otherwise. Notice that 7.(e) has no

dependence on me(e) itself, only on the neighboring edges; the point of this definition is the following:

Lemma 102

Because 7. has density exp (f%ﬂdaﬂ2 + 5||a|\2), we have that conditionally on {7ne(€’)}erces\ e}, We have

n B

~ N
me(€) <6+£'6+5

Thus when we evaluate our expected value of interest, take any v € 'y and any £ € 82. Call e, € neighbors if
dist(e, €’) < v/2 (this can only happen within a single collection); the maximum degree of this graph is at most some
universal constant C because we're in 4 dimensions, and thus the resulting graph is (C + 1)-colorable by a greedy
algorithm. Therefore there is some subset B¢ C E(£), such that for all distinct e, €' € Be, we have dist(e, e') > V2
and also

S é(e 2 = lelP

GEBg

(by picking the best possible color for this sum-of-squares quantity). We will therefore define

) - 1 , .
gle)=0ifeeB:, ¢&(e) = 3 Z Z Se.er£(€") otherwise.
peEP* e'ep
p3e ¢'cB,
Notice that this is a pretty inefficient way to write the sum — even though we have a double sum, there can only
actually ever be at most one nonzero contribution total because all of the edges in Bg are supposed to be at least V2

apart, and that's not true for disjoint edges in any plaquettes containing e. And we will also define

2
RY(E) = KM€ e | -T2 3 &(e?

6635
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We'll see soon that plugging in these renormalized values exactly gives us the desired identity above, and furthermore
this R is small because we previously proved the bound KI(¢) < 3Mi(€) [eee(e) Ziee) (where we previously chose our
gs so that > Z% = 1, and now we make the specific choice z; = ePod® for the exact value of By which makes this
sum true); thus we can prove that in fact
2
K,'YV(E) < Pulléll

for some B; depending on Gy. So for B chosen large enough we can make RQ’(E) small, since we're multiplying by
something at most exp (~? =1l )
So to show why this renormalization identity is true, the point is that conditioned on everything outside 535;

it's not that hard to work this out: we're interested in

E|[[Q+K¥©cos@r(ne, &) +6:))| = > [[[KYE@ | (27 > Ejew (i) (2moe(ne€) - ocbe
£e&l ECEY \ée€ oe{-1,1}¢ ee
by doing the same expansion over all subsets. Now for a nonempty £ C Sf’,, we can evaluate the innermost sum by

Be = B

ge€

defining (this is a disjoint union)

Note that e, e’ € Bg are always at least /2 apart, either by the 1-ensemble property or the definition of individual Bes.
Thus if we take this inner expectation (ignoring the phase term)

E |exp iZ(Qwog(ng,g) =E |exp /Z Z 2moeme(e)é(e)

3 £€E€ ecE(€)

which is a double sum, we can only take the terms with e corresponding to Bg, and so we can consider the conditional
expectation

E |exp /ZZQWOgng(e)f(e) {ne(e)}een:
¢eE eeBe

and plug that in instead by the tower law. But in this conditional expectation, we know that the n.(e)s for e within

Bg become conditionally independent and we can evaluate it exactly: we get that it evaluates to

12mioem.(e)é(e)  2m?BE(e)?
exp ZZ( 6+e . 6+¢ )

€€ eeBe

So we get some terms that suppress our large constants KV, and furthermore the way we defined things we exactly
get (M., &) = (Me, ). So now we can trace our steps back with £ instead of ¢, and that gives us the desired identity
with the second fraction terms suppressing the factors of KZYV.

So in summary, expanding out the cosines and then taking conditional expectations lets us integrate out some
coordinates with respect to the Gaussian measure. In the end, things seem like they depend on the full 0, but they
don’t actually depend on the values in Bg because € is zero at the edges in Be. That gets us from the “weird” oscillatory

p?\, to a nice positive quantity.
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