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Abstract: Understanding the frequency spectrum of the optical force is important for controlling
and manipulating micro- and nano-scale objects using light. Spectral resonances of these objects
can significantly influence the optical force spectrum. In this paper, we develop a theoretical
formalism based on the temporal coupled-mode theory that analytically describes the lineshapes
of force spectra and their dependencies on resonant scatterers for arbitrary incident wavefronts.
We obtain closed-form formulae and discuss the conditions for achieving symmetric as well
as asymmetric lineshapes, pertaining, respectively, to a Lorentzian and Fano resonance. The
relevance of formalism as a design tool is exemplified for a conceptual scheme of the size-sorting
mechanism of small particles, which plays a role in biomedical diagnosis.
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1. Introduction

Light field can exert an optical force on an object. Optical force is widely used in atomic physics
[1] for manipulating atoms. In the area of nanoscience, optical force can be used for trapping
and positioning of nanoparticles [2,3], with important implications in biomedical applications
especially in drug delivery [4] and cell sorting [5].

The frequency dependence (spectrum) of the optical force exerted on a particle is determined
by the presence of resonances that the particle can support. Near a resonance frequency, the
optical force can be strongly enhanced [6–10], and the force spectrum may exhibit an asymmetric
lineshape [11]. In the case where the sign of the force varies from positive to negative as the
frequency is swept across the resonance, one can choose the appropriate frequency of the incident
light to repulse, attract, or trap the particle [12–15]. Therefore, a theoretical understanding of the
spectrum of the optical force is essential.

There has been considerable interest in the theoretical study of optical forces on small particles.
For particles with dimensions much smaller than the wavelength of the incident light, the
electromagnetic response of the particle can be treated as that of a point dipole [16], and a simple
formula for the force then naturally follows. For particles of arbitrary size and shapes, the optical
force spectra need to be computed by numerical methods that solve the Maxwell equations, such
as the finite-difference time-domain [17] or the finite-element methods [18]. For particles that
are either cylindrically or spherically symmetric, the force spectra can be computed analytically
or semi-analytically using the Mie theory [19]. However, none of these methods directly yield an
insightful closed-form formula for the optical forces that applies to general structures.

In this paper, we provide an analytic study that captures the general characteristics of optical
forces that emerge due to the presence of resonance. For our study, we use the temporal
coupled-mode theory [20,21], which has been successfully employed to study resonant behaviors
of photonic structures. In particular, this formalism was applied to study the spectra of absorption
and scattering cross-sections for nanoparticles [22–24]. Here we extend this formalism and apply
it to study the optical force spectrum. We show that the temporal coupled-mode theory enables
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us to derive simple closed-form formulae that describe general aspects of the optical force and
expose unique features of the optical force spectrum.

Our work here complements existing theoretical and computational works on the optical
force. Unlike direct numerical simulations [10,25], where the starting point is the permittivity
distribution of a given optical structure, in temporal coupled-mode theory the starting point
is prior knowledge of the existence of optical resonances that dominate the optical response
[20,21]. The temporal coupled-mode theory then links optical properties of the structure, such
as the force responses and cross-section, to the properties of these resonances such as their
resonant frequencies and linewidths. For the computation of the optical force on a specific single
structure, in many cases there is no advantage of using temporal coupled-mode theory, since
the frequencies and the linewidths of the resonances would still need to be determined through
numerical simulations, and the computational cost of such simulations often is comparable
to what is required for determining the spectra in the first place [26]. The importance of the
temporal coupled-mode theory, rather, is that it provides a way to develop an understanding
of the general behavior of the optical structures, in terms of a few parameters that have direct
physical meanings [21]. As such the temporal coupled-mode theory not only provides a better
insight into the governing mechanisms but also has high merit as a design tool that has been very
widely used phenomenologically to guide the design of complex optical structures [26–31]. For
example, one may use coupled-mode theory as a guide to obtaining a specific line shape of the
force by controlling the positions and the linewidth of the resonances. Moreover, for a given
structure the coupled-mode theory can be used to efficiently design an optimal wavefront for
specific applications. We foresee that our efforts here in adopting temporal coupled-mode theory
for the treatment of optical force will find similar use in the design of optical structures for the
optomechanical control.

Our paper is structured as follows: In Section 2, we first derive the temporal coupled-mode
equations governing the optical force on a general resonant scatterer under arbitrary coherent
wavefronts. In Section 3, we apply the force formalism for elongated small particles. We
exemplify our formalism for an azimuthally symmetric cylindrical scatterer under one (Section
3.1) and two (Section 3.2) incident plane waves, in which we demonstrated a case where
the scattering cross-section deviates from the force spectrum. We finally show a conceptual
application of sorting elongated particles in Section 4. Our findings have potential opportunities
in precise optical switches, sensors, and tweezers.

2. Force operator and the coupled-mode theory framework

The numerical calculations of the force for specific cases do not necessarily provide insights into
the general underlying physics. In contrast, we develop here a model that elucidates the general
characteristics of the force spectrum and their relations to optical resonances of the particle. The
results do not depend on the origins of the resonance (structural, material) and thus are broadly
applicable to different physical systems supporting resonances.

The scheme for our formulation is as follows. The total electromagnetic field in the embedded
medium of the particle is decomposed into a sum of input and output channels (channel can be
any degree of freedom or eigenmode of the field). Using this representation, the force acting
on the particle is extracted from the fields by the Maxwell’s stress tensor and converted to
a “force operator" acting between the aforementioned input and output channels. Then, to
extract the amplitude of the output channels, the temporal coupled-mode theory is employed
which solves the engagement between the input to output channels as mediated by the resonant
internal modes of the scatterer. Although our paper is theoretical, the connection between main
theory variables to experimental data is straightforward. The coupled-mode parameters such as
resonant frequency, decay rates, coupling coefficients, can be obtained by fitting the experimental
scattering/absorption cross-section spectrum. The complex amplitude of the output channels
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can be extracted experimentally by interfering with the output wavefront with a plane-wave
reference on the face of a photodetector array [32]. These establish a direct connection between
our theoretical formalism and experimental measurements.

As shown in Fig. 1 (a), a scatterer is placed near the origin and is surrounded by air. In
the presence of a monochromatic incident field at angular frequency ω, the total phasor of the
magnetic field H⃗ outside the scatterer can be decomposed as

H⃗(r⃗) = H0
∑︂

n

[︂
V⃗in,n(r⃗)cin,n + V⃗out,n(r⃗)cout,n

]︂
, (1)

where H0 is a normalization factor, and |cin,n |
2 and |cout,n |

2 represent the power density carried by
the incoming and outgoing waves in the n-th channel, respectively. The n-th incoming (outgoing)
channel is described by the wave basis functions V⃗in(out),n(r⃗), and r⃗ is the position vector. As
an example, the explicit forms of the incoming and outgoing waves in the cylindrical basis are
given by Eqs. (32) and (33) in Section 6. Throughout the paper, n is an integer indexing the
channel and ranges from −∞ to +∞. The actual number of channels that are involved in the
scattering process is related to the ratio between the size of the scatterer and the wavelength, and
the permittivity of the scatterer.

Fig. 1. Optical systems consisting of a cylindrical scatterer under (a) a general incident
wavefront for an ensemble of scatterers, (b) a general incident wavefront for a quasi-2D
scatterer, and (c) one plane wave as the incident wavefront. The spherical surface (a) and
dashed lines (b,c) are the integration surface used to evaluate Maxwell’s stress tensors. (d)
Schematic of an optical resonator system coupled with multiple incoming and outgoing
ports. The field plots represent the incoming and outgoing channels Vin(out) from Eqs. (32)
and (33).

The time-averaged optical force F⃗ on the scatterer, as shown in Fig. 1 (a), is calculated via
an integral of the time-averaged Maxwell’s stress tensor

↔

T over any surrounding surface A that
encloses the scatterer,

F⃗ = Re
∫

n̂ ·
↔

TdA, (2)
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where n̂ is the local normal vector of the surface. With the decomposition in Eq. (1), the
optical force density can be expressed by a force operator P⃗ in a compact form (see derivation in
Appendix),

F⃗ = c†inP⃗cin + c†outP⃗
Tcout, (3)

where cin,out is the vector of input/output channel amplitude. Equation (3) can be used to solve for
the forces exerted by an arbitrary input light field on any scatterer in either 2D or 3D geometries.
For 3D structures, one can use for example the vector spherical harmonic wave basis [33], and
the resulting force operator can be derived from the 3D Maxwell’s stress tensor. Typically, for an
input wave described by cin, the output wave cout can be solved with a suitable solver as described
in the introduction. Here, to extract the general aspects of the forces exerted on a resonant
scatterer with geometries of different dimensions, we employ the temporal coupled-mode theory
formalism [21], which applies to both 2D and 3D systems, to connect cin and cout.

In the framework of the temporal coupled-mode theory formalism, we start from the knowledge
that the scatterer supports M resonant modes. The interaction of the incident light with these
resonant modes is assumed to dominate the optical response of the scatterer in the frequency range
of interest around the resonant frequencies. The amplitude of the resonant modes is represented
as an M-dimensional vector a, where |ai |

2 represents the energy density stored in the i-th resonant
mode. We note that each resonant mode can couple to several different incoming/outgoing
channels. Then, for this general system, the temporal coupled-mode theory equations can be
written as:

da
dt
= (jΩ − Γ − Γ0)a +KTcin, (4)

cout = Bcin + Da. (5)
Ω = diag[ω−M̃ , . . . ,ωM̃], where ωi (−M̃ ≤ i ≤ M̃, M̃ = M−1

2 ) is the resonant frequency of the
i-th resonant mode, and i is the mode index. Throughout the paper we use the ejωt convention. In
the subsequent part of the paper, when we consider scatterers with mirror symmetry, we will
use negative (−|i|) and positive (|i|) indices to label the even and odd modes, respectively. Γ
describes the radiative decay rate of these resonant modes due to their coupling to the outgoing
channels [34]. Γ0 = diag[γ0

−M̃
, . . . , γ0

M̃
] where γ0

i (−M̃ ≤ i ≤ M̃) is half of the intrinsic energy
loss rate of the i-th resonant mode due to, for example, material loss. The background scattering
matrix B describes the scattering process in the absence of the resonant scatterer. This process
involves a direct scattering from the incoming to outgoing channels without coupling to the
particle resonant modes. The matrix elements of B vary slowly as a function of frequency across
the resonant linewidth. The optical force exerted on the scatterer can be evaluated by its signature
on the momentum transfer between the N incoming and outgoing channels. These incoming
channels are assumed to couple significantly to M resonant modes, described by the N-by-M
input coupling matrix K. Similarly, the resonances couple with N outgoing channels via the
N-by-M output coupling matrix D, where D is equal to K by time-reversal symmetry [21]. Using
these coupled-mode theory parameters, cout can be connected to cin via the scattering matrix S,

cout(ω) = Scin = Bcin + T(ω)cin, (6)

where T(ω) = D[jωI − jΩ + Γ + Γ0]
−1DT describes the resonant scattering process. We also

introduce a matrix B0 which is the scattering matrix of the system in the absence of the scatterer
[23]. For the general case where the scattering matrix S deviates from B0 (detailed in Eq. (39)),
we can define the scattered wavefront vector by subtracting the directly transmitted part B0cin
from the outgoing wavefront vector:

cscat(ω) = (B − B0)cin + T(ω)cin. (7)

The coupled-mode theory formalism introduced in this section is generally applicable for the
optical force spectrum of any scatterer and arbitrary incident wavefront and is independent of
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the physical source of the resonance. However, by the nature of the temporal coupled-mode
theory, this theoretical study of optical force lineshape is applicable only when the total loss rates,
represented by Γ0 + Γ, are significantly smaller than the resonant frequencies.

By using the modal decomposition of Eq. (7) in Eq. (3), the optical force can be computed as,

F⃗ = c†in
(︂
P⃗ + B0P⃗TB0

)︂
cin + c†scatP⃗

TB0cin + c†inB0P⃗Tcscat + c†scatP⃗
Tcscat. (8)

The first term in the right-hand side of Eq. (8) vanishes by P + B0PTB0 = 0. We note that our
decomposition of incoming and scattered field contribution is consistent with the result in [13].
Substituting the coupled-mode theory result for cscat in Eq. (7), the optical force can be divided
into three terms, F⃗ = F⃗bg + F⃗res + F⃗inter, where

F⃗bg(ω) = c†in
(︂
B†P⃗TB + P

)︂
cin, (9a)

F⃗res(ω) = c†inT†(ω)P⃗TT(ω)cin, (9b)

F⃗inter(ω) = 2 Re
(︂
c†inT†(ω)P⃗TBcin

)︂
. (9c)

Equations (9a)–(9c) describe three distinct contributions to the optical force. F⃗bg describes
the force due to background scattering, which is non-resonant and vanishes in the absence of
background scattering when B = B0 for a scatterer size that is much smaller than the wavelength.
It has only a weak frequency dependence and forms a smooth background in the force spectrum.
F⃗res is attributed to the resonances and exhibits a Lorentzian lineshape around each resonant
frequency ωi. F⃗inter results from the interference between the background scattering and the
resonance wavefront. Since F⃗inter includes spectral components that are odd functions of the
frequency difference (ωI − Ω) shown in the matrix T(ω), it exhibits an asymmetric lineshape
around each resonant frequency. Equation (9) is particularly useful for analyzing the force
spectrum for a resonant scatterer.

3. Optical forces on elongated particles

To show the use of our formalism in extracting the physics behind the optical forces, we derive
analytical results for the case of elongated particles that can be modeled as infinitely long cylinders
with an arbitrary cross-section. This scenario requires simpler mathematics compared to the
full-fledged 3D case and thus more directly illustrates the main general aspects of our formalism.
The scenario is depicted in Fig. 1 (b). The infinite cylinder axis is along z-axis. We deal with
optical forces due to incident waves propagating in the xy plane with magnetic field vector along
the z-axis ("Transverse magnetic (TM) waves"). A convenient basis to describe both the channels
and the internal modes of the scatterer is the cylindrical harmonic basis (see Eqs. (32) and (33).
In this configuration, the force and scattering/extinction cross-sections are defined as per unit
z-length. Therefore, we calculate F⃗ by integration of the Maxwell’s stress tensor over a circle in
the xy plane. The matrix element of the force operator of Eq. (3) is indexed according to the
channels m and n,

P⃗mn =
1
2c

(jδm,n−1 − jδm,n+1)x̂ +
1
2c

(δm,n+1 + δm,n−1)ŷ, (10)

where c is the speed of light in vacuum, and δm,n is the respective Kronecker delta. The detailed
derivation is in the Section 6.1 in the Appendix. This form of the force operator in Eq. (10) where
the contributions to the force are nonzero only between channels with indices different by ±1, is
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consistent with the result in [35]. As shown in Fig. 1 (b) where a general incident wavefront exert
a force on a two-dimensional scatterer, from Eq. (3), the optical force is given by,

F⃗ =
1
2c

∑︂
m
[c∗in,m(jcin,m+1 − jcin,m−1)x̂ + c∗out,m(jcout,m−1 − jcout,m+1)x̂

+ c∗in,m(cin,m+1 + cin,m−1)ŷ + c∗out,m(cout,m−1 + cout,m+1)ŷ]
(11)

where we obtain P⃗mn from Eq. (10) and combine it with the incoming and outgoing wavefront
vectors cin,n and cout,n. To apply Eq. (11) for an arbitrary incident wavefront, one can obtain cin

by decomposing the incoming wave as cin =

∫
dA H⃗(r⃗) · V⃗∗

in(r⃗).
Before introducing the numerical examples below, we briefly comment on the resonance mode

in the system. For simplicity, we assume that these resonant modes form an orthogonal basis.
In general, the normal modes in an open resonator system may not be orthogonal. However, it
is possible that an open resonator system can support orthogonal modes if the system has high
symmetry, and the modes have different symmetries, which will be the case for the numerical
examples shown in the paper. A general discussion on the theoretical conditions for the open
resonator to support orthogonal modes can be found in [21].

3.1. Single incident plane wave

We first consider the case where the incident wave consists of a linearly polarized plane wave
H⃗inc = H0 · 1 · exp(−jk⃗ · r⃗)ẑ, where k⃗ is the wave vector in vacuum with a magnitude of k = ω/c,
the total magnetic field outside the scatterer is,

H⃗total = H0

[︄
exp(−jk⃗ · r⃗)ẑ +

∑︂
n

cscat,nV⃗out,n

]︄
. (12)

Using the temporal coupled-mode analysis, we can obtain the total scattered and extinction
powers as Pscat = c†scatcscat and Pext = −

(︂
c†scatB0cin + c†inB0†cscat

)︂
, respectively. Following the

definition of the scattering and extinction cross-section [19], σscat = Pscat/Iinc and σext = Pext/Iinc,
respectively, we obtain their expressions,

σscat =
1

Iinc
c†scatcscat, (13)

σext =
−1
Iinc

(︂
c†scatB

0cin + c†inB0†cscat

)︂
. (14)

As a first example shown in Fig. 1(c), we consider the incidence of a plane wave that propagates
along +x direction onto a sub-wavelength cylindrical scatterer with azimuthal symmetry. This
azimuthal symmetry imposes that B should take the form

Bmn = (−1)n+1ejΦnδm,−n, (15)

and the phaseΦ−n = Φ+n ∈ [−π, π) by mirror symmetry. The resonant modes are standing waves.
The radial parts can be expressed as Bessel functions, and the angular parts are of the form
cos(mϕ) or sin(mϕ). Taking into account the time-reversal symmetry and energy conservation
constraint [21], we obtain the form of D matrix where Dni represents the coupling between the
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i-th sinusoidal resonant mode and the n-th outgoing exponential channel:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . .

jej Φ1
2
√
γ1 ej Φ1

2
√
γ1

ej Φ0
2
√︁

2γ0

jej Φ1
2
√
γ1 −ej Φ1

2
√
γ1

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

Therefore, the n-th component of the outgoing wavefront vectors, as given by Eq. (6), is

cout,n = (−1)n+1cin,−n

[︃
ejΦn −

2γnejΦn

j(ω − ωn) + γn + γ
0
n

]︃
. (17)

For a sub-wavelength scatterer, the resonant scattering from modes with |n|>1 as well as
0-th order mode is negligible. Therefore, the resonant scattering wavefront, where the channel
vector component corresponds to the second term in Eq. (17), is composed of only two outgoing
waves in the ±1 resonant modes, i.e., for n = ±1, cout,n = (−1)n+1cin,−n

[︂
ejΦn −

2γnejΦn

j(ω−ωn)+γn+γ
0
n

]︂
;

otherwise, cout,n = (−1)n+1cin,−nejΦn . Such scattered waves carry no net momentum along x- or
y- axis, namely, F⃗res = 0 in Eq. (9b). This is also evident from the force operator P⃗ in Eq. (10)
that couples only the channels of neighboring orders (|n − m| = 1), but not between the +1 and
−1 orders. Therefore only F⃗inter and F⃗bg, the respective force resulting from the background
scattering and its interference with the resonant scattering, contribute to the resonant features of
the force spectrum.

By considering the background scattering phases only from ±1 channels, as well as Φ−1 = Φ1,
the optical force F⃗, and the extinction cross-section σext, are therefore:

Fx/Iinc =
2λ
πc

1
2

[︄
1 −

(ω − ω1)
2 +

(︁
γ0

1
)︁2

− γ2
1

(ω − ω1)2 + (γ1 + γ
0
1)

2
cosΦ1 +

2γ1(ω − ω1)

(ω − ω1)2 + (γ1 + γ
0
1)

2
sinΦ1

]︄
,

(18)
σext = cFx/Iinc. (19)

Fy = 0 due to the mirror symmetry about the xz plane.
We are ready now to illustrate the general lineshapes of optical force and extinction cross-

section spectra as described by Eqs. (18) and (19), in both lossless and low-loss cases. For the
lossless (γp = 0) case, σext and σscat are equal, while in the lossy case, σext includes contributions
from both the scattered and absorbed power. Fig. 2 plots Fx spectra with different background
scattering phases Φ1 for a lossless scatterer γ0

1 = 0 in panel (a) and a lossy scatterer γ0
1 = γ1 in

panel (b). From Eq. (19), σext can be obtained from Fx spectra by multiplying with 1/c. The
background scattering phase Φ1 has a strong influence on the spectra of Fx and σext as follows.

First, in the absence of background scattering, i.e., Φ1 = 0, Fx and σext spectra have a
Lorentzian lineshape. At the resonant frequency ω1, Fx and σext maximize to 2λ/πc and 2λ/π,
respectively, which are the maximum possible values when the scattering process involves only
the ±1 channels. In the presence of loss, the peaks of the optical force and the extinction
cross-section are reduced.

Second, for a background scattering phaseΦ1 = π, the background scattering contribution, Fbg,
maximizes at all frequencies across the resonance. In the absence of loss, the Fano interference
between the background scattering wavefront vector Bcin and the resonant wavefront vector Tcin
causes a dip with null values in both Fx and σext spectra at ω1. In the presence of loss, it is no
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Fig. 2. Optical force x component spectrum exerted on a small scatterer by a single plane
wave given by Eq. (18). (a) presents a lossless case and (b) presents a lossy case where the
internal and external loss rates are equal. The background scattering phase is chosen as
small, intermediate, and dominant in the optical force spectra. The extinction cross-section
spectra can be obtained from Fx spectra by multiplying with 1/c.

longer possible to completely eliminate the net optical force at a single frequency through the use
of a Fano interference. Thus, the optical force and the extinction cross-section cannot reach zero.

Third, for all cases where Φ1 is neither 0 nor π, e.g., Φ1 = π/2, Fx and σext spectra exhibit an
asymmetric Fano-like lineshape, which varies asymmetrically in the vicinity of ω1. The value of
Φ1 determines the shift of both the minimum and maximum in the spectra of Fx and σext with
respect to ω1.

To validate the results discussed above, which were obtained just by assuming the prescribed
symmetry and the existence of the resonances, we compare our results for two specific examples,
with exact calculations of optical force and extinction cross-section spectra based on the Mie
solution [19]. For both examples, we consider a scatterer with the geometry shown in Fig. 1 (c),
which consists of two concentric layers of dielectric and plasmonic materials. The permittivity of
the dielectric core is ϵd = 12.96, and the permittivity ϵm of the metal [36] is described by a Drude
model, ϵm = 1 −ω2

p/(ω
2 − jγpω) where ωp is the plasma angular frequency and γp characterizes

the internal loss rate, which is equal to zero for a lossless scatterer. The influence of background
scattering is studied by varying the size of the scatterer.

The first case consists of a small scatterer with the geometrical parameters of r1 = 0.2λp,
r2 = 0.135λp, where λp = 2πc/ωp. These geometrical parameters are chosen so that the
background scattering is weak. As we will see in the discussion below, this system exhibits the
resonance at ±1 modes. Throughout the paper, we refer to this structure as the “small scatterer".
The optical force component along x-axis is plotted in Fig. 3 (a). For such a small scatterer, as
described by Eq. (18), the spectrum peaks near 0.1552ωp with a Lorentzian lineshape. From
Eq. (19), the extinction spectrum is proportional to the force spectrum in the frequency range
under study.

To quantitatively compare the exact solutions with the coupled-mode results, we extract
the coupling parameters by fitting the spectrum of cout with the parametric response from the
coupled-mode theory in Eq. (17). This fitting is done by applying the least-square method to
minimize the difference between the numerical and analytical cout spectrum for all frequencies.
The coupled-mode parameters are ω1 = 0.1552ωp, γ1 = 2 × 10−4ωp, Φ1 = 0.0516. The fact
that Φ1 ≪ π verifies that the background scattering is weak. Using these coupled-mode fitting
parameters, the analytically fitted optical force spectrum agrees excellently with the exact Mie
solutions as shown in Fig. 3(a).

The second case is the same lossless structure with a new set of geometrical parameters:
r1 = 0.76λp, r2 = 0.27λp. As we will see in the discussion below, this system exhibits the
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Fig. 3. Optical force and extinction cross-section spectra of the lossless scatterer under
single plane wave incidence. The composition of the concentric scatterer is shown in
Fig. 1(b), with the permittivity ϵd = 12.96 in the core, and ϵm = 1 − ω2

p/(ω
2 − jγpω) with

γp = 0 in the shell. (a) The optical force for a small scatterer (r1 = 0.2λp, r2 = 0.135λp)
along x direction. (b) The optical force for a large scatterer (r1 = 0.76λp, r2 = 0.27λp) along
x direction. The blue solid lines are the Mie theory solution, and the red dotted line is from
the temporal coupled-mode theory fitting.

resonance at ±1 modes and a strong background scattering from multiple channels. Throughout
the paper, we refer to this structure as the “large scatterer". The spectrum of the optical force is
plotted in Fig. 3 (b), as obtained from exact Mie solutions of the scatterer. We observe that in the
frequency range under study, the optical force spectrum exhibits asymmetric lineshapes due to
the Fano interference from the background scattering.

As before, we obtain the coupled-mode parameters from a least-square fitting procedure.
The parameters for the ±1-th order resonances are ω1 = 0.1568ωp and γ1 = 3 × 10−5ωp. The
resonance frequencies of all other orders are sufficiently far from ω1, thus they do not contribute
significantly to the lineshape of the spectrum which is considered here. Thus, we set all
other parameters to 0. For the background scattering, the fitted parameters are Φ0 = −0.4390,
Φ1 = 0.7773, Φ2 = 0.065. From these scattering phases, the matrix B in Eq. (6) can be
determined. With these coupled-mode fitting parameters, the analytically fitted spectra agree
well with the exact Mie solution. In comparison with the small scatterer, the large values of Φ0
and Φ1 cause an asymmetric Fano-like lineshape around ω1.

The theoretical analysis allows us to link the properties of the scatterer to a few other aspects of
the scattering and force behaviors. When only a single pair of channels excite the resonant mode
with the same angular mode index, the force and the extinction spectra are strictly proportional,
as we see in the small scatterer case. For the large scatterer, these two spectra are no longer
proportional since multiple channels with different angular indexes contribute. For both small
and large scatterers, the force is positive across all frequencies, i.e., the direction of the force
is parallel to the Poynting vector as expected for the case of a single incident plane wave. The
strong background scattering, which results in the Fano-like lineshape, does not change the sign
of the force - thus only repulsive (or zero) force is exhibited here.

3.2. Two incident plane waves

The behavior of the optical force is significantly richer when the incident wave is more complex
than a single plane wave [37,38]. As an illustration, we proceed one step in complexity to study
the optical force spectrum with two incident plane waves.
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The two waves have the same frequency and amplitude and propagate along angles ±θ
measured from the x-axis, as schematically shown in Fig. 1 (c). Additionally, the two waves
can have a relative phase ϕ. The incoming wavefront is represented in the Hankel basis by
cin,n = (−1)n+1 jn

2
(︁
e−jnθ + ej(φ+nθ))︁ . For such an incident plane wave, the Poynting vector is

always along the x-direction. For the small scatterer where the ±1-th order modes dominate, the
scattered wavefront vector cscat is given by Eq. (7).

Due to the gradient force contribution [39] from the standing-wave pattern [40], the optical
force is in general not parallel to the incident Poynting vector. By applying the optical force
operator in Eq. (8) and normalizing by the intensity Iinc of a single plane wave, the optical force
is given by:

Fx/Iinc =
4λ
πc

[︄
1 −

(ω − ω1)
2 + γ0

1
2
− γ2

1

(ω − ω1)2 + (γ1 + γ
0
1)

2
cosΦ1 +

2γ1(ω − ω1) sinΦ1

(ω − ω1)2 + (γ1 + γ
0
1)

2

]︄
× cos θ(1 + cos ϕ cos 2θ),

(20)

Fy/Iinc = −
4λ
πc

[︄
(ω − ω1)

2 + γ0
1

2
− γ2

1

(ω − ω1)2 + (γ1 + γ
0
1)

2
sinΦ1 +

2γ1(ω − ω1) cosΦ1

(ω − ω1)2 + (γ1 + γ
0
1)

2

]︄
sin ϕ sin θ cos 2θ.

(21)
Therefore, the lineshapes of the x and y components of the force include an odd function of

(ω − ω1). In this case, the Fx is always positive, for all incident wavefront θ, ϕ and background
scattering phase Φ1 and it is not possible for the force spectrum to change the sign for the small
scatterer in this region. In order to observe negative force, the background scattering phase needs
to be nonzero in multiple channels.

As the force spectra lineshape depends on the angle θ and phase difference ϕ, it is possible to
control the force spectrum by changing the incident wave angles and relative phases. We consider
the force on the small and large scatterers that were discussed in the previous section. We study
the optical force when the incident angle θ = π/3 and the relative phase of the two incident plane
waves at the origin is ϕ = π/2. The results for the small scatterer are depicted in Fig. 4(a, b). In
the frequency range under study, the force component along the Poynting vector, i.e., Fx, exhibits
a nearly Lorentzian spectral lineshape. This is consistent with Eq. (20) with a weak background
scattering. We recall from the previous section that Φ1 = 0.0516 ≪ π for this case. On the other
hand, in panel (b), the force component orthogonal to the Poynting vector, i.e., Fy exhibits an
asymmetric lineshape, where the force is very close to an odd function of (ω − ω1). The sign
of this gradient force can change from positive to negative, as the frequency varies across the
resonant frequency. Using the same coupled-mode fitting parameters extracted earlier, we again
see an excellent agreement with the numerical results.

This force behavior for a lossless structure persists in the presence of a modest amount of
loss. Figure 4 (c, d) shows the optical force spectra when a material loss characterized by
γp = 2 × 10−3ωp is introduced to approximate the property of gold [41]. Since γp ≪ ω1, the
previous coupled-mode fitting parameters still apply, including the resonant frequency ω1, the
background scattering phase Φ1, and the external loss rate γ1. Then, an internal loss rate is
determined as γ0

1 = 9× 10−4ωp by repeating the same parameter fitting process as outlined above
for the lossless case. The main features of Fx and Fy spectra are still present with this intrinsic
loss. However, compared with the lossless case, we observe that the peak value is diminished
and the bandwidth is broadened as can be expected.

The interplay between the background and resonance scattering can enable diverse lineshapes
of the force spectrum. To this end, we again consider the large scatterer in the absence of material
loss. The phase and angle of incidence of waves 1 and 2 are chosen to be the same as for the
small lossless scatterer described above. As shown in Fig. 4(e, f), the dots are fitting results using
Eqs. (20) and (21), with the same parameters as above when considering the single incident plane
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Fig. 4. Optical force with two incident plane waves at a relative phase ϕ = π/2 and the
incident angle difference θ = π/3. The composition of the concentric scatterer is shown
in Fig. 1(c), with the permittivity ϵd = 12.96 in the core, and ϵm = 1 − ω2

p/(ω
2 − jγpω) in

the shell. (a, b) The optical force for a small and lossles (γp = 0) scatterer with r1 = 0.2λp,
r2 = 0.135λp. (c, d) The optical force for a small and lossy (γp = 2 × 10−3ωp) scatterer. (e,
f) The optical force for a large and lossles (γp = 0) scatterer with r1 = 0.76λp, r2 = 0.27λp.
The blue solid lines are the Mie theory solution, and the red dotted line is from the temporal
coupled-mode theory fitting.

wave case. The solid lines are exact numerical calculations via the Mie solution. We again see an
excellent agreement between these results.

For the large scatterer, the optical force spectra along x direction exhibit Fano-like lineshapes,
shown in Fig. 4(e, f) in the frequency range under study. We recall that the large background
scattering phases of Φ0 = −0.4390 and Φ1 = 0.7773 result in a Fano-like lineshape around the
resonant frequency ω1. For Fy spectra, due to the stronger background scattering, the asymmetric
lineshape no longer has an odd symmetry around ω1. This example also verifies the applicability
of the temporal coupled-mode model for large scatterers under complex illumination.

The next example is important because it pertains to the case where the force spectrum is
substantially different from the extinction spectrum. For this, we use two incident plane waves
that have different amplitudes (the resulting force equation is discussed in the Section 6.3 in the
Appendix). We present in Fig. 5 an example of two such counter-propagating plane waves that
achieve significant asymmetric force line shapes, while the extinction cross-section spectrum is
still symmetric. The incident wavefront is composed of two waves as in Fig. 1 (c) where wave
1 is propagating along the +x direction, while wave 2 is propagating along −x direction. The
magnitude of wave 2 is 0.8 of that of wave 1 and wave 2 has a phase ϕ = π/2 delay relative to
wave 1.
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Fig. 5. Extinction cross-section and optical force under two counter-propagating plane
waves for the small scatterer with r1 = 0.2λp, r2 = 0.135λp without material loss. Wave 1 is
propagating along the +x direction; while wave 2 is along −x direction. The magnitude of
wave 2 is 0.8 of wave 1 and wave 2 has phase ϕ = π/2 delay compared with wave 1. The
optical force along x-axis (a), and extinction cross-section (b) are calculated by the Mie
solution and the temporal coupled-mode theory fitting. The blue solid lines are the Mie
theory solution, and the red dotted line is from the temporal coupled-mode theory fitting.

As shown by the spectra, in the frequency range under study, the extinction cross-section
shows a Lorentzian line shape. In contrast, the force component along the Poynting vector,
i.e., Fx spectrum, shows an asymmetric line shape and varies asymmetrically near the resonant
frequency ω1 as shown in panel (b). We interpret the lineshape based on our analysis in this
section, which takes into account the total force including both the gradient and radiation forces.
With the two counter-propagating incident waves of similar magnitudes, the radiation force is
reduced significantly. Furthermore, due to the small size of the scatterers where the background
scattering is zero, the only contribution for the asymmetry of the line shape is the gradient force.
This is the first demonstration in this paper where the gradient force is present along the direction
of the incident Poynting vector.

4. Size-sorting mechanism

To further explore the implications of the phase control over the force spectrum, we fix the
incident angle to π/3 and place the scatterer center at an arbitrary point (x, y) to obtain different
relative phases (measured at the center of the scatterer). The two incident plane waves are selected
to have no phase difference at the origin, thus at any observation point (x, y) on the z = 0 plane,
the local phase difference of the two incident plane waves is ϕ(x, y) = 2ky sin θ. We calculate
the force exerted on the scatterer at different locations based on the temporal coupled-mode
theory Eqs. (20) and (21). We find null values of Fy located at points along y according to the
spectral resonances. These null points can be either stable or unstable along the y direction. From
Eq. (21), one can see that the y component of the force is zero where the phase 2ky sin θ is an
integer multiple of π. Similar force behavior has been seen in optical lattices [42].

In Fig. 6, we present the quiver plot of the force density in the xy plane exerted on the previously
described small scatterer in Fig. 6 (a) and large scatterer in Fig. 6 (b), under two incident plane
waves. As an example, the frequency is chosen as ω = 0.1565ωp, near the resonance frequencies
of the force spectrum. Given this frequency, the y locations that fulfill the geometric condition
for null Fy correspond to integer multiples of y0 = 1.8446λp. Material loss γp = 1 × 10−3ωp
is introduced to both scatterers to approximate the property of realistic materials. We assume
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that the scatterers are diluted to the desired concentration, such that each time we only have one
scatterer in the field of view. Then, the optical force exerted on each scatterer can be considered
individually. We observe for the small scatterer in panel (a), Fy points towards the even multiples
of y0, which are flow channels along the x direction that collect the small scatterers. On the
contrary, for the large scatterer in panel (b), the odd multiples of y0 are flow channels along the x
direction that collect the large scatterers.

Fig. 6. Quiver plots of the horizontal force experienced by a cylindrical scatterer under two
incident plane waves at frequency ω = 0.1565ωp. The geometry is as Fig. 1(b) with θ = π/3
and waves 1 and 2 have the same phase at the origin. (a) The small scatterer with r1 = 0.2λp,
r2 = 0.135λp is collected at y = 0 and y = ±2y0 if the scatterer is in a flow channel, where
y0 = 1.8446λp, as shown by the small red dots (drawn to scale) on the left. (b) The larger
cylindrical scatterer with r1 = 0.76λp, r2 = 0.27λp is collected at y = ±y0 if the scatterer is
in a flow channel, as shown by the large red dots (drawn to scale) on the left. Both scatterers
have a material loss γp = 0.001ωp.

The results depicted in Fig. 6 can be used conceptually for sorting scatterers (such as viruses
combined with nanoparticles [43]) based on their sizes or more precisely on their resonant
frequencies. To realize precise size sorting, the force spectrum should change the sign across its
resonant frequency, and the resonant frequencies of scatterers with different sizes should be well
separated. In our case, the small and large particles exhibit resonant frequencies around 0.155 ωp
and 0.157 ωp respectively. Both scatterers exhibit dramatic sign changes in Fy as indicated by
Fig. 4 (b, f). Similarly, the signs of Fy also vary as a function of y (i.e., phase difference) for
the two scatterers on the spatial plane. Thus, different scatterers get collected at different flow
channels.

This sorting mechanism is different from previous works on sorting co-streaming scatterers
[44] with a five-beam interference pattern, sorting on-chip scatterers with whispering gallery
mode [45] and sorting nanoparticles with near-field potential on-chip [46]. The specific particle
sorting we present here is restricted to highly elongated particles, with z direction stabilization (e.g.
by an electric field) to prevent rotation. However, the main point is the fact we can provide the
designer the generalized force maps as a function of very few parameters for specific applications.

5. Conclusion

We have developed a theoretical framework for analyzing optical force resonant lineshapes based
on the temporal coupled-mode theory. This theory links optical properties of the structure to the
properties of optical force resonances. With a single plane wave, we show the lineshape in the
force and extinction cross-section spectra as determined by the resonances. With two plane waves,
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we demonstrate tunable asymmetric lineshapes of the force spectrum along and orthogonal to
the incident Poynting vectors. We verify our theoretical analysis with numerical examples. Our
theory highlights the engineering of the optical force [47] by utilizing the resonance from the
scattering process, which applies to both lossless and low-loss systems. It would be of interest
to apply the theory in three dimensions to treat the resonant forces on nanoparticles. And for
this purpose, one should expand the fields in the vector spherical waves, but the basic formalism
will remain the same. We have also proposed a potential method of sorting metallic cylindrical
scatterers based on our theory. This theory may also be important for the application of precise
nano-manipulation with optical tweezers and size sorting with biological sensors.

Appendix

6.1 Force matrix derivation

In this section we provide a derivation of Eq. (3) and Eq. (10). We derive Eq. (3) first. Assume a
magnetic field distribution ψ. (Similar derivation can be done using electric field distribution.)
The computation of the force F⃗ for such a field distribution can be written in a bilinear form as

F⃗ = O⃗(ψ,ψ). (22)

The bilinear form O⃗ has the following properties:

O⃗(ψ, aψ1 + bψ2) = aO⃗(ψ,ψ1) + bO⃗(ψ,ψ2), (23)

O⃗(aψ1 + bψ2,ψ) = a∗O⃗(ψ1,ψ) + b∗O⃗(ψ2,ψ). (24)

We now consider a magnetic field distribution ψ̃ = −ψ∗, which corresponds to the time reversal
of the field distribution ψ. Since the force is even with respect to time reversal, the magnetic field
distribution ψ̃ should generate the same force as ψ. Therefore,

F⃗ = O⃗(ψ̃, ψ̃) = O⃗(−ψ∗,−ψ∗) = O⃗(ψ∗,ψ∗). (25)

Thus, the bilinear form satisfies

O⃗(ψ̃, ψ̃) = O⃗(ψ∗,ψ∗). (26)

Let us now consider the field distribution,

ψ =
∑︂
m

cin,mV⃗in,m + cout,mV⃗out,m. (27)

The corresponding real-valued force is then F⃗ = F⃗in + F⃗out + F⃗int, where

F⃗in =
∑︂
m,n

c∗in,mcin,nO⃗(V⃗in,m, V⃗in,n),

F⃗out =
∑︂
m,n

c∗out,mcout,nO⃗(V⃗out,m, V⃗out,n),

F⃗int =
∑︂
m,n

c∗in,mcout,nO⃗(V⃗in,m, V⃗out,n) + c∗out,mcin,nO⃗(V⃗out,m, V⃗in,n).

(28)

Let us denote the (m, n)-th element of the matrix P⃗ as

P⃗mn = O⃗(V⃗in,m, V⃗in,n). (29)

Suppose we choose the outgoing wave basis such that V⃗out,m = −V⃗∗
in,m, i.e., the incoming and

outgoing wave bases form a time-reversal pair. Further, as the force operator is Hermitian, we
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obtain, O⃗(V⃗∗
in,m, V⃗∗

in,n) = O⃗(V⃗in,n, V⃗in,m). Then in Eq. (28), we apply Eq. (26) and obtain,

O⃗(V⃗out,m, V⃗out,n) = O⃗(V⃗∗
in,m, V⃗∗

in,n) = O⃗(V⃗in,n, V⃗in,m)

= P⃗nm.
(30)

On the other hand, momentum conservation requires that the integration of the Maxwell’s
stress tensor over the integration surface surrounding the scatterer, i.e., F⃗, be independent of
r, i.e., the distance from the center of the scatterer. As an illustration, consider the cylindrical
coordinate systems. For an integration surface far from the center of the scatter, the incoming
and outgoing fields in the m-th channel can be approximated as 1√

r e±jk⃗m ·r⃗ in its radial dependency,

where k⃗m is the wavevector along the radial direction. With these fields, one can see that F⃗in
and F⃗out has no explicit r dependency whereas F⃗int has an explicit r dependency. Therefore, F⃗int
needs to vanish to maintain momentum conservation. Therefore,

F⃗ = c†inP⃗cin + c†outP⃗
Tcout, (31)

which proves Eq. (3).
In the following, we derive the explicit form of P⃗, i.e., Eq. (10), for the quasi-2D particles.

One possible basis function in polar coordinates (r, φ) centered at the origin is

V⃗in,m(r, φ) = −H(1)
m (kr)e−jmϕ ẑ, (32)

V⃗out,m(r, φ) = H(2)
m (kr)ejmϕ ẑ, (33)

where H(1)
n and H(2)

n are the n-th order Hankel functions of the first and second kind, respectively.
For the force calculation, Eq. (29) can be explicitly written as

P⃗mn =

∫
S

dA
1
4

[︂
ϵ0(n̂ · E⃗∗

in,m)E⃗in,n + µ0(n̂ · H⃗∗
in,m)H⃗in,n

]︂
+

∫
S

dA
1
4

[︂
ϵ0(n̂ · E⃗in,n)E⃗∗

in,m + µ0(n̂ · H⃗in,n)H⃗∗
in,m

]︂
−

∫
S

dA
1
4

[︂
ϵ0(E⃗∗

in,m · E⃗in,n)n̂ + µ0(H⃗∗
in,m · H⃗in,n)n̂

]︂
,

(34)

where the integration is taken on a circle centered on the particle. ϵ0 and µ0 denote the vacuum
permittivity and permeability, respectively. E⃗in,m and H⃗in,m are the electric and magnetic fields for
the incoming wave in the m-th channel. H⃗in,m = H0V⃗in,m with V⃗in,m from Eq. (32) and H0 =

√︂
ωϵ0

2

as the normalization factor. Then E⃗in,m =
1

jωϵ0
∇ × H⃗in,m. By momentum conservation, we can

take the radius R of the circle to be sufficiently large, such that H⃗in,m can be approximated as:

H⃗in,m = −

√︃
ωϵ0
πkR

ej(kR− π
4 −

mπ
2 )e−jmϕ ẑ (35)

Keeping only the terms with R− 1
2 order, the corresponding electric field is then

Ein,m =

√︄
k

ωϵ0πR
ej(kR− π

4 −
mπ
2 )e−jmϕ φ̂. (36)

Therefore, Eq. (34) becomes

P⃗mn =
−1
2πc

∫ 2π

0
dφej(m−n)(ϕ+ π

2 )(x̂ cos φ + ŷ sin φ), (37)

which gives the form of the force operator matrix in Eq. (10) as,

P⃗mn =
1
2c

(jδm,n−1 − jδm,n+1)x̂ +
1
2c

(δm,n+1 + δm,n−1)ŷ. (38)
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6.2 Temporal coupled-mode theory

In this Section, we provide some of the details for the temporal coupled-mode theory. The
incoming waves can be transmitted completely to the outgoing channels. For the TM-polarized
field, B0 is expressed as,

B0
mn = (−1)n+1δm,−n. (39)

The term δm,−n is attributed to the conservation of angular momentum between the incoming
wave in the n-th channel and the outgoing wave in the −n-th channel. The (−1)n+1 factor can
be seen from the expansion of a plane wave with the wavevector k⃗ in cylindrical harmonics
(Eqs. (32) and (33)):

e−jk⃗ ·r⃗ =
∑︂

n
(−j)nJn(kr)ejnϕ

=
1
2

∑︂
n

−j−nVin,n + jnVout,−n,
(40)

where Jn is the Bessel function of order n. Using the decomposition from Eq. (40) we obtain
cin,n = − 1

2 j−n, cout,n =
1
2 j−n + cscat,n.

In Eqs. (4) and (5), Ω, Γ, Γ0 are all Hermitian matrices. The N-by-N matrix B in Eq. (5)
describes the background scattering, i.e., the scattering of the incoming wave without the
excitation of the resonant modes. In this paper, we assume that the background scattering is
lossless and hence B†B = I. The matrices B, D, K, and Γ are related by:

BD∗ = −D, (41)

D = K, (42)

D†D = 2Γ, (43)

as imposed by time-reversal symmetry and Lorentz reciprocity arguments [21]. We note that
Eq. (41) is strictly valid only for a lossless scattering system but can approximate a system with
low loss [23,24]. Using the same temporal coupled-mode analysis as in Eqs. (18) and (19), we
obtain the scattering cross-section spectrum described by

σscat =
2λ
π

1
2
[(ω − ω1)

2 +
(︁
γ0

1
)︁2
](1 − cosΦ1)

(ω − ω1)2 + (γ1 + γ
0
1)

2

+
2λ
π

1
2
γ2

1(1 + cosΦ1) + 2γ1(ω − ω1) sinΦ1

(ω − ω1)2 + (γ1 + γ
0
1)

2
.

(44)

6.3 Arbitrary superposition of two plane waves

In the main text of the paper, we considered a cylindrical scatterer illuminated by two incident
plane waves of equal amplitude. Now we generalize to an arbitrary (along θ direction from
the x axis) incident TM-polarized wavefront. To compute the force from such a wavefront, we
introduce a same-frequency plane-wave basis which is complete and orthogonal, c(θ), where
cn(θ) = (−1)n+1 jn

2 ejnθ .
For the force component along an arbitrary direction with an angle α from the x-axis (below as

the α-direction), the corresponding force operator is denoted as Pα. From Eq. (10), the matrix ele-
ment of Pα, indexed according to the channels m and n is, Pα,mn =

1
2c

[︁
je−jαδm,n−1 − jejαδm,n+1

]︁
.

Considering scatterers having ±1-th resonant modes, with the resonant frequency ω1, and
external and internal loss rates, γ1 and γ0

1 , the exerted force along the α-direction is obtained
by replacing P⃗ in Eq. (3) with Pα. To explore the symmetry of the lineshapes in the optical
force spectrum, we decompose the force into the symmetric component Fs and the asymmetric
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component Fa, which is an even and an odd function of frequency difference ∆ω = ω − ω1,
respectively:

Fa =
1
2c

j(ω − ω1)c†in(D
∗DTQα − QαD∗DT )cin

(ω1 − ω)2 + (γ1 + γ
0
1)

2
, (45)

where Qα = −B−1P⃗T
αB. For convenience, we denote a new complete and orthogonal basis

v(θ) = B†c∗(θ). Using this new basis, in Eq. (45), an arbitrary incident TM-polarized wavefront

cin can be decomposed as cin =

∫
dθq(θ)v(θ) where q(θ) = 2

π v†(θ)cin.
We then can determine the direction αs at which the force has a purely even-symmetric

spectrum, as well as the direction αa at which the odd-symmetric force component maximizes.
By setting the odd-symmetric component Fa of the force is zero, we obtain αs as,

αs = tan−1

∬
dθidθj(cos θi − cos θj)q∗i qjv†i D∗DTvj∬
dθidθj(sin θj − sin θi)q∗i qjv†i D∗DTvj

, (46)

where vi(j) = v(θi(j)) and qi(j) = q(θi(j)).
For any direction other than that given by Eq. (46), the force spectrum exhibits some degree of

asymmetry. By setting the derivative of Fa with respect to α as zero, we obtain αa where the
odd-symmetric component of the force maximizes,

αa = tan−1 (−1/tanαs) . (47)

From αa and αs, for a small scatterer where the ±1-th modes dominate, there is always a
direction αs at which the force exhibits an even-symmetric Lorentzian lineshape, as well as a
direction αa at which the force exhibits a maximally asymmetric lineshape around the resonant
frequency ω1.

As an application of αa and αs, we examine the case of two incident plane waves with the same
amplitude where the propagating directions of the two waves from the x axis are denoted as −θ1
and θ2, respectively. Two basis functions v(−θ1) and v(θ2) are enough to describe the incoming
wavefront cin. Then, αa and αs are simplified to, αs = (θ2 − θ1)/2 and αa = π/2 + (θ2 − θ1)/2.
This is consistent with the numerical observations in the previous sections. αs and αa do not
depend on the detail of the scatterer and are controlled only by the directions of incident waves,
provided that the ±1-th resonant modes dominate the optical response.
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