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Introduction

Let f: R — C be a function with period 1 (i.e. f(z + 1) = f(z) for all real ). We would like
represent f as a sum of exponential functions:

f(lL') _ Z Cne27rina:.

ne”Z

What should the coefficients be? Note that for any integer n,

1 .
/ eQTrin;E dr = 1 lf n= 07
0 0 ifn#0,
so by working formally (and ignoring convergence issues), we can recover a single coefficient from
f by integrating against a suitable exponential:

1 1
/ f($>e—2m'nx dr = / <Z cme—Z‘m’(m—n)x> dx
0 0

meZ

Z /1 6727ri(m7n)x dx
0

mEZ

=cp.

However, it is possible that the sum of exponentials with coefficients ¢, (f) := fol f(x)e 2mine qy
does not converge to f. The main theorem we will prove here gives a criterion for pointwise
convergence, as well as a criterion for term-by-term differentiation to be legitimate.

(" Theorem 1 (5.2.1(a),(b) in the course text) )

Let f : R — C have period 1 and be continuous. Define the Fourier coefficients ¢, of f by
the formula

1
Cn :/ f(z)e 2™ gy,
0
(a) We have Y, |en|* < fol |f(x)?dx, so ¢, — 0, and if >, _; |c,| converges then

f(x) — Z cneQﬂ'inm

neZ
for all  and the partial sums converge uniformly to f.

(b) If for an integer k > 2, ¢, = O(1/n¥) as n — oo, then f is continuously differentiable

k — 2 times and the corresponding termwise derivatives of Y _, c,€*™"* converges

uniformly to the higher derivatives of f.
- J

Overall approach.

For (a), the inequality

1
Slenf < [ If)Ps
neZ 0

is best interpreted by placing f and €2 in the vector space of period 1 continuous functions.
With an appropriate definition of inner product, the right side is the norm of f while ¢,, corresponds
to the projection of f onto e27"e,

When Y, |cn| converges, the series g(z) = >, ., c,€®™™® converges uniformly. It is easy to
check that g has the same Fourier coeflicients (the ¢,,’s) as f, and because a continuous function
is uniquely determined by its Fourier coefficients (Lemma 3) we conclude that f = g.
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Part (b) follows by an inductive argument. The case k = 2 is given by part (a), while for & > 2,
we simply note that the derivatives of the partial sums

N

N /
f]/\f(m) — ( Z cn€27rina:> — Z (27ri)ncn62”""
n=—N

n=—N

converges uniformly by part (a) (since 27wine, = O(1/nf=1) = O(1/n?)), and using a lemma from
calculus it follows that we can interchange the derivative and the limit (Lemma 5):

f@) = lim fy(z)

N—oc0

and from here we apply the inductive hypothesis for £k — 1 on f’.

Proofs

Proof of Theorem 1(a). Firstly, let V' be the set of all continuous C-valued functions on R with
period 1. This is a C-vector space by pointwise addition and scalar multiplication. In particular,
if we also define w,(z) = e*™"* for all integers n, then w, € V for all integers n.

For f,g € V, define )
(f9) = | fglode
0

It is easy to verify that (-,-) is a Hermitian product on V' (i.e. it is conjugate symmetric and linear
in the first component). Note that the Fourier coefficients can be expressed simply as

Cn = /01 f(x)e™ 2™ dy = (f, w,)

and furthermore,

1 ) B
(wm,wn> = / eQﬂ'i(m—n)m de — {1 ifm=n
0

0 otherwise
so the set {wp }nez is an orthonormal set in V.

Applying Lemma 2 below for any f € V and the orthonormal set {w_n,w_N41,...,wn } We conclude

that
N

1
12 _ 2d
S e < |If] /Olf(x)l v

n=—N

so taking the limit N — oo we conclude that Y, , |¢;|* < fol |f(2)|?> dz. In particular, |c,|?> — 0
as n — 00, so ¢, — 0 as n — oo.

With the additional assumption that >
uniform convergence for

nez |cn| converges, we can apply Lemma 4 below to obtain

g(m) — Z cneQﬂ'inw.

nez

Finally, we must show that f = g. First we verify that g has the same Fourier coefficients as f.
Because the sum in g uniformly converges, we may swap the order of integration and summation:

1 1
/ g(x)ef%rinx da :/ (Z Cme27ri(mn)x> dx
0 0

mEZ

1 .
— Z/ Cme27rz(m—n) dx
0

meZ

= Cpm.-

Now we apply Lemma 3 below to conclude that f = g. O
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Proof of Theorem 1(b). We proceed by induction on k.
The base case k = 2 is trivial, since by assumption f is continuous.

Suppose the statement is true for kK = m > 2. When k = m 4+ 1 > 3, we aim to show that f is
differentiable, the derivative f’ is continuous, and the derivative has Fourier coefficients that are
O(1/n*=1), allowing us to invoke the inductive hypothesis.

Define the partial sums

N
fM,N(x) _ Z Cneana:

n=—M
with derivatives N
Jun (@) = Z (2min)c, e*™"®,
n=—M

By assumption, (2min)c, = O(1/n™) = O(1/n?), so 3, ., |(2win)c, | converges. Applying Lemma
4, we obtain a continuous, period 1 function

g(z) = Z (2min)c, e* e

neEZ

where the convergence f}; — ¢ is uniform over x. The preservation of continuity under uniform
limits gives that g is continuous. By Lemma 5 on {fn}, we get f' = g, so f is continuously
differentiable.

However, the Fourier coefficients of g are (2min)c, = O(1/n™), so by applying the case k = m
on f’ we see that f’ is continuously differentiable m — 2 times and the corresponding termwise
(-th derivatives converges uniformly to f() for 0 < ¢ < m — 2. Hence, f’ must be continuously
differentiable m — 1 times with the corresponding termwise ¢-th derivatives converging uniformly
to f© for 0 < ¢ <m—1.

By induction, the statement is thus true for all integers k > 2. O
Lemmata
(" Lemma 2 )

In a C-vector space V with an Hermitian inner product (-, -), suppose that {ej, es, ..., €} is
a set of orthonormal vectors in V. Then for any v € V, the following inequality holds:

m

> ven P < loll*.

j=1

- J

Proof. This is essentially an analogue of Pythagoras’ Theorem. Define
v; = (v, €;) €53 w:v—ZUj.
j=1

Then v is the sum of orthogonal vectors vy, v, ..., Uy, w, and we claim that the sum of squares of
. . 2
their norms is ||v||”.
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We can check this algebraically by expanding out ||wH2:

n n

ol = ol = D (o) + (g ) + D (vire)
Jj=1 k=1
= lol* = 37 (W] (ores) + (w.ey) (o)) + 3 (v509)
= [lol* = 3 ltw.ey) =
( Lemma 3 )

Let f,g: R — C be continuous, period 1 functions. Suppose f and g have the same Fourier
coefficients, i.e.

1 1
/ f(l,)ef%rina: dr = / g(x)ef%rinw dx
0 0

for all integers n € Z. Then f = g.
- J

Proof. First we reduce to the case where g = 0. Knowing that case, upon rewriting the condition
as

| =@ ds =0
0

for all n € Z we may immediately conclude that f — g = 0, as desired. Hence hereafter, we will
assume that g = 0.

Next, we reduce to the case where f is real-valued. Define two real-valued functions

o) = LTy S

Because the Fourier coefficients of f are all zero, so must be the Fourier coeflicients of u and v.

Since we can recover f from u and v, it suffices to prove the statement for v and v, thus we may
assume f is real-valued.

Finally, for any real t,

1 1 1
/ f(iL' + t)e—Q‘n'inw dr = / f(x)e—Qﬂin(a:—t) dr = e27rint/ f(x)e—%rinw dr =0
0 0 0

so without loss of generality, if f # 0 then we may assume (by a suitable translation) that f(0) # 0.
We may further assume that f(0) > 0 (by considering ﬁ f instead of f).

Define a trigonometric polynomial p : R — C to be any function expressible as

N
p(l'): Z cneQﬂ'znw
n=—N

for some integer N > 0 and complex coefficients c_n,c_n41,...,cn. It follows that

/O 1 F(@)p(a) dz = /0 1 f(z) H_XN:N €2

N 1 )
= Z cn/ f(2)e*™ ™ dyx = 0.
n=—N 0

The approach now is to construct a real-valued trigonometric function p which is concentrated
heavily around integer values (i.e. large near x € Z, approximately zero elsewhere). Trigono-
metric polynomials are closed under pointwise addition and multiplication, so because cos is a

40f 6



Math 155 WIM David Lin/linkewei@stanford.edu 8 May 2020

trigonometric polynomial, one possible candidate is px (x) = (14 cos 27z)N for large N due to the
exponential-like growth near 0.

Specifically, by continuity of f around 0, we may fix 0 < € < 1/2 such that f is bounded below by
a positive constant on [—e, e]. Define the constants

a =1+ cosme
B =1+ cos2me

which play a role in the lower and upper bounds of py:

>alN ifze-g/2,¢/2],
pn(z) L < BN ifzele, 1 g,
>0 otherwise.

By assumption, 0 = f01 f(x)pn(x)de = f_ls_s f(x)pn(z)dz =0, so

1—e
F@)px (@) de = / F(@)pw () d.

—€

However,

£ e/2

f@)pn(z) > f@)pn(z) > e inf f(z)-aV

—e —e/2 r€[—e,€]

while
l—e 1—e
[ f@ps@ai < [ 5@ paeydo < s /()] 5"
5 € xe|0,

Since « > 8 > 0, this is a contradiction as N — oo. O
( Lemma 4 N

Let ¢1, o, ... be a sequence of real numbers where > |¢,,| converges. Then the function

g(:]]) _ Z Cn627rinz

neZ

converges uniformly over all z.

- J

Proof. The function g converges absolutely pointwise, so it remains to show that this convergence
. . . . . . N 2mine
is uniform over x. To do this, we compare g with its partial sums g n(x) =D _ 1, cne :

Il
o
3
(9]
S
3
S.
3
8

lg(z) — 9M,N($)|
n€Z—[—M,N]

> el 20 as M,N — oo
n€Z—[—M,N]

IN

where the above bound is uniform over z.

O

(" Lemma 5 )
Suppose {f.} is a sequence of functions, differentiable on [a, b] with each f;, continuous, such
that {f,} converges pointwise to a function f. If {f} converges uniformly on [a.b] to a
function g then f is differentiable and

f'(@) = lim fi ().

n—oo
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Proof. Since {f}} is a uniformly convergent sequence of continuous functions with pointwise limit
g, the function g is continuous and we can pass this limit through definite integration. More
specifically, for all = € [a, b] we have

[ atoae= ww [ pieyde = 1w (1) = o)) = ) - o)

n—oo a

This says f(x) = f(a) + fax g(t) dt with g continuous, so by the Fundamental Theorem of Calculus
f is differentiable with f’ = g; i.e., f’ coincides with the pointwise limit of the functions f/. O
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