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1 Introduction
For our report, we will review the paper “Optimal Quantile Approximation in Streams” [KLL16].

For a set of items1 x1, ..., xn in an ordered universe U , the rank of an item x is the number of
items in the stream such that xi ≤ x, and the quantile of x is the fraction of items such that
xi ≤ x (i.e. (quantile) = (rank)/n).

Quantiles are natural representations of non-parametric distributions, which cannot be summa-
rized by statistics such as mean and variance [Wan+13]. They correspond to evaluations of the
cumulative distribution function at different points which characterize the distribution and are
pivotal in hypothesis testing. For example, the value of the 1

2 -quantile or the median is widely
known as a robust statistic of the distribution that is less sensitive to outliers. Furthermore, items
which have extreme quantile values can be detected as outliers.

Ideally, one summarizes a distribution via quantiles without storing all elements of the stream.
Unfortunately, [MP80] has shown that any single-pass algorithm that exactly computes kth-largest
element of a stream requires Ω(n) memory. Hence, we will consider the following approximate
quantile estimation problem.

Definition 1
The single quantile approximation problem is about estimating the quantile of any item
up to ±ε additive error with failure probability δ.

More explicitly, given x1, ..., xn in streaming fashion, we produce an approximate (random)
rank function R̃, with the following property:

For any item x, the estimate R̃(x) approximates the true rank R(x) to within ±εn (additively)
with probability at least 1− δ over the randomness of R̃.

If R̃(x) is non-decreasing, the single quantile approximation problem can be leveraged to find the
value of the α-th quantile as in the following remarks.

Remark 2. Given an approximate rank function R̃ from any single quantile approximation algo-
rithm, we can compute an approximate value of the α-quantile with the same overall memory cost
by querying elements until one finds an element x ∈ U such that R̃(x) = αn.

Denoting xα±ε as the true value of the α± ε quantiles, the guarantee in Definition 5 applied to xα±ε

ensures that R̃(xα−ε) ≤ αn and R̃(xα+ε) ≥ αn with probability ≥ 1 − 2δ. Thus, any element x we
find with R̃(x) = αn must have a true quantile in [α − ε, α + ε] (by the non-decreasing property of
R̃) with probability ≥ 1− 2δ.

Remark 3. The previous remark does not have any constraints on time complexity. It turns out
that the sketch we will present computes R̃(x) by comparing x to the elements stored in the sketch.
Hence, we can find x from the stored sketch elements such that R̃(x) = αn in the previous remark
in time on the order of the memory cost of our sketch.

The main result of the paper we are reporting on exhibits an optimal, comparison-based sketch
and a matching lower bound.

Theorem 1 ([KLL16])
There exists a randomized, comparison-based algorithm for the single quantile approximation
problem with a non-decreasing R̃(x) and O((1/ε) log log(1/δ)) space. This is optimal in the
sense that any randomized, comparison-based algorithm must use Ω((1/ε) log log(1/δ)) space.

For the sake of simplicity, we will ignore mergeability concerns even though it was discussed in the
original paper. It turns out that the bulk of the algorithm is mergeable except possibly the final
part involving a sketch by [GK01]. Henceforth, we will use ≲ to mean inequalities up to constants.

1We can imagine these are real numbers, but it suffices for the items to be totally ordered.
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1.1 Previous Results
[KLL16] gives a fairly complete overview of the relevant literature but we will just restate parts of
it here for ease of reference. We also refer to [Wan+13] for a survey of previous research.

The best deterministic algorithm (the “GK sketch” from [GK01]) for the single quantile approxi-
mation problem takes space O((1/ε) log(nε)). A recent result in [CV20] proves a matching lower
bound for such deterministic, comparison-based algorithms. A less optimal algorithm (the “MRL
sketch”, due to [MRL99]) uses O((1/ε) log2(nε)), but is relevant in this report because it forms the
base for the optimal randomized algorithm.

Allowing randomization, we can combine subsampling from the original stream with a deterministic
algorithm to produce better results. If the size of the stream n is known before hand, we can take
a uniform sample of size n′ = O((1/ε)2 log(1/ε)) and feed it into a GK sketch to obtain a space
complexity of O((1/ε) log(1/ε)) (observed in [MRL99]). Notably, this eliminates the dependence
on n, and one needs a result of [FO17] to obtain this space complexity without prior knowledge of
n. This was the best known space complexity for the randomized algorithm prior to [KLL16].

2 Optimal Sketch
In this section, we detail the construction for an optimal sketch from [KLL16]. The optimal sketch
builds on the basic deterministic algorithm of [MRL99] which can be thought of as a series of
compactors, and optimizes various aspects of the basic algorithm.

2.1 Compactors
The fundamental block of the MRL sketch is known as a k-compactor. A k-compactor can either
store k elements of identical weights w or compress them into k

2 elements of weight 2w by selecting
every alternate element (elements at odd or even indices) in its sorted list—the latter is known
as a compaction. Referring to the Figure 1, a compaction introduces at most w error to the
rank estimation with k-stream elements, via the elements of the compressed list, while halving the
memory cost. To compress a stream with mk-elements of weight w with m ∈ N, a k-compactor
performs a compaction operation whenever it already has k elements and is about to receive a new
one (it also compacts the last k elements). Since the rank of an element x is the sum of the ranks
of x within the m blocks of length k, the error in the rank of x is at most mw.

Figure 1: Original stream and the streams after odd and even compactions. The rank estimation
errors and their associated intervals are labelled in blue and red.

2.2 Iterated compactors
We are ready to describe the MRL sketch. Suppose we have H compactors of capacity k each,
and we connect them sequentially (i.e. the stream feeds elements of weight 1 into compactor 1,
and any output from compactor 1 is fed into compactor 2 and so on). In the streaming model, a
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compactor is only created when it receives the output of a previous compactor since the length of
the stream n is unknown a priori. Items in the h-th compactor have weight wh = 2h−1.

At most ⌊n/2h−1⌋ items reach the h-th compactor, so we only need H = ⌊log2(n/k)⌋+1 compactors.

Now we try to estimate the total error of the rank estimate R̃(x) computed as the rank of x within
the weighted elements inside the compactors. Earlier on, we argued that one compact operation
at weight w gives error w. The h-th compactor receives a total weight of at most n, so the number
of compact operations it performs is at most mh = n/(kwh) so by just naively adding the errors
up, the worst-case total error is

Error ≤
H∑

h=1

mhwh (1)

≤ H · (n/k) (2)

≲
n

k
log
(n
k

)
. (3)

Setting k = O((1/ε) log(εn)) gives εn error with space kH = O((1/ε) log2(εn)), since each com-
pactor stores k elements and there are H compactors. Note that this deterministic algorithm falls
short of the optimal space of O ((1/ε) log(nε)).

2.3 Odd/even randomness
With randomization, one significant improvement due to [Aga+13] is that one can independently
select whether to discard the odd/even elements with equal probability. By the earlier discussion in
Subsection 2.1, this has the effect that the errors from each compaction operations are independent
±w (or zero)—notice that the error intervals for the odd and even cases overlap in Figure 1. This
allows us to use a version of Hoeffding’s inequality (stated in the following convenient form):

Lemma 4 (Hoeffding, restated)
Let S be a linear combination of independent Rademacher variables. Then, with probability
1− δ,

|S| ≤
√
(VarS) · log 1

δ
. (4)

Now, we can apply the above Lemma to the compactor errors which are
∑H

h=1 mh independent
variables that are ±w (or zero) to obtain with probability ≥ 1− δ:

Error ≤

√√√√ H∑
h=1

mhw2
h log

1

δ
(5)

≤

√√√√n

k

H∑
h=1

wh log
1

δ
(6)

≲
n

k

√
log(1/δ) . (wh = 2h−1, 2H ≤ 2n

k )

Setting k = O((1/ε)
√
log(1/δ)) gives Error ≤ εn and Space ≤ kH = O

(
(1/ε) log(εn)

√
log(1/δ)

)
.

2.4 Compactor size decay
Note that the higher levels contribute exponentially larger values to the sum in Eq. (6). Hence,
one novel idea of [KLL16] exploits this observation to reduce the memory cost by decreasing the
compactor capacity k for lower levels (introducing more compaction operations and thus errors)
since they do not contribute much to the error anyway.
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Suppose that the h-th compactor instead has capacity kh. The error and space complexity bounds
become

Error =

√√√√( H∑
h=1

mhw2
h

)
log

1

δ
(7)

≤

√√√√( H∑
h=1

nwh

kh

)
log

1

δ
, (8)

Space =
H∑

h=1

kh . (9)

We also require n ≤
∑H

h=1 khwh to prevent overflow.

Previously when kh was constant, the summation in the error term was exponentially increasing
in h due to wh = 2h−1, so the result is a constant multiple of the last term at h = H. However,
we can make kh increase exponentially at a rate < 2 up to the last term kH which is a parameter
we will choose in our sketch (e.g. kh ≈ kH(2/3)H−h) so that the summation in the space term
is still exponential. Thus, ignoring constants, we have the same error bound if we pick kH =
O((1/ε)

√
log(1/δ)), but the space bound is now

∑H
h=1 kh = O(kH) instead of O(kHH), so Space =

O
(
(1/ε)

√
log(1/δ)

)
. In particular, the dependence on n has been eliminated.

In the above space analysis, we have a slight subtlety—in order for a compactor to be effective, it
must have a capacity that is at least 2, so we seemingly have kh = max{2, kH(2/3)H−h} and the
exponential decay does not technically hold for all h so

Space =

H∑
h=1

kH = O(kH +H) , (10)

instead of our previous O(kH) upper bound. This is remedied by noticing that the lower H ′′ =
H − ⌈log(kH)/ log(3/2)⌉ levels of compactors of capacity 2 can be simulated by selecting one item
uniformly from a continuous block of 2H

′′
items, which can be done in O(1) memory using standard

reservoir sampling.

2.5 Using a deterministic sketch for the final layers
The final stretch is to improve the dependence on δ in the space complexity from

√
log(1/δ) to

log log(1/δ). This will come from one final optimization over the later compactors, which take up
most of the memory usage.

Consider truncating the compactor sequence at the h∗-th compactor before level H. This turns
the original stream of n items into a stream of at most n

2H−h∗ ≤ k ·2h∗
(using H = ⌊log2(n/k)⌋+1)

items of weight 2H−h∗
. Since we know that wh/kh is exponentially increasing with common ratio

4/3 and kh is exponentially increasing with common ratio 3/2, we conclude that

Error ≲

(
2√
3

)h∗
n

kH

√
log

1

δ
(11)

Space ≲

(
2

3

)h∗

kH (12)

Since we want an improved dependence on δ, one reasonable option is to feed the outgoing items
into a deterministic sketch—this is another crucial improvement by [KLL16]. Suppose we channel
the remaining elements into a GK sketch with error parameter ε′. Roughly speaking, increasing
h∗ decreases the space usage by a factor of α while increasing the number of outgoing items by
poly(α), and the space complexity of the GK sketch depends logarithmically on the number of
elements fed into the sketch, so we can “trade” the

√
log(1/δ) factor in the memory cost of the

MRL sketch due to kH = O((1/ε)
√
log(1/δ)) for a log log(1/δ) factor in the memory cost of the

GK sketch.
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Explicitly, the total error and space constraints become (noting that ≤ k · 2h∗
elements of weight

2H−h∗
are fed into the GK sketch):

Error ≤
(

2√
3

)h∗
n

kH

√
log

1

δ
+ ε′kH · 2h

∗
· 2H−h∗

(13)

≤
(

2√
3

)h∗
n

kH

√
log

1

δ
+ ε′n (14)

Space ≤
(
2

3

)h∗

kH +
1

ε′
log
(
ε′kH2h

∗
)

(15)

To make Error ≤ εn, we need

kH ≤ (2/
√
3)h

∗

ε− ε′

√
log(1/δ) (16)

For convenience, we assume that ε′ = ε/2, so the resulting space complexity is

Space ≲
1

ε

((
4

3
√
3

)h∗ √
log(1/δ) + h∗ + log log(1/δ)

)
(17)

so the optimal choice for h∗ is O(log log(1/δ))—since we need h∗ of this order to kill the
√
log(1/δ)

term and at the same time, the R.H.S is already at least (1/ε) log log(1/δ). This choice of h∗ yields
Space = O((1/ε) log log(1/δ)), which concludes our discussion of the optimal sketch.

Proof. (Theorem 1). Let our sketch be the concatenation of a truncated MRL sketch and a GK
sketch with parameters described above. Note that the overall rank estimation function R̃(x) =
R̃MRL(x) + 2H−h∗

R̃GK(x) is non-decreasing since it is so for both the MRL and GK sketches.
The overall scheme is randomized since the MRL sketch is. Finally, the algorithm is comparison-
based since the MRL and GK sketches rely on maintaining a summary of elements that a query
or an element of the stream is compared to. The space and error analyses have been performed
above.

3 Lower bound
To prove that the sketch in the previous section is asymptotically optimal. [KLL16] relies on the
following lower bound for deterministic, comparison-based rank estimators by [HT10] which we
will state without proof for simplicity.

Theorem 2 ([HT10])
Any deterministic, comparison-based algorithm that solves the single quantile
ε-approximation problem for all streams of length C(1/ε)2 log2(1/ε) for some sufficiently large
universal constant C must store at least c(1/ε) log(1/ε) stream elements for some sufficiently
small constant c.

We can easily turn this into the following theorem for randomized, comparison-based algorithms.

Theorem 3 ([KLL16])
Any randomized, comparison-based algorithm that solves the single quantile
ε-approximation problem with probability ≥ 1 − δ must store at least Ω(1/ε log log(1/δ))
stream elements.

Proof. Suppose there exists a randomized algorithm AR storing o ((1/ε) log log(1/δ)) stream ele-
ments. Setting δ = 1

2n! where n is the stream length to be set later, we see that AR succeeds
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on all n! possible ordered streams with probability ≥ 1
2 . Hence, there must be some random

seed s received by AR for which this occurs. We can then obtain a deterministic algorithm AD

that hardcodes the seed s into AR. Choosing n = C(1/ε)2 log2(1/ε) as in Theorem 2, AD suc-
ceeds on all streams of length n while only storing o ((1/ε) log(1/ε)) stream elements—leading to
a contradiction.

In particular, the discussed sketch of [KLL16], which is randomized and comparison-based, satu-
rates the bound in Theorem 3 and is hence optimal.

4 Discussion
To summarize, we have covered the randomized, comparison-based single quantile approximation
sketch by [KLL16] which is provably optimal in terms of space complexity. En route, much effort
was devoted to reducing a factor of

√
log(1/δ) to log log(1/δ), which is seemingly insignificant for

most practical values of δ. However, this reduction in the complexity in δ is paramount when turn-
ing a single quantile approximation into an all quantile approximation defined below.

Definition 5
The all quantile approximation problem is about estimating the quantile of all items up
to ±ε additive error simultaneously, with failure probability δ.

More explicitly, given x1, ..., xn in streaming fashion, we produce an approximate (random)
rank function R̃, with the following property:

With probability at least 1−δ, R̃(x) approximates the true rank R(x) to within ±εn (additively)
for all x.

Note that it suffices to approximate O (1/ε) single quantile queries to solve the all quantile approx-
imation problem. Thus, by a union bound, a (ε,O(εδ))-single quantile approximation algorithm
solves a (ε, δ)-all quantile approximation problem—the transformation from δ → O(εδ) implies
that our single quantile complexity in δ is now important. The single quantile sketch by [KLL16]
then yields an all quantile sketch with memory O ((1/ε)(log log(1/(εδ)))).

We remark here that an all-quantile sketch allows us to estimate the cumulative distribution
function and hence the probability distribution of elements from a stream and is hence extremely
useful in practice. The independence of the memory cost of the above all-quantile sketch relative to
n makes it even more enticing. In the next section, we will experimentally verify the distributions
reconstructed by this sketch.

The main limitation of [KLL16] concerns the issue of mergeability which we have glossed over. It
turns out that it is unknown if the GK sketch is mergeable and [Aga+13] conjectures that it is not.
However, all other parts of the sketch are mergeable. Compactors are evidently mergeable since
we can just feed the elements within one compactor into another of the same level, starting from
the lowest level. The reservoir sampler is also mergeable if one uses the sampling scheme described
in [KLL16]. To recover mergeability, note that the main property of the GK sketch used in our
analysis is its logarithmic dependence on the stream length and its determinism (so we don’t have
to worry explicitly about factors of δ in the GK sketch). Hence, we would obtain a sketch with the
same space complexity but now mergeable if there exists a mergeable deterministic sketch with
memory cost logarithmic in the stream length. Unfortunately, we do not know if such a sketch
exists for general streams but the DDSketch by [MRL19] satisfies this property for stream elements
drawn from distributions with sub-exponential and lighter tails.

5 Experimentation Verification
We implemented the described KLL-sketch by [KLL16], with the aid of the GK-sketch code found
here: https://github.com/DataDog/sketches-py/releases/tag/v0.1. We assume that the
length of the stream is known beforehand (i.e. it is a two-pass algorithm), simplifying the im-
plementation since the number of compactors can be precomputed and resizing compactors is no
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longer necessary. Our code can be found here:
https://drive.google.com/file/d/1tOZ6JFRg-V4c0KFQTFI9sXpCtJRixWyf/view?usp=sharing.

Table 1 reports our quantile errors for the all-quantile sketch with parameters ε = 0.05 a failure
probability implicitly determined by δ′ = εδ = 0.05× 0.05 in the underlying single-quantile sketch,
given streams drawn from different distributions. In all cases, we indeed obtain a ε-approximation
for all queries.

Stream Queries Quantile Error
[1, ..., 1000000] linspace(1, 1000000, 50) 0.0006636± 0.0004346

1000000 samples from N (0, 1) linspace(-3, 3, 50) 0.01591± 0.01125
1000000 samples from standard Cauchy linspace(-10, 10, 50) 0.01746± 0.01008

Table 1: Experimental quantile query errors for all quantile sketch with parameters ε = 0.05 and
εδ = 0.5× 0.5.

Next, we used the all quantile sketch to reconstruct an (approximate) histogram of the stream
elements. As illustrated in Figure 2, we indeed obtain a histogram representing the distribution
that the stream elements were drawn from. In plotting a histogram, the number of bins is chosen
to be ⌊ 1

ε⌋ since we are only applying the guarantee of the single quantile sketch for 1
ε values.

Figure 2: Approximate histograms reconstructed for three streams in Table 1.

Finally, using the CS368 library, we tracked the memory cost of the KLL-sketch versus the GK-
sketch for a fixed ε = 0.05 (and δ′ = 0.05 × 0.05 for the KLL-sketch) but for varying streams
[1, ..., n] of different lengths. As expected, the space complexity of the KLL-sketch is independent
of log10 n while that of the GK-sketch scales linearly with log10 n (beyond some threshold, possibly
caused certain peculiarities in the implementation we found online).

Figure 3: Memory cost with log10 number of stream elements.
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