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1 An introduction to deletion codes

In the conventional setting for error correcting codes, typically a codeword can be susceptible to
erasures of symbols or substitution of symbols. One feature of this model of errors is that the
alignment of symbols is usually preserved: a symbol unaffected by errors will remain in the same
position.

However, in some real-world scenarios (e.g. genetic mutations, document editing, packet transmis-
sion), there are errors that may completely delete a symbol with no indication of the misalignment.
This presents much difficulty to the usual methods used in error correction.

We define error correction as follows:

. )
Definition 1

Given a binary strings = x173...7,, € {0,1}" and ¥y = y192...yn_1 € {0,1}"71, we say that
y is z deleted at index i if

Tj =Yj 7 <t
Tjt1=Y; J=1
for 5 =1,2...,n — 1. We also say that y can be produced from a deletion on =x.

Informally, given a string of length n, the deletion of ¢ characters from it results in a message

of length n — t that consists of the undeleted characters in the order that they appeared in.
. J

Given this model of error, we can set up error correction for this problem:

(. )
Definition 2

A (n,t)-deletion code is, informally, a way to encode of length n messages such that ¢
deletions can be corrected.

Formally, this consists of an encoder enc : {0,1}" — {0,1}* and a decoder dec : {0,1}*~* —
{0,1} such that
dec(y) =z

for any y produced from ¢ deletions on enc(z).

The redundancy of the code is £ — n. For a systematic deletion code (i.e. enc(z) = z o f(x)
for some f), the redundancy are the number of additional bits sent by the encoder (i.e. length
of output of f).

. J

1.1 Hamming and GV bounds

We can follow the usual logic of both the Hamming and GV bounds to get rate-optimal (albeit
non-constructive) constructions and lower bounds for length of a code.

Theorem 1 (GV construction analogue)

There exists a deletion code C C {0,1}" that can correct ¢ deletions where

log|C| > n — 2tlogn — O(1).

Proof. Let Begit(z) C {0,1}™ denote all strings that can be produced from z by performing ¢
deletions and ¢ insertions.

We proceed by greedily including x into our code. Whenever we include x, we have to strike off
all elements of Begir(x) from {0,1}", since for any z € Begit(z), we can make x and z collide by
performing ¢ deletions.
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Now we claim that |Begit(z)| < 2n%'. The number of ways to delete t-symbols from z is (?), while
the number of ways to add ¢t-symbols is less 2¢ (’Z), so altogether

2t
|Beae ()] < <TZ) ot <7tl> < n2t. o < on?t,

Thus our greedily constructed code has at least

|C| > 22T;t _ 2n72tlogn70(1).
n

Theorem 2 (c.f. Lemma 2 in [7], Hamming bound analogue)
Any deletion code C C {0,1}™ able to correct ¢ deletions satisfies

log|C] < n —tlogn+ O(1)

Proof. We follow the proof in [7]. Given z € {0,1}", define Bya(x) C {0,1}"* to be the set of
strings obtainable from deleting ¢ symbols of .

Thus, a valid code C must have each Bye(x) being disjoint across all x € C. By a count,

> 1Baalx)| <2

el
Now we analyze |Bge(z)]. In the worst case where z is a string of 0’s, |Bgel(2)| = 1 since the only

string obtainable by deletion is also a string of 0’s.

To this end, we define ||z|| to be the number of consecutive runs in z (e.g. 011001 has 4 consecutive
runs). Note that
|| —t + 1)

| Bael ()| > ( ;

since for each choice of ¢ pairwise non-adjacent runs, deleting one symbol from each run gives
a different string in {0,1}"*. Here, we have used the bijection between ¢ sorted non-adjacent
elements (x71, ..., T, ) of [n] and ¢ sorted distinct elements (y1, ..., y,) of [n—t+1] via z; +> y;+(i—1).
Let Cs = {z: ||z|| < (1 —0)%}, then assuming § = o(1) as n — oo,

el-foi)- (M) <ot

10/~ 1051 < 21 +0,(1))

It remains to show that |Cs|/2™ = o;(n~"), but this follows easily from the Chernoff bound and

picking § = ©.(y/logn/n). O

Theorems 1 and 2 suggests that the optimal encoding on {0, 1} able to correct for ¢-deletions must
have ©(tlogn) extra bits compared to the original message. However, the question remains whether
we can find (1) a systematic encoding and (2) a polynomial (in n) time computable encoding.

As a remark to the significance of the order O(tlogn), this is precisely the number of bits required
to encode the indices and values of the deleted bits (if we could predict which bits were going to
be deleted).
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1.2 The document exchange problem

The document exchange problem is another problem that involves deletion: given the binary string
x, suppose we have made a small number of edits (we will assume, only in this paper, that they
are all deletions) to it to produce y, but now we would like to recover to the original string x. We
can keep a small amount of additional information about x, called a sketch, that is guaranteed to
be unchanged.

Formally, we may define it as follows:

] N\
Definition 3

A function {0,1}" — {0,1}* is a sketch of length ¢ for ¢ deletions if there exists a decoding
function dec : {0,1}"* x {0,1}* — {0,1}" such that given any input z,

dec(y,sk(z)) =z

for any y produced by ¢ deletions from x (i.e. y € Byel(2)).

We will denote the length of the sketch by |sk| := £.
- J

It may seem that the assumption that the sketch is not modified by the deletion process makes
it strictly easier than the deletion coding problem. Specifically, a systematic deletion code is
immediately a sketch for the document exchange problem.

Surprisingly, it turns out that the converse is true. For this, we require a positive rate encoder:

Theorem 3 (Schulman and Zuckerman, [9])

For some ¢,d > 0, there exists an encoder enc : {0,1}" — {0,1}°" able to correct for dn
deletions.

The immediate implication is that for a sufficiently long sketch (i.e. with length |sk| > ¢/4), we
can encode it and make it at most ¢ times longer to correct for ¢ deletions. So we can turn any
sketch sk into an encoder encg defined by

ence () = x o enc(sk(x)).

To decode this, we simply note that the last (Jencosk| —t) bits of encg () is definitely produced by
deleting ¢ bits from enc(sk(x)) (i.e. in the ball Bge(enc(sk(x)))).Thus, by definition we can recover
the sketch sk(x), and together with the corrupted version of z (the first || — ¢ bits of ence(x)),
We Can recover .

Thus, we get the first fact:

Fact 1

If there exists a valid sketch of length [sk|, there exists a valid (systematic) encoding of length
0+ O(IsK)).

We may also want to get the correct constant on the leading order term, in which case we should

consider instead
encl, (r) = (z,sk(z), enc(sk(sk(z)))

which is decoded by iterating the previous protocol, so instead we have

Fact 2

If there exists a valid sketch of length |sk|, then there exists a valid (systematic) encoding of
length n+ [sk|+O(|skosk|). In particular, if |skosk| = 0;(|sk|), then the length of the encoder
isn+ (14 0:(1))|sk|.
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This implies that under fairly reasonable assumptions, we can always produce an encoder which
only requires additional length on the same order as the sketch. For this reason, instead of solving
the deletion coding problem, we may opt to solve document exchange problem.

1.3 Preliminaries from Algebraic Error Correcting Codes

We recall the construction of a standard Reed-Solomon code. Given a prime power ¢ > n, we
can construct a (n, k,d), code by associating the symbol set with the finite field F,, encoding the
message © = (71,...,7x) as a degree k — 1 polynomial f,(t) = zxt*~1 + 25 _1t*=2 + ... + 21, then
our encoding is simply

T = (fw(al)u fm(a2)7 (23} fx(an))

for a choice of evaluation points a1, ..., o, € F,. The resulting code is minimum-distance separable
and thus has distance d = n — k + 1. If we want to correct ¢ errors, we require at least d = 2t + 1.

We can also turn this into a systematic code as follows: instead of encoding x as a polynomial in
the above way, we can use Lagrange interpolation to pick a degree k — 1 polynomial g, satisfying
g(a;) = x;, then using the same encoding with g, instead of f,. The number of redundancies
required to correct t errors is thus at most n — k = d — 1 = 2t. Formally,

[

.

Fact 3 (c.f. [4])

Let t < n and ¢ be a power of 2 such that n + 2t < ¢ < O(n). Then, there exists a map
RS : Fp — F2t
error-correcting codes that can correct t errors in O;(n(logn)*) time.

Informally, for a block length larger than log(n + 2t), it takes O(t) redundancies to correct
for ¢ block errors.

\

2t, computable in Oy(n(logn)?) time, such that {(z, RS(z)) : © € F}} are

J

1.4 Notation

We use the following conventions for notation:

1. Unless otherwise specified, n denotes the length of the original message and ¢ denotes the

number of deletions.

. log = log,.
. O¢(f(n)) denotes any quantity that is O(f(n)) when t is fixed. Q:(f(n)), 0:(f(n)),wt(f(n)), O:(f(n)).

This is in contrast to O(f(n,t)), which we reserve for the function is bounded by C - f(n,t
for some absolute constant C' whenever one of ¢ or n are sufficiently large.

. For a string x, we will use |z| to denote the length. For a function f whose outputs are

strings of fixed length, |f| will denote that length.

. For strings z,y, x oy denotes the concatenation of x and y. For functions f, g, f o g denotes

the function (f o g)(z) = f(g(x)).

1.5 Overview of discussion

In this paper, we would like to focus on the deletion coding problem for a constant number, ¢, of
deletions.

In subsection 1.2, we saw that it was equivalent to consider the document exchange problem with
t deletions, which we will do instead for the next three sections.

In section 2, we discuss the mixed-string sketch, which gives the order optimal growth rate of
O¢(logn) (c.f. the Hamming bound). We start with the simplest idea to fix alignment: explicit
buffers that cannot be entirely removed during deletion. However, this at best requires at least
O(y/n) extra length for encoding, so we need a better idea to get the optimal rate.

In section 3, we discuss the IMS Protocol [6]. The fundamental observation behind this protocol
is that if our message is broken up into chunks, then at most ¢ of those chunks can be affected
by t deletions, and the remaining chunks appear along contiguous substrings in the corrupted
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message. The protocol has multiple layers of increasing “resolution”, and makes use of Reed-
Solomon codes. Even though this has a worse sketch length of O(t log? n) (compared to the mixed
strings approach), this actually forms the basis of a more advanced code in [3], where both ideas
are combined to produce a sketch of length O(tlogn). However, we will not go into detail there
due to its complexity, and we refer readers to [3].

Finally, in section 4, we describe syndrome compression ([10], which leverages number-theoretic
properties to compress any valid sketch into a potentially shorter one. Following the approach
of the authors in [10], we show that compressing the mixed string sketch gives a sketch whose
length has the best known leading order of 4¢logn. This is within twice of the nonconstructive
GV construction, which is really good. Beyond [10], we suggest that it is possible to start from
any sketch at all, and directly iteratively compress it into a leading-order-optimal sketch.

2 Mixed-String Code

This section will review the construction of [2] which yields the first explicit code with redundancy
better than O;(y/n) for ¢ > 2-deletions, which was previously the best known bound by [5]. The
main result is summarized by the following theorem:

Theorem 4 (c.f. [2])
Fix an integer t > 2. Given a message s € {0,1}", there exists an encoding § € {0,1}" and a
sketch sk(s) of size O(t? logtlogn) such that given &’ € Bye(3) and sk(s), s can be decoded.

The encoding of s into § takes O(n) time while computing sk(s) and decoding s both take
O;(n(logn)?) time.

2.1 Buffer-based Approaches and the Curse of Explicit Buffers

To motivate the ensuing approach, we first understand the inefficiencies in the buffer-based frame-
work of [5] which leads to ©,(y/n) redundancies. The main idea is to solve the alignment issue
by inserting a buffer b between blocks such that corrupted blocks can still be segregated after
t-deletions. The exact form of b and mechanism for splitting up the blocks are not important for
our argument but one can imagine using a sufficiently long run of 0’s (with some technical details)
and then define a splitting point whenever a certain number of consecutive 0’s is encountered.

Concretely, suppose a message s € {0,1}" is divided into u blocks z1, ...,z of size I and we define
a “buffed”-up version of s as

Buff(s) =z10boxzyobo..obouw,

which will be our codeword. After passing Buff(s) through our deletion channel, we obtain a
corrupted codeword
Buff(s) = 2y obj oxbobly....0bl, _oxl,.

By the definition of b being a valid buffer, we can recover § = (2, 25, ...,z,,). Comparing this to
our original string s = (1, za, ..., T, ), We see that a deletion error in s has been transformed into an
error in the block z; (a deletion in s occurring in block x; would be reflected by a shorter a})! More
formally, we denote i : {0,1}% — F, to be an inclusion of {0,1}% into the field F, where log g is at
least [2]. As an abuse of notation, i(z") where |2’| < % refers to padding & with leading 0’s until
it has length 7 before applying i. Then, a deletion error in s corresponds to an error in one of the
coordinates of (i(z1),...,4(z.)) € Fy, since the received word is essentially (i(z}),...,i(z;,)) € Fy.

Given this transformation from deletions to errors, we can now apply a standard systematic code
for t-errors over the field Fy (e.g. the RS code in Fact 3). The sketch of s in this case is then

sk(s) = Redundant(i(x1), ..., i(zy)) € F?(t), which is the Q(¢) redundant F, elements required to
correct ¢ errors in {i(z;)}. Note that given sk(s), we can use these redundant F, elements to recover
(i(z1), ...y i(xy)) from (i(x}),...,i(x),)), and hence recover s = 1 o ... 0 zy,.

Finally, a t-deletion resistant encoding of s is then (Buff(s), enc(sk(s)) where enc is any ¢-deletion
resistant encoding (e.g. a weaker one found by brute force search, since we are now only encoding
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the small sketch). This is valid since sk(s) is recoverable from enc(sk(s)) by definition of enc being

t-deletion resistant, and because we have already argued that we can recover s from Buf f(s)
and sk(s). Note that we work with encodings instead of sketches in this section only, due to the
additional need to augment the message with buffers.

Counting the total number of redundant bits, we have

#Redundancies = u|b| + |enc(sk(s))]

= Q(u + [sk(s)|) (Isk(s)] < [E(sk(s))])
= Q(u + tlogq)

:Q(u—&-t:) (q>2%)
= Q(\/%) (u+ %" > v/tn by the AM-GM inequality)

which is asymptotically worse than the GV bound. As seen from the above, introducing an explicit
buffer b coerces a trade-off between the number of delimiters (scaling linearly in «) and the number
of error correction bits (scaling linearly in the block size and hence inversely in ). Thus, an explicit
buffer scheme is inefficient even if |b] = O(1) and enc does not add any redundant bits!

To summarize, we have 1) split a message into blocks and insert an ezplicit buffer b between them to
rectify the alignment issue and transform deletions into errors and 2) construct a sketch for ¢ block
errors. The key insights of mixed string encoding is to 1) leverage implicit buffers to circumvent
the Q(v/tn) curse of explicit buffers and 2) in a concatenation code fashion, correct ¢-errors in the
sketches of the blocks {sko(x;)} where skg is a weak sketch instead of the blocks themselves.

2.2 Mixed Strings and Implicit Buffers

A natural approach of constructing implicit buffers is to exploit repeated occurrences of substring
within a codeword itself. Once again, it is beneficial for the implicit buffer to recur frequently since
the error correction redundancies scales inversely with the number of blocks u.

If a substring p in a codeword is “preserved” by deletion, it can be used as an implicit buffer.
Intuitively, the potential of a substring p in becoming a buffer can be damaged by deletion in
two ways. A rightful instance of p in the original code word could be destroyed due to bits in
that instance being deleted (e.g. 0110 — 010 destroys 11) or a fictitious p could be created due
to deletion (e.g. 0110 — 00 creates 00). These adversarial cases are precisely precluded by the
following two conditions for p to be preserved.

.. )
Definition 4

Given s € {0,1}", let s’ € Bye(s) be obtained from deleting the bits at positions 1 < i3 <
... <1y <nin s. For any substring p of s, s’ is p-preserving with respect to s if

1. No substring of p in s contains a bit in positions i1, ..., 7;.

2. s and s’ have an equal number of occurrences of p as substrings.

- J

If a received word s’ is p-preserving with respect to s, we can use p as a buffer to again transform
deletions into block errors. However, the main limitations are that 1) p is not known to be preserved
a priori and 2) there is no guarantee that p recurs frequently enough in s for the subsequent error-
correction sketch to be efficient (i.e. whether p will be an efficient implicit buffer). Assuch, we hedge
our bets by defining codewords to fall within a class of “buffer-rich” strings where all p € {0,1}™
are efficient buffer candidates since they occur in every length d substring of s.
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(.. )
Definition 5

A string s € {0,1}™ is called t-mixed every length d substring of s contains all p € {0, 1}™
as sub-substrings. We denote the set of ¢-mixed strings of length n by M,,. The parameters
d, m as functions of n,t are:

d = |20000t(log t)* log n

m = [logt + loglog(t + 1) + 5]

where m is chosen to satisfy 2™ > 2t(2m — 1).

- J

The hope is then that s’ is p-preserving with respect to s € M,, for most p € {0,1}" and hence
taking some form of a “majority vote” leads to a valid decoding algorithm once we have a decoding
algorithm for the limiting case where some p is preserved. Indeed, we shall show that the total
number of p’s affected by a single deletion is at most 2m — 1 so such a majority scheme is feasible
since we have chosen m such that the total number of p’s (2™) is larger than twice the total number
of affected p’s (t(2m — 1)).

2.3 p-Preserving Sketch

As a preliminary step, we will construct a sketch for a mixed string s while assuming that a known
p € {0,1}™ will be preserved by deletion.

Our approach will parallel that in Section 2.1, with b — p and Buf f(s) — s. Since there is no
longer a need to introduce explicit buffers, we can now consider a sketch of s rather an encoding.
As a crude first step, suppose we follow Section 2.1 with the appropriate substitutions and tried
to define our sketch of s as sk(s) = RS(i(x1), ...,i(xy)) € Fa' given in Fact 3. A slight technicality
here is that the map ¢ does not make sense since 1, ..., z, are now not necessarily the same length.
However, note that s = 1 opoxy 0o p... o pox, and since p occurs in every length d substring of
s, |zi] < d—m < d. Hence, an intuitive idea is to define i(x;) to be the i applied to x; padded
with leading 0’s to length d. However, we then encounter a problem in recovering x; from i(x;)
during decoding since we do not know the number of padded zeros. The correct map is then
i'(x;) = (i(x;), |z;|) where i(x;) refers to the intuitive definition, since the second component now
informs us the number of zeros to strip off after inverting 7. With this clarification, our actual
sketch is sk(s) = RS(i/(x1), ..., 7' (z,,)) € F2" where logq = max (|i(z;)| + log d, log(n + 2t)) = O(d)
(the max is necessary due to the inequality ¢ > u + 2¢ in Fact 3). Then, our sketch has length
Isk(s)| = 2tlogq = 2t - O(d) = O(t*(logt)? logn), where the dependence on t is suboptimal.

The next insight of [2] is that given the correspondences between blocks x; <+ x} after fixing the
alignment issue, we have u smaller deletion problems of size |x;| < d. Thus, instead of directly
finding x;, we just have to find sko(z;) where skq is any other sketch (plus some technical details,
again due to |x;|’s being different). If we have some weak sketch sk with domain {0, 1}, it suffices
to construct sk(s) such that we can recover {(sko(z;),|x;|)} from {z}},sk(s) after which we can
recover x; from . |2;|, sko(x;)!, and thus also recover s = x1 opo xg 0 p...opo x,. Note that
here skq(x;) again means skg applied to z; padded with d — |z;| leading zeros (so we again need
the trick of encoding |z;|). Now, ¢t deletions in s are reflected as t errors in {(sko(z;), |2;|)}, which
can be guarded by RS({(sko(z;), |i|)}) € F2* where logq = max ((|sko(2;)| + logd) ,log(n + 2t)).
If sky is little-o in its input length such that |sk(z;)| = o(d), the second term in the max dominates
asymptotically so we only need 2tlog(n + 2t) redundant bits.

Indeed, there exists a weak sketch sky that is little-o in its input length and is constructed using a
brute force search.

Fact 4 (c.f. [2])
There exists a sketch sko : {0,1}" — {0,1}F for R ~ % encodable and decodable in
Oy (n?(logn)?").

1'We can assume that d, ¢ are in our sketch, since they require o(logn) bits. Pad x} with leading zeros or truncate
it from the front until it has length d — ¢, which then differs from z; padded with leading zeros by t-deletions and
hence the latter can be recovered using sko(z;). Stripping d — |z;| zeros from the latter then returns z;.
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Using this form of sk, we obtain the following theorem, where the bottlenecks for the encoding
and decoding times are due to the RS code.

4 N
Theorem 5 (c.f. [2])

For n large enough, for any p € {0,1}™, there exists a p-preserving sketch sk, : {0,1}" —
{0,1}2t108(n+21) that is encodable and decodable in O;(n(logn)*) time. That is given sk(s)
and s’ that is p-preserving with respect to s € {0,1}", one can recover s.

The explicit expression for sky,, where s = x1 0poxgop...opoz,, is

sk,(s) = Redundant gs({sko(z;), |z:|})

where skg is given in Fact 4.

- J

2.4 Mixed String Sketch

Having constructed a p-preserving sketch, we now turn to a sketch for mixed strings. Firstly, we
have the following lemma which yields a ¢(2m — 1) upper bound on the number of invalidated
buffer candidates p € {0,1}™ due to t deletions.

Lemma 1

Given s € {0,1}™ and s’ € Byel(s), s’ is not p-preserving with respect to s for at most ¢(2m—1)
substrings p € {0,1}™.

Proof. Referring to the following figure, a single deletion destroys at most m length m patterns
and creates at most m — 1 patterns. Hence, ¢ deletions do not preserve at most ¢(2m — 1) such

p e {0,1}™.

[ 145 -]
Patferns of lersth m=3 destroyed
e
——>

— M puffe
p petteras

Paftems of leath m=3 croutec|

BN e

Figure 1: Patterns destroyed and created by a single deletion for m = 3.

Equipped with this lemma, we have the following sketch for mixed strings.

Theorem 6
A sketch for s € M,, is Skpmiz(S) = opefo,13mSkp(s), which has length O (t2 log tlog n) and is
encodable and decodable O; (n(logn)?*) time.

Proof. Firstly, note that m = O(logt + loglogt) is independent of n so [sk(s)| = 2™ - |sk,(s)| =
tlogt - |sky(s)| = O (t*logtlogn). The encoding involves computing sk,(s) for all p € {0,1}™
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which does not change asymptotic dependencies in n. To decode, one can attempt to use the
p-preserving decoder for all p € {0,1}™ in O;(n(logn)*) time and then take the majority vote for
each bit in s in Oy(n) time (for cases where p is not preserved, the decoder can return an arbitrary
output). This majority scheme succeeds since Lemma 1 upper bounds the number of p’s that are
not preserved by ¢(2m — 1) but we have chosen m in Definition 5 such that the number of possible
p’sis 2™ > 2-t(2m —1). O

2.5 Encoding into Mixed Strings

Given our sketch for mixed strings, the last step is to encode messages into mixed strings in a
reversible manner. Firstly, note that to ensure that a string § is in M,,, it suffices to check that
after dividing § into contiguous blocks of size %, each block contains all possible p € {0, 1}"—then,
any length d substring of § contains one such length % block and hence contains all p € {0,1}™.
The main idea towards achieving this goal is to derandomize the following probabilistic method.
Given a message s € {0,1}", we can split s into L%J blocks s; of length L < g and possibly one block
of length < L (this last block does not matter for our goal of constructing a mixed string). Now,
suppose we choose a random template T(s) € {0,1}" and define T(s) to be T(s) concatenated
[27 times and truncated to length n. Then, if we define § = s XOR T'(s), it is quite plausible
that for large enough L in terms of m, there is a non-zero probability of every length L block §;
of § containing all p € {0,1}™. Here’s a (non-rigorous) heuristic argument for how large L should
be, based on a coupon collector argument. We can define E; ;, to be the event that 3; contains p.
Note that we just need N; ,E; ) to ensure that § € M,,. Pretend that we progressively reveal each
independent length m block of T'(s) which, when XORed with the corresponding section in §; to
produce p, collects (i, p) (i.e. achieves event E; ;). There are L%J -2™ such (i, p) pairs to “collect” so
a coupon collector argument naively yields O (n2™ log(n2™)) turns of drawing “coupons”. However,
each revelation costs length m and draws 7 coupons “simultaneously” from the # blocks of length
L, so the total length of L has to be on the order of £ .0 (% log (%)) = O (m2™log(n2™)),
which explains our choice of d > 2L in Definition 5 given our previous choice of m.

We formalize and de-randomize this intuition below:

4 ) ) N
Theorem 7 (slightly improved from [2])
There exists p : {0,1}" — M, x {0,1}F with L = [m2™(log(n2™) + 1)] < £ such that
u(s) = (5, T(s)) where T(s) is a template and § = s XOR T'(s).

p is computable in O(tlogt - n) = O(n) time. Furthermore, note that given 7'(s) and 3, we
can recover s = § XOR T'(s) in O(n) time.

. J

Proof. Once again, we try to collect the coupons “(i, p)” where initially we have ng = | % | 2™ such
coupons to collect. Now, break T'(s) into blocks of length m and let n; be the number of coupons
left to collect after we have chosen the ith block of length m. Note that given n;_1, choosing the
ith block of length m in T'(s) uniformly randomly would lead to E[n;] = (1 —27™)n;_y. Thus,
by performing a brute-force search over all {0,1}™, we can find a length m string to set as the ith
block in T'(s) such that n; < (1 —27™)n;_1. Thus, after choosing all | £ | blocks in T'(s),

—-m % n m —| &£ l27™ om
bloy < (1-2 )L |7 ]2 < el e <1
by our choice of L, which implies that all coupons (4, p) have been collected. Since § = s XOR T(s),
when divided into length L < £, has each length L block containing all p € {0,1}™, § € M,,.
Since there are L%J steps, for which we search over all a € {0,1}™ and the XOR computation

n nm

and estimation of the reduction in n; (using % hashsets) for each a take O (%2) and O (%) time
respectively, the overall time complexity is O (# -2m . %) =0(n2"™) = O(tlogt - n). O

Finally, we are ready to prove the main theorem of this section.

(s)) where § € M,, is used in Theorem

Proof of Theorem 4. Given p in Theorem 7, let u(s) = (8,7(s)
)] = O(t*logtlogn) and |T(s)| = O(d) =

4. Then, define sk(s) = (skmiz(8),T(s)) where [skyz(
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O(t(logt)?logn) so [sk(s)| = O(t?logtlogn). Given 8 € Byel(5) and sk(s), one can first decode §
in O;(n(logn)*) time by Theorem 6 and then recover s = 8 XOR T'(s) in O(n) time. O

To conclude, we have seen in this section how to construct a sketch of size O(t?logtlogn), which

has the optimal dependence on n as seen from the Hamming bound. However, the dependence on
t still trails the GV construction by a factor O(tlogt).

3 The IMS protocol

We follow the exposition in [3] about the protocol first introduced in [6]. We show that:

Theorem 8

There exists a sketch of length O(¢ log? n) for document exchange that can be efficiently
encoded and decoded.

3.1 IMS Protocol with a single layer

We first outline a simpler version of the construction that gives a sketch of length O(y/tnlogn).
The first observation is that if we split the original document = into k blocks of length n/k and
apply t deletions, then at least k — ¢ blocks are not affected, and in particular these blocks must
appear contiguously in the corrupted document y.

How might we detect an uncorrupted block? Alice does not have the bandwidth to send most of
the blocks, but this can be overcome with hashing. Suppose Alice sends over the hash of each
block. Bob performs the following algorithm?:

e Bob checks through all contiguous substrings in y of length n/k (termed “windows” of y),
and sees if the hash of any window matches Alice’s hash. We term such windows active.

e Bob (simultaneously) removes any active window that overlaps with any other active window.

e For each remaining active window, Bob assigns it to the leftmost unassigned hash which
matches this window.

We claim that with a hash of length O(logn) and a seed of length O(logn), Bob’s protocol ensures
that he successfully assigns the correct window for all but 4¢ blocks. We defer the discussion of
correctness to Subsections 3.3 and 3.4.

Thus, given k hashes of length O(logn) each, Alice can send an additional 6t blocks (e.g. with a
RS code) to correct for the 4t potentially incorrectly (pre-hashed) blocks. This gives a combined
length of O(klogn + tn/k), and optimizing over k we get the promised O(y/tnlogn)

3.2 The full, multi-layer protocol

To improve on the above, we see that the bottle neck comes from sending O(t) additional blocks
of length n/k each.

As such, the next natural step would be to reduce the size of the chunks we are using since we
know that in general at most ¢ of the chunks will end up corrupted. To do this, we can subdivide
each chunk into two smaller chunks, this gives us a maximum of 2¢ subchunks that we are not sure
regarding the contents of (from the up to ¢t chunks that we don’t find a matching window for). We
can then hash all of the subchunks, and then using something like an RS code, send an additional
2t hashes to correct for the up to 2t bad subchunks. Now we have all the hashes for the subchunks,
we can repeat the sliding window method. Since there are at most ¢ errors, there will be again
at most ¢t subchunks that we are unable to match via the sliding window method. We can then
repeat this process until the chunk size is smaller than the size of the hash. At this stage we can
use the identity function as our "hash" instead and then via RS codes, correct it to get our original
message.

2This algorithm was never fully specified in [3].
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Figure 2: Subdivision as well as bound on number of errors in hashes

Let us now consider the size of the final sketch. If we set k to be O(t), then we will have O(t)
groups initially with O(t) errors. With a hash size of O(logn), our initial set of hashes that
we send over has size O(tlogn). Next, we note that since our initial chunks had size %, we
have O(log %) levels. Since for each level we have to send a residual of O(t) 'hashes’ (they're
not really hashes, but they have the same size as a hash) to assist with correcting, each with
size O(logn), the total size of these residuals is O(tlognlog(Z)). Hence, the total size of the
sketch is O(tlognlog(2)) + O(tlogn) = O(tlognlog(%)) which is significantly better (smaller)
than O(y/tnlogn) for large n. Additionally, O(t lognlog(%)) = O(tlog®n) so we have proven the
theorem at the beginning of this section as desired.

3.3 Correctness and required attributes of hash

We claim that the IMS protocol will work with O(t) redundancies on each layer in conjunction
with a hash that ensures no hash collisions among the values present among the windows of the
original message, for a particular window size. This is in contrast to the claim in [3] that the hash
must be collision-resistant across possible windows of y, which forces the hash to be of size at least
O(tlogn).

First, recall our protocol, we perform a sliding window over our received message, denote a window
as active if the hash of its contents correspond to one of the received/derived hash for that layer.
Next, we disregard all active windows that have an overlap with at least one other active window.
Finally, for the remaining active windows we sequentially match them to their corresponding hash,
going from left to right. If there is a window with no remaining hash to match to, we disregard
it. Similarly, if there is a hash that has no window to match it, we let the all-zeros block match
to it as a placeholder. We claim (and shall later prove) that at most 4¢ of the hashes have the
wrong pre-image (i.e. the contents of the block matched to the hash is not the same as the block
from the original message). As a side note, in actual fact at most 3¢ of the hashes have the wrong
pre-image, but the proof for 4t is easier to explain, and within a constant factor these numbers do
not matter.

First, denote a good window as a window from the original message that maps to some pro-
vided/derived hash value. Note that by our definition of the hash function as being collision free,
among windows in our original message, all good windows correspond to actual chunk values at
some level of our message. A bad window is defined as any window value that arises from some
number of deletions that hashes to some provided /derived hash value. Evidently, all active windows
by definition are either good or bad. Observe that in our first step where we disregard overlapping
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active windows, one error can only cause at most three good blocks to be disregarded. To see
why this is the case, consider in the absence of other errors the possible locations of bad windows
created by the deletion. Letting us have a window size of w, we note that the possible range of bad
windows is between w before to w after the location of the deletion. Noting that good windows
are packed adjacent to each other, we note that this range covers at most (actually exactly) three
good windows. Hence, overlaps caused by bad windows will cause us to disregard at most three
good windows, per error (see Figure 3).

0elekten
1 st L'.L, L"k

/ w:’r“lO\f’ m‘ﬁ{
Wm

Albeckd aeﬂo( winders

Figure 3: Interaction between bad windows and good windows

Next, note that after disregarding, we have at most ¢ bad windows remaining. This is because
each error can only contribute at most one bad window now. Else, if it contributed more than one
bad window, these windows would overlap, and we would have disregarded them.

Finally, note that the ¢ bad windows cause at most ¢ wrong pre-images. Additionally, the disre-
garding of 3t good windows causes at most 3t wrong pre-images. When we move to a lower layer,
these wrong pre-images and split and hashed to give 8t possibly wrong hashes. However, this
number of errors is O(t) and hence by our result on RS codes, can be corrected by sending O(t)
redundancies, and our proof is complete.

3.4 Generating a hash function

We conclude from the last subsection that it is sufficient for Alice to find and encode a hash function
h:{0,1}"* — {0,1}/" such that h does not produce hash collisions on different windows® of .

If |h| < logn — O(1) then by the pigeonhole principle, we are forced to have at least one pair of
collisions between O(n) distinct windows.

On the other hand, heuristically, if we selected h uniformly at random, then the pair (h(z), h(y)) is
uniformly random for distinct z,y and thus the probability of a clash is 1/2|h|. By a union bound,
the probability of a clash between any pair is at most n2/2‘h|, and for |h| > 3logn this goes to 0
as n — o0o.

The main issue with this heuristic is that Alice has no way to share such a hash with Bob within
the bandwidth limits, so we need some way to seed h with a relatively small number of bits such
that (h(x), h(y)) is still uniformly random. Specifically, how many random bits do we need to seed
h such that the bits of {h(z)}ze(0,1} are (approximately) 2|h|-independent?

31t should be noted here that we only require non-collision between distinct windows, since we cannot hash the
same window content to different values. This does not matter in our context, because we are only trying to recover
the content of the window and not the position of the window.
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4 N
Theorem 9 (c.f. [1])

We can generate N bits such that every K bits has a distribution of TV distance at most €
away from the uniform distribution using at most

O (log log N 4+ K + log 1> bits.
€
. J

In our setting, we set N = |h| - 2!h| (total number of bits of h), K = 2|h| (total number of bits in
two hash values), then our hash requires O(|h| +log 1/€) bits, and the probability of h(x) and h(y)
clashing is at most 1/2!"l + ¢, so we can set € = 1/n?,|h| = 3logn to get the desired conclusion of
a length O(logn) hash seeded by O(logn) bits.

Algorithmically, on Alice’s end, she can check by brute force all possible seeds (20(°8™) of them)
in polynomial time to find one without hash collisions between windows of x.

3.5 Extensions

In [3], the authors consider a more sophisticated version of the IMS protocol with the following
changes:

e They consider e-self matching hash functions and and e-synchronization hash functions.

e They use implicit buffers (Section 2) to break up the blocks instead of simply & blocks the
same size (in the paper, these are called p-split points).

e Instead of halving the block size on each level, they split it into more parts.

The conclusion is that the authors of [3] were able to achieve O(tlogn) with these improvements.

4 Syndrome Compression

Syndrome Compression, coined in [10], is effectively a procedure to bootstrap sketches and en-
coders. We show how this works in the document exchange setting.

4 )
Theorem 10 (adapted from [10])

Let sk be a sketch for length n documents corrupted by t deletions. Then for some absolute
constant C, D > 0, there exists a sketch sk’ for the same parameters whose length is

C'|sk]|
K'| < 4tl D.
Isk’| < 4tlogn + Tog [5K] +

. J

The key idea a sketch must only distinguish between strings x and z only if ¢ deletions can be
applied on both to make them the same. Thus, we can pick a suitable a to “mod out by” so that
the sketch still distinguishes them. (Note that the choice of a depends on z, so we should really
write a,, but we are suppressing this for readability.)

The “compressed” sketch function is, in fact, sk’(z) = (a,sk(z) mod a) for an apt choice of a
(where we interpret sk(x) as an integer between 0 and 2!kl — 1 inclusive). We would like to avoid
any collision between z,y if their edit distance is not more than 2¢, so we need a1 f(x) — f(z) for
all z in the edit ball of x.

Here we need a number theoretic fact:

Theorem 11 (c.f. [8])

There exists a constant C' > 0 such that for sufficiently large n, the number of positive divisors

of n is less than
Clogn
QToglogn |
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Now we are ready to prove the syndrome compression bound.

Proof of Theorem 8. Recall that from the proof of Theorem 1, the edit ball has size

|Begit ()| < 202t

Now, we do a quick count: for each z, | f(z)— f(z)| < 2K/, so it has at most 2¢ ™ divisors. Thus
Isk|
over all z € By(x), there are at most 29 B% . (2n2!) factors in total, which leaves the smallest
Isk|

possible a to be at most 9 Tox T . (2n%") 4 1. Indeed,

[sl

K] C - |sk
log (20'1og\sk| - (2n") + 1) < 2tlogn + [sK|

log |sk|

+1+0(1)
so transmitting both a and sk(z) mod a will take twice that amount. O

In [10], the authors examine this only for the specific choice of a mixed string sketch (with some
minor modifications). Plugging in [sk| = O(t*logtlogn), we obtain that the compressed sketch

satisfies
t?logtlogn

|sk'| < 4tlogn + O ( ) = (44 0,(1))t1logn.

loglogn

This means that we can obtain (asymptotically) an explicit code up to within twice of the GV
bound, which is amazing.

4.1 Iterated Syndrome Compression

Here we consider the possibility of starting from a trivial sketch (e.g. the repetition code) and
performing iterated syndrome compression to obtain a sketch of leading order 4tlogn

Define skg to be the repetition code: that is, sky repeats each symbol in the input (¢ + 1) times
(i.e. |sko] < n(t+1)). Now we define

sk;+1 := syndrome compressed version of sk;

Hence, we can bound the length by defining a sequence satisfying the recurrence Ly = n(t+1) and

C-L;
Ly, =
1 log L;

+ (4tlogn + D)

Note that as a function of L;;1 as a function of L; is monotone decreasing, so assuming Ly > L,
we get that the entire sequence is monotone non-increasing. Fix k, M > 0. Then either L; < 2™,
or Lo >Ly>..>Li>2M 5o

Ly < (dtlogn+ D)+ £ - Ly,
<

< (4tlogn+D)(1+ & + ..+ ()1 + (£)F L

N0
§(4tlogn+D)(1M) +<M) Lo

c\ ' o\
Ly gmin{(4tlogn+D) (1—M> + (M) LO,QM}

Previously we assumed that Ly = Oy(N), so we may pick M = w;(1) = o;(loglogn) and k =
Q:(logn) to get

Hence,

Lj, < min{(4tlogn)(1 + 0¢(1)) + 04(1), (logn)** M} = (4 + 04(1))t logn

which says that |sky| has the desired leading order term.

Page 15 of 17



CS 250 Final Project Deletion codes Spring 2021

5 Discussion

All in all, the results give a satisfactory solution to efficient deletion coding in the regime of a
constant number of errors. We were able to asymptotically get to within a factor of 2 of the best
non-constructive construction, and a factor of 4 within the Hamming bound.

That said, we found these two issues to be prevalent within the papers that we read and reviewed:

e More often than not, there was unclear dependencies on ¢, so the results could not be safely
applied in scenarios where ¢ was not constant (e.g. in the ¢t = ©(logn) regime). It would be
interesting to rigorously extend these method to beyond the constant error regime and see
how the conclusions evolve.

e Despite being efficient algorithms for constant time, the run-time is usually not polynomial
in ¢, and this is due to the presence of some type of brute-force search over the deletion or
edit ball. Can we design algorithms to encode and decode in time poly(n,t)?
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