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1 Introduction

Ising Model. The Ising model is a probability distribution over the hypercube {−1,+1}n. We
think of these as the spins of n particles. Furthermore, we allow pairs of particles can influence
each other. This is captured by the (negative) Hamilitonian or energy f : {±1}n → R:

f(σ) =
∑
i<j

Jijσiσj =
1

2
σ⊤Jσ

where σ = (σ1, σ2, ..., σn) ∈ {±1}n. The signs of the coefficients {Jij} represents the nature of the
interaction between particles i and j: Jij > 0 is a preference towards alignment and Jij < 0 is a
preference towards disalignment. This produces a probability measure µ (implicitly dependent on
β ∈ R, J = {Jij}i<j):

µ(σ) ∝ eβf(σ).

We would like to estimate the log-partition function

logZ = log
∑

σ∈{±1}n

eβf(σ)

and typically we would like this to be accurate up to o(n).

Gibbs Variational Principle. By Jensen’s inequality, we have the naive inequality

logZ = log
∑
σ

eβf(σ) = n log 2 + log E
σ∼Unif{±1}n

eβf(σ)

≥ n log 2 + β · E
σ∼Unif{±1}n

f(σ) = n log 2

This is, unfortunately, potentially a very loose bound. In the limit β → ∞, the sum in Z is
dominated by eβmaxσ f(σ), so we expect logZ ≈ βmaxσ f(σ), and this bound misses the dependence
on β completely.

By taking more care with the choice of distribution, we can obtain a much better bound. Let µ be
some distribution over {±1}n, then:

logZ = log
∑
σ

eβf(σ) = log
∑
σ

eβf(σ)−log µ(σ) · µ(σ)

≥
∑
σ

(βf(σ)− logµ(σ)) · µ(σ)

= β · E
σ∼µ

f(σ) +H(µ)

where H(µ) = Eσ∼µ[− logµ(σ)] is the entropy of µ. Equality is attained when µ(σ) ∝ eβH(σ), so
this is often written as:

logZ = sup
µ

{
β · E

σ∼µ
f(σ) +H(µ)

}
where we take supremum over all distributions over the hypercube {±1}n.

Mean-field hypothesis. The space of distributions over {±1}n is extremely large. Is there a
smaller distribution class that gives the correct answer?

The mean-field hypothesis is that under certain assumptions, the Gibbs inequality is approximately
saturated by product measures, i.e.

logZ ≈ sup
ξ prod.

{β · E
σ∼ξ

f(σ) +H(ξ)}

There are many theorems in the literature that give an upper bound for the gap between logZ
and the variational term on the RHS. For an accurate estimation of the free energy 1

n logZ, one
would like this estimation to be o(n).
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Goal of the project. The goal of this project is to compare various upper bounds in the
literature on the Ising model. One might hope for a single upper bound to be the tightest (up to
order), but this is difficult to establish for quantities which are variational or covering-related.

For the sake of feasibility, we instead attempt to evaluate the upper bounds for specific J (which
are either deterministic or random graph ensembles), and establish their behavior in terms of the
number of particles n, the inverse temperature β and other parameters that J may depend on.

Applications. Estimation of the normalizing constant is a key step in the computations of
probabilities in various random models (e.g. factor models). When the normalizing constant is
computable, one can also compute, for instance, the marginal probabilities.

The first bound of this type appeared in [CD16], which demonstrated a large deviation principle
for nonlinear functions. Suppose one had a nonlinear function g : {±1}n → R, and we would like
to estimate the upper tails of g(X) for X ∼ Unif{±1}n. By picking f to be a smooth “cut-off”
function of the form

f(σ) =

{
0 if g(σ) ≥ tn

large negative number if g(σ) < tn
(1)

then ef(σ) is approximately the indicator Ig(σ)≥tn, so logZ ≈ logP(g(X) ≥ tn).

Using suitable g, one can encode bounds for various subgraph counts. The authors were able to
obtain new results about the upper tails of triangle counts in the Erdős-Renyi graph, as well as
the upper tail of the number of 3-term arithmetic progression in a random subset of integers.

Such bounds can also give better upper tails for random matrices. In [Aug20], a large deviation
principle was established for the trace of Wigner matrices.
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2 Notation

• For compactness, we will write {±1} instead of {−1, 1} and [±1] instead of [−1, 1].

• When we say that J has a limiting spectrum supported on [−f(n), f(n)], we really mean
that 1

f(n)J has a limiting spectrum supported on [±1].

• Asymptotic notation. All of the following are assumed to hold uniformly across other free
parameters

– f(n) ≍ g(n) for f(n) = Θ(g(n))

– f(n) ∼ g(n) for f(n) = (1 + o(1))g(n).

– f(n) ≲ g(n) for f(n) = O(g(n))

– f(n) ≪ g(n) for f(n) = o(g(n))

• Matrix shorthands.

– J◦ denotes the matrix formed by the off-diagonal elements of J , so

J◦
ij =

{
Jij i ̸= j

0 i = j

– Ji denotes the i-th row of matrix J as a vector.

– ∥J∥F is the Frobenius norm of J .

– λi(J) is the i-th largest eigenvalue of J by absolute value. (For well-definedness, we
always write |λi(J)|.)

• Covering numbers. N(S, r, ℓ) denotes the minimum number of balls of radius r (under the
metric ℓ) required to cover the set S.

• Standard functions.

– (x)+ = max{x, 0}

• Convergence of random variables.

– Xn
d⇒ X: {Xn} converges to X in distribution.
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3 Log-partition bounds from literature

Relative version of Gibbs. Instead of estimating logZ, we can opt to estimate log Z
2n =

logZ − n log 2. This can be interpreted as the log expected value of ef(σ) for σ drawn from the
uniform distribution on {±1}n.

In general, for a product space K = K1 × ... × Kn with an ambient distribution ν and a test
distribution µ ≫ ν, we have the analogous bound

log

∫
ef(σ)dν(σ) = log

∫
eβ·f(σ)dν(σ) (2)

= log

∫
ef(σ)−log dν

dµ (σ)dµ(σ) (3)

≥ E
σ∼µ

[
f(σ)− log

dµ

dν
(σ)

]
(4)

= E
σ∼µ

f +DKL(µ||ν) (5)

This implies that the mean-field gap

GAP := log

∫
ef(σ)dν(σ)− sup

ξ prod.

{
E
ξ
f +DKL(ξ||ν)

}
(6)

is always non-negative. Inequalities presented below from the literature are upper bounds of GAP
in this context under various assumptions.

We will use the following shorthand for these two recurring cases:

• K = [−1, 1]n, ν = Unif({±1}n), which we call the hypercube.

• K = {−1, 1}n, ν = Unif({±1}n), which we call the discrete hypercube.

In the former case, some results deal with a slightly different gap (where the mean of the distribution
ξ is passed directly into f):

GAP∗ := log

∫
ef(σ)dν(σ)− sup

ξ prod.
{f(E

ξ
σ) +DKL(ξ∥ν)} (7)

= log

∫
ef(σ)dν(σ)− sup

ξ prod.
{E
ξ
f +

1

2

n∑
i=1

Jii(1−m2
i ) +DKL(ξ∥ν)} (8)

where m = Eξ σ is the average magnetization in ξ.

This difference will not matter too much when we apply the result in Subsection 4.1, since

|GAP− GAP∗| ≤
n∑

i=1

1

2
|Jii|

which is typically an order smaller than GAP.

Results. We list the various results in literature below:

Theorem 1 ([CD16], Theorem 1.6). For the hypercube, if f twice continuously differentiable, we
have

GAP∗ ≤ (complexity term) + (smoothness term) (9)
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where

(complexity term) :=

(
n

n∑
i=1

b2i

)1/2

ε+
3

2
nε+ log |D(ε)| (10)

(smoothness term) := 8

 n∑
i=1

(
acii + b2i

)
+

n∑
i,j=1

(
ac2ij + bibjcij + 2bicij

)1/2

+ 2

(
n∑

i=1

b2i

)1/2( n∑
i=1

c2ii

)1/2

+ 12

n∑
i=1

cii + log 2 (11)

and

a = ∥f∥, bi =
∥∥∥∥ ∂f

∂σi

∥∥∥∥, cij = ∥∥∥∥ ∂2f

∂σi∂σj

∥∥∥∥
where ∥·∥ is the sup-norm for a function and D(ε) is a

√
nε-covering of ∇f({±1}n) under the

ℓ2-distance.

Theorem 2 ([Yan20]). Suppose each Vi is a Banach space with a norm ∥·∥Vi
and a probability

measure νi supported on a convex compact set Ki ⊂ Vi with diameter at most M . Let

∥x∥V := max
i∈[n]

∥xi∥Vi

be the induced norm on V , and suppose that f : K → R is twice Fréchet differentiable. Furthermore,
let m(ξi) ∈ Vi denote the mean of ξi for any probability distribution ξi ≪ µi, and for a product
distribution on V define

m(ξ) := (m(ξ1),m(ξ2), ...,m(ξn)).

Then, for any ε > 0,

GAP∗ := log

∫
K

ef(x)dν(x)− max
ξ≪ν,ξ prod.

{
f(m(ξ))−

n∑
i=1

D(ξi∥νi)

}
(12)

≤ B1 +B2 + log 2 + log |D(ε)| (13)

where

B1 := 4

M2

(
a

n∑
i=1

cii +

n∑
i=1

b2i

)
+M3

n∑
i,j=1

bicij +M4

a

n∑
i,j=1

c2ij +

n∑
i,j=1

bibjcij

 1
2

, (14)

B2 := 4

(
n∑

i=1

b2i + ε2n

) 1
2

M3

(
n∑

i=1

c2ii

) 1
2

+M2n
1
2 ε

+

n∑
i=1

M2cii +Mnε, (15)

and the other parameters satisfy

a := sup
x∈K

f(x) (16)

bi := sup
x∈K

sup
∥ri∥Vi

≤1

|fi(x)(ri)| (17)

cij = sup
x∈K

sup
∥zi∥Vi

,∥rj∥Vi
≤1

|fij(x)(zi, rj)| (18)

where fi, fij are the first and second partial derivatives of f respectively, and interpreting ∇f =
(fi(·))i as a mapping ∇f : K →

∏
i L(Vi,R), D(ε) is a

√
nε-covering of ∇f(K) under the norm

∥g∥∏
i L(Vi,R) =

(
n∑

i=1

sup
∥ri∥Vi

≤1

|gi(ri)|2
)1/2

. (19)
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Theorem 3 ([Aug20], Theorem 1.1). For f continuous differentiable on the hypercube,

GAP∗ ≤ log |Dδ|+ δ (20)

where Dδ is a δ/D-net of the convex hull of ∇f(suppµ) and D is the diameter of suppµ.

Corollary 4. There exists an absolute constant κ > 0 for which

GAP∗ ≤ κn1/3 GW(∇f(suppµ))2/3 (21)

where GW(V ) refers to the Gaussian width of a set V , defined by

GW(V ) := E
x∼N (0,I)

sup
v∈V

⟨x, v⟩ (22)

Theorem 5 ([Aus19], Prop 5.1). If each Ki has diameter ≤ 1,

GAP ≤ (ϵ+ δ)n+

√
ϵ+ δ

2
· L

where f is L-Lipschitz for the Hamming metric dn = 1
n

∑n
i=1 dKi , and the set {∇f(x, ·) : x ∈ K}

can be covered by eϵn sets of ∥·∥-diameter less than δn.

Here, ∇f(x, ·) is the discrete derivative with respect to some fixed reference element ∗ ∈ K:

∇f(x, y) :=

n∑
i=1

∂if(x, yi) (23)

∂if(x, yi) := (f(x1, ..., xi−1, yi, xi+1, ..., xn)− f(x1, ..., xi−1, ∗i, xi+1, ..., xn)) (24)

and the norm ∥·∥ induced on {∇f(x, ·} is the sup norm of functions on K, that is,

∥∇f(x, ·)−∇f(y, ·)∥ = sup
z

|∇f(x, z)−∇f(y, z)| (25)

Theorem 6 ([Eld18], Corollary 2). For the discrete hypercube, we have

GAP ≤ 64 Lip(f)2/3 GW+(∇f{±1}n) (26)

where:

∂if(y) :=
1

2
(f(y1, ..., yi−1, 1, yi+1, ..., yn)− f(y1, ..., yi−1,−1, yi+1, ..., yn))

Lip(f) := max
i,y

|∂if(y)|

∇f(y) := (∂if(y))i

GW+(V ) := E
x∼N (0,I)

sup
v∈V

(⟨x, v⟩)+

Theorem 7 ([Aug21], Theorem 1). For the hypercube (and f differentiable),

GAP ≤ 4 · RW(∇f({±1}n))

where RW(V ) denotes the Rademacher mean-width of V :

RW(V ) := E
x∼Unif{±1}n

sup
x,v

⟨x, v⟩ (27)

Theorem 8 ([JKR19], Theorem 1.1). For the Ising model (f(σ) = 1
2σ

⊤Jσ) on the hypercube
(K = {±1}n):

GAP ≤ 3n2/3∥J∥2/3F
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Theorem 9 ([Eld20], Theorem 5 and Corollary 6). For K = (Rk)n with underlying measure ν⊗n

(where ν is a measure on Rk with compact support), and the Potts model

f(σ) =

n∑
i,j=1

Jij ⟨σi, σj⟩+
n∑

i=1

⟨hi, σi⟩ (28)

on (and µ ∝ ef the Gibbs distribution),

GAP ≤ 3 log det
(
Cov(µ)J̃ + I

)
where J̃ = (J2)1/2 is the matrix absolute-value obtained by switching the eigenvalues for their
absolute values.

Since µ is difficult to compute directly, the following three corollaries are also true:

GAP ≤ 3max

∑
i∈[n]

log(βi|λi(J)|+ 1);βi ≥ 0,
∑

βi ≤ S

 (29)

GAP ≤ 10 · p+ 1

p
(D2n∥J∥p/(p+1)

Sp
) (30)

GAP ≤ 3 rank(J) log
(
D2n∥J∥S∞

+ 1
)

(31)

where D refers to the diameter of the support of ν, and ∥J∥Sp
refers to the p-th Schatten norm

∥J∥Sp
:=

∑
i∈[n]

|λi(J)|p
1/p

(32)

and {λi(J)} are the eigenvalues of J .

Page 9 of 28



4 Overview of Results

The goal here is to determine is to attempt to compare the different bounds (at least under various
specific assumptions) up to order. A summary of the methodology is as follows:

4.1 The Ising Model on the Hypercube
The common denominator of all the theorems gathered in Section 3 is that they all specialize to
statements about the Ising model on the hypercube, so we will do so for the sake of comparison.
For each result, we would like to establish the upper bound for GAP (or GAP∗) up to order given
the (symmetric) interaction matrix J .

We summarize the results in the following table, and defer the computations to Subsection 5.1.

Result Upper bound for GAP (up to order)

[CD16]

infε>0

{(
1
n

∑n
i=1 ∥Ji∥

2
1

)1/2
ε+ ε+ logN(J{±1}, ε/

√
n, ℓ2)

}
+(∑n

i=1 ∥Ji∥
2
1 +

√
n∥J∥op(

∑
i=1 |Jii|+ ∥J∥F ) +

∑n
i,j=1 ∥Ji∥1∥Jj∥1|Jij |

+
(∑n

i=1 ∥Ji∥
2
1

) (∑n
i=1 J

2
ii

)
+
(∑n

i=1 J
2
ii

)2
+ 1
)1/2

[Yan20]

infε>0

{
ε2

n + ε
(
1 + 1

n

∑
i

(
J2
ii + ∥Ji∥21

))1/2
+ logN(J [±1]n, ε/

√
n, ℓ2)

}
+
(√

n∥J∥op

(∑
i |Jii|+ ∥J∥2F

)
+
∑

i ∥Ji∥
2
1

+
∑

i,j ∥Ji∥1∥Jj∥1|Jij |+
(∑n

i=1 ∥Ji∥
2
1

) (∑n
i=1 J

2
ii

)
+ 1
)1/2

[BM17] o(n) if ∥J∥2F = o(n)

[JKR19] n2/3∥J∥2/3F

[Aug20] inf
δ
{δ + logN(J [−1, 1]n, δ

2
√
n
, ℓ2)}

[Aus19] C +
√
C/nmaxi ∥J◦

i ∥1 for C = infδ{δ + logN(J{±1}n, δ/2, ℓ1)}

[Aug20] Corr. n1/3(
∑

i ∥Ji∥2)2/3

[Eld18] n2/3(maxi ∥J◦
i ∥1)2/3(

∑
i ∥Ji∥2)1/3

[Aug21]
∑
i

∥Ji∥2

[Eld20] C1 max{
∑

i log(ci|λi(J)|+ 1); ci ≥ 0,
∑

ci ≤ 4n}

[Eld20] C2 infp>0
p+1
p n∥J∥p/(p+1)

Sp

[Eld20] C3 rank(J) log(1 + n|λ1(J)|)

To recap the relevant notation:

• J◦ denotes the off-diagonal matrix of J .

• Ji denotes the i-th row of matrix J as a vector.

• N(S, r, ℓ) denotes the minimum number of balls of radius r (under the metric ℓ) required to
cover the set S.

Some bounds require us to compute the log-covering number for J{±1}n or J [±1]n. This is usually
difficult to do exactly (even up to exact order), so for the sake of tractability we will relax the set
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into an ellipsoid E defined by

E := J(
√
nBn) ⊃ J [−1, 1]n. (33)

From the perspective of finding the “best” bound, we can already make some statements about
relative effectiveness:

• [Eld20] C2 and C3 follow from C1 (since they are both corollaries in the original paper).

• [BM17] follows from [JKR19], which in turn is a special case of [Eld20] Corr. 2 when p = 2.

• [CD16] contains [Aug20] as a term, assuming we use the same ellipsoidal relaxation for both
J{±1}n and J [±1]n.

• By Cauchy-Schwarz, [Aug20] Corr. is a better bound than [JKR19]. Furthermore, on every
model considered, each ∥Ji∥2 will be approximately the same value, so equality holds up to
order.

• In Subsubsection 5.2.2, we argue that

inf
δ
{δ + logN(E, δ, ℓ1)} ≍ inf

δ
{δ + logN(E, δ/

√
n, ℓ2)}

where E is the ellipsoidal relaxation of J{±1}.

For the special case where the spectra is composed on one large eigenvalue and eigenvalues
of the same order, this value also matches the quantity in [Eld20] Corr. 1 (see Subsubsection
5.2.3).

4.2 Models
Since these bounds are difficult to compare directly, we would like to apply them on specific Ising
models (by selecting the matrix J).

These models will be implicitly indexed by n, and we will be interested solely in the n → ∞ limit.
We will also impose scaling so that each particle experiences Θ(1) influence from other particles
in total (i.e. 1/ deg for ferromagnetic models and 1/

√
deg for spin glasses, where deg is degree).

For each of these models, we describe the matrix and its spectral properties. For our purposes, it
will be important to know the order of the top eigenvalue and the majority (e.g. Θ(1) fraction) of
eigenvalues.

Curie-Weiss Model. This corresponds to selecting

J =
β

n
11⊤ (34)

This is a rank 1 matrix with eigenvalue β. This also corresponds to the adjacency matrix of a
complete graph.

Sherrington-Kirkpatrick Model. Let GOE(n) describe the random symmetric matrix G with

Gij


∼ N (0, 1) i < j

∼ N (0, 2) i = j

= Gji i > j

(35)

where {Gij}i≤j are drawn independently.

Set

J ∼ β√
n
·GOE(n) (36)

It is known that the top eigenvalue of J is (2+ o(1))β with high probability, and the limit spectral
density follows the semicircle law supported on [−2β, 2β]. This tells us that with high probability,
we expect Ω(n) eigenvalues of order β.
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Ferromagnetic graph models. Let G be a graph. We can define the adjacency matrix Adj(G)
by

(Adj(G))ij =

{
1 if (ij) is an edge
0 otherwise

(37)

With this assumption, we can set

J =
β

(average degree)
Adj(G)

for a variety of different graphs G:

• Complete graph; coincides with the Curie-Weiss model.

• The Erdős-Rényi graph G(n, p), where each edge is present independently with probability
p.

• Random regular graph of degree d

• For n = md, the k-dimensional lattice with periodic boundary conditions.

Erdős-Rényi graph. An Erdős-Rényi graph G(n, p) is formed by manifesting each of the
(
n
2

)
edges independently with probability p. We will also let d ∼ np denote the average degree.

The typical qualitative structure of G(n, p) was first described in [ER+60]. As the average degree
np increases, three “regimes” of an Erdős-Rényi graph:

• For d ≪ 1, the graph is formed by trees of size O(log n).

• For d = 1, the graph has one large connected component of size Θ(n2/3).

• For constant d > 1, there is a unique component of size linear in n, and all other vertices are
in a tree of size O(log n).

• For d > log n, the graph is connected with high probability.

This has the following implications for the spectra [Zha12]:

• In all cases, there is a limiting spectra of order β (assuming p ≤ 1/2).

• For np = α constant:

– For α < 1, the spectra is discrete and explained by the small trees.

– For α > 1, then the spectra is a mix of a discrete spectrum and a continuous spectrum.
In general, the continuous spectrum comes from the giant connected component, and the
discrete spectrum comes from trees / stubs of trees connected to the giant component.

• For α → ∞, the limiting spectra tends to the semicircular law.

• For α ≫ log n, [BBK20] gives that the second largest eigenvalue and the smallest eigenvalues
to the edges of the support of the asymptotic eigenvalue distribution. This does not hold when
np ≪ log n or np ≍ log n but [BBK19; ADK21] provides some qualitative understanding of
the tail in excess of the asymptotic distribution.

Random regular graph of degree d. Clearly, for a regular graph G of degree d, Adj(G) has
an eigenvalue of size d. If G was a random regular graph for fixed d ≥ 2, as n → ∞ Adj(G)
has a continuous spectrum following the Kesten-McKay law supported on [±2

√
d− 1] [McK81].

Furthermore, the second eigenvalue is 2
√
d− 1+ o(1) with high probability [Bor15], so the spectra

captures all the other eigenvalues.

If we allow d → ∞, the Kesten-McKay law tends to Wigner’s semicircle law, and a result by
[TVW13] confirms that it is indeed the limiting distribution for Adj(G) for a random regular graph
with degree d = d(n) where d(n) → ∞ as n → ∞.

Both cases translate to J having one large eigenvalue at β and a spectra of order ≍ β/
√
d.
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d-dimensional lattice with periodic boundary conditions. The Cartesian product of
graphs G and H, denoted G□H, is the graph on V (G) × V (H) formed by connecting (u1, v) ∼
(u2, v) iff (u1u2) ∈ E(G) and (u, v1) ∼ (u, v2) iff (v1v2) ∈ E(H). In particular, the (periodic)
d-dimensional lattice with md vertices is the d-fold Cartesian product of the cycle graph with m
vertices Cm.

The spectral properties follows from the fact that the eigenvalues of G□H are precisely the pairwise
sums of an eigenvalue of G with an eigenvalue of H [BH11]. Furthermore, the cycle graph Cm has
eigenvalues exactly 2 cos 2πk

m , k = 0, 1, ...,m− 1, so the set of eigenvalues of J are precisely{
β

d

d∑
i=1

cos
2πki
m

: (ki)i ∈ [m− 1]d

}

For d = 1, a simple computation shows that the limiting spectral distribution matches the Kesten-
McKay distribution with degree 2 (i.e. ρ(x) ∝ 1√

4−x2
), so the bulk of eigenvalues of J have order

β. It thus follows that for fixed d, we expect the spectral distribution to be a d-fold convolution of
the d = 1 distribution, so ignoring the dependence on d we again have that the bulk of eigenvalues
of J has order β.

If d → ∞, this set approximates the distribution of β√
d
N (0, 1/2) for some constant c depending

only on m, so a constant fraction of the eigenvalues have order at most β√
d

and decaying double-
exponentially thereafter.
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4.4 Discussion
Curie-Weiss model. All the bounds are sublinear in n, but a direct computation following
[MM09] yields that the optimal gap is order log n. Possibly, the low rank property is not encoded
by the expressions which only depend on the size of the entries in J .

In the bounds of [CD16], the complexity term is O(log n), so we see in this case the inefficiency
comes from the smoothness term.

Sherrington-Kirkpatrick Model. A priori, we expect that the bounds which only depend on
{|Jij |} (e.g. only on ∥Ji∥• or ∥J∥F ) will be insensitive to cancellation between spins and thus give
a much worse result than spectrum-based bounds.

Surprisingly, this is not true, and the best bound comes from [Aug21] (alongside [Eld20], [Aus19],
[Aug20], which are spectrum-based), which is O(βn). The optimal gap below the critical tempera-
ture is O(β2n), so while these bounds give the correct order in n, it does not give the correct order
in β for the high-temperature limit β → 0.

For [CD16], the main contributor is still the smoothness term.

Random regular graphs. This case is particularly easy to compute because all eigenvalues
except for the top lie in/near the support of the continuous limit spectrum.

For fixed
√
d, all bounds give the answer Θ(nβ). For d → ∞, we get an extra 1√

d
factor for the

best possible dependence on d.

For [CD16], the main contributor is now the complexity term.

Erdős-Renyi graphs. The bounds match those for the random regular graphs with correspond-
ing d.

d-dimensional grid. For fixed d, the bounds match those of the random regular graphs (which
isn’t surprising since this is a 2d-regular graph). However, for d → ∞, we get an extra

√
log d

factor on the spectra because the limiting spectrum is a normal distribution (instead of having
bounded support, like the semicircular law).

In the last three cases, we get that in the limit d → ∞, the gap is bounded above by o(n) (i.e. the
mean-field approximation holds), which is agreement with physical predictions.
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5 Computation

5.1 Ising Model Computations
Here we justify the computations in Subsection 4.1. We note that the results from [BM17; JKR19;
Eld20] are already in the desired form and do not need further simplification. The corollary of
[Aug20] and the result in [Aug21] follow immediately by applying Subsubsection 5.1.1.

5.1.1 Mean-width

We would like to simplify the Gaussian mean-width and Rademacher mean-width. We start by
noticing that

∇f(σ) = Jσ (38)

so the Gaussian mean-width is simply

GW(∇f{±1}n) = E
x∼N (0,1)

sup
σ

⟨x, Jσ⟩ (39)

= E
x∼N (0,1)

sup
σ

⟨Jx, σ⟩ (40)

= E
x∼N (0,1)

∥Jx∥1 (41)

=

n∑
i=1

E
x∼N (0,1)

| ⟨Ji, x⟩ | (42)

=

√
2

π
·

n∑
i=1

∥Ji∥2 (43)

where Ji is the i-th row of J . The last line is true because ⟨Ji, x⟩ has distribution N(0, ∥Ji∥)22),
and we use the fact that Ex∼N (0,1) |x| =

√
2/π.

We expect the same to hold for Rademacher width:

Lemma 10. For any v ∈ Rn,

E
x∈Unif{±1}n

| ⟨x, v⟩ | ≍ ∥v∥2

Proof. The upper bound is a straightforward application of Cauchy-Schwarz:

E
x∼Unif{±1}n

| ⟨x, v⟩ | ≤
(

E
x∼Unif{±1}n

⟨x, v⟩2
)1/2

=

 n∑
i,j=1

vivj E
x∼Unif{±1}n

xixj

1/2

=

(
n∑

i=1

v2i

)1/2

= ∥v∥22

where we used the fact that

E
x∼Unif{±1}n

xixj =

{
1 if i = j

0 otherwise

The lower bound proceeds using Hölder’s inequality: writing Z = ⟨x, v⟩,

E[|Z|]2/3 E[Z4]1/3 ≥ E[Z2] (44)
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therefore E[|Z|] ≥ E[Z2]3/2

E[Z4]1/2
, so it suffices to show that E[Z4] ≤ c∥v∥42 for some constant c > 0. Now

we expand:

E[Z4] =

n∑
i,j,k,ℓ=1

vivjvkvℓ E
x∼Unif{±1}n

xixjxkxℓ

=

n∑
i=1

v4i + 3
∑
i ̸=j

v2i v
2
j

≤ 3

(
n∑

i=1

v2i

)2

= 3∥v∥42

and in particular, E[|Z|] ≥ 1√
3
∥v∥2.

The estimate of the Rademacher mean-width follows immediately from

RW(∇f{±1}n) = E
x∼Unif{±1}n

sup
σ

⟨x, Jσ⟩ (45)

= E
x∼Unif{±1}n

sup
σ

⟨Jx, σ⟩ (46)

= E
x∼Unif{±1}n

sup
σ

∥Jx∥1 (47)

=

n∑
i=1

E
x∼Unif{±1}n

| ⟨Ji, x⟩ | (48)

≍
n∑

i=1

∥Ji∥2 (49)

5.1.2 Remaining results

[CD16] Firstly, we have

bi = sup
σ∈[−1,1]n

⟨Ji, σ⟩ = ∥Ji∥1, cij = |Jij |

and for the sake of tractability we will adopt the relaxation

a = sup
σ∈[−1,1]n

∣∣∣∣12σ⊤Jσ

∣∣∣∣ ≤ 1

2
sup

∥σ∥2≤n

∣∣σ⊤Jσ
∣∣ = √

n∥J∥op

Plugging these in, we get

(complexity) = inf
ε>0


(
n

n∑
i=1

∥Ji∥21

)1/2

ε+
3

2
nε+ logN(J{±1},

√
nε, ℓ2)

 (50)

≍ inf
ε>0


(
1

n

n∑
i=1

∥Ji∥21

)1/2

ε+
3

2
ε+ logN(J{±1}, ε/

√
n, ℓ2)

 (51)

(smoothness)2 ≍
n∑

i=1

∥Ji∥21 +
√
n∥J∥op(

∑
i=1

|Jii|+ ∥J∥F ) +
n∑

i,j=1

∥Ji∥1∥Jj∥1|Jij | (52)

+

(
n∑

i=1

∥Ji∥21

)(
n∑

i=1

J2
ii

)
+

(
n∑

i=1

J2
ii

)2

+ 1 (53)

[Yan20] We pick Vi = R and Ki = [−1, 1], so M = 2 and can be ignored for order computations.
The Fréchet derivatives reduce to the usual partial derivatives, so the quantities a, bi, cij match
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up with those in [CD16]. D(ε) becomes a
√
nε-covering of ∇f({±1}) under the ℓ2-distance, so

replacing ε → ε/n,

B2
1 ≍

√
n∥J∥op

(∑
i

|Jii|+ ∥J∥2F

)
+
∑
i

∥Ji∥21 +
∑
i,j

∥Ji∥1∥Jj∥1|Jij | (54)

B2 ≍ ε2

n
+ ε

(
1 +

1

n

∑
i

(
J2
ii + ∥Ji∥21

))1/2

+

(
n∑

i=1

∥Ji∥21

)1/2( n∑
i=1

J2
ii

)1/2

(55)

so the overall bound is

GAP∗ ≤ inf
ε>0

ε2

n
+ ε

(
1 +

1

n

∑
i

(
J2
ii + ∥Ji∥21

))1/2

+ logN(J [±1]n, ε/
√
n, ℓ2)

 (56)

+

(
√
n∥J∥op

(∑
i

|Jii|+ ∥J∥2F

)
+
∑
i

∥Ji∥21 (57)

+
∑
i,j

∥Ji∥1∥Jj∥1|Jij |+

(
n∑

i=1

∥Ji∥21

)(
n∑

i=1

J2
ii

)
+ 1

1/2

(58)

[Aus19] First, we compute the Lipschitz constant L for the Hamming metric dn = 1
n

∑n
i=1 dKi

,
i.e.

L :=
1

2
max
σ ̸=σ′

|σ⊤Jσ − (σ′)⊤Jσ′|
dn(σ, σ′)

(59)

=
1

2
max

σ,σ′ adj.
|σ⊤Jσ − (σ′)⊤Jσ′| (60)

= max
i,σ

|
∑
j ̸=i

Jijσi| = max
i

∥J◦
i ∥1 (61)

Next, we would like to interpret the ∥·∥ norm on the set {∇f(x, ·)}. Note that

∥∇f(x, ·)−∇f(y, ·)∥ = sup
z

∣∣∣∣∣∑
i

(∂if(x, z)− ∂if(y, z)

∣∣∣∣∣ (62)

= sup
z

∣∣∣∣∣∣
∑
i

(zi − ∗i)
∑
j ̸=i

Jij(xj − yj)

∣∣∣∣∣∣ (63)

≍ ∥J◦(x− y)∥1 (64)

For the last line, we would like to show that in general,

∥t∥1 ≤ sup
z

|⟨z − ∗, t⟩| ≤ 2∥t∥1 (65)

Let z(1) and z(2) maximize and minimize ⟨z − ∗, t⟩ respectively. Then, by checking cases we have∣∣∣〈z(1) − ∗, t
〉∣∣∣+ ∣∣∣〈z(2) − ∗, t

〉∣∣∣ = 2∥t∥1

so Equation 65 holds since the supremum is attained on z(1) or z(2).

Recall that we would like to cover the set {J◦x : x ∈ {±1}n} with eεn sets with ∥·∥-diameter δn,
and we note that it suffices to minimize the quantity C = ε+ δ.

Let Nd(S, r, ℓ) denote the minimum number of sets of diameter r needed to cover set S under
metric ℓ. Then C = infδ>0{δ + logNd(J{±1}n, δn, ∥·∥)}. We make two observations:
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• The ∥·∥-norm can be replaced by the ℓ1-norm.

By the above argument, we have

Nd(J{±1}n, 2δn, ℓ1) ≤ Nd(J{±1}n, δn, ∥·∥) ≤ Nd(J{±1}n, δn, ℓ1)

This means that if we only need to estimate C up to a constant factor, we can freely replace
∥·∥ with ℓ1.

• Diameter can be replaced with radius.

Again, note that

N(J{±1}n, δn, ℓ1) ≤ Nd(J{±1}n, δn, ℓ1) ≤ N(J{±1}n, δn/2, ℓ1)

so similarly as above we can replace Nd with N .

We thus conclude that

C ≍ inf
δ>0

{δn+ logN(J{±1}n, δn, ℓ1)} (66)

since a constant factor in the covering radius can be pulled out in the infimum term.

[Eld20] Recall that the result we require is that

GAP ≤ 64 Lip(f)2/3 GW+(∇f{±1}n)n2/3 (67)

First we compute ∇f (which in this case refers to the discrete derivative of f):

∂if(y) =
1

2
(f(y1, ..., yi−1, 1, yi+1, ..., yn)− f(y1, ..., yi−1,−1, yi+1, ..., yn)) (68)

=
∑
j ̸=i

Jijyj = ⟨J◦
i , y⟩ (69)

This implies that ∇f(y) = J◦y, hence ∇f{±1}n is symmetric about the origin and so we can swap
out GW+ for GW.

Next, we compute Lip(f). Note that

Lip(f) := max
i,y

|∂if(y)| (70)

= max
i

∥J◦
i ∥1 (71)

Finally, from Subsubsection 5.1.1 we have

GW(∇f{±1}n) ≍
n∑

i=1

∥Ji∥2

so putting it all together gives

GAP ≲ n2/3(max
i

∥J◦
i ∥1)

2/3

(
n∑

i=1

∥Ji∥2

)1/3

(72)

Page 19 of 28



5.2 Specific Model Computations
In this subsection, we discuss how to compute various tricky quantities: the bound of [Eld20] has
a variational problem, while some other bounds depends on various covering numbers ([CD16],
[Yan20], [Aug20], [Aus19]).

As a summary of the main results:

• The ℓ1-covering number is essentially equivalent to the ℓ2-covering number (for our purposes)

• When the spectra consists of one large eigenvalue and the rest forming a continuous spectrum
in the limit, we can compute covering numbers and Eldan’s quantity up to order

• More generally, when the limiting spectrum is continuous and bounded, one obtains that the
size of these quantities are n · (order of bulk of spectrum).

• A separate ad-hoc computation is needed for the lattice case, since the limiting spectrum is
normal and thus not bounded.

5.2.1 ℓ2-covering numbers

For the sake of tractability, we will use

J [−1, 1]n ⊂ J(
√
nB2)

We would like to cover E = {Jx : ∥x∥2 ≤ 1} with balls of radius r. Note that E has semi-axes of
length {|λi|} respectively.

Standard volume bounds give that for r < |λn| (so that E ⊃ r ·Bn),

Vol(E)

Vol(rBn)
≤ N(E, r, ℓ2) ≤

Vol(E + r
2Bn)

Vol( r2Bn)
≤

E⊂ r
2Bn

Vol(2E)

Vol( r2Bn)
(73)

which gives us an estimate of logN(E, r, ℓ2) up to an additive estimate of n log 4. To deal with
the condition on the RHS, we note that rBn contains r

2Bk × r
2Bn−k, so instead we “flatten” along

all semi-axes shorter than length r
2 and cover the hyperellipsoid along the remaining axes. Denote

Er to be the ellipsoid with precisely only semi-axes of E which are at least r. Then we have the
following bounds (denote k(r) = #{i : |λ| > r}):

logN(E, r, ℓ2) ≥ logN(Er, r, ℓ2) (74)

≥ log
Vol(Er)

Vol(r ·Bk(r))
(75)

=
∑
|λ|≥r

log
|λ|
r

=
∑
λ

(
log

|λ|
r

)
+

(76)

logN(E, r, ℓ2) ≤ logN(Er/2,
r
2 , ℓ2) (77)

≤ log
Vol(Er/2 +

r
4Bk(r/2))

Vol( r4Bk(r/2))
(78)

=
∑

|λ|≥r/2

log

(
1 +

4|λ|
r

)
(79)

As a first step, we compute the key optimization up to order in the case of one large eigenvalue
and the rest of the same order.

Lemma 11. Suppose that J has some spectra around λ2 (that is, there exists an absolute constants
η > 0 where ηn eigenvalues are in the interval (λ2/2, λ2]. Then,

inf
δ>0

(δn+ log2 N(E, δ, ℓ2)) ≍ n log(1 + λ2) + log(1 + nλ1) + 1

Proof. Write S = δn+ log2 N(E, δ, ℓ2). We first establish the lower bound.
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• If δ ≥ λ1, S ≥ nλ1, and we have both nλ1 ≥ n log(1 + λ1) ≥ n log(1 + λ2) and nλ1 ≥
log(1 + nλ1), so

S ≥ nλ1 ≳ RHS

• If δ ∈ (λ2, λ1), firstly note that logN > 0 so logN ≥ log 2. Then,

S ≥ nδ + log

(
λ1

δ

)
+

(80)

= nδ + (log(nλ1)− log(nδ))+ (81)
≥ nδ − log(nδ)+ + log(nλ1)+ ≥ log(nλ1)+ (82)

For the other terms, we are required to analyze the function f(x) = nx + log 1
x , which is

minimized at x ≍ 1/n:

– If λ2 ≳ 1
n , then f is increasing on the interval (cλ2, λ1) for some constant c, so

S ≥ nλ2 ≥ n log(1 + λ2)

– If λ2 ≲ 1/n, then n log(1 + λ2) ≲ 1, so this case is already covered.

In summary,
S ≳ 1 + log(nλ1)+ + nλ2 ≳ 1 + (log nλ1) + nλ2 ≳ RHS.

• If δ < λ2, then S ≳ nδ+n log(λ2/δ) = n(log λ2+δ+log(1/δ) ≍ n(log λ2+1)) ≳ n log(1 + λ2).
Similarly, LHS ≥ nδ + log(λ1/δ) ≳ log(1 + nλ1).

For the upper bound, we consider two choices of δ:

• δ = 2λ2 + ε as ε → 0. This gives

S ≤ 2λ2n+ log

(
1 +

2λ1

λ2

)
≲ λ2n+ log

(
1 +

λ1

λ2

)
+ 1

• δ = 1:

S ≤ n+ n log(1 + 4λ2) + log(1 + 4λ1) ≲ n(1 + log(1 + λ2)) + log(1 + λ1)

Roughly speaking, this suggests using δ = 1 when λ2 ≳ 1 and δ = 2λ2 when λ2 ≲ 1. This is
sufficient provided that λ2 ≳ 1

n . However, if λ2 ≪ 1
n , then instead we substitute δ = c

n > 2λ2 to
get S ≲ 1 + log(1 + nλ1).

5.2.2 ℓ1-covering numbers

In this section, we show that the ℓ1 covering number is on the same order as the ℓ2 covering
numbers when the bound in Subsubsection 5.2.1 is effective up to order.

An easy start is that since ∥x∥1 ≤
√
n∥x∥2, the ℓ1-ball of radius r contains the ℓ2-ball of radius

r√
n
, so

logN(S, r, ℓ1) ≤ logN(S, r/
√
n, ℓ2). (83)

On the other hand, we can use the same axis cutoff strategy to bound the other side. First, we
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recall the formulas for ℓ1 and ℓ2 ball volumes and apply Stirling’s approximation:

Vol(B2) =
πn/2

Γ(n/2 + 1)
(84)

∼ πn/2

√
πn( n

2e )
n/2

(85)

=
1√
πn

(
2πe

n

)n/2

(86)

Vol(
√

2πn
e ·B1) =

(
2πn

e

)n/2

· 1

n!
(87)

∼ (2πn/e)n/2√
2πn(ne )

n
(88)

=
1√
2πn

(
2πe

n

)n/2

(89)

so we can conclude that asymtotically,

Vol(B2) ∼
1√
2
Vol(

√
2πn
e ·B1).

Thus, if we apply the semiaxes-cutoff argument from before at level s, we get

logN(E, r, ℓ1) ≥ log
VolEs

Vol(r ·Bℓ1;k(s))
(90)

= log
VolEs

Vol(
√
2πn/e · r ·Bℓ2;k(s))

+O(1) (91)

Setting s =
√
2πn/e · r, we realize that this is precisely the lower bound for logN(E, s, ℓ2). Thus,

if we had the bounds

logN−(E, r, ℓ2) ≤ logN(E, r, ℓ2) ≤ logN+(E, r, ℓ2)

we must also have

logN−(E, cr/
√
n, ℓ2) ≤ logN(E, r, ℓ1) ≤ logN−(E, r/

√
n, ℓ2)

for c =
√

e
2π . This essentially suggests that any time the ℓ2-covering number can be bounded up

to order, the same goes for the ℓ1-covering number.

5.2.3 Variational problem in Eldan’s bound

In the case where J has one large eigenvalue λ1 and some spectra of order λ2 (the second largest
eigenvalue), we can compute the variational quantity in Eldan’s upper bound up to order:

Lemma 12. If there are universal constants δ, η > 0 for which there exists at least δn eigenvalues
of size ηλ, then

max

{∑
i

log(ci|λi(J)|+ 1); ci ≥ 0,
∑

ci ≤ 4n

}
≍ n log(1 + |λ2|) + log(1 + n|λ1|). (92)

Proof. For convenience, we suppress the J and just write λi for the i-th eigenvalue by absolute
value. The valid allocation c1 = n, c2 = ... = cn = 1 gives the lower bound. As for the upper
bound, we note that ∑

i

log(ci|λi|+ 1) ≤ log(c1|λ1|+ 1) +

n∑
i=1

log(ci|λ2|+ 1) (93)

≤ log(n|λ1|+ 1) + n log(4|λ2|+ 1) (94)

where we used Jensen’s inequality in the last line.
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For more general cases, we can establish the following lemma:

Lemma 13. The variational quantity in [Eld20] is equivalent to

sup
x>0

∑
|λ|≥x

log |λi|+ ℓ logm; m :=
1

ℓ

∑
|λ|≥x

1

|λi|
+ 4n

 ≥ 1

x

 (95)

Proof. Note that so long as∑
i

log(ci|λi|+ 1) =
∑
i

log |λi|+
∑
i

log

(
ci +

1

|λi|

)
(96)

where the sum is over all i where |λi| ≠ 0. Notice that the maximum must be attained at∑
i ci = 4n. Since the sum is fixed (and log is concave), at maximum every two terms are equal or

blocked by a constraint. That is, for distinct i, j, if ci + 1
|λi| > cj +

1
|λj | then ci = 0.

Hence, we can find some threshold ℓ such that

ci +
1

|λi|
=

{
m := 1

ℓ

(∑
i≤ℓ

1
|λi| + 4n

)
i ≤ ℓ

1
|λi| i > ℓ

(97)

However, for this to be valid, we require m ≥ 1
|λℓ| . Finally, we swap out the index threshold ℓ for

a value threshold, which only makes the condition tighter but keeps the equality cases at x = |λℓ|.
This completes the proof.

This specific characterization will be useful later in Subsubsection 5.2.5.

5.2.4 Limiting spectral distributions

In the cases where a continuous limiting spectral distribution is known, the quantities we are
concerned about often reduce to computation about the limiting spectrum. Here, we establish
some lemmas to make this process easier.

We first define some notation. Let Λn denote the empirical spectral distribution of J (suppressing
the indexing by n), and suppose Λn

d⇒ Λ almost surely.

Lemma 14. If supn E |Λn|2 < ∞ almost surely, then for any function f with f(x) = o(x2) as
x → ∞,

E[f(|Λn|)I|Λn|≥x)] → E[f(|Λ|)I|Λn|≥x] (98)

as n → ∞ uniformly over x.

Proof. It suffices to check that the sequence of random variables Xn = f(|Λn|)I|Λn|≥x is uniformly
integrable, i.e. limx→∞ supn E[|Xn|I|Xn|≥x] = 0.

sup
n

E[f(|Λn|)I|Λn|≥x] ≤ sup
n

E

[
f(|Λn|)
|Λn|2

· |Λn|2I|Λn|≥x

]
(99)

≤ sup
y≥x

f(y)

y2
· sup

n
E |Λn|2 → 0 as x → ∞ (100)
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5.2.5 Limit version of Eldan’s quantity

Denote

ℓn(x) := #{λ : |λ| ≥ x} (101)

Gn(x) :=
1

ℓn(x)

∑
|λ|≥x

1

|λi|
+ 4n

 , (102)

Fn(x) :=
∑
|λ|≥x

log |λi|+ ℓn(x) log Gn(x). (103)

These quantities can be rewritten using Λn:

1

n
ℓn(x) = P(|Λn| ≥ x), (104)

Gn(x) =
E 1

|Λn| + 4

P(|Λn| ≥ x)
, (105)

1

n
Fn(x) = E log |Λn|I|Λn|≥x + P(|Λn| ≥ x) log Gn(x). (106)

In the variational problem, we have the condition that Gn(x) ≥ 1
x . With a little manipulation, this

can be more succinctly rewritten as

Hn(x) := E

[(
1

x
− 1

|Λn|

)
+

]
≤ 4. (107)

Note that Hn is decreasing in x, and furthermore Hn(x) → 0 as x → ∞ and Hn(x) → ∞ as x → 0.
Thus, we expect that (1) Hn(x) ≤ 4 for all x > x∗, where x∗ = inf{x : Hn(x) ≤ 4}, and Hn is
continuous at x if and only if P(|Λn| = x) = 0.

We now introduce the limit version of the above quantities:

F∞(x) := E log |Λ|I|Λ|≥x + P(|Λ| ≥ x) (108)

H∞(x) := E

[(
1

x
− 1

|Λ|

)
+

]
(109)

We hope that

lim
n→∞

1

n
sup
x
{Fn(x);Hn(x) ≥ 4} ?

= lim
n→∞

sup
x
{F∞(x);H∞(x) ≤ 4}. (110)

If this is true, and the value on the RHS is nonzero, then we’ve just successfully computed Eldan’s
quantity.

5.2.6 Limit version of covering number bounds

Using this new notation, we have

E

[(
log

|Λn|
δ

)

)
+

]
≤ 1

n
logN(E, δ, ℓ2) ≤ E

[
log

(
1 +

4|Λn|
δ

)
I|Λn|≥δ/2

]
. (111)

Roughly, when Λn has a limiting distribution (with some suitable normalization), we expect
these values to be constants when δ is of the same order as |Λn|, which means that infδ>0{δn +
logN(E, δ, ℓ2)} ≍ n · (order of Λn).

Page 24 of 28



5.2.7 Computation for lattice model

Write λi = λi(J) for convenience. We will compute the free energy bound quantity up to order for
the lattice model.

Recall that the set of eigenvalues of J are

{
β

d

d∑
i=1

cos
2πki
m

: (ki)i ∈ [m− 1]d

}

We recall the limiting distribution of (β/
√
d)−1J : for d = 1, the limiting distribution has density

1
π(1−x2) . Let Λ1 be a random variable drawn from this distribution. For general d, the limiting
distribution is the law of the sum of d i.i.d. copies of Λ1 normalized by 1√

d
(which we call Λd).

Furthermore,
Λd

d⇒ Λ ∼ N (0, 1/2) as d → ∞.

Warning. This is different from the previous definition of Λn in Subsubsection 5.2.4 in the sense
that we add additional normalization for the convergence to hold.

We refer back to lemma 13 for the exact free energy and the limiting analogues:

Fn,d(x) :=
∑
|λ|≥x

log |λi|+ ℓ log

1

ℓ

∑
|λ|≥x

1

|λi|
+ 4n

 (112)

Fd(x) := lim
n→∞

Fn,d((β/
√
d)x)

n
(113)

= E[log |Λd| · I|Λd|≥x] + P(|Λd| ≥ x) log

(
E 1

|Λd| I|Λd|≥x + 4β√
d

P(|Λd| ≥ x)

)
(114)

F∞(x) = E[log |Λ| · I|Λ|≥x] + P(|Λ| ≥ x) log

(
E 1

|Λ| I|Λ|≥x

P(|Λ| ≥ x)

)
(115)

We also have the following restriction in the limit (in the variational quantity):

1

ℓ

∑
|ℓ|≥x

1

|λi|
+ 4n

 ≥ 1

x
(116)

⇔ 4 ≥ 1

n

∑
|ℓ|≥x

(
1

x
− 1

|λi|

) (117)

4β√
d
≥ E

[(
1

x
− 1

|Λd|

)
+

]
(118)

It is easy to check that RHS is decreasing in x, RHS → ∞ as x → 0 and RHS → 0 as x → ∞.
This implies the existence of a unique x∗ such that equality holds, and the inequality is true iff
x ≥ x∗.

If we now track the dependence of x∗ on d, since LHS → 0 as d → ∞, we get that x∗ → ∞ as
d → ∞.

Now we try to establish x∗ up to order. We need the following lemma:

Lemma 15. For fixed integer n ≥ 0, as x → ∞ we have

E[(|Λ| − x)nI|Λ|≥x] ≍ x−(n+1)e−x2/4 (119)

where the constants may depend on n.
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Proof. Lower bound:

E[(|Λ| − x)nI|Λ|≥x] =
1√
π

∫ ∞

x

(t− x)ne−t2/4 dt (120)

≥ 1√
π

∫ x+2/x

x+1/x

(t− x)ne−t2/4 dt (121)

≳
1

xn+1
e−(x+2/x)2/4 ≳

1

xn+1
e−x2/4 (122)

Upper bound:

E[(|Λ| − x)nI|Λ|≥x] =
1√
π

∫ ∞

x

(t− x)ne−t2/4 dt (123)

≤ e−x2/4 1√
π

∫ ∞

x

(t− x)ne−x(t−x)/2 dt (124)

= e−x2/4 1√
π

Γ(n+ 1)

(x/2)n+1
(125)

Lemma 16. For f twice differentiable with |f ′′| decreasing eventually,

E[f(|Λ|)I|Λ|≥x] = f(x)P(|λ| ≥ x) + f ′(x)E[(|Λ| − x)+] +O(|f ′′(x)|x−3e−x2/4) (126)

Proof. This is immediate by using the Taylor expansion:

|f(y)− f(x)− (y − x)f ′(x)| ≤ (y − x)2

2
· sup
z∈[x,y]

|f ′′(x)| (127)

Taking expectation of y = Λ over the support of (|Λ| ≥ x) we get the result.

Lemma 17. For f monotone and x ≤
√
d,∣∣E[f(|Λd|)I|Λd|≥x]− E[f(|Λ|)I|Λ|≥x]

∣∣ ≲ 1√
d
max{f(x), f(

√
d)}+ e−d/4 sup

t≥
√
d

f(t)e−
√
d(t−

√
d)/2

(128)

Proof. Berry-Esseen gives supx |(P(|Λ| ≥ x)− P(|Λd| ≤ x))| ≲ 1/
√
d, so

LHS =

∣∣∣∣∫ ∞

x

f ′(t)(P(|Λ| ≥ x)− P(|Λd| ≤ x)) dt

∣∣∣∣ (129)

≲
1√
d

∫ √
d

x

|f ′(t)|+ E[f(|Λ|)I|Λ|≥
√
d] (130)

=
1√
d

∫ √
d

x

|f ′(t)|+
∫ ∞

√
d

f(t)e−t2/4 dt (131)

≲
1√
d

∫ √
d

x

|f ′(t)|+ e−x2/4

∫ ∞

√
d

f(t)e−2x(t−x)e−(t−x)2/4 dt (132)

≲
1√
d

∫ √
d

x

|f ′(t)|+ e−d/4 sup
t≥x

f(t)e−2x(t−x) (133)

Now we are ready to compute the order of x∗. Note that

E

[(
1

x∗
− 1

|Λd|

)
+

]
= E

[(
1

x∗
− 1

|Λ|

)
+

]
+O

(
1

x
√
d
+

e−d/4

√
d

)
(134)

= E

[(
1

x∗
− 1

|Λ|

)
+

]
+ o(1/

√
d) =

4β√
d

(135)
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However,

E

[(
1

x∗
− 1

|Λ|

)
+

]
≍ 1

x4
∗
e−x2

∗/4 (136)

so x∗ ≍
√
log d, and

E[(|Λ| − x∗)
nI|Λ|≥x∗ ] ≍

1

xn−3
∗

· β√
d

(137)

Now we compute:

|E[(|Λd| − x)+]− E[(|Λ| − x)+]| =
∣∣∣∣∫ ∞

x

(P(|Λd| ≥ t)− P(|Λ| ≥ t)) dt

∣∣∣∣ (138)

≤ a√
d
+

∫ ∞

a

|P(|Λd| ≥ t)− P(|Λ| ≥ t)| dt (139)

≲
a√
d
+

∫ ∞

a

e−t2/2 dt (140)

≲
a√
d
+

e−a2/2

a
(141)

Taking a =
√
log d, the above is O(

√
log d/d), while E(|Λ| − x∗)+ ≍ βx2

∗/
√
d, so

E(|Λd| − x∗)+ ∼ E(|Λ| − x∗)+ ≍ βx2
∗/
√
d.

Similarly,

P(|Λd| ≥ x∗) = P(|Λ| ≥ x∗) +O(1/
√
d) (142)

≍ βx3
∗√
d

+O(1/
√
d) ≍ βx3

∗√
d

(143)

Hence it follows that
E(|Λd| − x∗)+
x∗P(|Λd| ≥ x∗)

≍ 1

x2
∗

(144)

This is relevant since

Fd(x∗)

P(|Λd| ≥ x∗)
=

E(|Λd| − x∗)+
x∗P(|Λd| ≥ x∗)

− log x∗ + log

(
E[ 1

|Λd| I|Λd|≥x∗ ] + 4β/
√
d

P(|Λd| ≥ x∗)

)
(145)

=
E(|Λd| − x∗)+
x∗P(|Λd| ≥ x∗)

− log x∗ + log

(
1

x∗
− 1

x2
∗
· E(|Λd| − x∗)+
P(|Λd| ≥ x∗)

+ Θ(x−3
∗ )

)
(146)

=
E(|Λd| − x∗)+
x∗P(|Λd| ≥ x∗)

− log

(
1− E(|Λd| − x∗)+

x∗P(|Λd| ≥ x∗)
+ Θ(x−2

∗ )

)
(147)

= Θ(x−2
∗ ) (148)

so we conclude that Fd(x∗) ≍ x−2
∗ P(|Λd| ≥ x∗) ≍ βx∗√

d
≍ β

√
log d√
d

.

We briefly sketch the corresponding bound for the ℓ2 covering number. We have the following
bounds:

E log

(
1 +

4|Λd|
δ

I|Λn|≥δ/2

)
≥ lim

n→∞

1

n
logN(E, δ · β√

d
, ℓ2) ≥ E

(
log

|Λd|
δ

)
+

(149)

By lemmas developed earlier, it is easy to check that as δ → ∞, the upper bound is of order
δ−1e−δ2/4 and the lower bound is of order δ−3e−δ2/4. However, for any fixed c > 0,

inf
δ>0

{
β√
d
· δ + 1

δc
e−δ2/4

}
≍ β√

d
·
√

log d (150)

Page 27 of 28



so

inf
δ>0

{δn+ logN(E, δ, ℓ2} ≍ β√
d
·
√

log d (151)

which also matches the other bound.
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