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Warmup.
Once upon a time, you had to do this type of problems:

Example 1 (1990 AIME Q15 / Probably some SMO Round 1)
Find ax5 + by5 if the real numbers a, b, x, and y satisfy the equations

ax+ by = 3,

ax2 + by2 = 7,

ax3 + by3 = 16,

ax4 + by4 = 42.

1 Understanding Recurrences
A linear recurrence is an infinite sequence {xn} that satisfies

xn+k = ak−1xn+k−1 + ak−2xn+k−2 + ...+ a0xn

for all integers n ≥ 0 and some coefficients ai. I’m sure you’ve seen these pop up in various places
by now.

Perhaps the only way you were taught to understand linear recurrence was via the general formula
(if you forgot what it is, it’s provided as a theorem later on). But that’s such a shame, because
there are so many (other) exciting ways to understand them1, which are purely conceptual: no
calculations involved!

2 Recap: the main fact
To jog your memory:

Fact (General Formula for Linear Recurrences)
Suppose {xi} is a sequence satisfying

xn+k = ak−1xn+k−1 + ak−2xn+k−2 + ...+ a0xn

forll integers n ≥ 0. Then xn has the following general formula:

xn = P1(n)αn1 + P2(n)αn2 + ...+ Pm(n)αnm

where the αi are the roots of the characteristic polynomial:

xk − ak−1x
k−1 − ak−2x

k−2 − ...− a0 = (x− α1)β1(x− α2)β2 ...(x− αm)βm

and Pi are polynomials with degree at most βi.

Woooooooooooah hold up. This is complicated, and you shouldn’t memorize it wholesale. You
can remember this by two important cases:

Example 2 (Distinct roots case)
If the characteristic polynomial has distinct roots (i.e. βi = 1 for all i), then all the Pi are
forced to be constants:

xn = P1 · αn1 + P2 · αn2 + ...+ Pm · αnk

1and in some sense, this will be your first (indirect) exposure to linear algebra
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Example 3 (Finite Differences)
If the characteristic polynomial is (x− 1)k, then xn is simply a degree k polynomial in n.

In particular, the recurrence relationship can be phrased in the following way. For a sequence
{xn}, define the sequence {∆xn} = {xn+1 − xn} a. In particular, we can iterate ∆’s:

{∆2xn} = {∆(∆x)n} = {xn+2 − 2xn+1 + xn}

and so on. It isn’t hard to check that having the characteristic polynomial be (x− 1)k is the
same as saying ∆kxn = 0 for all n.

ayou should imagine the parantheses: it’s actually (∆x)n

2.1 Important tips and tricks
• You can capture the behavior of a “sum of exponents” function with a linear recurrence.

• Linearity is your best friend.

• Recurrence are sometimes related to combinatorial objects.
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Problems
1. (HMMT 2017 Team Q8) Show that for any prime p, there exists irrational α > 1 such that
bαnc is a multiple of p for all n ≥ 1.

Solution. Let α > β be the roots of x2 − (1000p+ 1)x+ p = 0, and check that both roots are
positive with β < 1. Set an = αn + βn, then a0 = 2, a1 = 1000p + 1 and inductively an ≡ 1
(mod p). But 0 < α−n < 1, so p | an − 1 = bαnc.

2. (ELMO 2017/6) Find all functions f : R→ R such that for all real numbers a, b, and c:

(i) If a+ b+ c ≥ 0 then f(a3) + f(b3) + f(c3) ≥ 3f(abc).

(ii) If a+ b+ c ≤ 0 then f(a3) + f(b3) + f(c3) ≤ 3f(abc).

Solution. Start off with

(0, 0, 0) : f(0) = 0

(a, a− ε), 0 : f is non-decreasing

(a1/3,−a1/3, 0) : f(−a) = −f(a)

Now we do a trick: plug (a1/3, a1/3,−2a1/3) to get

2f(a)− f(8a) = 3f(2a)

This means that if ak = f(2ka), then ak satisfies a linear recurrence (with characteristic
functions having roots 2,−1,−1), so

ak = c1 · 2k + c2 · (−1)k + c3 · k(−1)k

This really can’t satisfy non-decreasing-ness: by taking k → −∞ (yes we can extend the
recurrence relation backwards), we conclude that c2 = c3 = 0, so f(2x) = 2f(x) for all x.

We can repeat the argument with (a1/3, (n− 1)a1/3,−na1/3) to get

((n− 1)3 + 1)f(a)− f(n3a) = 3(n− 1)f(na)

with the roots of the characteristic equation being
(
n, −n±(n−2)

√
−3

2

)
. Once again, the other

coefficients must be 0, so in general f(nx) = nf(x). Then we are done, since it’s linear on the
rationals and non-decreasing.

3. (China TST 2020 Q1) Let ω be a primitive n-th root of unity. Given complex numbers
a1, a2, · · · , an of which p > 0 are non-zero, define {bk}1≤k≤n by

bk =

n∑
i=1

aiω
ki.

Prove that at least n
p numbers in b1, b2, · · · , bn are non-zero.

Solution. Verify that ak = 1
n

∑n
j=1 bkω

−jk. Since p of them are nonzero, we can write

bk =

p∑
j=1

aijω
ijk

therefore {bk} is a linearly recurrent relation of degree at most p. In particular, if p consecutive
values are 0, then all bk are zero and so all ak are zero, which is a contradiction. So no p
consecutive values of bk are zero (i.e. at least n/p values are nonzero).

Remark. In this problem, {bk} is in fact the discrete Fourier transform of {ak}. The formula
for {ak} in terms of {bk} is precisely an analogue of the Fourier inversion formula.
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Alternative Solution. (jouzch, on AoPS) Let

A = {j : aj 6= 0}, B = {j : bj 6= 0}

It’s well-known that |b1|2 + · · ·+ |bn|2 = n(|a1|2 + · · ·+ |an|2), i.e.∑
j∈B

|bj |2 = n(
∑
j∈A

|aj |2)

Since |bj | ≤
∑

j∈A |aj |, apply Cauchy-Schwarz on the RHS above to get |B| ≥ n
|A| =

n
p
.

Remarks. The well-known statement above is the discrete analogue of Plancherel’s formula.

4. (Putnam Diagnostic Test) Let a1, a2, ..., an be fixed positive integers. Find all functions
f : Z→ R where

n∑
i=1

f(k + ai`) = 0

for all k, ` ∈ Z, ` 6= 0.

Solution. By setting ` = 1, the sequence {f(n)} corresponds to a degree M = max{ai} linear
recurrence with characteristic polynomial

P (x) =
n∑

i=1

xM−ai

So {f(n)} satisfies a recurrence relation. But the strange fact is that {f(an+ b)} also satisfies
the recurrence relation!

In particular, suppose the solution is of the form

f(k) =

m∑
i=1

Qi(k)α
k
i

By considering {f(`k)}, αk
i must be a root of P (x). Hence the set {αk

i } is finite, so all αi’s are
roots of unity.

This means that f is periodic, and setting ` to be the period we find that f ≡ 0.

5. (IDMO 2 Q5) Let c1, c2, . . . , ck be integers. Consider sequences {an} of integers satisfying

an = c1an−1 + c2an−2 + · · ·+ ckan−k

for all n > k + 1. Prove that there is a choice of initial terms a1, a2, . . . , ak not all zero
satisfying: there is an integer b such that p divides ap − b for all primes p.

Solution (Official, talkon). If c1, c2, . . . , ck are all zero, choose ai = k! for all i = 1, 2, . . . , k.
The recurrence relation gives us an = 0 for all n > k + 1. Not hard to see that this gives
p | ap =⇒ ap ≡ 0 (mod p) for all primes p.

Now, suppose c1, c2, . . . , ck are not all zero. Let z1, z2, . . . , zk be the roots (counting multiplic-
ities) of the characteristic equation λk −

∑k
i=1 ciλ

k−i = 0. The key part is choosing

an = zn1 + zn2 + · · ·+ znk

for all n.

By Vieta, we get that the elementary symmetric polynomials

ej =
∑

1≤i1<i2<...<ij≤k

zi1zi2 . . . zij = (−1)j+1cj

is an integer for all j = 1, 2, . . . , k. By the Fundamental Theorem of Symmetric Polynomials,
we get that P (z1, z2, . . . , zk) is an integer for all symmetric polynomials P ∈ Z[x1, x2, . . . , xk].
In particular, an is an integer for all n ∈ Z+.

To prove that a1, a2, ..., ak are not all zero, note that if ai = 0 for all i = 1, 2, . . . , k, we can use
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Newton’s identities to prove by induction on i that σi = 0 for all i = 1, 2, . . . , k. This implies
ci = 0 for all i = 1, 2, . . . , k, which is a contradiction.

Now, for each prime p, we’ve

cp1 = (z1 + z2 + ...+ zk)
p =

k∑
i=1

zpi + pT (z1, z2, ..., zk) = ap + pT (z1, z2, ..., zk)

for some symmetric polynomial T ∈ Z[x1, x2, ..., xk]. So, T (z1, z2, ..., zk) is an integer. This
gives ap ≡ cp1 ≡ c1 (mod p), so we are done by choosing b = c1.

6. (Kvant) Suppose that 2n consecutive integers each belong to at least one of n given arith-
metic progressions. Show that all integers belong to at least one of those arithmetic progres-
sions.

Solution. Suppose the n APs are {ai + kdi} for i = 1, 2, ..., n. Consider

zn =

n∏
i=1

(
(1− exp

(
2πi(n− ai)

di

))
which detects if n is among any of the APs. By hypothesis, this is 0 for 2n consecutive values.
However, we can also expand this to obtain

zn =

2n∑
m=1

ajζ
m
j

for some aj , ζj ∈ C. So {zn} satisfies a nontrivial recurrence of degree at most 2n, so it is the
0-sequence. But this means all of Z is covered.

Remark. This can also be used to nail down this problem:

(Stronger version of ELMO 2013/3) Let m1, . . . ,m2013 > 1 be 2013 pairwise relatively prime
positive integers and A1, . . . , A2013 be 2013 sets with Ai ⊆ {1, . . . ,mi− 1} for all i. Prove that
there is a positive integer N such that

N ≤ (|A1|+ 1) · · · (|A2013|+ 1)

and for each i, there does not exist a ∈ Ai such that mi divides N − a.

7. (CMO 2017 Q1) The sequences {un} and {vn} are defined by u0 = u1 = 1 ,un = 2un−1 −
3un−2 (n ≥ 2) , v0 = a, v1 = b, v2 = c ,vn = vn−1 − 3vn−2 + 27vn−3 (n ≥ 3). There exists a
positive integer N such that when n > N , we have un | vn . Prove that 3a = 2b+ c.

Solution. The key is to realise what connects the two given recurrence relations.

Note that if α, β are the roots of x2 − 2x + 3 = 0, then α2, β2, αβ = 3 are the roots of
x3 − x2 + 3x − 27 = 0. Hence, for any two sequences {an}, {bn} satisfying the recurrence
relation of {un}, then {anbn} must satisfy the recurrence relation of vn.

Hence in particular, we wish to define {wn}, satisfying the same recurrence relation as {un},
such that {vn − (un · wn)} (which still satisfies the recurrence relation of vn) has its 3n term
isolated. Now we balance the coefficients: let the first three terms be λ, 3λ, 9λ, thus the
first three terms of {wn} are a − λ, b − 3λ, 9λ − c, and checking the original relation we get
9λ− c = 2(b− 3λ)− 3(a− λ), or λ = 2b+c−3a

12
.

Since vn are integers for all sufficiently large n, a, b, c must be rational, so the first two terms
of wn are rational too, so let k ∈ N be such that kwn are all integers. then un|kλ · 3n for all
sufficiently large n, but un is unbounded and not divisible by 3, so λ = 0.

B. Suppose the sequence of integers {xn} satisfy a linear recurrence (with real coefficients).
Must it satisfy a linear recurrence of the form

xn+k = ak−1xn+k−1 + ...+ a0xn

where ai are integers?
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Solution (Fatou’s lemma). The answer (shockingly) is yes. Suppose the original recurrence
satisfies suck a recurrence relation with ai ∈ R.

(1): First we show that we can get ai ∈ Q. Pick some large N > k, the consider the following
system of equations:

a0x1 + ...+ ak−1xk = xk+1

a0x2 + ...+ ak−1xk+1 = xk+2

...

a0xN + ...+ ak−1xN+k−1 = xN+k

There is a solution (a0, ..., ak−1) ∈ Rk. Pick C > max1≤i≤N+k−1{xi}. Then, by standard
Diophantine arguments we get that there exists integer M such that ‖Mai‖R/Z < 1/(kC),
where ‖·‖R/Z is just fancy notation for the distance away from the nearest integer.

If we now set a′i to be the nearest multiple of 1/M from ai, we can easily check that (a′0, ..., a′k−1) ∈
Qk is also a solution.

So yn = a′0xn + ... + a′k−1xn+k−1 − xn+k is 0 for N consecutive values but also satisfies the
original deg k < N recurrence relation. Hence, {yn} is the 0-sequence, and we may WLOG let
the recurrence instead be

xn+k = a′k−1xn+k−1 + ...+ a′0xn

(2): Now we show that they must all be integers. This has a very “Gauss Lemma”-esque flavor
to it. [tbcf]

Remark. It could have been coefficients in C, but we could have just taken the real/imaginary
parts separately.
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