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Ranks and Quantiles

Given x1, ..., xn in an ordered universe U , the rank of x is

R(x) = # of xi ≤ x , (1)

and the quantile of x is

Q(x) =
R(x)

n
. (2)

For example, if x1, x2, x3 = [1, 5, 9], R(3) = 1 and R(7) = 2 so
Q(3) = 1

3 and Q(7) = 2
3 .

Approximate Quantile Sketching David Lin, Jensen Wang 2/26



Problem Statement

Definition (Single quantile approximation)

Given x1, ..., xn ∈ U in a streaming fashion, find an approximate
(random) rank function R̃, such that:

For any item x, R̃(x) approximates the true rank R(x) to within
±εn (additively) with probability at least 1− δ.
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Equivalence to Finding Quantiles

If R̃(x) is a (ε, δ)-single quantile approximation that is
non-decreasing in x , we can find an approximate value of the
α-quantile x̃α such that Q(x̃α) ∈ [α− ε, α+ ε].

▶ Algorithm: Return any x̃α such that Q̃(x̃α) = α.

▶ Applying the single quantile approximation guarantee to xα±ε

satisfying Q(xα±ε) = α± ε, Q̃(xα−ε) ≤ α and Q̃(xα+ε) ≥ α
with probability ≥ 1− 2δ.

▶ Non-decreasing Q̃ implies Q(x̃α) ∈ [α− ε, α+ ε].

x̃α can be found efficiently in the sketch we will present.
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Problem Significance

Quantiles:

▶ Natural method of summarizing non-parameteric distributions.

▶ For example, 1
2 -quantile or the median is widely known to be

a statistic robust to outliers.

▶ Useful for hypothesis testing and outlier detection.

▶ All-quantile version of the problem yields cdf and hence
essentially compresses a distribution!
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Summary of Results

Memory lower bounds (for comparison-based algorithms):

▶ Deterministic: Ω((1/ε) log(nε)) [CV20]

▶ Randomized: Ω((1/ε) log log(1/δ)) [KLL16]

Deterministic sketches:

▶ MRL Sketch: O((1/ε) log2(nε)) [MRL99]

▶ GK Sketch: O((1/ε) log(nε)) [GK01]

Randomized sketches:

▶ MRL + Subsampling: O((1/ε) log(1/ε)) [MRL99]

▶ KLL Sketch: O((1/ε) log log(1/δ)) [KLL16]–presented today
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MRL Sketch and Compactors

The KLL sketch is based on the MRL sketch, whose fundamental
building block is a compactor. A size-k compactor taking in
elements of weight w can either:

▶ Store k elements in a sorted order.

▶ Compact and output k
2 elements (at even or odd indices) of

weight 2w .

Each compaction operation introduces at most w rank error.
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Iterated Compactors and Analysis

MRL sketch:

▶ Stream elements have weight 1 and fed into compactor 1,
whose output is fed into compactor 2, and so on...

▶ Number of compactors H = ⌊log(n/k)⌋+ 1.

▶ h-th compactor has weight wh = 2h−1 such that since the
total weight is “conserved”, it processes at most n

wh
elements

and compacts mh = n
whk

times.

(Worst-case) Error ≤
H∑

h=1

mhwh

≤ H · (n/k)

≲
n

k
log
(n
k

)
.

Setting k = O((1/ε) log(εn)) gives ≤ εn error and a deterministic
sketch with kH = O((1/ε) log2(εn)) space.
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Optimizations

The multi-layer compactor algorithm has a space complexity of
O(1ε log

2(εn)). How do we do better?

▶ Odd/even randomness

▶ Compactor size decay

▶ Replacing the largest layers with a GK sketch
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Odd/even randomness

Idea. during compaction operations, pick “discard odd/even”
uniformly at random.

Effect. rank either doesn’t change, or changes by Unif{±weight}
independently.

Cancellation effect across compaction operations!

Approximate Quantile Sketching David Lin, Jensen Wang 10/26



Odd/even randomness

Lemma (Hoeffding, restated)

Let S be a linear combination of independent Rademacher
variables. Then, with probability 1− δ,

|S | ≤
√

Var (S) · log 1

δ
.

Hence instead of adding up the errors, we add up the squared
errors.
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Odd/even randomness

(Error) ≤

√√√√ H∑
h=1

mhw
2
h ·
√

log
1

δ

≲
n

k
log

1

δ

since mhwh exponentially increasing. (mhwh = n/k ,
wH ≈ n/k .)

Progress:

▶ Error: n
k log

n
k → n

k

√
log 1

δ .

▶ Space: no change.
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Compactor size decay

Intuition. With limited memory, we rather keep track of heavy
items than light ones.

Idea. Let compactor size decay exponentially, starting from the
last layer.

kh ≈
(
2

3

)H−h

kH
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Compactor size decay

Why? Use mh = n
khwh

:

(Error) ≤

√√√√n
H∑

h=1

wh

kh
·
√
log(1/δ)

(Space) ≤
H∑

h=1

kh

Making the bottom sum exponential gives space
kH log(n/k) → kH !
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Compactor size decay

One small caveat... we need kh ≥ 2 for all h, so even with exp.
decay

∑H
h=1 kh = O(kH + H).

Solution. Actually, a compactor of size 2 is just doing sampling!
N compactors of size 2 chained together are just selecting one item
unif. at random from 2N consecutive items.

Use resevoir sampling to simulate uniform choice.

This gets us
∑H

h=1 kh = O(kH)!

Progress:

▶ Error: nkH

√
log 1

δ ≤ εn.

▶ Space: kH = O((1/ε)
√

log(1/δ)). Constant in n!
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Last few layers

Now we have correct growth rate in 1/ε and independence from n.
Where is the space complexity coming from? The last few
compactors.

We want to knock down the space complexity in terms of
δ...

Idea. Intercept the items h∗ compactors before the end. (The
effect is a compressed stream.) Feed the rest into a deterministic
stream (e.g. GK sketch).
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Last few layers

For the truncated compactor sequence: n items → k · 2h∗

items.

(Error) ≲

(
2√
3

)h∗ n

kH

(Space) ≲

(
2

3

)h∗

kH

Intuition: both are exponential sums, so shrinks exponentially with
truncated layers.
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Last few layers

Add in the GK sketch: for n′ = kH · 2h∗ items of weight 2H−h∗ and
error ε′n′ × 2H−h∗ ≍ ε′n, require O(1/ε log(εn′)) memory.

(Error) ≲

(
2√
3

)h∗ n

kH
+ ε′n

(Space) ≲

(
2

3

)h∗

kH +
1

ε′
log
(
ε′kH2

h∗
)

To set error ≤ εn, we need

kH ≤ (2/
√
3)h

∗

ε− ε′

√
log(1/δ)
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Last few layers

Set ε′ = ε/2 and plug this back in:

(Space) ≲
1

ε

((
4

3
√
3

)h∗√
log(1/δ) + h∗ + log log(1/δ)

)
(3)

Tradeoff at h∗ ≍ log log(1/δ) (phew!) to get the optimal space
usage of O((1/ε) log log(1/δ)).
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Matching lower bound

Theorem ([HT10])

Any deterministic, comparison-based algorithm that solves the
single quantile ε-approximation problem for all streams of length
Ω((1/ε)2 log(1/ε)2) must store at least Ω((1/ε) log(1/ε)) stream
elements.

Proof is long and involved. Easy reduction to use this to prove the
matching lower bound.
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Matching lower bound

Suppose a randomized algorithm can solve quantile approximation
with probability 1− δ using o((1/ε) log log(1/δ)) space.

▶ Set δ = 1/(2n)!, then said algorithm solves the problem for all
n! possible streams of n items with probability 1/2.

▶ i.e., we can set a seed and have a deterministic algorithm that
solves the problem for all n! possible streams of length n.

▶ Space usage: o((1/ε) log n), length n stream.

▶ Set n = Θ((1/ε)2 log(1/ε)2)), but space usage is
o((1/ε) log(1/ε)), contradiction!
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Experiments

Below, n = 1000000.

Stream Quantile Error

[1, ..., n] 0.0006636± 0.0004346
n samples from N (0, 1) 0.01591± 0.01125

n samples from standard Cauchy 0.01746± 0.01008

Table: Experimental quantile query errors for all quantile sketch with
parameters ε = 0.05 and εδ = 0.05× 0.05. The queries were 1)
linspace(1, 1000000, 50), 2) linspace(-3, 3, 50), and 3) linspace(-10, 10,
50).

Approximate histograms reconstructed for three streams in Table.
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Experimental Memory Cost

Memory cost with log10 number of stream elements.
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Thank you!

Any questions?
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