

Approximate Quantile Sketching

David Lin Kewei

linkewei@stanford.edu

Jensen Jinhui Wang

wangjh97@stanford.edu

July 5, 2022

Given x_1, \dots, x_n in an ordered universe \mathcal{U} , the *rank* of x is

$$R(x) = \# \text{ of } x_i \leq x , \quad (1)$$

and the *quantile* of x is

$$Q(x) = \frac{R(x)}{n} . \quad (2)$$

For example, if $x_1, x_2, x_3 = [1, 5, 9]$, $R(3) = 1$ and $R(7) = 2$ so $Q(3) = \frac{1}{3}$ and $Q(7) = \frac{2}{3}$.

Definition (Single quantile approximation)

Given $x_1, \dots, x_n \in \mathcal{U}$ in a streaming fashion, find an approximate (random) rank function \tilde{R} , such that:

For any item x , $\tilde{R}(x)$ approximates the true rank $R(x)$ to within $\pm \varepsilon n$ (additively) with probability at least $1 - \delta$.

Equivalence to Finding Quantiles

If $\tilde{R}(x)$ is a (ε, δ) -single quantile approximation that is non-decreasing in x , we can find an approximate value of the α -quantile \tilde{x}_α such that $Q(\tilde{x}_\alpha) \in [\alpha - \varepsilon, \alpha + \varepsilon]$.

- ▶ Algorithm: Return any \tilde{x}_α such that $\tilde{Q}(\tilde{x}_\alpha) = \alpha$.
- ▶ Applying the single quantile approximation guarantee to $x_{\alpha \pm \varepsilon}$ satisfying $Q(x_{\alpha \pm \varepsilon}) = \alpha \pm \varepsilon$, $\tilde{Q}(x_{\alpha - \varepsilon}) \leq \alpha$ and $\tilde{Q}(x_{\alpha + \varepsilon}) \geq \alpha$ with probability $\geq 1 - 2\delta$.
- ▶ Non-decreasing \tilde{Q} implies $Q(\tilde{x}_\alpha) \in [\alpha - \varepsilon, \alpha + \varepsilon]$.

\tilde{x}_α can be found efficiently in the sketch we will present.

Quantiles:

- ▶ Natural method of summarizing non-parameteric distributions.
- ▶ For example, $\frac{1}{2}$ -quantile or the median is widely known to be a statistic robust to outliers.
- ▶ Useful for hypothesis testing and outlier detection.
- ▶ All-quantile version of the problem yields cdf and hence essentially compresses a distribution!

Memory lower bounds (for comparison-based algorithms):

- ▶ Deterministic: $\Omega((1/\varepsilon) \log(n\varepsilon))$ [CV20]
- ▶ Randomized: $\Omega((1/\varepsilon) \log \log(1/\delta))$ [KLL16]

Deterministic sketches:

- ▶ MRL Sketch: $O((1/\varepsilon) \log^2(n\varepsilon))$ [MRL99]
- ▶ *GK Sketch*: $O((1/\varepsilon) \log(n\varepsilon))$ [GK01]

Randomized sketches:

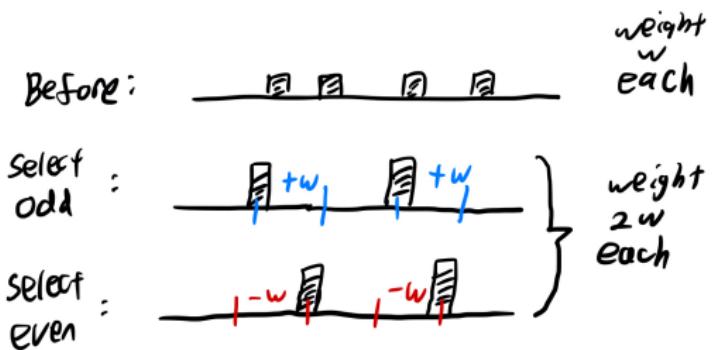
- ▶ MRL + Subsampling: $O((1/\varepsilon) \log(1/\varepsilon))$ [MRL99]
- ▶ *KLL Sketch*: $O((1/\varepsilon) \log \log(1/\delta))$ [KLL16]—presented today

MRL Sketch and Compactors

The KLL sketch is based on the MRL sketch, whose fundamental building block is a *compactor*. A size- k compactor taking in elements of weight w can either:

- ▶ Store k elements in a sorted order.
- ▶ Compact and output $\frac{k}{2}$ elements (at even or odd indices) of weight $2w$.

Each compaction operation introduces at most w rank error.



MRL sketch:

- ▶ Stream elements have weight 1 and fed into compactor 1, whose output is fed into compactor 2, and so on...
- ▶ Number of compactors $H = \lfloor \log(n/k) \rfloor + 1$.
- ▶ h -th compactor has weight $w_h = 2^{h-1}$ such that since the total weight is “conserved”, it processes at most $\frac{n}{w_h}$ elements and compacts $m_h = \frac{n}{w_h k}$ times.

$$\begin{aligned}
 \text{(Worst-case) Error} &\leq \sum_{h=1}^H m_h w_h \\
 &\leq H \cdot (n/k) \\
 &\lesssim \frac{n}{k} \log\left(\frac{n}{k}\right).
 \end{aligned}$$

Setting $k = O((1/\varepsilon) \log(\varepsilon n))$ gives $\leq \varepsilon n$ error and a deterministic sketch with $kH = O((1/\varepsilon) \log^2(\varepsilon n))$ space.

The multi-layer compactor algorithm has a space complexity of $O\left(\frac{1}{\varepsilon} \log^2(\varepsilon n)\right)$. How do we do better?

- ▶ Odd/even randomness
- ▶ Compactor size decay
- ▶ Replacing the largest layers with a GK sketch

Idea. during compaction operations, pick “discard odd/even” uniformly at random.

Effect. rank either doesn’t change, or changes by $\text{Unif}\{\pm\text{weight}\}$ independently.

Cancellation effect across compaction operations!

Lemma (Hoeffding, restated)

Let S be a linear combination of independent Rademacher variables. Then, with probability $1 - \delta$,

$$|S| \leq \sqrt{\text{Var}(S) \cdot \log \frac{1}{\delta}}.$$

Hence instead of adding up the errors, we add up the squared errors.

$$\begin{aligned} \text{(Error)} &\leq \sqrt{\sum_{h=1}^H m_h w_h^2} \cdot \sqrt{\log \frac{1}{\delta}} \\ &\lesssim \frac{n}{k} \log \frac{1}{\delta} \end{aligned}$$

since $m_h w_h$ exponentially increasing. ($m_h w_h = n/k$, $w_H \approx n/k$.)

Progress:

- ▶ Error: $\frac{n}{k} \log \frac{n}{k} \rightarrow \frac{n}{k} \sqrt{\log \frac{1}{\delta}}$.
- ▶ Space: no change.

Intuition. With limited memory, we rather keep track of heavy items than light ones.

Idea. Let compactor size decay exponentially, starting from the last layer.

$$k_h \approx \left(\frac{2}{3}\right)^{H-h} k_H$$

Compactor size decay

Why? Use $m_h = \frac{n}{k_h w_h}$:

$$\begin{aligned} \text{(Error)} &\leq \sqrt{n \sum_{h=1}^H \frac{w_h}{k_h} \cdot \sqrt{\log(1/\delta)}} \\ \text{(Space)} &\leq \sum_{h=1}^H k_h \end{aligned}$$

Making the bottom sum exponential gives space
 $k_H \log(n/k) \rightarrow k_H!$

One small caveat... we need $k_h \geq 2$ for all h , so even with exp. decay $\sum_{h=1}^H k_h = O(k_H + H)$.

Solution. Actually, a compactor of size 2 is just doing sampling! N compactors of size 2 chained together are just selecting one item unif. at random from 2^N consecutive items.

Use reservoir sampling to simulate uniform choice.

This gets us $\sum_{h=1}^H k_h = O(k_H)!$

Progress:

- ▶ Error: $nk_H \sqrt{\log \frac{1}{\delta}} \leq \varepsilon n$.
- ▶ Space: $k_H = O((1/\varepsilon) \sqrt{\log(1/\delta)})$. Constant in n !

Now we have correct growth rate in $1/\varepsilon$ and independence from n . Where is the space complexity coming from? *The last few compactors.*

We want to knock down the space complexity in terms of δ ...

Idea. Intercept the items h^* compactors before the end. (The effect is a compressed stream.) Feed the rest into a deterministic stream (e.g. GK sketch).

For the truncated compactor sequence: n items $\rightarrow k \cdot 2^{h^*}$ items.

$$(\text{Error}) \lesssim \left(\frac{2}{\sqrt{3}} \right)^{h^*} \frac{n}{k_H}$$

$$(\text{Space}) \lesssim \left(\frac{2}{3} \right)^{h^*} k_H$$

Intuition: both are exponential sums, so shrinks exponentially with truncated layers.

Add in the GK sketch: for $n' = k_H \cdot 2^{h^*}$ items of weight 2^{H-h^*} and error $\varepsilon' n' \times 2^{H-h^*} \asymp \varepsilon' n$, require $O(1/\varepsilon \log(\varepsilon n'))$ memory.

$$(\text{Error}) \lesssim \left(\frac{2}{\sqrt{3}}\right)^{h^*} \frac{n}{k_H} + \varepsilon' n$$

$$(\text{Space}) \lesssim \left(\frac{2}{3}\right)^{h^*} k_H + \frac{1}{\varepsilon'} \log\left(\varepsilon' k_H 2^{h^*}\right)$$

To set error $\leq \varepsilon n$, we need

$$k_H \leq \frac{(2/\sqrt{3})^{h^*}}{\varepsilon - \varepsilon'} \sqrt{\log(1/\delta)}$$

Set $\varepsilon' = \varepsilon/2$ and plug this back in:

$$(\text{Space}) \lesssim \frac{1}{\varepsilon} \left(\left(\frac{4}{3\sqrt{3}} \right)^{h^*} \sqrt{\log(1/\delta)} + h^* + \log \log(1/\delta) \right) \quad (3)$$

Tradeoff at $h^* \asymp \log \log(1/\delta)$ (phew!) to get the optimal space usage of $O((1/\varepsilon) \log \log(1/\delta))$.

Theorem ([HT10])

*Any **deterministic, comparison-based** algorithm that solves the single quantile ε -approximation problem for all streams of length $\Omega((1/\varepsilon)^2 \log(1/\varepsilon)^2)$ must store at least $\Omega((1/\varepsilon) \log(1/\varepsilon))$ stream elements.*

Proof is long and involved. Easy reduction to use this to prove the matching lower bound.

Suppose a randomized algorithm can solve quantile approximation with probability $1 - \delta$ using $o((1/\varepsilon) \log \log(1/\delta))$ space.

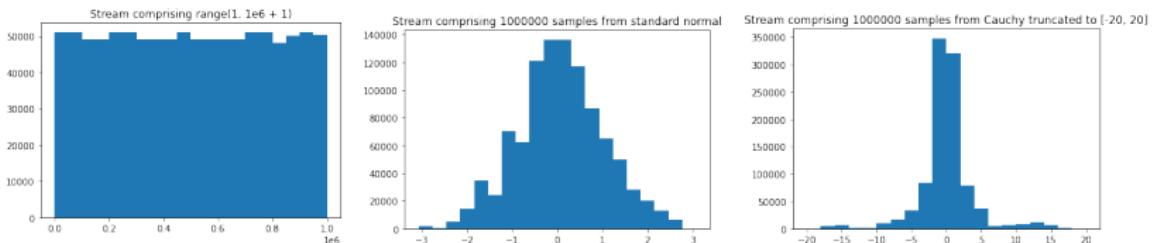
- ▶ Set $\delta = 1/(2n)!$, then said algorithm solves the problem for all $n!$ possible streams of n items with probability $1/2$.
- ▶ i.e., we can set a seed and have a *deterministic* algorithm that solves the problem for all $n!$ possible streams of length n .
- ▶ Space usage: $o((1/\varepsilon) \log n)$, length n stream.
- ▶ Set $n = \Theta((1/\varepsilon)^2 \log(1/\varepsilon)^2)$, but space usage is $o((1/\varepsilon) \log(1/\varepsilon))$, contradiction!

Experiments

Below, $n = 1000000$.

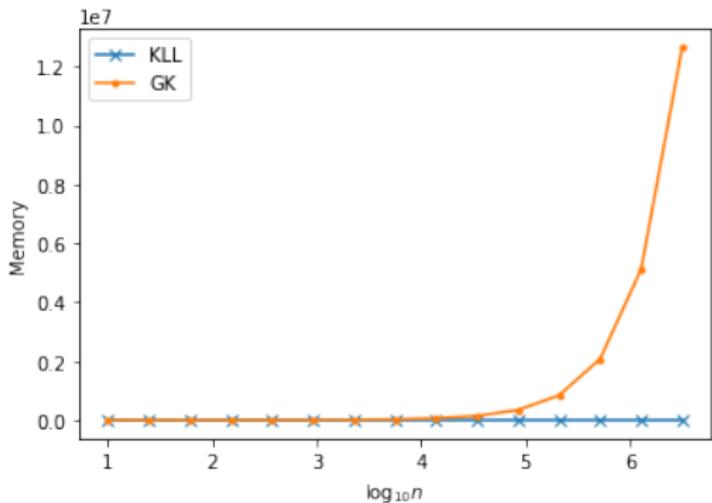
Stream	Quantile Error
$[1, \dots, n]$	0.0006636 ± 0.0004346
n samples from $\mathcal{N}(0, 1)$	0.01591 ± 0.01125
n samples from standard Cauchy	0.01746 ± 0.01008

Table: Experimental quantile query errors for all quantile sketch with parameters $\varepsilon = 0.05$ and $\varepsilon\delta = 0.05 \times 0.05$. The queries were 1) `linspace(1, 1000000, 50)`, 2) `linspace(-3, 3, 50)`, and 3) `linspace(-10, 10, 50)`.



Approximate histograms reconstructed for three streams in Table.

Experimental Memory Cost



Memory cost with \log_{10} number of stream elements.

Thank you!

Any questions?

- [CV20] Graham Cormode and Pavel Veselý. "A tight lower bound for comparison-based quantile summaries". In: *Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems*. 2020, pp. 81–93.
- [GK01] Michael Greenwald and Sanjeev Khanna. "Space-efficient online computation of quantile summaries". In: *ACM SIGMOD Record* 30.2 (2001), pp. 58–66.

[HT10] Regant Y. S. Hung and Hingfung F. Ting. "An $\Omega(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$ Space Lower Bound for Finding ϵ -Approximate Quantiles in a Data Stream". In: *Frontiers in Algorithmics*. Ed. by Der-Tsai Lee, Danny Z. Chen, and Shi Ying. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 89–100. ISBN: 978-3-642-14553-7.

[KLL16] Zohar Karnin, Kevin Lang, and Edo Liberty. "Optimal quantile approximation in streams". In: *2016 ieee 57th annual symposium on foundations of computer science (focs)*. IEEE. 2016, pp. 71–78.

[MRL99] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. "Random sampling techniques for space efficient online computation of order statistics of large datasets". In: *ACM SIGMOD Record* 28.2 (1999), pp. 251–262.