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Introduction

Let f : R → C be a function with period 1 (i.e. f(x + 1) = f(x) for all real x). We would like
represent f as a sum of exponential functions:

f(x) =
∑
n∈Z

cne
2πinx.

What should the coefficients be? Note that for any integer n,∫ 1

0

e2πinx dx =

{
1 if n = 0,

0 if n 6= 0,

so by working formally (and ignoring convergence issues), we can recover a single coefficient from
f by integrating against a suitable exponential:∫ 1

0

f(x)e−2πinx dx =

∫ 1

0

(∑
m∈Z

cme
−2πi(m−n)x

)
dx

=
∑
m∈Z

∫ 1

0

e−2πi(m−n)x dx

= cn.

However, it is possible that the sum of exponentials with coefficients cn(f) :=
∫ 1

0
f(x)e−2πinx dx

does not converge to f . The main theorem we will prove here gives a criterion for pointwise
convergence, as well as a criterion for term-by-term differentiation to be legitimate.

Theorem 1 (5.2.1(a),(b) in the course text)
Let f : R → C have period 1 and be continuous. Define the Fourier coefficients cn of f by
the formula

cn =

∫ 1

0

f(x)e−2πinx dx.

(a) We have
∑
n∈Z |cn|2 ≤

∫ 1

0
|f(x)|2dx, so cn → 0, and if

∑
n∈Z |cn| converges then

f(x) =
∑
n∈Z

cne
2πinx

for all x and the partial sums converge uniformly to f .

(b) If for an integer k ≥ 2, cn = O(1/nk) as n → ∞, then f is continuously differentiable
k − 2 times and the corresponding termwise derivatives of

∑
n∈Z cne

2πinx converges
uniformly to the higher derivatives of f .

Overall approach.

For (a), the inequality ∑
n∈Z
|cn|2 ≤

∫ 1

0

|f(x)|2dx

is best interpreted by placing f and e2πinx in the vector space of period 1 continuous functions.
With an appropriate definition of inner product, the right side is the norm of f while cn corresponds
to the projection of f onto e2πinx.

When
∑
n∈Z |cn| converges, the series g(x) =

∑
n∈Z cne

2πinx converges uniformly. It is easy to
check that g has the same Fourier coefficients (the cn’s) as f , and because a continuous function
is uniquely determined by its Fourier coefficients (Lemma 3) we conclude that f = g.
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Part (b) follows by an inductive argument. The case k = 2 is given by part (a), while for k > 2,
we simply note that the derivatives of the partial sums

f ′N (x) =

(
N∑

n=−N
cne

2πinx

)′
=

N∑
n=−N

(2πi)ncne
2πinx

converges uniformly by part (a) (since 2πincn = O(1/nk−1) = O(1/n2)), and using a lemma from
calculus it follows that we can interchange the derivative and the limit (Lemma 5):

f ′(x) = lim
N→∞

f ′N (x)

and from here we apply the inductive hypothesis for k − 1 on f ′.

Proofs

Proof of Theorem 1(a). Firstly, let V be the set of all continuous C-valued functions on R with
period 1. This is a C-vector space by pointwise addition and scalar multiplication. In particular,
if we also define ωn(x) = e2πinx for all integers n, then ωn ∈ V for all integers n.

For f, g ∈ V , define

〈f, g〉 =
∫ 1

0

f(x)g(x) dx.

It is easy to verify that 〈·, ·〉 is a Hermitian product on V (i.e. it is conjugate symmetric and linear
in the first component). Note that the Fourier coefficients can be expressed simply as

cn =

∫ 1

0

f(x)e−2πinx dx = 〈f, ωn〉

and furthermore,

〈ωm, ωn〉 =
∫ 1

0

e2πi(m−n)x dx =

{
1 if m = n

0 otherwise

so the set {ωn}n∈Z is an orthonormal set in V .

Applying Lemma 2 below for any f ∈ V and the orthonormal set {ω−N , ω−N+1, ..., ωN} we conclude
that

N∑
n=−N

|cj |2 ≤ ‖f‖ =
∫ 1

0

|f(x)|2 dx

so taking the limit N → ∞ we conclude that
∑
n∈Z |cj |2 ≤

∫ 1

0
|f(x)|2 dx. In particular, |cn|2 → 0

as n→∞, so cn → 0 as n→∞.

With the additional assumption that
∑
n∈Z |cn| converges, we can apply Lemma 4 below to obtain

uniform convergence for
g(x) =

∑
n∈Z

cne
2πinx.

Finally, we must show that f = g. First we verify that g has the same Fourier coefficients as f .
Because the sum in g uniformly converges, we may swap the order of integration and summation:∫ 1

0

g(x)e−2πinx dx =

∫ 1

0

(∑
m∈Z

cme
2πi(m−n)x

)
dx

=
∑
m∈Z

∫ 1

0

cme
2πi(m−n) dx

= cm.

Now we apply Lemma 3 below to conclude that f = g.
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Proof of Theorem 1(b). We proceed by induction on k.

The base case k = 2 is trivial, since by assumption f is continuous.

Suppose the statement is true for k = m ≥ 2. When k = m + 1 ≥ 3, we aim to show that f is
differentiable, the derivative f ′ is continuous, and the derivative has Fourier coefficients that are
O(1/nk−1), allowing us to invoke the inductive hypothesis.

Define the partial sums

fM,N (x) =

N∑
n=−M

cne
2πinx

with derivatives

f ′M,N (x) =

N∑
n=−M

(2πin)cne
2πinx.

By assumption, (2πin)cn = O(1/nm) = O(1/n2), so
∑
n∈Z |(2πin)cn| converges. Applying Lemma

4, we obtain a continuous, period 1 function

g(x) =
∑
n∈Z

(2πin)cne
2πinx

where the convergence f ′N → g is uniform over x. The preservation of continuity under uniform
limits gives that g is continuous. By Lemma 5 on {fN}, we get f ′ = g, so f is continuously
differentiable.

However, the Fourier coefficients of g are (2πin)cn = O(1/nm), so by applying the case k = m
on f ′, we see that f ′ is continuously differentiable m − 2 times and the corresponding termwise
`-th derivatives converges uniformly to f (`) for 0 ≤ ` ≤ m − 2. Hence, f ′ must be continuously
differentiable m − 1 times with the corresponding termwise `-th derivatives converging uniformly
to f (`) for 0 ≤ ` ≤ m− 1.

By induction, the statement is thus true for all integers k ≥ 2.

Lemmata

Lemma 2
In a C-vector space V with an Hermitian inner product 〈·, ·〉, suppose that {e1, e2, ..., em} is
a set of orthonormal vectors in V . Then for any v ∈ V , the following inequality holds:

m∑
j=1

| 〈v, ej〉 |2 ≤ ‖v‖2.

Proof. This is essentially an analogue of Pythagoras’ Theorem. Define

vj = 〈v, ej〉 ej ; w = v −
m∑
j=1

vj .

Then v is the sum of orthogonal vectors v1, v2, ..., vm, w, and we claim that the sum of squares of
their norms is ‖v‖2.
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We can check this algebraically by expanding out ‖w‖2:

‖w‖2 = ‖v‖2 −
n∑
j=1

(〈v, vj〉+ 〈vj , v〉) +
n∑

j,k=1

〈vi, vj〉

= ‖v‖2 −
n∑
j=1

(
〈v, ej〉 〈v, ej〉+ 〈v, ej〉 〈ej , v〉

)
+

n∑
j=1

〈vj , vj〉

= ‖v‖2 −
n∑
j=1

|〈v, ej〉|2.

Lemma 3
Let f, g : R → C be continuous, period 1 functions. Suppose f and g have the same Fourier
coefficients, i.e. ∫ 1

0

f(x)e−2πinx dx =

∫ 1

0

g(x)e−2πinx dx

for all integers n ∈ Z. Then f = g.

Proof. First we reduce to the case where g = 0. Knowing that case, upon rewriting the condition
as ∫ 1

0

(f − g)(x)e−2πinx dx = 0

for all n ∈ Z we may immediately conclude that f − g = 0, as desired. Hence hereafter, we will
assume that g = 0.

Next, we reduce to the case where f is real-valued. Define two real-valued functions

u(x) =
f(x) + f(x)

2
, v(x) =

f(x)− f(x)
2i

.

Because the Fourier coefficients of f are all zero, so must be the Fourier coefficients of u and v.
Since we can recover f from u and v, it suffices to prove the statement for u and v, thus we may
assume f is real-valued.

Finally, for any real t,∫ 1

0

f(x+ t)e−2πinx dx =

∫ 1

0

f(x)e−2πin(x−t) dx = e2πint
∫ 1

0

f(x)e−2πinx dx = 0

so without loss of generality, if f 6= 0 then we may assume (by a suitable translation) that f(0) 6= 0.
We may further assume that f(0) > 0 (by considering 1

f(0)f instead of f).

Define a trigonometric polynomial p : R→ C to be any function expressible as

p(x) =

N∑
n=−N

cne
2πinx

for some integer N > 0 and complex coefficients c−N , c−N+1, ..., cN . It follows that∫ 1

0

f(x)p(x) dx =

∫ 1

0

f(x)

N∑
n=−N

cne
2πinx dx

=

N∑
n=−N

cn

∫ 1

0

f(x)e2πinx dx = 0.

The approach now is to construct a real-valued trigonometric function p which is concentrated
heavily around integer values (i.e. large near x ∈ Z, approximately zero elsewhere). Trigono-
metric polynomials are closed under pointwise addition and multiplication, so because cos is a
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trigonometric polynomial, one possible candidate is pN (x) = (1+cos 2πx)N for large N due to the
exponential-like growth near 0.

Specifically, by continuity of f around 0, we may fix 0 < ε < 1/2 such that f is bounded below by
a positive constant on [−ε, ε]. Define the constants

α = 1 + cosπε

β = 1 + cos 2πε

which play a role in the lower and upper bounds of pN :

pN (x)


≥ αN if x ∈ [−ε/2, ε/2],
≤ βN if x ∈ [ε, 1− ε],
≥ 0 otherwise.

By assumption, 0 =
∫ 1

0
f(x)pN (x) dx =

∫ 1−ε
−ε f(x)pN (x) dx = 0, so∫ ε

−ε
f(x)pN (x) dx = −

∫ 1−ε

ε

f(x)pN (x) dx.

However, ∫ ε

−ε
f(x)pN (x) ≥

∫ ε/2

−ε/2
f(x)pN (x) ≥ ε inf

x∈[−ε,ε]
f(x) · αN

while ∣∣∣∣∫ 1−ε

ε

f(x)pN (x) dx

∣∣∣∣ ≤ ∫ 1−ε

ε

|f(x)| · pN (x) dx ≤ sup
x∈[0,1]

|f(x)| · βN .

Since α > β > 0, this is a contradiction as N →∞.

Lemma 4
Let c1, c2, ... be a sequence of real numbers where

∑
|cn| converges. Then the function

g(x) =
∑
n∈Z

cne
2πinx

converges uniformly over all x.

Proof. The function g converges absolutely pointwise, so it remains to show that this convergence
is uniform over x. To do this, we compare g with its partial sums gM,N (x) =

∑N
n=−M cne

2πinx:

|g(x)− gM,N (x)| =

∣∣∣∣∣∣
∑

n∈Z−[−M,N ]

cne
2πinx

∣∣∣∣∣∣
≤

∑
n∈Z−[−M,N ]

|cn| → 0 as M,N →∞

where the above bound is uniform over x.

Lemma 5
Suppose {fn} is a sequence of functions, differentiable on [a, b] with each f ′n continuous, such
that {fn} converges pointwise to a function f . If {f ′n} converges uniformly on [a.b] to a
function g then f is differentiable and

f ′(x) = lim
n→∞

f ′n(x).

5 of 6



Math 155 WIM David Lin/linkewei@stanford.edu 8 May 2020

Proof. Since {f ′n} is a uniformly convergent sequence of continuous functions with pointwise limit
g, the function g is continuous and we can pass this limit through definite integration. More
specifically, for all x ∈ [a, b] we have∫ x

a

g(t) dt = lim
n→∞

∫ x

a

f ′n(t) dt = lim
n→∞

(fn(x)− fn(a)) = f(x)− f(a).

This says f(x) = f(a)+
∫ x
a
g(t) dt with g continuous, so by the Fundamental Theorem of Calculus

f is differentiable with f ′ = g; i.e., f ′ coincides with the pointwise limit of the functions f ′n.
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