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1 Introduction

1.1 Recap: The root of unity filter
Say that we want to figure out what
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is. How might we evaluate this sum?

The answer involves the third root of unity !, which is a complex number where !3 = 1 but ! 6= 1.
It satisfies the nice property that
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So, we can write out the binomial expansion of (1 + 1)n along with its “root-of-unity-twisted”
counterparts:
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Now, by summing these three sums vertically, we get exactly what we want on the RHS, therefore
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The moral of the story here is that

Fact 1 (Root-of-unity filter)
For any positive integer m,n,

1

n

nX

i=1

e
2⇡im/n = In|m

where In|m is the indicator for n|m: 1 if n|m and 0 otherwise.

Odds are that you’ve tried this problem, but in the off-chance that you have not:

Example 2 (IMO 1995/6)
Let p be an odd prime number. How many p-element subsets A of {1, 2, . . . , 2p} are there,
the sum of whose elements is divisible by p?

1.2 More advanced usage
Here we consider two extensions:

1. What if we did the root-of-unity filter on multiple variables?
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Example 3 (MPFGO 2016/3)
Let n be a positive integer. Let x1, x2, . . . , xn be a sequence of n real numbers. Say that a
sequence a1, a2, . . . , an is unimodular if each ai is ±1. Prove that

X
a1a2 . . . an(a1x1 + a2x2 + · · ·+ anxn)

n = 2nn!x1x2 . . . xn,

where the sum is over all 2n unimodular sequences a1, a2, . . . , an.

Solution. The key is to understand this sum on monomials:

X

ai2{±1}n

a
k1
1 · · · akn

n =

(
2n if all ki even,
0 otherwise.

This makes it clear that the only terms that don’t cancel out are precisely those that get one of
each ai, of which there are n!.

2. Taking “n ! 1” gives us an integral version of the first fact:

Fact 4
For any integer n, Z 1

0
e
2⇡in✓

d✓ = In=0

Example 5 (Poland Second Round 2023/3, slightly modified)
Let S be a finite set of integers symmetric about 0 (i.e. x 2 S iff �x 2 S). Let n be a positive
integer, and for each real number r define Ar to be the set of solutions to

x1 + x2 + · · ·+ x2n = r, xi 2 S.

Prove that |A0| � |Ar| for every r 6= 0.

Solution. By direct computation,

A =

Z 1

0

 
X

s2S

e
2⇡is↵

!2n

d↵

and

B =

Z 1

0

 
X

s2S

e
2⇡is↵

!2n

e
�2⇡i`↵

d↵

and the claim follows from the triangle inequality, using that
P

s2S e
2⇡is↵ = 2

Pk
j=1 cos(2⇡aj) is

real so that the bracketed term is nonnegative (because of the even exponent).

It’s also nice that this classic problem can be solved:

Example 6 (Folklore)
Suppose you can decompose a rectangle into finitely many rectangles, each of which has at
least one side of integer length. Then, the original rectangle has at least one side of integer
length.

Solution. Set two corners of the rectangle to be (0, 0) and (a, b), then note that the integral of
e
2⇡i(x+y)

dxdy over a rectangle is 0 iff the rectangle has at least one side of integer length. Yet, the
integral over the big rectangle is the sum of the integrals over the smaller rectangles, so it is also
zero.
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To foreshadow a little, we’ll sometimes want to do a version of Fact 4 for real numbers, but as it
stands it is not true for real values of n. Nonetheless, since the main idea here is that “fluctuations
cancel out”, we can make it true by instead taking a limit:

Fact 7
Let ↵ be a real number. Then

lim
T!1

1

T

Z T

0
e
2⇡i↵x

dx = I↵=0.

2 DFTs and Fourier Analysis

There’s an interesting framework to really exploit the above facts, which is the framework of Fourier
analysis. For the following discussion, let’s look at a sequence of n numbers a1, ..., an and we’ll let
! denote a primitive n-th root of unity.

Define the discrete Fourier transform of {ai} to be

âj =
1p
n

nX

k=1

!
jk
ak.

There are a few facts that are a good exercise to prove by simply expanding the sums:

Fact 8 (Inverse Fourier Transform)
We can recover ak from âj :

ak =
1p
n

nX

j=1

!
�jk

âj

Fact 9 (Convolutions)
Define

(a ⇤ b)m =
nX

j=1

ajbm�j

where we take the index mod n. Then da ⇤ b = â · b̂ elementwise.

Fact 10 (Plancherel)
The sum of squared norms of a and â are the same, i.e.

nX

j=1

|aj |2 =
nX

k=1

|âk|2.

Fact 11 (Isometry)

If ha, bi :=
Pn

i=1 aibi, then ha, bi = hâ, b̂i.

Linear algebraic perspective. If you’re geometrically minded, all of the above facts might be
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intuitive. One can think of the function a 7! â as a linear map with matrix

U =

0

BBB@

!
0·0

!
0·1 · · · !

0·(n�1)

!
1·0

!
1·1 · · · !

1·(n�1)

...
...

. . .
...

!
(n�1)·0

!
(n�1)·1 · · · !

(n�1)·(n�1)

1

CCCA

which satisfies satisfies UU
† = I (with U

† representing the conjugate transpose (U>)⇤). We call
such U unitary.

From this perspective, it’s obvious that (1) we can invert U , (2) U preserves norms and (3) U

preserves the conjugate inner product ha, bi =
Pn

i=1 aibi.
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3 Problems

0. Actually work through the computations for the DFT identities.

1. (2024 Israel TST 6/2) Let n be a positive integer. Find all polynomials Q(x) with integer
coefficients so that the degree of Q(x) is less than n and there exists an integer m � 1 for
which

x
n � 1 | Q(x)m � 1

2. (USEMO 2021/5) Let S(p) denote the sum of the squares of the coefficients of a polynomial
p(x). Prove that if f(x), g(x), and h(x) are polynomials with real coefficients satisfying the
indentity f(x) · g(x) = h(x)2, then

S(f) · S(g) � S(h)2

3. (ISL 2018 A6) Let m,n � 2 be integers. Suppose that f(x1, . . . , xn) is a polynomial with
real coefficients such that

f(x1, . . . , xn) =

�
x1 + · · ·+ xn

m

⌫

for every x1, . . . , xn 2 {0, 1, . . . ,m� 1}. Prove that the total degree of f is at least n.

4. (Ky Fan’s inequality) Let n � 3 be an integer, and reals a1, . . . , an sum to zero. Show that

cos
2⇡

n

nX

k=1

a
2
k �

nX

k=1

akak+1.

5. (CTST 2020/1) Let ! be a n -th primitive root of unity. Given complex numbers a1, a2, · · · , an,
and p of them are non-zero. Let

bk =
nX

i=1

ai!
ki

for k = 1, 2, · · · , n. Prove that if p > 0, then at least n
p numbers in b1, b2, · · · , bn are non-zero.

6. (HMIC 2017/5, rephrased) Suppose that a function f : Fn
2 ! Fn

2 satisfies f(s)+f(t) = f(s+t)
for (1�✏) of all pairs s, t 2 Fn

2 . Show that there exists a linear map f
0 : Fn

2 ! F2 that matches
f on at least (1� 10✏) of the inputs.

7. (CTST 2025/15) Let X be a finite set of real numbers, d be a real number, and �1,�2, · · · ,�2025
be 2025 non-zero real numbers. Define

• A to be the set of 2025-tuples (x1, x2, · · · , x2025) 2 X
2025 such that

P2025
i=1 �ixi = d

• B to be the set of 2024-tuples (x1, x2, · · · , x2024) 2 X
2024 such that

P2024
i=1 (�1)ixi = 0

• C to be the set of 2026-tuples (x1, x2, · · · , x2026) 2 X
2026 such that

P2026
i=1 (�1)ixi = 0

Show that |A|2  |B| · |C|.
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4 More problems

Some of these problems will need concepts from the appendices.

1. (Erdos-Ginzburg-Ziv) Show that among any 2n�1 integers, there exists a subset of n integers
whose sum is divisible by n.

2. (IMO 2006/6) Assign to each side b of a convex polygon P the maximum area of a triangle
that has b as a side and is contained in P . Show that the sum of the areas assigned to the
sides of P is at least twice the area of P .

3. (ELMO Shortlist 2023 C8) Let n � 3 be a fixed integer, and let ↵ be a fixed positive real
number. There are n numbers written around a circle such that there is exactly one 1 and
the rest are 0’s. An operation consists of picking a number a in the circle, subtracting some
positive real x  a from it, and adding ↵x to each of its neighbors.

Find all pairs (n,↵) such that all the numbers in the circle can be made equal after a finite
number of operations.

4. (Komal A421) Find two positive constants ↵ and c such that
�����

NX

k=1

⇢
k
2

N

�
� N

2

����� < cN
1�↵

holds for all positive integers N .

5. (USA TSTST 2018/9) Show that there is an absolute constant c < 1 with the following
property: whenever P is a polygon with area 1 in the plane, one can translate it by a
distance of 1

100 in some direction to obtain a polygon Q, for which the intersection of the
interiors of P and Q has total area at most c.

6. (Brazil Olympic Revenge 2018/5) Let p a prime number and define kxk as the cyclic distance
of x to 0:

kxk =

(
x if x <

p
2

p� x if x >
p
2

Let f : Fp ! Fp a function such that for every x, y 2 Fp

kf(x+ y)� f(x)� f(y)k < 100

Prove that exist m 2 Fp such that for every x 2 Fp

kf(x)�mxk < 1000.

7. (Canada Training 2024; MO 185278) Show that if G is a subgroup of F2
p with |F2

p| � p
(k+1)/2k,

then every element of F2
p is a sum of k elements from G.

8. (ISL 2012 N8) Prove that for every prime p > 100 and every integer r, there exist two
integers a and b such that p divides a

2 + b
5 � r.

9. (RMM 2024/6) A polynomial P with integer coefficients is square-free if it is not expressible
in the form P = Q

2
R, where Q and R are polynomials with integer coefficients and Q is not

constant. For a positive integer n, let Pn be the set of polynomials of the form

1 + a1x+ a2x
2 + · · ·+ anx

n

with a1, a2, . . . , an 2 {0, 1}. Prove that there exists an integer N such that for all integers
n � N , more than 99% of the polynomials in Pn are square-free.

10. (China TST 2014/17) Let n be a given integer which is greater than 1 . Find the greatest
constant �(n) such that for any non-zero complex z1, z2, · · · , zn ,have that

nX

k=1

|zk|2 � �(n) min
1kn

{|zk+1 � zk|2},

where zn+1 = z1.
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11. (SZM Original NT 137) Let p be a prime number and n = p � 1. The sequence {ak}k2Z
satisfies ak1 = ak2 whenever k1 ⌘ ±k2 (mod n). If we define

D := gcd
1dn

 
nX

k=1

akak+d

!

show that vp(D) is even.

12. (Komal A277) Let p be a prime number and H1 be a p-gon. Construct the sequence of
polygons H1, H2, · · · , Hp as follows: once Hk is constructed, reflect each vertex by the k-th
vertex clockwise from it. Show that H1 and Hp are similar.
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A Equidistribution

You might know the fact that the fractional parts of n
p
2 are dense mod 1. In fact, they must be

“uniformly distributed” - a way to measure this is to look at an interval (a, b) ⇢ [0, 1) and see what
proportion of the fractional parts of n

p
2 lie in (a, b). If this always approaches b� a, we also say

that the fractional parts of n
p
2 are equidistributed mod 1.

How do we figure out if a sequence is equidistributed?

Fact 12 (Weyl’s criterion)
A sequence a1, a2, · · · is equidistributed mod 1 if and only if

lim
N!1

1

N

NX

n=1

e
2⇡ian = 0.

One can think of this as a case of the more general statement that

1

N

NX

n=1

f(an) !
Z 1

0
f(x)dx.

for bounded functions f - we’re saying that it’s sufficient (and equivalent) to check this for (1)
f 2 {I(a,b)} or (2) f(x) 2 {e2⇡ikx}k2Z.

This feels like some kind of Fourier transform, doesn’t it?

A cool application of this fact is

Fact 13 (van der Corput’s difference theorem)
If {an+h�an} is equidistributed mod 1 for all positive integers h, then {an} is equidistributed
mod 1.

which proceeds by moving to the exponential sum and doing some bounding there. As a conse-
quence, this tells us that all polynomials with irrational leading coefficients are equidistributed
mod 1!

B Counting solutions mod p

By pretending that the primitive root g is a (p� 1)-th root of unity, we get (for k > 0):
X

x2Fp

x
k ⌘ �I(p�1)|k (mod p).

As we saw earlier on in “advanced usage”, these things stack very nicely multiplicatively. For
example: X

x,y2Fp

x
k1
1 x

k2
2 · · ·xkm

m ⌘ (�1)m · I(p�1)|ki,i=1,...,m (mod p)

This can be used to prove a very cute theorem:

Fact 14 (Chevalley’s theorem)
Suppose you have a system of polynomial equations mod p such that there are more variables
than the sum of the total degree across each coefficient. Then, if it has a trivial solution (i.e.
all 0s), it also has at least one non-trivial solution.
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Proof. Suppose our system of equations is f1 = f2 = ... = fm = 0 over variables x1, ..., xm. Then,
note that

1� f(x)p�1 ⌘ If(x)⌘0 (mod p) (mod p)

Thus, the following sum counts the solutions mod p:
X

x1,...,xn

(1� f1(x1, ..., xn)
p�1) · · · (1� fm(x1, ..., xn)

p�1)

but clearly it has degree less than n(p � 1), so the sum on each monomial vanishes. Hence, the
number of solutions is a multiple of p.

C Characters on finite abelian groups

Recall the fundamental fact that we saw above:

nX

k=1

e
2⇡ikx/n = 0, if x 2 Z 6=0.

We also saw that we can multiply these together:

nX

k=1

mX

`=1

exp

✓
2⇡i

✓
kx

n
+
`y

m

◆◆
= 0, if (x, y) 6= (0, 0).

In fact, we’re able to abstract what’s special here and use it for any finite abelian group: we just
need the group operation “+” on G to commute with multiplication in C, i.e. for a map  : G ! C⇤

to satisfy
 (a+ b) =  (a) ·  (b).

(The reason we use C⇤ instead of C is because if any value is zero, then  is identically 0.) Such
a  is called a character, and we also say that  is trivial if  ⌘ 1 and nontrivial otherwise.

A new example of a character is the Legendre symbol, which tells you if a residue is a perfect
square or not. This ends up being a character of the multiplicative group F⇥

p , where the operation
is multiplication instead of addition:

✓
a

p

◆
=

8
><

>:

1 if a is a quadratic residue
�1 if a is a quadratic nonresidue
0 if a ⌘ 0 (mod p)

The crucial fact is that we have orthogonality for characters: for characters � and �0, define

h�,�0i := 1

|G|
X

g2G

�(g)�0(g) = I�=�0 .

Geometrically speaking, this is saying that the characters form an orthonormal basis (using this
particular inner product). If we substitute � = 1, we have the usual

X

g2G

�(g) =

(
|G| if � is trivial
0 otherwise.

D Gauss/Jacobi sums

When I was taking a field theory class I had this really cool problem:

9
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Example 15
Show that for odd primes p, ������

X

a2Fp

e
2⇡ia2/p

������
=

p
p

See if you can solve it! This is the simplest case of what’s called a Gauss sum, and much more
is known - for example, the sum is exactly

(p
p if p ⌘ 1 (mod 4);

i
p
p if p ⌘ 3 (mod 4).

What’s interesting is that we can rewrite this slightly in terms of the Legendre symbol:

X

a2Fp

e
2⇡ia2/p =

X

a2Fp

✓
1 +

✓
a

p

◆◆
e
2⇡ia/p =

X

a2Fp

✓
a

p

◆
e
2⇡ia/p

.

This forms the general definition of a Gauss sum: for a character � of the multiplicative group
(Z/nZ)⇥, the Gauss sum is

G(�) =
X

a2Z/nZ
�(a)e2⇡ia/n.

and we know a couple of properties:

• |G(�)| =
p
n if � is primitive (i.e. not induced by a character of a smaller modulus).

• Let’s also define the Jacobi sum J(�, ) =
P

a �(a) (1� a).

• J(�, ) = G(�)G( )
G(� ) .

• If � is the Legendre symbol, then J(�,�) = (�1)(p+1)/2.

• (Weil bounds; see this link) In the prime setting, for a nonzero polynomial P which is not
the scalar multiple of a d-th power (where d is the order of �), we have

������

X

a2Fp

�(P (a))

������
 d

p
p.

The Gauss sum can also be used to prove the quadratic reciprocity law, but for brevity I won’t go
into it here.

E Fourier expansions

A Fourier expansion is a way to represent a function as known periodic functions. In an engineering
textbook, you might see

f(x) = a0 +
1X

n=1

(an cos(2⇡nx) + bn sin(2⇡nx))

or if you prefer the exponential basis:

f(x) =
X

n2Z
cne

2⇡inx

where the cn are the Fourier coefficients.

There is some theory (google “Schwartz functions”) around when these coefficients exist and define
a convergent sum, but for the kind of heuristics we’re doing it’s fine to assume that it exists.

We give one example where this intuition is useful:

10
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Example 16
Prove that:

nX

j,k=1

ajak

1 + |j � k| � 0

Solution. The idea here is that such a sum can be "decomposed" into positive sums like

nX

j,k=1

ajak cos((j � k)x) =
nX

j,k=1

ajake
2⇡i(j�k)x =

������

nX

j=1

aje
2⇡ijx

������

2

.

So it would be nice if there was a function k(x) (sometimes called a “kernel”) such that

1

1 + |n| =
Z

k(x)e2⇡inxdx

where k(x) � 0. A free way to get a k that satisfies the above (but not necessarily non-negative)
is to consider

k0(x) =
X

n2Z

1

1 + |n|e
2⇡inx

which we recognize as the Fourier transform of 1
1+|n| . This is a function on "R mod 1". Now, this

can be reversed by the inverse Fourier transform:

1

1 + |n| =
Z 1

0
k0(x)e

�2⇡inx
dx

So it remains to check that this kernel is indeed non-negative. Well, we use the trick of representing
the fraction as an integral:

k0(x) =
X

n2Z

1

1 + |n|e
2⇡inx

=

Z 1

0

X

n2Z
e
2⇡inx

r
|n|

dr

=

Z 1

0

1� r
2

1� 2r cos(2⇡x) + r2
� 0.

F Fourier for Boolean algebras

In a different land there is another kind of sum that gives an indicator function:
X

J✓I

(�1)|J| = I|I|=0

and its “relative” cousin: X

I0✓J✓I

(�1)|J| = II=I0 .

Here’s one implication: suppose I have one number per subset {aI}I✓[n], and we had

AI =
X

J✓I

aJ .

11
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Then, we can recover aI from AI using
X

J✓I

(�1)|I|+|J|
AJ =

X

J✓I

(�1)|I|+|J|
X

K✓J

aK

=
X

K✓J✓I

(�1)|I|�|J|
aK

=
X

K✓I

aKIK=I

= aI

You might realize that this proves the Principle of Inclusion-Exclusion.
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