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Dualizing Le Cam’s method

David Lin

May 3, 2022

In this paper, I will review the main results in “Dualizing Le Cam’s method for functional estima-
tion, with applications to estimating the unseens” by Polyanskiy and Wu [2021].

1 Motivation
First we present the usual setting of Le Cam’s two-point method. Let {Pθ}θ∈Θ be a class of
probability distributions over the parameter set Θ. We would like to estimate some function
T : Θ→ R using to squared loss L(θ, a) = (T (θ)− a)2. We have the separation parameter

∆
4
= min

a
L(θ0, a) + L(θ1, a) =

1

2
(T (θ0)− T (θ1))2. (1)

Hence, given n independent samples drawn from either Pθ0 or Pθ1 , the minimax risk is given by

R∗(n)
4
= inf

T̂
sup

θ∈{θ0,θ1}
Eθ[(T̂ − T (θ)2] (2)

≥ ∆

2
· (1− ‖Pθ0 − Pθ1‖TV) (3)

≥ ∆

4

√
exp
(
−DKL(P⊗nθ0 ‖P

⊗n
θ1

)
)

(4)

≥ ∆

4
· 1√

1 + χ2(P⊗nθ0 ‖P
⊗n
θ1

)
(5)

=
(T (θ0)− T (θ1))2

16(1 + χ2(Pθ0‖Pθ1))n/2
(6)

Now, we would like to choose θ0, θ1 for the conclusion to be meaningful. Notice that the denom-
inator is essentially exponential in nχ2, so χ2 � 1/n gives very weak lower bound. On the other
hand, χ2 � 1/n only improves the denominator by a constant factor. Hence, it is reasonable to
try to control for χ2 ≈ 1/n, and we have the bound

R∗(n) ≤ 1

8
√
e

sup
θ0,θ1:χ2≤1/n

(T (θ0)− T (θ1))2. (7)

The main theorems suggests that under some technical conditions, this bound is tight up to constant
factors.

2 Main Theorem, i.i.d. case
Now we give provide the full setting. We interpret the original hypothesis set {Pθ}θ∈Θ as a
stochastic kernel P : Θ → X , so the class of hypotheses is extended to mixtures of the form πP
for π ∈ Π, where Π is a convex set of distributions over Θ. We would like to estimate an affine
functional T (π) of the parameter distribution. Examples of such functions include (but are not
limited to) T (π) = Eθ∼π[h(θ)] for some h : Θ→ R.

The argument in the first section suggests defining the following notion:
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Definition 1 (Modulus of continuity)
For an affinea functional T : Π→ R where Π ⊂ P(Θ) is a convex set of probability distribu-
tions, define the χ2-modulus of continuity as follows:

δχ2(t)
4
= sup{T (π′)− T (π) : χ2(π′P‖πP ) ≤ t2, π, π′ ∈ Π}. (8)

In other words, a χ2-divergence of t2 translates to an at most δχ2(t) difference in T (somewhat
akin to Lipschitzness).

aThis just means that T (λπ + (1− λ)π′) = λT (π) + (1− λ)T (π′).

We are thus ready to state the main theorem in the i.i.d. case:

Theorem 1 (Main Theorem, i.i.d. case [Polyanskiy and Wu, 2021])
Under some technical (mostly topological/measure-theoretic) assumptions listed later, we
have

1

(1 +
√
e)2

δχ2( 1√
n

)2 ≤ R∗(n) ≤ δχ2( 1√
n

)2, (9)

so the minimax rate given by the two-point method is tight up to constant factors. The
assumptions are that:

A1. Π is convex.

A2. T is affine.

A3. There exists a vector space of functions F on the observation space X such that (1) F
contains constant and (2) F is dense in L2(X , πP ) for every π ∈ Π.

A4. There exists a topology on Π coarse enough that Π is compact but fine enough that
T (π), πPf, πP (f2) are continuous for all π ∈ P, f ∈ F .

Furthermore, the upper bound is attained by an estimator of the form

T̂g =
1

n

n∑
i=1

g(Xi). (10)

For the sake of simplicity, we will ignore the specific constant factors and focus on proving the
same asymptotic rate given in the theorem.

Before giving the proof, we make a quick comment about the choice of g. In particular, we will only
need to consider two types of g (up to scalars): constants, and a g that approaches the supremum
in the variational representation of the χ2 divergence between πP, π′P :

χ2(πP‖π′P ) = sup
g

{
(EπP [g]− Eπ′P [g])2

Varπ′P [g]

}
. (11)

This is reflected in our assumptions about the function class F : the supremum will be attained
(in the limit) over any L2(X , π′P )-dense subset.

Proof. The lower bound follows the usual two-point argument gives the lower bound, so we will
focus on showing the upper bound instead.

The analysis begins by splitting the error (from using T̂g of the suggested form) into the bias and
variance components:

EXi∼πP [(T̂g − T (π))2] ≤ (EπP [g]− T (π))2 +
1

n
VarπP [g] (12)

≤
(
|EπP [g]− T (π)|+ 1√

n

√
VarπP [g]

)2

(13)
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Hence, √
R∗(n) ≤ inf

g
sup
π∈Π

{
|EπP − T (π)|+ 1√

n
VarπP [g]

}
= δbv(

1√
n

). (14)

Thus, the claim reduces to showing that for all t ≥ 0,

δχ2(t) ≥ δbv(t)
4
= inf

g
sup
π
{|EπP [g]− T (π)|+ tVarπP [g]} (15)

Pretend for a moment that we can swap the inf and the sup. Then, the answer becomes somewhat
trivial:

inf
g

sup
π
{|EπP [g]− T (π)|+ tVarπP [g]} ?

= sup
π

inf
g

{
|EπP [g]− T (π)|+ t

√
VarπP [g]

}
(16)

= 0 (17)

because we can set g to be the constant T (π) (with zero variance). This is, of course, too simplistic
to be correct, but there is shred of truth in this. One possible criterion1 for swapping the inf and
sup requires that the inner functional be convex in g and concave in π, but the term |EπP [g]−T (π)|
is convex in π. To remedy this, we define the following “affine relaxation”:

|EπP [g]− T (π)| = max
ξ∈{0,2}

EπP [g]− T (π)− ξ(EπP [g]− T (π)) (18)

≤ max
ξ∈{0,2},π′∈Π

EπP [g]− T (π)− ξ(Eπ′P [g]− T (π′)) (19)

The resulting functional is affine in π, π′ and ξ, so we repeat the same argument (correctly, this
time):

inf
g

sup
π

{
|EπP [g]− T (π)|+ t

√
VarπP [g]

}
(20)

≤ inf
g

max
π,π′,ξ∈[0,2]

EπP [g]− T (π)− ξ(Eπ′P [g]− T (π′)) + t
√

VarπP [g] (21)

= max
π,π′,ξ∈[0,2]

inf
g
EπP [g]− T (π)− ξ(Eπ′P [g]− T (π′)) + t

√
VarπP [g] (22)

= max
π,π′,ξ∈[0,2]

{
T (π)− ξ(T (π′)) + inf

g
EπP [g]− ξEπ′P [g] + t

√
VarπP [g]

}
(23)

Now we do the same trick: if ξ 6= 1, then by setting g ≡ c → ±∞, the inner term goes to −∞,
so we may assume that ξ = 1. Since we can always scale g, it suffices to focus on the sign of the
remaining terms. Rewrite it as:

inf
g
EπP [g]− Eπ′P [g] + t

√
VarπP [g] = inf

g

(
EπP [g]− Eπ′P [g]√

VarπP [g]
+ t

)
·
√

VarπP [g] (24)

≤ inf
g

(
−
√
χ2(πP‖π′P ) + t+ ε

)√
VarπP [g∗] (25)

where ε > 0 and g∗ attains the supremum in the variational representation of the χ2-divergence
to within ε (with the appropriate choice of signs). This means that if χ2(πP ||π′P ) > t2, then the
infimum term goes to −∞ as we scale g →∞.

Finally, when χ2(πP‖π′P ) ≤ t2, the term in the inner infimum (over g) is positive, so the minimum
is 0. Thus, we obtain

inf
g

sup
π
{|EπP [g]− T (π)|+ tVarπP [g]} ≤ max

π,π′∈Π
{T (π)− T (π′) : χ2(πP‖π′P ) ≤ t2} (26)

as desired.

Remark. We recap where the various assumptions were used:
1Ky Fan’s theorem (Theorem 5, restated in Polyanskiy and Wu [2021]) implies that for a continuous functional

f on X × Y with X compact, and f is concave in X and convex in Y , then maxX infY f = infY maxX f .
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A1-A2. The convexity of Π and affineness of T is needed for the affine relaxation technique to work.

A3. The function space F where we select P had to be L2(X , πP )-dense so that the supremum
in the variational representation of χ2 was achieved.

A4. Π had to be compact so that all suprema were attainable, and the other functions had to be
continuous for the swapping of the maximum and the minimum.

2.1 Toy example
Suppose we have n i.i.d. samples drawn from Bern(p), and we would like to estimate p. This
suggests the following setup: Θ = X = {0, 1}, with trivial kernel P and distribution domain

Π = {Bern(p) : p ∈ [0, 1]}.

Note that Π is convex, and furthermore the functional in consideration can we written as p =
EX∼πP [X]. It is easily checked that the remaining technical hypotheses apply, so we are left with
computing δχ2(t). Note that

χ2(Bern(p),Bern(p′)) =
(p− p′)2

p′(1− p′)

so assuming that t ≤ 1, χ2 ≤ t2 =⇒ p − p′ ≤ t/2, attained when (p, p′) = ((1 − t)/2, 1/2), so
δχ2( 1√

n
) = 1

2
√
n
, so R∗(n) � O(1/n), which is the usual parametric rate.

One thing worth considering is also the choice of estimator g suggested by this method. A function
that attains the supremum in the χ2 optimization is the identity g(X) = X, so this corresponds
to the fact that the mean gives the parametric rate above .

3 Main Theorem, deterministic case
Now, we suppose instead that the samplesX = (X1, . . . , Xn) are drawn independently with respect
to a deterministic parameter set θ = (θ1, . . . , θn) (i.e. Xi ∼ Pθi), and we impose a cost constraint

Θc =

{
θ ∈ Θ⊗n :

1

n

n∑
i=1

c(θi) ≤ 1

}

for some cost function c : Θ → R. The goal is to estimate a functional T of the empirical
distribution πθ = 1

n

∑n
i=1 δθi , defined by

T (πθ) =
1

n

n∑
i=1

h(θi), (27)

up to the usual quadratic loss, for some h : Θ → R. (We will also define, more generally, that
T (π) = Eθ∼π[h] for any π ∈ Π = {π : Eθ∼π[c] ≤ 1}.) The main overall difference here is that
we are estimating a linear functional of an empirical distribution, and our observations are not
identically distributed, and it might be useful to refer to Section 4.2 to see how the cost condition
is relevant in applications.

There is some intuition based on i.i.d. case that hints at the result we should expect here. Suppose
instead that π was a distribution satisfying the cost condition Eθ∼π[c(θ)] ≤ 1, then by concentration
we expect that the constraint 1

n

∑n
i=1 c(θi) ≤ 1 to be fulfilled approximately (and this can be made

absolute by a trunctation argument). On the other hand, we also expect T (πθ) to concentrate
about its mean Eθ∼π[h(θ)], which is an affine functional of π and thus falls under the purview of
the previous theorem. Thus, we expect the minimax rate to have the same rate R∗det(n) � δχ2( 1√

n
)2.

This is unfortunately wrong, due to the following counterexample given in the paper:
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Example 2 (Counterexample to deterministic case)
Again, we consider Θ = X = {0, 1} with the trivial cost function c ≡ 0, which gives Π =
{Bern(p) : p ∈ [0, 1]}. Let the transition kernel P : Θ→ X be the binary symmetric channel :

P (x|θ) =

{
θ with probability τ
1− θ with probability 1− τ

(28)

We set h(θ) = θ (so we would like to estimate 1
n

∑n
i=1 θi), so T (Bern(p)) = p. Here, we use

the following lower bound (independent of τ):

δχ2(t) ≥ t

2
√

2
sup{T (π)− T (π′) : π, π′ ∈ Π} (29)

=
t

2
√

2
(30)

On the other hand, the unbiased estimator

T̂ (X1, . . . , Xn) =
1

n(1− 2τ)

n∑
i=1

(Xi − τ) (31)

achieves the rate

R∗det(n) ≤ τ(1− τ)

(1− 2τ)2
· 1

n
(32)

which is not uniform in τ ! Setting τ = o(1) we get R∗det(n)� δχ2( 1√
n

)2.

Actually, the next theorem implies that the only counterexamples occur when we have R∗det(n) = 0
or R∗det(n) � 1

n (the parametric rate)2. We will need extra assumptions for the lower bound to
remove these cases.

Theorem 2 (Main Theorem, deterministic case [Polyanskiy and Wu, 2021])
Under the same technical assumptions as the i.i.d. case, we have the same upper bound

R∗det(n) ≤ δχ2( 1√
n

).

On the other hand, assuming that

A5. Varθ∼π[h(θ)] is uniformly bounded above by KV for any π ∈ Π; and

A6. the cost function c satisfies c ≥ 0 with equality holding for at least one θ0 ∈ Θ,

then, we will have the lower bound

R∗det(n) ≥ 1

2400
δ∗χ2( 1√

n
)2 − KV

2n
. (33)

In particular, if δχ2( 1√
n

) = ω( 1√
n

), the lower bound is matching and the minimax rate is
determined asymptotically.

Sketch of proof. The upper bound is very similar to the previous case. For the lower bound, the
proof can be more concisely expressed using the mixture vs. mixture version of Le Cam’s method:

2In the paper (Polyanskiy and Wu [2021]), there is a simple argument to show why the minimax rate is either 0
or Ω(1/n).
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Theorem 3 (Mixture vs. Mixture)
For Θ0,Θ1 ⊂ Θ, suppose that the following separation holds for all a ∈ A, θ0 ∈ Θ0, θ1 ∈ Θ1:

L(θ0, a) + L(θ1, a) ≥ ∆. (34)

Then, for all probability distributions π0, π1 over Θ,

inf
T

max
θ∈Θ0∪Θ1

Eθ[L(θ, T (X))] ≥ ∆

2
(1− ‖Eπ0

[Pθ0 ]− Eπ1
[πθ1 ]‖TV − π0(Θc

0)− π1(Θc
1)) . (35)

Start with distributions ν0, ν1 ∈ Π such that χ2(ν1P‖ν0P ) ≥ 1
n and suppose δ = T (ν1)−T (ν0) > 0,

and fix a free parameter γ ∈ (0, 1). The distributions of single samples will be the following weighted
combinations

ν′0 = γν0 + (1− γ)δθ∗ , ν′1 = γν1 + (1− γ)δθ∗ (36)

where θ∗ is a zero-cost parameter. The two priors we will consider are precisely (ν′0)⊗n and (ν′1)⊗n.

The two separated sets will be

Θ0 = {θ ∈ Θc : T (πθ) ≤ 2
3T (ν′0) + 1

3T (ν′1)} (37)

Θ1 = {θ ∈ Θc : T (πθ) ≥ 1
3T (ν′0) + 2

3T (ν′1)} (38)

which immediately gives T (πθ1)− T (πθ0) ≥ 1
3 (T (v1)′ − T (v0)′) = γδ

3 for any θ0 ∈ Θ0,θ1 ∈ Θ1, so
∆ = (γδ)2

18 .

Now we show that the probability weight of Θ0,Θ1 under the respective priors is relatively small
due to concentration. For Θ0, T (πθ) has mean T (ν′0) and variance at most KV under the first
prior, so by Chebyshev (and Markov for the cost condition3):

(ν′0)⊗n(Θc
0) ≤ Pθi∼ν′0

[
1

n

n∑
i=1

c(θi) > 1

]
+ Pθi∼ν′0

[
1

n

n∑
i=1

h(θi) > Eh(θi) + γδ/3

]
(39)

≤ γ +
9KV

nγ2δ2
(40)

Similarly, (v′1)⊗n(Θc
1) ≤ γ + 9KV

nγ2δ2 . Finally, we upper bound the TV distance using standard
techniques: ∥∥(ν′1)⊗nP⊗n − (ν′0)⊗nP⊗n

∥∥
TV

=
∥∥(ν′1P )⊗n − (ν′0P )⊗n

∥∥
TV

(41)

≤ 1

2

√
χ2((ν′1P )⊗n‖(ν′0P )⊗n) (42)

=
1

2

√
(1 + χ2(ν′1P‖ν′0P ))n − 1 (43)

≤ 1

2

√
(1 + γ · χ2(ν1P‖ν0P ))n − 1 (44)

≤ 1

2

√
(1 + γ/n)n − 1 ≤ 1

2

√
eγ − 1 (45)

(46)

where we used the convexity of χ2(•‖•). Finally, to conclude,

R∗det(n) ≥ (γδ)2

36
·
(

1− 2γ − 18KV

nγ2δ2
−
√
eγ − 1

2

)
(47)

=
δ2

36

(
γ2 − γ3 − γ2(eγ − 1)

2

)
− KV

2n
(48)

and maximizing γ gives the desired result.
3This is imposed by our assumption that θ ∈ Θc instead of Θ⊗n
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4 Applications

4.1 Binomial Mixtures
We first describe a useful bound for the χ2-modulus of continuity for a particular setting, that can
be applied in the next few examples.

Consider a situation where we would like to do quality control by testing a small number of samples,
and then to infer the number of “bad” items among the entire inventory.

Formally, fix a sampling probability p ∈ (0, 1). Let X = Θ = [d] (where θ will represent the number
of “bad” items), and Π = P([d]). Given observations X ∼ Bin(θ, p), we would like to estimate the
probability mass of {θ = 0} under the prior (i.e. T (π) = π(0)).

The next result describes the modulus of continuity in this case, which we will apply in the following
sections.

Theorem 4 (δχ2 for binomial mixtures, Polyanskiy and Wu [2021])
For any t ≥ 0, d ≥ 1, we have

δχ2(t) ≤ t1∧
p

1−p (49)

and in the other direction, we have

δχ2(t) ≥


t

2
√

2
p ≥ 1

2

C
(

t
ln 1

t

) p
1−p

t ≥ t0, d ≥ C ln2 1
t

(50)

For some t0, C depending on p.

The difficult parts of the proof depends on two other results: Proposition 9 in Polyanskiy et al.
[2020] which converts the LP into analytic properties of certain generating functions and then
analyzes them using complex analysis, and Lemma 12 in Polyanskiy et al. [2020], which describes
a construction.

4.2 Distinct Elements Problem
Suppose we have an urn with at most n balls, and we would like to figure out the number of
different color present among the balls. However, we will only observe each ball with probability
p. If θi ∈ Θ = [n] denotes the number of balls of color i ∈ [n], then the parameter set can be
captured with the cost function c(θ) = θ:

Θc =

{
θ ∈ Θ⊗n :

1

n

n∑
i=1

θi ≤ 1

}
. (51)

The observations are of the form Xi ∼ Bin(θi, p), and the goal is to estimate the (normalized)
number of distinct colors

T (πθ)
4
=

1

n

n∑
i=1

Iθi>1. (52)

Additionally, we also have KV ≤ 1/4 and c(0) = 0, so the theorem in the deterministic case applies.
We can get the following result:
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Theorem 5
If p ≥ 1

2 , then R
∗(n) � 1/n. Otherwise, if p < 1/2, then

c

log2 n
n−p/(1−p) ≤ R∗(n) ≤ n−p/(1−p) (53)

for some constant c = c(p) > 0. Furthermore, the upper bound is attained (to within constant
factors) by an estimator of the form

T̂ =
1

n

n∑
i=1

g(Xi)

with g(0) = 0 (making it oblivious to the total number of balls).

The case where p ≥ 1
2 follows immediately from applying the previous χ2-bound to get the rate for

R∗(n). Some extra work is required to construct an explicit upper bound for the above form (and
then to also enforce g(0) = 0), but it follows idea from previous work in Polyanskiy et al. [2020]
(similar to the binomial mixture result from earlier).
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