RI Math Core 2020 Linear Recurrences 25 Apr 2020

Warmup.

Once upon a time, you had to do this type of problems:

Example 1 (1990 AIME Q15 / Probably some SMO Round 1)
Find az® + by?® if the real numbers a, b, =, and y satisfy the equations

axr+by = 3,
ar’ +by? = 7,
axr® +by> = 16,
azt + byt = 42.

1 Understanding Recurrences
A linear recurrence is an infinite sequence {x,} that satisfies
Tntk = O0k—1Tn+k—1 + Qk—2Tnt+k—2 + ... + Q0Tx

for all integers n > 0 and some coeflicients a;. I'm sure you’ve seen these pop up in various places
by now.

Perhaps the only way you were taught to understand linear recurrence was via the general formula
(if you forgot what it is, it’s provided as a theorem later on). But that’s such a shame, because
there are so many (other) exciting ways to understand them®, which are purely conceptual: no
calculations involved!

2 Recap: the main fact

To jog your memory:

Fact (General Formula for Linear Recurrences) b
Suppose {x;} is a sequence satisfying
Tntk = O0k—1Tntk—1 + Qg—2Tntk—2 + ... + Q0Tn
forll integers n > 0. Then z,, has the following general formula:
Zn = Pi(n)af + Py(n)al + ... + Pyn(n)ag,
where the «; are the roots of the characteristic polynomial:
2 —ap_12F T — a0zt — . —ap = (x — al)Bl (x — ag)BQ...(x — am)ﬁ’"

L and P; are polynomials with degree at most f3;. )

Woooo0000000ah hold up. This is complicated, and you shouldn’t memorize it wholesale. You
can remember this by two important cases:

Example 2 (Distinct roots case)

If the characteristic polynomial has distinct roots (i.e. ; = 1 for all i), then all the P; are
forced to be constants:
Tpn=P-al +Py-af +...+ P, -ap

land in some sense, this will be your first (indirect) exposure to linear algebra
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Example 3 (Finite Differences)

If the characteristic polynomial is (x — 1)¥, then x,, is simply a degree k polynomial in n.

In particular, the recurrence relationship can be phrased in the following way. For a sequence
{zn}, define the sequence {Az,} = {z,+1 — x,} * In particular, we can iterate A’s:

{A2xn} = {A(AZ)n} = {Tnt2 — 2Tn41 + Tn}

and so on. It isn’t hard to check that having the characteristic polynomial be (z — 1)* is the
same as saying AFz, = 0 for all n.

%you should imagine the parantheses: it’s actually (Azx)n,

2.1 Important tips and tricks
e You can capture the behavior of a “sum of exponents” function with a linear recurrence.
e Linearity is your best friend.

e Recurrence are sometimes related to combinatorial objects.
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Problems

1. (HMMT 2017 Team Q8) Show that for any prime p, there exists irrational a > 1 such that
[a™| is a multiple of p for all n > 1.

Solution. Let a > 3 be the roots of 2> — (1000p + 1)z + p = 0, and check that both roots are
positive with 8 < 1. Set a, = o™ + ", then a9 = 2,a; = 1000p + 1 and inductively a, = 1
(mod p). But0<a™ <1,s0p|a,—1=[a"].
2. (ELMO 2017/6) Find all functions f : R — R such that for all real numbers a, b, and c:
(i) fa+b+c>0then f(a®)+ f(b3) + f(c3) > 3f(abc).
(ii) Ifa+b+c <0 then f(a®) + f(b3) + f(c3) < 3f(abe).

Solution. Start off with

(0,0,0) : f(0)=0

(a,a —¢€),0: f is non-decreasing

(a'/?,=a'"?,0) : f(—a) = —f(a)

Now we do a trick: plug (al/g,al/:;7 72a1/3) to get
2f(a) — f(8a) = 3f(2a)

This means that if a, = f(2¥a), then aj satisfies a linear recurrence (with characteristic
functions having roots 2, —1, —1), so

ar =c1- 28 £ e - (—1)k +c3- k(—l)k

This really can’t satisfy non-decreasing-ness: by taking & — —oo (yes we can extend the
recurrence relation backwards), we conclude that ¢z = c3 =0, so f(2z) = 2f(z) for all .

We can repeat the argument with (a1/3, (n— 1)a1/3, —nal/S) to get
((n=1)° + 1) f(a) = f(na) = 3(n — 1) f(na)

. Once again, the other

with the roots of the characteristic equation being (n, % V_‘?’)

coefficients must be 0, so in general f(nz) = nf(z). Then we are done, since it’s linear on the
rationals and non-decreasing.

3. (China TST 2020 Q1) Let w be a primitive n-th root of unity. Given complex numbers

ai,asg,- - ,a, of which p > 0 are non-zero, define {by}1<r<n by
n
bk = Z aiw’”.
i=1
Prove that at least % numbers in by, b, - - - , b, are non-zero.

Solution. Verify that aj = % Z?=1 brw 7. Since p of them are nonzero, we can write

p

B

b = E aijw”
j=1

therefore {bx} is a linearly recurrent relation of degree at most p. In particular, if p consecutive
values are 0, then all by are zero and so all ar are zero, which is a contradiction. So no p
consecutive values of by are zero (i.e. at least n/p values are nonzero).

Remark. In this problem, {bs} is in fact the discrete Fourier transform of {ax}. The formula
for {ax} in terms of {by} is precisely an analogue of the Fourier inversion formula.
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Alternative Solution. (jouzch, on AoPS) Let
A={j:a; #0},  B={j:b; #0}

It’s well-known that [b1]? 4 - - + [bn|* = n(|a1)®> + - - - + |an|?), ie.
D16l =0 las)
JEB JEA
Since |bj| < 37,c 4 |aj|, apply Cauchy-Schwarz on the RHS above to get |B| > TAT= 7

Remarks. The well-known statement above is the discrete analogue of Plancherel’s formula.

4. (Putnam Diagnostic Test) Let aq,as,...,a, be fixed positive integers. Find all functions
f:Z — R where

n

> fk+ait)=0

i=1

forall k,0 € Z, ¢ # 0.

Solution. By setting ¢ = 1, the sequence {f(n)} corresponds to a degree M = max{a;} linear
recurrence with characteristic polynomial

P(z) = z": M
=i

So {f(n)} satisfies a recurrence relation. But the strange fact is that {f(an + b)} also satisfies
the recurrence relation!

In particular, suppose the solution is of the form
fk) =" Qi(k)ar
v=il

By considering {f(¢k)}, of must be a root of P(z). Hence the set {aF} is finite, so all a;’s are
roots of unity.

This means that f is periodic, and setting ¢ to be the period we find that f = 0.

5. (IDMO 2 Q5) Let ¢, ¢, ..., ¢ be integers. Consider sequences {a,} of integers satisfying
Qp = C1Ap—1 + C2Gp—2 + - - - + CkAp—

for all n > k + 1. Prove that there is a choice of initial terms ai,ao,...,ax not all zero
satisfying: there is an integer b such that p divides a, — b for all primes p.

Solution (Official, talkon). If ¢1,ca,. .., ci are all zero, choose a; = k! for all ¢ = 1,2,... k.
The recurrence relation gives us a, = 0 for all n > k£ + 1. Not hard to see that this gives
pla, = ap =0 (mod p) for all primes p.

Now, suppose c1, Ca, . . ., i are not all zero. Let 21, 22, ..., z; be the roots (counting multiplic-
ities) of the characteristic equation \* — Zf:l ¢;\*~" = 0. The key part is choosing

an =21 +25 +-- -+ 2z
for all n.
By Vieta, we get that the elementary symmetric polynomials
€ = Z Ziq Zig « e - Zij = (—1)j+10j
1<iy <ig<...<i; <k

is an integer for all j = 1,2,...,k. By the Fundamental Theorem of Symmetric Polynomials,
we get that P(z1,22,...,2x) is an integer for all symmetric polynomials P € Z[z1,xa, ..., Tk].
In particular, a, is an integer for all n € ZT.

To prove that a1, as, ..., ar are not all zero, note that if a; =0 for all i = 1,2,...,k, we can use
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Newton’s identities to prove by induction on ¢ that o; = 0 for all ¢ = 1,2,... k. This implies
c; =0foralli=1,2,...,k, which is a contradiction.

Now, for each prime p, we've

k
d=Fr+2z2+..+t2) = sz +pT(21, 22, ..., 2) = ap + pT (21, 22, ..., 2k)

=1

for some symmetric polynomial T € Z[z1, z2, ..., zk]. So, T'(z1, 22, ..., 2zx) is an integer. This
gives ap = ¢} = ¢1 (mod p), so we are done by choosing b = ¢;.

6. (Kvant) Suppose that 2™ consecutive integers each belong to at least one of n given arith-
metic progressions. Show that all integers belong to at least one of those arithmetic progres-
sions.

Solution. Suppose the n APs are {a; + kd;} for i = 1,2,...,n. Consider

i (0-en(=252)

which detects if n is among any of the APs. By hypothesis, this is 0 for 2" consecutive values.
However, we can also expand this to obtain

on
2 : m

Zn = a]-Cj
m=1

for some a;,(; € C. So {z,} satisfies a nontrivial recurrence of degree at most 2", so it is the
0-sequence. But this means all of Z is covered.

Remark. This can also be used to nail down this problem:

(Stronger version of ELMO 2013/3) Let maq, ..., m2013 > 1 be 2013 pairwise relatively prime
positive integers and Aq, ..., Az013 be 2013 sets with 4; C {1,...,m; — 1} for all i. Prove that
there is a positive integer N such that

N < (JA1|+ 1) - (JA2013| + 1)

and for each i, there does not exist a € A; such that m; divides N — a.

7. (CMO 2017 Q1) The sequences {u,} and {v,} are defined by up = u; =1 ju, = 2up_1 —
Bup—2 (n>2),v0 =a,v1 =bvg =c¢ Uy =Vp_1 — 3Up_2~+27v,_3 (n > 3). There exists a
positive integer N such that when n > N, we have u,, | v,, . Prove that 3a = 2b+ c.

Solution. The key is to realise what connects the two given recurrence relations.

Note that if a, 8 are the roots of 22 — 2z + 3 = 0, then o?, 5% af = 3 are the roots of
2% — 2% 4 3z — 27 = 0. Hence, for any two sequences {a,}, {b,} satisfying the recurrence

relation of {uy}, then {anb,} must satisfy the recurrence relation of v,.

Hence in particular, we wish to define {w, }, satisfying the same recurrence relation as {u,},
such that {v, — (u, - wp)} (which still satisfies the recurrence relation of v,) has its 3™ term
isolated. Now we balance the coefficients: let the first three terms be A, 3\, 9\, thus the
first three terms of {w,} are a — A\,b — 3X,9\ — ¢, and checking the original relation we get
9\ —c=2(b—3\) —3(a— ), or A = 2te=3e

Since v,, are integers for all sufficiently large n, a, b, c must be rational, so the first two terms
of wy, are rational too, so let k € N be such that kw, are all integers. then u,|k\ - 3" for all
sufficiently large n, but w, is unbounded and not divisible by 3, so A = 0.

B. Suppose the sequence of integers {z,} satisfy a linear recurrence (with real coefficients).
Must it satisfy a linear recurrence of the form

Tptk = Ak—1Tntk—1 T ... T A0Tn

where a; are integers?
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Solution (Fatou’s lemma). The answer (shockingly) is yes. Suppose the original recurrence
satisfies suck a recurrence relation with a; € R.

(1): First we show that we can get a; € Q. Pick some large N > k, the consider the following
system of equations:

aox1 + ... + Ak—1Tk = Th41

aox2 + ... + Qk—1Tk4+1 = Thk42

aoZN + ... + Qk—1TN+k—1 = TN+k

There is a solution (ao,...,ax—1) € RF. Pick C > maxi<;<N+k—1{Zi}. Then, by standard
Diophantine arguments we get that there exists integer M such that |[Mai|, < 1/(kC),
where |||, is just fancy notation for the distance away from the nearest integer.

If we now set a; to be the nearest multiple of 1/M from a;, we can easily check that (ag, ...,a)_;) €
QF is also a solution.

SO Yn = aoTn + ... + Af_1Tnik—1 — Tnik is 0 for N consecutive values but also satisfies the
original deg k < N recurrence relation. Hence, {y,} is the 0-sequence, and we may WLOG let
the recurrence instead be
!/ /
Tntk = Qp—1Tntk—1 + ... + QoTn

(2): Now we show that they must all be integers. This has a very “Gauss Lemma™esque flavor
to it. [thbcf]

Remark. It could have been coefficients in C, but we could have just taken the real/imaginary
parts separately.
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