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1 Introduction

The goal of this handout is to outline some heuristics that sometimes work on inequalities. While
most inequalities handouts out tell you what you need to know to solve inequalities (hence AM-
GM, Cauchy, the list goes on), here we focus on the information you can obtain without solving
the inequality (a.k.a. heuristics).

Knowledge of the standard tools is assumed and not specifically covered here. Proficiency with the
standard tools is ideal but not required (and honestly a waste of time).

Disclaimer: these methods don’t work on every problem, and it may even be counterproductive.

For instance, IMO 2012 Q2 will lead you on a wild goose chase if you try to “motivate” it, but falls
to a two-line weighted AM-GM.

1.1 Summary of Examples

Just in case you want to try them before you read the solutions.

1. Prove that for x,y, 2z > 0 with product 1,

x 3
Z(Hy)(uz)zl

cyc

2. (ISL 2016 A1/NTST 2017) Let a, b, ¢ be positive real numbers such that min(ab, be, ca) > 1.
Prove that

2
Y@ T )T )@ +1) < <“+§+c> +1.

3. (CGMO 2011) Positive reals a, b, ¢, d satisfy abed = 1. Prove that

[ S S SR
a b ¢ d a+b+c+d— 4

4. (MEMO 2017) Determine the smallest possible real constant C' such that the inequality
|23 + 92 + 22 + 1] < Cla® +9° + 2° + 1]

holds for all real numbers z, y, z satisfying z + y + z = —1.

5. (ISL 2015 A8) Find the largest real constant a such that for all n > 1 and for all real numbers
o, L1, ..., Ty satisfying 0 = zg < 1 < 29 < -+ < T, We have

1 1 1 2 3 n+1
+ +oot—>a( =+ =4+
T =T T2 — 21 Tp = Tn-1 T @2 Tn




RI Math Core 2018 Heuristics for Inequalities 4 Apr 2018

1.2 Quickfire General Advice

e Small cases. Build intuition.

e Easy stuff first.

e Extract as much information as possible from the problem (= apply heuristics).

e Take note of coincidences (like symmetries), most of them can be exploited somehow.

e Keep things neat. Symmetry is valuable, but feel free to force a WLOG ordering if that
solves the problem

e Be aware of your “algebraic tolerance” if you have to get your hands dirty. Same advice also
holds for coordinate geometry,/complex.

e Don’t be afraid to ditch your current approach. This is however much easier said than done.

2 Equality Cases

Why are equality cases important? Simply because the method of proof must encapsulate all
equality cases.

Example 2.1. (‘Vasc’) Show that for all reals a, b, c,

(a® +b* + c*)? > 3(a®b + bPc + c*a)

While this seems fairly innocuous at first glance (“trivial by Muirhead?), it is an extremely diffi-
cult inequality due to the additional equality case at (a: b: c) = (sin2 (4777) ,sin? (27“) ,sin? (%))
Hence, we do not expect a fast proof by Cauchy or AM-GM, because there is almost no way to
reproduce this strange equality case.

The inequality is in fact equivalent to
Z(a2 —2ab+be — * 4 ca)> > 0
cyc

While we don’t expect to pull such magical identities from mid-air, in general equality cases are
the biggest hints as to which methods will work and which will not.

The equality case itself can suggest how exactly to use a particular technique. Take for instance:

Example 2.2. Prove that for z,y,z > 0 with product 1,

T 3
Z(1+y)(1+z) 2]

cyc

A naive person may come up with the following;:

73

However, it won’t work:

P .
A S P 2
L Try+2) =77 i
If we consider the expected equality case at (z,y,z) = (1,1,1), then we will know that this was
doomed to begin with, since in the first step we applied AM-GM to (i,2,2). Instead, a slight

modification proves to be successful:

x> 1+ 1 3
oty eSO
14+y)1+=2) 8 8 4
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Now, summing cyclically,

3
(I+y)(1+2) 2 4= 4

cyc

where we used z +y + z > 33zyz = 3.

I really can’t overstate the importance of the equality case. If anything, the next two methods
both rely on knowledge of what the equality case is.

3 Smoothing

A proof by smoothing starts from the general case and attempts to “adjust” the variables in a way
that makes the inequality tighter. As a (very simple) example:

Example 3.1. (AM-GM) Show that for positive reals ai,ag, ..., an,

a1 +ag + ... +a,
n

> Ya1as...ay

For z,y > 0 with fixed sum, zy becomes larger as  and y are pushed closer together. We will
apply this idea on some pairs of variables.

Denote A = @te2teutan then we select a; < A < aj (if i or j does not exist then all a; = A and
the conclusion is obvious). Take (a;, a;) and replace them with (4, a; + a; — A). Clearly, the new
pair has a larger product. So RHS increases while LH S stays the same, and thus the inequality
has become tighter.

Repeating this step, we find that the number of ¢ where a; = A strictly increases, so eventu-
ally a; = A for all 7, where the inequality is true. Hence before this, the inequality must been true
as well (since it only became tighter after each operation). In practice however, smoothing is never
this clean. In the above example:

e For any fixed variable, there are only two separate terms containing it. This is rarely the
case.

e a;a; changes predictably, despite the fact that we parked a; and a; at very weird places. In
practice this is much much worse, and usually we will be lucky to even map them both to

LEY or /aa;.
(In an n-variable setting, this step often comes from the n = 2 case.)

Depending on what smoothing step you come up with, you may be in for a rough bash or a smooth
(heh) time.
3.1 Example - Mount Inequality erupts, NTST edition

Example 3.2. (ISL 2016 A1/NTST 2017) Let a, b, ¢ be positive real numbers such that min(ab, be, ca) >
1. Prove that

Y@ DO+ D@+ D) < (“;“) .y

Let’s solve the two-variable case: for z,y > 0,2y > 1,

9 2
(@ + 1)+ 1) < ((;y) +1>
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This is fairly easy because we expect (x —y)? to be a factor. A fairly cute way is to note

9 2
P+ D)+ <(z—y?+(xzy+1)2< ((I;y> +1>

or (z—y)% < (%)2 ((9’37“”)2 +ay + 2). This makes us want to do things like (a,b) — (%52, 2£2).
We quickly check that the min condition still holds under this kind of operations. Now there are

two options:

1) WLOG a > b > ¢. Then we smooth a and b together ((a,b,c) — (z,2,c) where z = 2Fb)
and attempt to directly expand/factorize the resulting 2-variable expression. This is not too hard,
since we expect (z — ¢)? to be a factor again.

2) Or we can brute force this and alternately apply (a,b,c) — (“TH’WT'H’,C) and (a,b,¢) —

(a,%t¢,22¢). By using a monovariant (like [a — b| 4+ [b — ¢| + |c — a|, which halves each time
after the first step), we can see that eventually all three variables converge to %b“ (since the
differences converge to 0 and their sum is invariant). Hence we just need to show that using a’,b’, ¢/

that each differ from a, b, ¢ by at most € — 0 respectively, the overall discrepancy should also — 0.

The second approach is known as Strong Variable Mizing. While its more tricky to make rig-
orous but worth it if you just don’t see any way to make the 3-variable case work (or if this was
generalized to n-variables).

3.2 Normalization

A polynomial P is homogeneous if P(ka,kb,kc) = k%8P P(a,b,c). Intuitively, this means that
each term in P should have the same total degree (i.e. sum of degree in each variable). Similarly,
we call an inequality homogeneous if LHS — RHS is homogeneous.

This gives us the seemingly useless smoothing step (a,b,c¢) — (ka, kb, kc), but what we can do
now is to set k = ﬁ, which means that we can assume a+ b+ ¢ = 1 and preserve full generality.
This is sometimes useful:

Example 3.3. (Cauchy-Schwarz) Show that for non-negative reals ay,as, ..., an;b1,b2, ..., by,

(a3 4 a3 4 ... +a?) (b + b3 + ... +b2) > (a1by + azby + ... + anby)?

Not only is the above inequality homogeneous, it is homogeneous if we just consider {a;} alone (or
{b;} alone). So we can assume a3 + a3 + ... +a2 = 1 and b? + b3 + ... +b2 = 1, then the conclusion

immediately follows from:
1
> aib; < 25(%‘2 +b) =1

However, usually conditions explicitly given in the problem (“Given positive reals a, b, ¢ with sum
1...”) are superfluous and so should be promptly thrown away by substituting copies of it into the
equation until it is homogeneous. For instance, if a, b, c have sum 1, then expressions like a? + 1
should be re-written as a® + (a + b+ ¢).

Disclaimer: normalization is very rare in practice, but it’s a good demonstration of the under-

lying principles. Homogenization doesn’t work all the time, you will have to judge whether it’s
helpful or not. Also, if the condition itself is not homogeneous you’re screwed anyway.

3.3 Convexity

Sums of convex/concave functions can be smoothed:
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Fact 3.1. Let f(x) be conver on the interval I. Suppose a < b are both in I, and suppose
epsilon > 0 is a real number for which a +e¢ <b—e€. Then f(a)+ f(b) > f(a+¢€)+ f(b—e€).

This means that

e For convex functions f, we can decrease the sum f(a)+ f(b) by “smoothing” a and b together,
and increase the sum by “unsmoothing” a and b apart.

e For concave functions f, we can increase the sum f(a) + f(b) by “smoothing” a and b
together, and decrease the sum by “unsmoothing” a and b apart.

This quickly implies things like Jensen’s inequality (or even Karamata’s if you're feeling brave),
but much more is possible. In general, if a function f is made up of concave and convex parts,
then to maximize sums of f we simply smooth along the concave parts and unsmooth along the
convex parts, so we can WLOG conclude things like there is at most one variable within a convex
part and all variables within a concave part are equal.

This is very messy to execute in practice, but usually the following special case is (typically)
more than sufficient:

Fact 3.2. (n—1 EV) Let a1, as, ..., a, be reals with fixred sum. Let f be a function with exactly one
inflection point (i.e. f"(x) =0 has ezactly one root). Then if f(a1) + f(a2) + ... + f(a,) achieves
maximal or minimal value, then (at least) n — 1 of them are equal to each other.

Note: if the product is fixed instead of a sum, you should do a variable substitution (y; = Inz;)
before proceeding as all of the above only work with constant sum.

If there are no extra conditions like fixed sum/product, then we can still think about single-
variable smoothing. If the equality case lies at the endpoints of an interval, sometimes this is the
reason why:

e If f(z) is convex on the interval a < z < b, then f(x) attains a maximum, and that value
is either f(a) or f(b).

e If f(x) is concave on the interval a < z < b, then f(z) attains a minimum, and that value is

either f(a) or f(b).

3.4 Other ways to smooth

Traditionally, smoothing has only referred to pushing variables together, but it can be a lot more
generic. It all depends on what kind smoothing steps you come up with.

Philosophically, you should think of smoothing as a kind of WLOG: you are reducing all your
cases down to a smaller subset (which should be easier to deal with). Here’s an inexhaustive list
of some ways to smooth:

e Ifonly (a—b), (b—c), (c—a) appear on one side, you can consider (a,b,c) = (a—e€,b—¢,c—¢).

e You can rewrite the variables as elementary symmetric polynomials (i.e. (a+b+ c,ab+bc+
ca,abc) = (p,q,r)) and smooth those instead. The only edge cases are boundary conditions
and if two of a, b, ¢ are equal.

e In general, anything that changes a small part of the inequality predictably qualifies as a
smoothing step. In this way, smoothing in inequalities is a little like smoothing in com-
binatorics. The more synergistic your smoothing steps are, the less algebra you have to
do.

3.5 Example - What does a smoothing bash look like?

Quick note: this seems to be a “classic example” on how to smooth, and is essentially what happens
if you don’t have a good smoothing step. But there’s no other way to do this problem, so I won’t
complain.
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Example 3.4. (CGMO 2011) Positive reals a,b,c,d satisfy abcd = 1. Prove that

11t 1 9 %
a b ¢ d a+b+tc+d ™ 4

The usual tools fail spectacularly here, especially since nothing can be done about abed = 1 with-
out the inequality melting into an intractable mess.

Let’s try to do something like (a,b,c,d) — (Vab,Vab,c,d). For this to work for any a,b,c,d
would be too much to hope for, but let’s just try simplifying the statement anyway to see what we
need to assume. We want:

2 9 1 1 9

+ <44
Vab  2Vab+c+d a b a+b+c+d

It’s actually not too bad if we group + + % with

2 For cleanliness, we do (a,b,c,d) =

a Vab’
(w?, 22,92, 22), then:
2 n 9 < 1 n 1 9
wr  2wr+y?+22 T w? 2?2 w?4a?+y?42?
9 9 (w—x2)?
A - <
2wr +y2+ 22 w? a2 +y? 4 22 w?a?
9(w — x)? (w—2)?
Quwz+y?+22) (w2 + 22+ y2 +22) = w?a?
9 < 1

54
Quwz + y? + 22)(w? + 22 + y? + 22) — w2a?
& (ur +y? + 22 (w? + 22 +y? + 2%) > Jw?a?
Of course, the last bit works as long as y2 + 22 > wx. This pretty much means that we can always

smooth a and b together if ¢ or d is the largest among a, b, ¢,d. Soif a < b < ¢ < d, we can perform
this on a,b and a, ¢ repeatedly which will converge to a =b = c.

At this point, we can just bash out the last bit: the original inequality is equivalent to

(a —1)%(12a% + 24a® + 36a* — 2703 — 14a® — a + 12)
4a(3a* + 1)

>0

(where naturally we predicted that (a — 1)? was a factor). It remains to show that f(a) =
12a® + 24a® + 36a* — 27a® — 14a%2 — a + 12 > 0. A reasonable way to do this is to split f(a)
as g(a) — h(a) where g is increasing and h is decreasing, then do a piecewise bash by cutting our
desired interval into smaller intervals of the form [p, q] such that g(p) — h(g) > 0. For instance:

a > 1 (technically this is not required, but anyway):
12a® + 24a° + 36a* > 60a® > 27a® + 14a® + a

< a<1: 24a® + 36a* > 27a3, 12a% > 3a? and 12 > a + 1142
<a< %: 24a® + 36a* > 24a3, and 12 > 3a® + 14a? + a.

0<a<i12>27%+ 14a? + a. Done!

4 Double Roots

4.1 Some motivation

Inequalities (with equality cases) are closely related to double roots. Think about this:
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Example 4.1. Let P be a polynomial with real coefficients. If P(x) > 0 for all x and P(a) = 0,
then (v — a)? divides P(x).

Geometrically, this is obvious as we must have P’(«) = 0, otherwise P will dip below 0 either right
before or right after «.

Algebraically, we can set y = x — a and expand P(z) = ag + a1y + O(y?) where x ~ «. Then it’s
clear that when x moves in the range [@ — €, a + ¢] we can ignore the O(y?) part and treat f as
linear (which means it has to be identically 0).

In fact, we only need P(z) > 0 around the neighbourhood of «, so conditions like z > 0 are
generally not a problem.

Perhaps more interestingly, does this work in more variables?

Example 4.2. Let P(x,y) be a bivariate polynomial. Suppose that P(x,y) > 0 for all x,y and
P(z,2) =0 for all z. Does (z —y)? divide P(x,y)?

Solution: actually we expect something very similar to work. Treating R[z,y| as R[y|[z — y] (read:
polynomials in « — y with coefficients which are polynomials in y), we write:

P(z,y) = Po(y) + (z — y)Pr(y) + O((z — »)?)

But for a fixed value of y, (x—y)? divides P(x,y). Taking large z, we get that Py(y)+(z—y)P1(y) =
0 for fixed y. So for all y, P;(y) =0 and Py(y) — yP1(y) = 0, and hence the fact is proven.

This is an extremely useful heuristic to have! Broadly speaking, this essentially means that when-
ever we have an equality case, we should expect a double root.

Unfortunately there’s nothing similar for z,y, z, since we expect expressions like > k, (b — ¢)%.

4.2 Example - Absolute value, absolute nightmare?

Example 4.3. (MEMO 2017) Determine the smallest possible real constant C such that the in-
equality

|2* + 4% + 22 + 1| < Cla® + 4% + 2° + 1
holds for all real numbers x,y, z satisfying x +y + z = —1.

Since the inequality varies over reals (instead of non-negative reals), we can throw away most of
the standard stockpile and instead try to use our “bare hands”. It’s very likely this ends up as a
factorization /sum of squares-type deal.

The —1 clearly isn’t going to help, so let’s homogenize:

(@+y+2)? (@ +y° +2° = (2 +y+2)) S Cl” +4° +2° — (2 +y +2)°]
But, now note that RHS? — LHS? does have an equality case at z = —y, so we expect (x + y)>
to divide it, or at least (x + y)|RHS — LHS. In addition, LHS = 0 whenever = —y. Hence it’s
also reasonable to think that (x 4 y) divides it (and by symmetry, so must (y + z) and (z + x)).
Indeed, it’s not hard to verify that
(@+y+2)° = (@ +y°+2°) =3 +y)(y+2)(z +2)
Similarly, we should expect
(@+y+2)° = (@ +¢°+2°) = (A@* +1" +2%) + Blay +yz + 22)) (@ + ) (y + 2)(2 + 2)

for some constants A, B which are easily determined by checking two specific sets of (z,y,z). I'll
save you the trouble and tell you A = B = 5.

Anyway, this means that after throwing away (r + y)(y + 2)(z + x), the remaining terms are
non-negative (so we can toss the absolute values). Moreover, the remaining degree is 2. Easy

peasy.
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4.3 Generalized double roots = partial derivatives?

Of course, not all inequalities look like polynomials. In general, the best that we have is f/'(a) = 0,
or for multivariate f:
of

=0

=y

where (z;) = (o) is the equality case.

If you’re analyzing the behaviour of each variable, you can try to solve for where the minima
happens, but it’s not strictly necessary.

Note: derivatives are good as a heuristic but bad as a proof technique. Even ignoring bound-
ary cases, we only know that (minimum at o = f’(«) = 0) but not (f’(«) = 0 = minimum at «).

4.4 Undetermined coefficients

Some methods attempt to bound each term in the inequality by a term of some predetermined
form, like the tangent line trick or isolated fudging. In either case, the variable coefficients must
be determined, and assuming a “double root” can help us make an educated guess.

Example 4.4. (Nesbitt) Show that for a,b,c > 0,

a . b n c
b+c c+a a+b

3
> 2
-2

Perhaps we predict that for some r:

a_ o 3a”
b+ec ™ 2(a"+b"+cn)

Let’s cross-multiply and do a check at b = ¢ = 1:
fla) =2a(a" +b"+c") = 3a"(b+c) = 2a"" +4a —6a" >0
We expect f/(1) =0, so f'(1) =2(r +1) + 4 — 6r = 0. Hence r = 3. Indeed:
as +abd +abd > 3a(ab2)% —3a3%b
and a similar inequality when c is replaced with b. Adding them together, we are done!

While this may seem like a lot of work just for Nesbitt (why not do a one-line Cauchy?), this
does have a comparative advantage sometimes.

4.5 Example - OH MY GOD IT’S AN AS8
By the way, I couldn’t solve this, but I got surprisingly far using some of the ideas discussed.

Example 4.5. (ISL 2015 A8) Find the largest real constant a such that for all n > 1 and for all
real numbers xg, 1, ..., Ty satisfying 0 = xg < 1 < x93 < -+ - < T, we have

1 1 1 2 3 n+1
+ ot —>al =+ =4+
T —x Ty —T1 Tp — Tp_1 T X Ty

Maybe the first thing we do is to try some small cases: n =1 is trivial and gives us a

is as follows:
1 1 ( 2 3 )
— + Za|—+—
x T2 —T1 X T2

IN
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Simplifying slightly:
1—-2a 1 3a
+ > —

T1 To — X1 X2

2
Cauchy tells us that minimum on the left hand side is in fact (7vl7§:+1), so solving we have that

a < % a seems like it’s dropping (as n increases) but very slowly.
n = 3 is a little too complicated for us to get a nice looking bound for a, so we’ll stop there
with small cases.

Looking at n = 2, it is reasonable to imagine an approach that looks like summing inequalities of

the form
? ? ? S alk+1)

+ + ...+ =
1 T2 — I Tk — Tk—1 Tk

...except we have no idea what the coefficients should be. In fact, if this inequality is “tight”, we
need the equality case of Cauchy to hold (i.e. “proportional” sequences), and so we need to know
the equality case for x; first.

Here’s where the heuristics begin. Now let’s think about adjusting just one variable zj so that the
inequality is optimally tight. We isolate all terms where x; appear and treat it as a function:

i) = 1 N 1 Ca(k+1)

(*—2p—1)  (Thy1 — ) T

If 25, was minimal, we should expect either x to be at the endpoints (which makes f shoot off to
infinity) or f’(xx) = 0. We should thus pay attention to

1 1 +a(k’—|—1)

_|_
(x—2p-1)?  (Thg1 — )2 2

HOEE

Sometimes, here’s where we try and solve the equation f’(x) = 0 but I assure you it doesn’t end
well here. Instead, we’ll just keep the equation as it is and see what we can do.

To minimize future confusion, we are going to replace all the z’s with y’s. Specifically, we will keep
{z;} as variables while {y;} will denote the specific value that keeps LHS — RHS minimal.

Since f'(y;) = 0, we have:

a(k+1) 1 1

yi (yk - yk71)2 (yk+1 - yk)2

(Quick sanity check: multiply both sides by y; and sum over k. Realise things somewhat work
out. Also RHS looks like it telescopes.)

This doesn’t seem very useful at the moment, but let’s try to go back to the initial Cauchy
and make it work.

5 >
Yn Yk — Yk+1 Yn

]; a(n +1)(yk — yrs1)® 1 a(n+1)

In fact, this is “dummy Cauchy” since equality holds all the time. But let’s sum over n and see
what happens:

Do =) : Za(n+1) Zza(zjl)

— 2
& Yk — Yk+1 sk Yn

But ank a(zgl) < (yk—;k—l)z by the telescope, and this is tight if y,, — y,—1 — o0 when n — oo!

That’s way too big of a coincidence to pass up (even though this is still a “dummy equation”).
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Let’s see whether we can turn this into something concrete: for one, let’s go back to the Cauchy
statement with x; but keeping y; for the coeflicients:

2 ’ =
Yn Tk — Tk+1 Tn

zn: a(n +1)(yk — yr+1)” 1 a(n+1)
k=1
Summing once again (over n):

N N N N
Zl>Z<(yk—yk+1)2'za(n+l)>' ! Zzw

2 _
k=1 nek In Tk = Tht

Holy crap. As long as we have a working a and y;, we are done! Unfortunately I could not construct
them, so I failed here. Booooo.

For completeness: a = % and y; = (1";2) magically works. If you have a good way of figuring
this out please tell me.

5 More Problems

These aren’t specifically solvable with the above methods, but I just think they look ISL-like:

1. Show that for reals ay,aq, ..., a, and any subset S C {1,2,...,n},

2
<Zaz> < Z (ai—|—ai+1—|—...—|—aj)2

i€s 1<i<j<n

2. Given complex numbers z1, 29, ..., 2, such that |z1| + |22| + ... + |2z| = 1. Show that there
exists a subset S C {1,2,...,n} such that

3. Determine, for each positive integer n, the maximal k such that for all reals x, x5, ..., z,,, the
following inequality holds:

\/x% + a2+ ...+ 22 > kmin{|z1 — 22, |z2 — 23|, o0y |20 — 21|}

4. Find the greatest real number k such that, for any positive a, b, ¢ with a? > be,

(a® —be)? > k(b? — ca)(c® — ab)
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