
CS229M/STATS214: Machine Learning Theory

Lecturer: Tengyu Ma Lecture # 8
Scribe: David Lin and Jinhui Wang Feb. 8th, 2021

8.1 Review and overview

In the previous lecture, we derived explicit Rademacher complexity bounds for linear models with
weights bounded in `1 and `2-norms. To recap, we proved:

Theorem 7.1. Let H =
{
x 7→ 〈w, x〉 | w ∈ Rd, ‖w‖2 ≤ B

}
for some constant B > 0. Moreover,

assume Ex∼P
[
‖x‖22

]
≤ C2, where P is some distribution and C > 0 is a constant. Then

RS(H) ≤ B

n

√√√√ n∑
i=1

∥∥x(i)
∥∥2

2

and

Rn(H) ≤ BC√
n
.

Theorem 7.3. Let H =
{
x 7→ 〈w, x〉 | w ∈ Rd, ‖w‖1 ≤ B

}
for some constant B > 0. Moreover,

assume
∥∥x(i)

∥∥
∞ ≤ C for some constant C > 0 and all points in S =

{
x(i)
}n
i=1
⊂ Rd. Then

RS(H) ≤ BC
√

2 log(2d)

n
.

Furthermore, we derived a crude bound for a two-layer neural network fθ : Rd → R defined

by fθ(x) = w>φ(Ux). Here, U =

u
>
1
...
u>m

 ∈ Rm×d and w ∈ Rm correspond to the weight matrices

in the first and second layers of the neural network respectively while φ(z) = max(z, 0) is the
ReLU activation function taken elementwise. The overall parameters of the network is just the
concatenation of w and U ; θ = (w,U). For this set-up, we showed:

Theorem 7.5. For some constants Bw > 0 and Bu > 0, let

H = {fθ | ‖w‖2 ≤ Bw, ‖ui‖2 ≤ Bu, ∀i ∈ {1, 2, . . . ,m}}

and suppose E
[
‖x‖22

]
≤ C2. Then

Rn(H) ≤ 2BwBuC

√
m

n
.

This upper bound is undesirable since it grows with the number of neurons m, contradicting
empirical observations of the generalization error decreasing with m. Today, we will complete the
proof of a refined upper bound that is non-increasing with m by leveraging a finer definition of
complexity C(θ). Subsequently, we discuss implications of this new theorem before transitioning
to a new method of bounding Rademacher complexities by covering the output space.

1

8.2 Refined bound for two-layer neural networks

A recurring theme in subsequent proofs will be the functional invariance of two-layer neural networks
under a class of rescaling transformations. The key ingredient will be the positive homogeneity of
the ReLU function, i.e.

αφ(x) = φ(αx) ∀α > 0. (8.1)

This implies that for λi > 0, the transformation θ = {(wi, ui)}1≤i≤m 7→ θ′ = {(λiwi, λ−1
i ui)}1≤i≤m

has no net effect on the neural network’s functionality (i.e. fθ = fθ′) since

wi · φ(u>i x
(i)) = (λiwi) · φ

((
λ−1
i ui

)>
x(i)
)
. (8.2)

In light of this, we devise a new complexity measure C(θ) that is also invariant under such trans-
formations and use it to prove a better bound for the Rademacher complexity. This positive
homogeneity property is absent in the measures ‖w‖2 and maxi ‖ui‖2 used in Theorem 7.5.

Theorem 8.1. LetC(θ) =
∑m

j=1 |wj | ‖uj‖2 , and for some constant BC > 0 consider the hypothesis
class

H = {fθ | C(θ) ≤ BC}

If
∥∥x(i)

∥∥
2
≤ C for all i ∈ {1, . . . , n}, then

RS(H) ≤ 2BCC√
n

Proof. Due to the positive homogeneity of the ReLU function φ, it will be useful to define the `2-

normalized weight vector ūj :=
uj
‖u‖2 such that φ

(
uTj x

)
= ‖uj‖2·φ(ūTj x). The empirical Rademacher

complexity satisfies

RS(H) =
1

n
Eσ

[
sup
θ

n∑
i=1

σifθ

(
x(i)
)]

(8.3)

=
1

n
Eσ

sup
θ

n∑
i=1

σi

 m∑
j=1

wjφ
(
uTj x

(i)
) (8.4)

=
1

n
Eσ

sup
θ

n∑
i=1

σi

 m∑
j=1

wj‖uj‖2φ
(
ūTj x

(i)
) (positive homogeneity of φ) (8.5)

=
1

n
Eσ

sup
θ

m∑
j=1

wj‖uj‖2

[
n∑
i=1

σiφ
(
ūTj x

(i)
)] (8.6)

≤ 1

n
Eσ

sup
θ

m∑
j=1

|wj |‖uj‖2 max
k∈[n]

∣∣∣∣∣
n∑
i=1

σiφ
(
ūTk x

(i)
)∣∣∣∣∣
 ∑

j

αjβj ≤
∑
j

|αj |max
k
|βk|


(8.7)

≤ BC
n

Eσ

[
sup

θ=(w,U)
max
k∈[n]

∣∣∣∣∣
n∑
i=1

σiφ
(
ūTk x

(i)
)∣∣∣∣∣
]

(C(θ) ≤ BC) (8.8)

2

=
BC
n

Eσ

[
sup

ū:‖ū‖2=1

∣∣∣∣∣
n∑
i=1

σiφ
(
ūTx(i)

)∣∣∣∣∣
]

(8.9)

≤ BC
n

Eσ

[
sup

ū:‖ū‖2≤1

∣∣∣∣∣
n∑
i=1

σiφ
(
ūTx(i)

)∣∣∣∣∣
]

(8.10)

≤ 2BC
n

Eσ

[
sup

ū:‖ū‖2≤1

n∑
i=1

σiφ
(
ūTx(i)

)]
(see Lemma 8.3) (8.11)

= 2BCRS(H′) (8.12)

where H′ = {x 7→ φ(ūTx) : ū ∈ Rd, ‖w‖2 ≤ 1}. By Talagrand’s lemma (Lemma 6.8), since φ is
1-Lipschitz, RS(H′) ≤ RS(H′′) where H′′ = {x 7→ ūTx : ū ∈ Rd, ‖w‖2 ≤ 1} is a linear hypothesis
space. Using RS(H′′) ≤ C√

n
by Theorem 7.1 then concludes the proof.

Remark 8.2. This refined upper bound is much stronger than Theorem 7.5 since it does not increase
with the number of neurons m. Notably, we can analyse the m→∞ limit and still hope to obtain
a non-vacuous bound. Intuitively, this is because the network has a fixed “budget” BC that it is
allowed to distribute among an arbitrary number of neurons.

We complete the proof by deriving the Lemma 8.3 used in the second last inequality. Notably,
the lemma’s assumption holds in the current context for

sup
θ
〈σ, fθ(x)〉 = sup

ū:‖ū‖2≤1

n∑
i=1

σiφ
(
ūTx(i)

)
≥ 0 (8.13)

since one can take ū = 0 for any σ = (σ1, . . . , σn).

Lemma 8.3. Let σ = (σ1, ..., σn) and fθ(x) =
(
fθ
(
x(1)

)
, ..., fθ

(
x(n)

))
. Suppose that for any

σ ∈ {±1}n, supθ〈σ, fθ(x)〉 ≥ 0. Then,

Eσ
[
sup
θ
|〈σ, fθ(x)〉|

]
≤ 2Eσ

[
sup
θ
〈σ, fθ(x)〉

]
Proof. Letting φ be the ReLU function, the given hypothesis implies supθ φ (〈σ, fθ(x)〉) = supθ〈σ, fθ(x)〉
for any σ ∈ {±1}n. Observing that |z| = φ(z) + φ(−z),

sup
θ
|〈σ, fθ(x)〉| = sup

θ
[φ (〈σ, fθ(x)〉) + φ (〈−σ, fθ(x)〉)] (8.14)

≤ sup
θ
φ (〈σ, fθ(x)〉) + sup

θ
φ (〈−σ, fθ(x)〉) (8.15)

= sup
θ
〈σ, fθ(x)〉+ sup

θ
〈−σ, fθ(x)〉 . (8.16)

Taking the expectation over σ (and noting that σ
d
= −σ), we get the desired conclusion.

8.3 Consequences of Theorem 8.1

In this section, we discuss practical implications of the refined neural network bound.

3

8.3.1 Connection to `2 regularization

Recall that margin theory yields for any θ, L0−1(θ) ≤ 2RS(H)
γmin

+ Õ

(√
log(2/δ)

n

)
with probability at

least 1− δ. Thus, Theorem 8.1 motivates us to minimize RS(H)
γmin

by regularizing C(θ). Concretely,
this can be formulated as the optimization problem

minimize C(θ) =
m∑
j=1

|wj | · ‖uj‖2 (I)

subject to γmin(θ) ≥ 1

or equivalently,

maximize γmin(θ) (II)

subject to C(θ) ≤ 1.

At first glance, the above seems orthogonal to techniques used in practice. However, it turns
out that the optimal neural network from (I) is functionally equivalent to that of the new problem:

minimize C`2(θ) =
1

2

m∑
j=1

|wj |2 +
1

2

m∑
j=1

‖uj‖22 (I*)

subject to γmin(θ) ≥ 1.

This is a simple consequence of the positive homogeneity of φ. For any scaling factor λ =
(λ1, . . . , λm) ∈ Rm+ , the rescaled neural network θλ := {(λiwi, ui/λi)} has the same functional-
ity as the original neural network θ = {wi, ui} (i.e. it achieves the same γmin). Thus,

min
θ
C`2(θ) = min

θ
min
λ

1

2

m∑
j=1

λ2
j |wj |2 +

1

2

m∑
j=1

λ−2
j ‖uj‖

2
2

 (8.17)

= min
θ

m∑
j=1

|wj | · ‖uj‖2 (8.18)

= min
θ
C(θ) (8.19)

where we have used the equality case of the AM-GM inequality, attainable by λ∗j =
√
‖uj‖2
|wj | , in the

second step. This equality case also shows that θ∗ = {(wi, ui)} is the optimal solution of (I) if and
only if θ̂∗ = θλ∗ is the optimal solution of (I*)—proving that θ̂∗ and θ∗ are functionally equivalent
since they only differ by a positive scale factor.

This connects our C(θ) regularization to `2-norm penalties that are more prevalent in practice.
In retrospect, we see this equivalence is essentially due to the positive homogeneity of the neural
network which “homogenizes” any inhomogeneous objective such as C`2 . Hence, we can just deal
with C(θ) which is transparently homogeneous.

4

8.3.2 Stable generalization bound in m

Moving on, we show that the generalization bound given by Theorem 8.1 does not deteriorate with
the network width m (consistent with experiments). To this end, the perspective of (II) enables us
to isolate all dependencies of m in γmin. If θ̂m denotes the minimizer of program (II) with width

m and optimal value γ∗m = γmin

(
θ̂m

)
, we can rewrite the margin bound as

L(θ̂m) ≤ 4C√
n
· 1

γ∗m
+ (lower-order terms) (8.20)

where all dependencies on m are now contained in γ∗m. Hence, to show that this bound does not
worsen as m grows, we just have to show that γ∗m is non-decreasing in m. This is intuitively the
case since a neural network of width m + 1 contains one of width m under the same complexity
constraints. The following theorem formalizes this hunch:

Theorem 8.4. Let γ∗m be the minimum margin obtained by solving (II) with a two-layer neural
network of width m. Then,

γ∗m ≤ γ∗m+1 ≤ γ∗m+2 ≤ ...

Proof. Suppose θ = (U,w) is a two-layer neural network of width m satisfying C(θ) ≤ 1. Then we
may construct a neural network θ̃ = (Ũ , w̃) of width m+ 1 by simply taking

(ũi, w̃i) =

{
(ui, wi) i ≤ m
(0, 0) otherwise

(8.21)

Then, θ̃ is functionally equivalent to θ and C(θ̃) = C(θ) ≤ 1. This means maximizing γmin

over {C(θ̃) : θ̃ of width m + 1} should give no lower of a value than the maximum of γmin over
{C(θ) : θ of width m}.

8.3.3 Equivalence to an `1-SVM in m→∞ limit

Since γ∗m is non-decreasing in m, we can consider the quantity

γ∗∞ = lim
m→∞

γ∗m (8.22)

The next interesting fact is that in this m → ∞ limit, γ∗∞ of the two-layer neural network is
equivalent to the minimum margin of an `1-SVM. As a brief digression, we recap the formulation
of `p-SVMs and discuss the importance of `1-SVMs in particular.

Since a collection of data points with binary class labels may not be a priori separable, a kernel
model firstly transform an input x to Φ(x) where Φ : Rd → G is known as the feature map. In
this new feature space G which is often gargantuan, the model then seeks a separating hyperplane
parameterized by a vector µ pointing from the origin to the hyperplane. The prediction of the
model on an input x is then a decision score that quantifies Φ(x)’s displacement with respect to
the hyperplane:

gµ,Φ(x) := 〈µ,Φ(x)〉 . (8.23)

Motivated by margin theory, it is desirable to seek the maximum-margin hyperplane under a
constraint on µ to guarantee the generalizability of the model. In particular, a kernel model with
an `p-constraint seeks to solve the following program:

5

maximize γmin := min
i∈[n]

y(i)〈µ,Φ(x(i))〉 (8.24)

subject to ‖µ‖p ≤ 1.

Observe that both the prediction and optimization of the feature model only rely on inner products
in G. The ingenuity of the SVM is to choose maps Φ such that K(x, x′) = 〈Φ(x),Φ(x′)〉 can be
directly computed in terms of x and x′ in the original space Rd, thereby circumventing the need to
perform expensive inner products in the large space G. Remarkably, this “kernel trick” enables us
to even operate in an implicit, infinite-dimensional G.

The case of p = 1 is particularly useful in practice as `1-regularization generally produces sparse
feature weights (the constrained parameter space is a polyhedron and the optimum tends to lie at
one of its vertices). Hence, `1-regularization is an important feature selection method when one
expects only a few dimensions of G to be significant. Unfortunately, the `1-SVM is not kernelizable,
due to the kernel trick relying on `2-geometry, and is hence infeasible to implement. However, our
next theorem shows that a two-layer neural network can approximate a particular `1-SVM in the
m → ∞ limit (and in fact, for finite m). For the sake of simplicity, we sacrifice rigor in defining
the space G and convey the main ideas.

Theorem 8.5. Define the feature map φReLU : Rd → G such that φReLU(x) is a function Sd−1 → R
with values determined by φReLU(x)[u] = φ(uTx). Informally,

φReLU(x) :=


...

φ(u>x)
...


u∈Sd−1

is an “infinite-dimensional vector” that contains an entry φ(uTx) for each vector u on the d − 1-
dimensional sphere Sd−1. Noting that G is the space of functions which can be indexed by u ∈ Sd−1,
the inner product structure on G is defined by 〈f, g〉 =

∫
Sd−1 f [u]g[u]du.

Under this set-up, we have
γ∗∞ = γ∗`1

where γ∗`1 is the minimum margin of the optimized `1-SVM with Φ = φReLU.

Proof. (γ∗∞ ≤ γ∗`1 direction): Suppose γ∗∞ is obtained by network weights (w1, w2, · · ·), (u1, u2, · · ·)
where wi ∈ R, ui ∈ Rd (there is a slight subtlety here to be rectified later). Define renormalized
versions of (wi) and (ui):

w̃i := wi · ‖ui‖2, ui :=
ui
‖ui‖2

. (8.25)

Note that {(w̃i, ui)} has the same functionality (and also the same complexity measure C(θ),
margin, etc.) as that of {(wi, ui)}, but now ui has unit `2-norm (i.e. ūi ∈ Sd−1). Thus, φ(u>i x)
can be treated as a feature in G and we can construct an equivalent `1-SVM such that w̃i is the
coefficient of µ associated with that feature. Since w̃i must only be “turned on’ at ui, we have

µ[u] =

∞∑
i=1

w̃iδ(u− ui) (8.26)

6

where δ(u) is the Dirac-delta distribution. Given this µ, we can check that the SVM’s prediction is

gµ,φReLU
(x) =

∫
Sd−1

µ[u]φrelu(x)[u]du =

∫
Sd−1

∞∑
i=1

w̃iδ(u− ui)φ
(
u>x

)
du =

∞∑
i=1

w̃iφ
(
u>i x

)
(8.27)

which is identical to the output f{(w̃i,ui)}(x) of the neural network. Furthermore,

‖µ‖1 =
∞∑
i=1

|w̃i| =
∞∑
i=1

|wi| · ‖ui‖2 ≤ 1 (8.28)

where the last equality stems from {(w̃i, ui)} satisfying the constraints of (II). This shows that our
constructed µ satisfies the `1-SVM constraint. Thus, γ∗∞ ≤ γ∗`1 since the functional behavior of the
optimal neural network is contained in the search range of the SVM.

(γ∗∞ ≥ γ∗`1 direction): We omit the proof here as it requires substantial functional analysis.

Remark 8.6. How well does a finite dimensional neural network approximate the infinite-dimensional
`1 network? Proposition B.11 of [WLLM20] shows that you only need n+ 1 neurons. Another way
to say this is that {γm} stabilizes once m = n+ 1:

γ∗1 ≤ γ∗2 ≤ · · · ≤ γ∗n+1 = γ∗∞. (8.29)

The main idea of the proof is that if we have a neural net θ with (n + 2) neurons, then we can
always pick a simplification θ′ with (n+ 1) neurons such that θ, θ′ agree on all n datapoints. (See
Carathéodory’s theorem for a similar idea).

As an aside, this result also resolves the issue in our partial proof. A priori, γ∗∞ may not
necessarily be attained by a set of weights {(w̃i, ui)} but the above shows that it is achievable with
just n+ 1 non-zero indices.

8.4 Covering number approach for Rademacher complexity

Our previous Rademacher complexity bounds hinged on elegant, ad hoc algebraic manipulations
that may not extend to more general settings. Here, we consider a more fundamental approach
for proving empirical Rademacher complexity bounds based on coverings of the output space. The
trade-off is generally more tedium.

The first important observation is that for purposes of computing the empirical Rademacher
complexity on samples z1, ..., zn,

RS(F) = Eσ

[
sup

1

n

n∑
i=1

σif(zi)

]
(8.30)

we only care about each function’s f ∈ F behavior on z1, ..., zn. Hence, we can forget the rest of
the input space and characterize f ∈ F as its outputs (f(z1), . . . , f(zn)). Thus, there is a paradigm
shift from the space of all functions F to the output space

Q 4= {f(z1), . . . , f(zn) : f ∈ F} ⊆ Rn (8.31)

7

which may be drastically smaller than F . Correspondingly, the empirical Rademacher complexity
can be rewritten as a maximization over the output space Q instead of the function space F :

RS(F) = Eσ
[
sup
v∈Q

1

n
〈σ, v〉

]
. (8.32)

Now, for finite |Q|, we immediately obtain the following bound by Massart’s lemma

RS(F) ≤
√

2 log |Q|
n

(8.33)

When |Q| is infinite, we can use the same discretization trick that we used to prove the generalization
bound for an infinite-hypothesis space. Concretely, we cover the set of possible parameters by
a finite number of small enough open balls such that parameters within an open ball are well-
approximated by the parameter at the center of the ball. Subsequently, we obtain a bound from
applying Massart’s lemma to the centers of the balls which is not too far from the bound over all
parameters due to our fine-grained discretization.

To this end, we firstly recall a few definitions concerning ε-covers.

Definition 8.7. C is an ε-cover of Q with respect to metric ρ if for all v ∈ Q, there exists v′ ∈ C
such that ρ(v, v′) ≤ ε.

Definition 8.8. The covering number is defined as the minimum size of an ε-cover, or explicitly:

N(ε,Q, ρ)
4
= (min size of ε-cover of Q w.r.t. metric ρ).

The standard metric we will use is ρ(v, v′) = 1√
n
‖v − v′‖2, with the leading coefficient inserted

for convenience.

Remark 8.9. While we want to consider ε-covers over Q, the notation in the literature refers to
them as ε-covers of the function class F using the metric ρ = L2(pn), where

ρ(f, f ′) =

√√√√ 1

n

n∑
i=1

(f(zi)− f ′(zi))2 (8.34)

If we take the corresponding v, v′ ∈ Q, this is precisely

ρ(v, v′) =
1√
n
‖v − v′‖2. (8.35)

Equipped with the notion of ε-covers, we can prove the following Rademacher complexity bound.

Theorem 8.10. Let F be a family of functions Z → [−1, 1]. Then

RS(F) ≤ inf
ε>0

(
ε+

√
2 logN(ε,F , L2(pn))

n

)
.

The ε term can be thought of as the discretization error, while the latter term is the term in
Massart’s lemma.

8

Proof. Fix any ε > 0. Start with an ε-cover C of Q. Massart’s lemma immediately gives the bound

RS(C) ≤
√

2 log |C|
n

. (8.36)

We wish to relate the empirical Rademacher complexity

RS(F). = Eσ
[
sup
v∈Q

1

n
〈v, σ〉

]
(8.37)

with RS(C), so we express v ∈ Q as v = v′+z, where v′ ∈ C and z is small (specifically, 1√
n
‖z‖2 ≤ ε).

So, we obtain

1

n
〈v, σ〉 =

1

n

〈
v′, σ

〉
+

1

n
〈z, σ〉 (8.38)

≤ 1

n

〈
v′, σ

〉
+

1

n
‖z‖2‖σ‖2 (Cauchy-Schwarz) (8.39)

≤ 1

n

〈
v′, σ

〉
+ ε. (since ‖z‖2 ≤

√
nε and ‖σ‖2 ≤

√
n) (8.40)

Therefore, taking the expectation of the supremum on both sides gives

RS(F) = Eσ
[
sup
v∈Q

1

n
〈v, σ〉

]
(8.41)

≤ Eσ
[

sup
v′∈C

(
1

n

〈
v′, σ

〉
+ ε

)]
(8.42)

≤
√

2 log |C|
n

+ ε. (8.43)

It remains to choose C to be a minimal ε-cover. This choice gives

|C| = N(ε,F , L2(pn)). (8.44)

This lemma is useful, but the bound at Equation 8.39 is rarely tight as z might not be perfectly
correlated with σ. It is possible to obtain a stronger theorem by constructing a chained ε-covering
scheme. Specifically, when we decompose v = v′ + z, we can construct a finer-grained covering of
the ball B(v′, ε), and then we can decompose z into smaller components and so on.

Figure 8.1: Illustration of a chained cover. Within the ε-ball containing the discretization error z,
we find a finer ε′-cover and obtain a smaller error z′ from discretizing z.

9

Using this method of chaining, we can obtain the following (stronger) result:

Theorem 8.11. (Dudley) Let F be a family of functions from Z to R. Then

RS(F) ≤ 12

∫ ∞
0

√
logN(ε,F , L2(pn))

n
dε

We can interpret this bound as removing the discretization error term by averaging over different
scales of ε. For a proof of this theorem, refer Theorem 15 of [Lia16].

10

Bibliography

[Lia16] Percy Liang, Cs229t/stat231: Statistical learning theory (winter 2016), 2016.

[WLLM20] Colin Wei, Jason D. Lee, Qiang Liu, and Tengyu Ma, Regularization matters: Gener-
alization and optimization of neural nets v.s. their induced kernel, 2020.

11

