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Dualizing Le Cam’s method

David Lin

May 3, 2022

In this paper, I will review the main results in “Dualizing Le Cam’s method for functional estima-
tion, with applications to estimating the unseens” by Polyanskiy and Wu [2021].

1 Motivation

First we present the usual setting of Le Cam’s two-point method. Let {FPy}loco be a class of
probability distributions over the parameter set ©. We would like to estimate some function
T : © — R using to squared loss L(#,a) = (T(0) — a)?. We have the separation parameter

A= min L(fo, a) + L(01,a) = %(T(&o) —T(6))> (1)

Hence, given n independent samples drawn from either Py, or Pp,, the minimax risk is given by

Rn) sy Bol(F 10 2)
> 2 (1= 11Po ~ Polry) Q
> 2\ fexp(— D (P BE)) )
S A L (5)

L reeegen
(@) - T )
1601+ X2(Pay | Py, )"

Now, we would like to choose 6, 0, for the conclusion to be meaningful. Notice that the denom-
inator is essentially exponential in ny?, so x2 > 1/n gives very weak lower bound. On the other
hand, x? < 1/n only improves the denominator by a constant factor. Hence, it is reasonable to
try to control for x? ~ 1/n, and we have the bound

R*(n) sup  (T(6o) — T(61)). (7)

1
<
o 8\/6 00,01:x2<1/n

The main theorems suggests that under some technical conditions, this bound is tight up to constant
factors.

2 Main Theorem, i.i.d. case

Now we give provide the full setting. We interpret the original hypothesis set {FPyp}oco as a
stochastic kernel P : © — X, so the class of hypotheses is extended to mixtures of the form 7P
for m € II, where II is a convex set of distributions over ©. We would like to estimate an affine
functional T(w) of the parameter distribution. Examples of such functions include (but are not
limited to) T'(7) = Eg,[h(0)] for some h: © — R.

The argument in the first section suggests defining the following notion:
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\
Definition 1 (Modulus of continuity)

For an affine® functional T : IT — R where IT C P(0) is a convex set of probability distribu-
tions, define the x2-modulus of continuity as follows:

8,2(t) = sup{T(n') — T(n) : x*(«'P||xP) < t*, 7,7’ € I}. (8)

In other words, a x*-divergence of t* translates to an at most 6,2 (¢) difference in 7' (somewhat
akin to Lipschitzness).

%This just means that T(Am + (1 — A\)«’) = AT(w) + (1 — \)T' (7).
- J

We are thus ready to state the main theorem in the i.i.d. case:

4 )
Theorem 1 (Main Theorem, i.i.d. case [Polyanskiy and Wu, 2021])
Under some technical (mostly topological/measure-theoretic) assumptions listed later, we
have
1

- 5 1

T+ ver 2
so the minimax rate given by the two-point method is tight up to constant factors. The
assumptions are that:

2=)? < R*(n) < 8,2(J=)%, (9)

Al. II is convex.
A2. T is affine.

A3. There exists a vector space of functions F on the observation space X’ such that (1) F
contains constant and (2) F is dense in Lo (X, 7 P) for every 7 € II.

A4. There exists a topology on II coarse enough that II is compact but fine enough that
T(r), mPf,mP(f?) are continuous for all # € P, f € F.

Furthermore, the upper bound is attained by an estimator of the form

T, = > g%, (10)

\ _ Y,

For the sake of simplicity, we will ignore the specific constant factors and focus on proving the
same asymptotic rate given in the theorem.

Before giving the proof, we make a quick comment about the choice of g. In particular, we will only
need to consider two types of g (up to scalars): constants, and a g that approaches the supremum
in the variational representation of the x? divergence between 7P, 7’ P:

(EWP[Q] — EW’P[QD2 } )

Vary pl] )

V(P P) = sup{
g

This is reflected in our assumptions about the function class F: the supremum will be attained
(in the limit) over any Lo(X, 7' P)-dense subset.

Proof. The lower bound follows the usual two-point argument gives the lower bound, so we will
focus on showing the upper bound instead.

The analysis begins by splitting the error (from using fg of the suggested form) into the bias and
variance components:

B,y — T(0)?] < (Bapld] = T(x))? + - Var, plg (12)
< (uaﬂp[g] - T+ 7= Varﬂp[g]) (13)
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Hence,
1
R*(n) < inf E.p—T — Var, = Opo(—= 14
() < i sup { [Eop = ()| + = Vororlol | = () (14

Thus, the claim reduces to showing that for all ¢ > 0,

5y2(t) > po(t) = inf sup {Erplg] = T'(m)| +t Varzp[g]} (15)

Pretend for a moment that we can swap the inf and the sup. Then, the answer becomes somewhat
trivial:

igfsgp {|Explg] = T(m)| + tVarﬂp[g]} = suplnf {|Eﬂp[ )| + t\/Var;plg } (16)
—0 (17)

because we can set g to be the constant T'(7) (with zero variance). This is, of course, too simplistic
to be correct, but there is shred of truth in this. One possible criterion! for swapping the inf and
sup requires that the inner functional be convex in g and concave in 7, but the term |E, p[g] — T (7)]
is convex in w. To remedy this, we define the following “affine relaxation”

[Enplg] - T(m)| = max Explg] - T(r) - £(Enplg] - T(m)) (18)
< oo, Enplg] = T(m) = §(Erplg] - T(x")) (19)

The resulting functional is affine in 7, 7’ and &, so we repeat the same argument (correctly, this
time):

mf sup {|Eﬂp[ )| + t\/Vargplg } (20)
<inf max Erplg] —T(7) - &(Erplg] — T (")) + t\/Var,plg] (21)

9 m,m’,£€[0,2]

= max infE;p[g] —T(m) — {(Explg] )) + t\/Var,plg (22)

w,n',£€[0,2] g

- g@m&wwaﬂﬂﬂgmﬁw—@mm+wwmm@ (23)
TriTr 9 9

Now we do the same trick: if £ # 1, then by setting g = ¢ — +o0, the inner term goes to —oo,

so we may assume that £ = 1. Since we can always scale g, it suffices to focus on the sign of the

remaining terms. Rewrite it as:

inf Bxplg] — Erplg) + tv/Varsplg] 1nf< rlgl — En plg) +t> -/Var,p[g] (24)
g Var,p[g]

ginf( x2(mP||7'P) +t+6) Var,p[g*] (25)
9

where € > 0 and g* attains the supremum in the variational representation of the y2-divergence
to within e (with the appropriate choice of signs). This means that if x2(7P||7'P) > t2, then the
infimum term goes to —oo as we scale g — oo.

Finally, when x?(7P||7' P) < t2, the term in the inner infimum (over g) is positive, so the minimum
is 0. Thus, we obtain

iIglf stTlrp{HEﬂp[g] —T(m)| +tVar,plg]} < m?é(n{T( 7) = T(x') : X3(nP||7'P) < t*}  (26)

as desired.

Remark. We recap where the various assumptions were used:

1Ky Fan’s theorem (Theorem 5, restated in Polyanskiy and Wu [2021]) implies that for a continuous functional
fon X xY with X compact, and f is concave in X and convex in Y, then maxx infy f = infy maxx f.
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A1-A2. The convexity of IT and affineness of T is needed for the affine relaxation technique to work.

A3. The function space F where we select P had to be Ly(X, mP)-dense so that the supremum
in the variational representation of x? was achieved.

A4. TI had to be compact so that all suprema were attainable, and the other functions had to be
continuous for the swapping of the maximum and the minimum.

2.1 Toy example

Suppose we have n ii.d. samples drawn from Bern(p), and we would like to estimate p. This
suggests the following setup: ©® = X = {0, 1}, with trivial kernel P and distribution domain

IT = {Bern(p) : p € [0,1]}.

Note that II is convex, and furthermore the functional in consideration can we written as p =
Ex~-p[X]. Tt is easily checked that the remaining technical hypotheses apply, so we are left with
computing d,2(t). Note that

2 o (p—=p)?
x“(Bern(p),Bern(p’)) = ————
(Bem(p). Bern()) = =P
so assuming that t < 1, x2 < t? = p —p/ < t/2, attained when (p,p’) = ((1 —t)/2,1/2), so
6x2(ﬁ) = 52=, 50 R*(n) < O(1/n), which is the usual parametric rate.

One thing worth considering is also the choice of estimator g suggested by this method. A function
that attains the supremum in the x? optimization is the identity g(X) = X, so this corresponds
to the fact that the mean gives the parametric rate above .

3 Main Theorem, deterministic case

Now, we suppose instead that the samples X = (X,...,X,,) are drawn independently with respect

to a deterministic parameter set 8 = (61, ...,6,) (i.e. X; ~ Py,), and we impose a cost constraint
1 n
e, = {9 € o%®n . E;C(e") < 1}
1=

for some cost function ¢ : © — R. The goal is to estimate a functional T of the empirical
distribution mg = L 37" | dp,, defined by

T(mo) = ~ 3 h(6), (27)

n -

up to the usual quadratic loss, for some h : © — R. (We will also define, more generally, that
T(mw) = Egr[h] for any m € I = {7 : Egr[c] < 1}.) The main overall difference here is that
we are estimating a linear functional of an empirical distribution, and our observations are not
identically distributed, and it might be useful to refer to Section 4.2 to see how the cost condition
is relevant in applications.

There is some intuition based on i.i.d. case that hints at the result we should expect here. Suppose
instead that m was a distribution satisfying the cost condition Egy..,[c(8)] < 1, then by concentration
we expect that the constraint - 3" | ¢(6;) < 1 to be fulfilled approximately (and this can be made
absolute by a trunctation argument). On the other hand, we also expect T(mg) to concentrate
about its mean Eg..[h(6)], which is an affine functional of 7 and thus falls under the purview of

the previous theorem. Thus, we expect the minimax rate to have the same rate R}, (n) < d,2 (ﬁf

This is unfortunately wrong, due to the following counterexample given in the paper:
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Example 2 (Counterexample to deterministic case)

Again, we consider © = X = {0,1} with the trivial cost function ¢ = 0, which gives II =
{Bern(p) : p € [0,1]}. Let the transition kernel P : @ — X be the binary symmetric channel:

0 with probability 7

. - (28)
1—6 with probability 1 — 7

P(x]0) = {

We set h(f) = 6 (so we would like to estimate £ > | 6;), so T(Bern(p)) = p. Here, we use
the following lower bound (independent of 7):

t
8y2(t) > —=sup{T(n) =T (7)) : m, 7’ €11 29
()2 522 sup{T(m) ~ T() ) (29)
t
_ 30
>3 (30)
On the other hand, the unbiased estimator
F(X1 Xa) =~ S (X - 7) 31)
1y---3An —n(1727_)i:1 7 T
achieves the rate
. T(1l—7) 1
< —
Rdet(n) = (1 _ 27_)2 n (32)

which is not uniform in 7! Setting 7 = o(1) we get R} (n) < 5X2(ﬁ)2.

Actually, the next theorem implies that the only counterexamples occur when we have R} (n) =0
or R, (n) < 1 (the parametric rate)?. We will need extra assumptions for the lower bound to
remove these cases.

i Theorem 2 (Main Theorem, deterministic case [Polyanskiy and Wu, 2021]) )
Under the same technical assumptions as the i.i.d. case, we have the same upper bound
Rier(n) < 5%(%)-

On the other hand, assuming that

A5. Varg.[h(0)] is uniformly bounded above by Ky for any = € II; and

A6. the cost function c satisfies ¢ > 0 with equality holding for at least one 6y € O,
then, we will have the lower bound

Ria(n) > sisbia()? = 5L (33)

In particular, if 5x2(ﬁ) = w(ﬁ), the lower bound is matching and the minimax rate is
determined asymptotically.

- J

Sketch of proof. The upper bound is very similar to the previous case. For the lower bound, the
proof can be more concisely expressed using the mixture vs. mixture version of Le Cam’s method:

2In the paper (Polyanskiy and Wu [2021]), there is a simple argument to show why the minimax rate is either 0
or Q(1/n).
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\
Theorem 3 (Mixture vs. Mixture)
For ©(, 01 C O, suppose that the following separation holds for all a € A, 0y € Oy, 0; € O:
L(e(), a) + L(917 a) > A. (34)
Then, for all probability distributions 7, 71 over ©,
. A c (&
inf , e BolL(6, T(X))] 2 5 (1= I ErylPoc] — B [y — 70(85) — m1(65)) . (35)
. J

Start with distributions v, € II such that x?(v1 P||lvoP) > L and suppose § = T'(v1) =T (1) > 0,
and fix a free parameter v € (0,1). The distributions of single samples will be the following weighted
combinations

vy =710+ (L= 7)0., vi=7v1+(1=7)d, (36)
where 0, is a zero-cost parameter. The two priors we will consider are precisely (1))®" and (v])®".
The two separated sets will be

GOZ{GEGCIT(TFQ) <
0, ={60€0.:T(mg) >

which immediately gives T(mg,) — T'(ma,) > 5(T(v1) — T(vp)’) = 2 for any O, € O, 0, € Oy, s0

(18)* ’
A=02

Now we show that the probability weight of ©¢, ©; under the respective priors is relatively small
due to concentration. For ©g, T(mg) has mean T(v) and variance at most Ky under the first
prior, so by Chebyshev (and Markov for the cost condition®):

. . 1 n 1 n
(1) (©F) < P, vy [n ;C(@') > 1] + Py [n ; h(6:) > Eh(6:) +v6/3 (39)
9Ky
< -
S+ 262 (40)

Similarly, (v4)®"(©%) < v+ :ﬁgp Finally, we upper bound the TV distance using standard
techniques:

[0 P = W) Py = (4 P)Z" = (P)" gy (1)
< VAP (4P)em) (42)

= 0+ 0PI P 1 (43)

< V7 2w PPy —1 (44)

< gV 1< sV 1 (45)

(46)

where we used the convexity of y?(e|/e). Finally, to conclude,

. (v5)2 18Ky el — 1
> . _ _ _
Rdet (n) = 36 1 27 77/}/2(52 ) (47)
(s 5 e 1) Ky
_ 3 _ 4
36 (V K 2 > on (48)

and maximizing v gives the desired result.

3This is imposed by our assumption that @ € @, instead of O®"
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4 Applications

4.1 Binomial Mixtures

We first describe a useful bound for the x2-modulus of continuity for a particular setting, that can
be applied in the next few examples.

Consider a situation where we would like to do quality control by testing a small number of samples,
and then to infer the number of “bad” items among the entire inventory.

Formally, fix a sampling probability p € (0,1). Let X = © = [d] (where # will represent the number
of “bad” items), and II = P([d]). Given observations X ~ Bin(f,p), we would like to estimate the
probability mass of {# = 0} under the prior (i.e. T(7) = 7(0)).

The next result describes the modulus of continuity in this case, which we will apply in the following
sections.

4 N
Theorem 4 (4,2~ for binomial mixtures, Polyanskiy and Wu [2021])
For any ¢t > 0,d > 1, we have
Sy (t) <t T7 (49)
and in the other direction, we have
t 1
& p Z &
OEE S ’ , (50)
Ol t>to,d>Cln® 1
In & t
For some ¢y, C' depending on p.
- J

The difficult parts of the proof depends on two other results: Proposition 9 in Polyanskiy et al.
[2020] which converts the LP into analytic properties of certain generating functions and then
analyzes them using complex analysis, and Lemma 12 in Polyanskiy et al. [2020], which describes
a construction.

4.2 Distinct Elements Problem

Suppose we have an urn with at most n balls, and we would like to figure out the number of
different color present among the balls. However, we will only observe each ball with probability
p. If 6, € © = [n] denotes the number of balls of color i € [n], then the parameter set can be
captured with the cost function ¢(0) = 6:

177,
c = 0 ®n:7 i<1 . 1
€] { €0 n;e_} (51)

The observations are of the form X; ~ Bin(0;,p), and the goal is to estimate the (normalized)
number of distinct colors

T(mg) = Zﬂeix- (52)

Additionally, we also have Ky < 1/4 and ¢(0) = 0, so the theorem in the deterministic case applies.
We can get the following result:

S|
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\
Theorem 5
If p> 1, then R*(n) < 1/n. Otherwise, if p < 1/2, then
logznnfp/(lfp) < R*(n) < n~?/(-P) (53)

for some constant ¢ = ¢(p) > 0. Furthermore, the upper bound is attained (to within constant
factors) by an estimator of the form

~ 1
TZEZ;Q(XO

with g(0) = 0 (making it oblivious to the total number of balls).
\ J

The case where p > % follows immediately from applying the previous y2-bound to get the rate for
R*(n). Some extra work is required to construct an explicit upper bound for the above form (and
then to also enforce g(0) = 0), but it follows idea from previous work in Polyanskiy et al. [2020]
(similar to the binomial mixture result from earlier).
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