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Experimental realization of convolution processing in
photonic synthetic frequency dimensions
Lingling Fan1, Kai Wang1,2, Heming Wang1, Avik Dutt3, Shanhui Fan1*

Convolution is an essential operation in signal and image processing and consumes most of the computing
power in convolutional neural networks. Photonic convolution has the promise of addressing computational
bottlenecks and outperforming electronic implementations. Performing photonic convolution in the synthetic
frequency dimension, which harnesses the dynamics of light in the spectral degrees of freedom for photons, can
lead to highly compact devices. Here, we experimentally realize convolution operations in the synthetic fre-
quency dimension. Using a modulated ring resonator, we synthesize arbitrary convolution kernels using a pre-
determined modulation waveform with high accuracy. We demonstrate the convolution computation between
input frequency combs and synthesized kernels. We also introduce the idea of an additive offset to broaden the
kinds of kernels that can be implemented experimentally when the modulation strength is limited. Our work
demonstrate the use of synthetic frequency dimension to efficiently encode data and implement computation
tasks, leading to a compact and scalable photonic computation architecture.
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INTRODUCTION
Neural networks (1) have been ubiquitously used in machine learn-
ing tasks such as computer vision, speech, audio, and language
comprehension. Among these networks, convolutional neural net-
works (CNNs) (2) play a critical role in recognizing features embed-
ded in complex input data. With this capacity of feature extraction,
CNNs achieve superior accuracy in predicting unseen data, with a
reduced number of parameters compared with dense neural net-
works (3).

Convolution, as a central operation for spatiotemporal percep-
tion in CNNs (4), is particularly energy- and memory-intensive
using conventional electronic architecture that is limited by the
data movement bottleneck (5). As a promising substitute, optical
neural networks (ONNs) (6) process information by propagating
a light signal through an optical structure (7, 8). ONNs have the po-
tential for improved computing performance, with parallel input
processing (9), high computing speed (10–12), broad information
bandwidth (13), and low energy consumption (14). ONNs have
been implemented in a variety of schemes ranging from Mach-
Zehnder interferometers for matrix-vector multiplication (15–17)
to microring resonators for reservoir computing (18, 19). In addi-
tion, diffractive layers (20, 21) and scattering media (22) are used for
image and vowel detection. However, most of the ONNs are limited
to using only the spatial degrees of freedom of photons (23). Fre-
quency degree of freedom is seldom used for kernel formation
(24), and most of the previous works using frequency degree of
freedom of photons for computing did so without mixing the fre-
quencies as light propagates through the device (11, 12). With the
need to scale up ONNs to meet the demands of various applications,
it is desirable to use other degrees of freedom of photons, e.g., fre-
quency, to further enhance the scalability of ONNs.

In this work, we experimentally demonstrate the use of a syn-
thetic frequency dimension (25, 26) as formed by a dynamically
modulated ring resonator to enable convolution operations. Specif-
ically, we synthesize a wide range of convolution kernels with ana-
lytically predetermined modulation waveforms. We achieve various
intended convolution kernels with good agreement with theory. We
demonstrate the convolution computation by generating different
frequency-mode inputs. The output frequency comb obtained
from the ring agrees well with the target output as processed by con-
volution. We also introduce a pathway to broaden the kinds of
kernels that can be implemented experimentally when the modula-
tion strength is limited.

The concept of synthetic frequency dimension has been previ-
ously used to demonstrate topological physics (27–30) and
matrix-vector multiplication (24, 31). However, the use of synthetic
frequency dimension for convolution (32) has rarely been demon-
strated experimentally. While convolution can be viewed as a special
case of matrix-vector multiplication, the matrix that corresponds to
a convolution operation has a translational symmetry. Exploiting
this translational symmetry enables a simpler implementation as
compared with the implementation of a general matrix-vector mul-
tiplication operation. Frequency combs have been previously used
for optical convolution purposes (10–12). Previous studies (10–12),
however, do not use the dynamics of light along the frequency di-
mension, i.e., these works do not use the possibility of frequency
mixing and conversion as offered by a dynamically modulated
system, which is at the heart of the concept of synthetic frequency
dimension. Our work introduces a new physics mechanism for
achieving optical convolution and is important for the quest to
achieve large-scale parallel optical computation with
compact devices.

RESULTS
Modulation waveform design
The experimental setup in this work consists of an optical ring res-
onator undergoing electro-optical modulation as schematically
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shown in Fig. 1A. Assuming that the waveguide forming the ring
resonator as well as all other waveguides that provide input and
output coupling to the ring all support a single mode and the
group velocity dispersion is negligible, ΩR = 2πc/ng‘ corresponds
to the free spectral range (FSR) of the ring resonator. Here, c, ng,
and ‘ represent light speed in vacuum, group refractive index, and
ring circumference, respectively. tR = 2π/ΩR denotes the round-trip
time of the ring. Specifically, here, we consider the case that the
modulator exclusively modulates the amplitude of light, which
can be described by a temporal transmission factor (30)

TAmðtÞ ¼ exp
X

m�1
BmsinðmΩRt þ BmÞ � γtR

" #( )

ð1Þ

Bm and βm correspond to the magnitude and phase angle of the
waveforms in the amplitude modulators for the mth-order resonant
modulation component, respectively. γ corresponds to time-aver-
aged loss as induced by the amplitude modulator. In using Eq. 1
to describe a passive amplitude modulator that has no gain, γ is pos-
itive and needs to be sufficiently large so thatTAM(t) < 1 for all t. The
ring resonator is coupled to an input and an output waveguide.
Since T(t) = T(t + tR), the frequency components of the modulation
waveform are located at integer multiples of the FSR of the ring res-
onator. Therefore, with modulations, the resonant modes of the
ring at different frequencies can resonantly couple with each other.

In Fig. 1A, there is an input waveguide that couples to the ring
with a coupling coefficient γe1, as well as a drop-port waveguide that

couples to the ring with a coupling coefficient γe2. We inject a fre-
quency comb in the input waveguide to generate an output frequen-
cy comb in the drop waveguide. The modulation waveform as
described above can be used to implement a convolution kernel
in the frequency dimension. The ring resonator supports 2N + 1
equally spaced resonant modes with frequencies ωn = ω0 + nΩR
(−N ≤ n ≤ N), with ω0 corresponding to the central resonant fre-
quency. We assume an input wave with a form
cin ¼

X

n
cin;nexpðjωnt þ jΔωtÞ, with Δω being the detuning. The

wave inside the modulated ring then has the form
aðtÞ ¼

X

n
anðtÞexpðjωnt þ jΔωtÞ. The modal amplitudes an can

be determined by the temporal coupled-mode theory (32). Defining
the input and output wave amplitude vectors cin = [⋯, cin,n, ⋯] and
cout = [⋯, cout,n, ⋯], we obtain the scattering matrix that connects
cin and cout by cout = Scin and S is given by

S ¼ j2γe1 γe2fKþ ½jðγþ γcstÞ � Δw�Ig� 1
ð2Þ

Here, γcst is the total rate of loss in the resonator from mecha-
nisms other than the amplitude modulator. These mechanisms
can include, for example, the propagation loss of light in the
fiber, as well as input and output coupling, as characterized by
the input and output coupling rate of γe1 and γe2, respectively.
Here, we assume that such a loss rate is the same for every resonant
mode in the system. This assumption of uniform loss rates holds
within a spectral window of a few nanometers, as the variations of
coupling ratios for the coupler and the gain profile of amplifiers
could be negligible. I is an identity matrix. The matrix elements
of K satisfy the translational symmetry, i.e., Km,n = κm−n, where m
and n are the indices of the modes. κ±p, with p > 0, is the coupling
constant between two modes m and n satisfying ∣m − n∣ = p and is
related to the modulation parameters by κ+p ¼+ 1

2tR
Bpe+jβp . To

simplify the represention, we denote κ0 = j(γ + γcst) − Δω to
combine the loss and detuning factors intoKmatrix. S, consequent-
ly, is a matrix with elements Sm,n = sm−n so it has a translational sym-
metry along the frequency axis (32).

Because of the translational symmetry along the frequency axis,
the scattering matrix in Eq. 2 implements a one-dimensional (1D)
convolution operation

cout;m ¼
X

n
Sm;ncin;n ¼

X

n
sm� ncin;n

¼
X

n
sncin;m� n

ð3Þ

Here, sn is the nth element of a kernel for the convolution oper-
ation (33). Figure 1B illustrates the convolution operation of a
kernel consisting of three elements s−1, s0, and s+1. Here, for com-
pactness of notation, we often represent a kernel as a row vector
with an odd number of elements. The three-element kernel here,
for example, is denoted as [s−1, s0, s+1]. Figure 1 (C and D) illustrates
the operation of such kernel when s0 = 2 and s±1 = 1. Figure 1C cor-
responds to a case with the input consisting only of a single frequen-
cy, namely, the continuous-wave (CW) laser. Figure 1D
corresponds to a case with the input being a multiple-frequency
comb. 1D convolution is essential for feature extraction in sequen-
tial data processing such as audio and speech comprehension (34).

Fig. 1. Schematic illustration of the convolution experiment. (A) The experi-
mental setup, where the convolution operation is performed by a ring resonator
modulated by an electro-optical modulator. The modulation has its frequency
components located at the free-spectral range ΩR of the ring and its integer mul-
tiples. An input optical frequency comb is injected into the modulated ring reso-
nator. The output frequency comb is detected at the drop-port optical waveguide.
(B) A translationally symmetric scattering matrix S transforms the input cin to the
output cout. This transformation is equivalent to a 1D convolution operation with a
kernel. Here, we show a three-element kernel [s−1, s0, s+1] for illustration purposes.
(C) ACW laser is injected into a modulated ring resonator implementing a smooth-
ing kernel [1, 2, 1]. The output frequency comb manifests the kernel shape. (D) A
multifrequency comb is injected into the same modulated ring resonator as in (C)
that implements the same smoothing kernel [1, 2, 1]. The output frequency comb
is smoother as compared with the input. In (C) and (D), the height of a comb line
represents the electric field amplitude at the corresponding frequency site.
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For experimental design, it would be desirable to generate a pre-
scribed kernel with an analytical modulation waveform. Assuming
zero detuning, Δω = 0, for a given kernel with elements sn, the cor-
responding modulation parameters Bm and βm are given by (32)

BmexpðjβmÞ ¼ tRðκþm � κ�� mÞ ð4Þ

γþ γcst ¼ � jκ0 ð5Þ

where coupling constants κm are related to the kernel elements sn via

Km ¼
jγe1 γe2

π

ð2π

0

e� jmk
X

n
ejnksn

dk ð6Þ

Kernel synthesis
Our experiments use a fiber ring resonator modulated by an electro-
optic modulator as shown in Fig. 1A. The ring has an FSR of ΩR =
2π · 5.99 MHz, corresponding to a circumference of ‘ = 34.3 m.
From the input waveguide, we launch a CW laser into the ring res-
onator through a fiber coupler. The laser’s frequency is scanned
across a resonance of the unmodulated ring. Within the cavity, we
use an Er-doped fiber amplifier to compensate for part of the
roundtrip loss. At each detuning Δω, we measure the time-resolved
output power I(Δω, t) at the drop port, using a fast photodiode with
a bandwidth over 5 GHz and an oscilloscope of 1 GHz analog
bandwidth.

We experimentally construct various convolution kernels based
on the theory as discussed in the previous section. Here, the input-
output transformation is as described in Fig. 1C where we launch a
single frequency, and, therefore, the output manifests the kernel. In
the first example (Fig. 2, A to D), we demonstrate the high boost
kernel, which consists of three nonzero elements of s0 = 6 and s±1

= −1. This kernel is widely applied in image processing to sharpen
the high-frequency edge information and enhance the low-frequen-
cy feature information in the image (35).

To generate this kernel, we first calibrate the loss rate γ + γcst =
0.027ΩR. This calibration is described in more detail in Materials
and Methods. With this γ + γcst and Eqs. 4 and 5, we obtain the
modulation waveform. For the amplitude modulation as described
by Eq. 1, the magnitudes are B1 = 5.858 × 10−2, B2 = 9.994 × 10−3, B3
= 1.679 × 10−3, B4 = 2.676 × 10−4, and B5 = 3.323 × 10−5, the phase
angles are β1 = 1.576, β2 = 1.580, β3 = 1.585, β4 = 1.590, and β5 =
1.594. At any given time, the instantaneous loss rate of the cavity is
defined as

γðtÞ ¼ γþ γcst þ
X

m�1

Bm

tR
cosðmΩRtÞ ð7Þ

γ(t) is above zero as shown in Fig. 2A. Therefore, the modulation as
designed in this way satisfies the passivity constraint (36), and the
system is always dissipative.

We apply the modulation waveform, as designed above, to the
ring resonator. In the experiment, we vary the detuning Δω by ad-
justing the input laser frequency. At each detuning Δω, we record
the intensity at the drop port I(Δω, t) as a function of time. The re-
sulting 2D plot of I(Δω, t) is plotted in Fig. 2B. We observe that the
linewidth of the resonance is the smallest at about t = π/ΩR in the
horizontal axis defined in Fig. 2B. This is consistent with Fig. 2A,
where the instantaneous loss rate is lowest at the same t.

To determine the kernel from the output intensity measurement
I(Δω, t), we recall that I(Δω, t) = ∣S(Δω, t)∣2, with S(Δω, t) being the
time-domain scattering factor of Eq. 2. Since the modulation in Fig.
2A is designed for the kernel at Δω = 0, we plot I(Δω = 0, t) as shown
in Fig. 2C. Throughout the paper, all the kernel generation and con-
volution are based on this Δω = 0 line only. As the high-boost kernel
demonstrated here is real-valued and symmetric, the time-domain
scattering factor Sð0; tÞ ¼

P
n snexpðjnΩRtÞ should be real-valued

Fig. 2. Experimental synthesis of convolution kernels. A high-boost kernel [−1, 6, −1] in (A toD) and a Laplacian of Gaussian kernel [−1, 3, 10, 3,−1] in (E toH). (A) and
(E) Calculated instantaneous loss rate γ(t) as a function of time in a roundtrip. (B) and (F) Measured time- and frequency-detuning resolved output intensity I(Δω, t). This is
measured at the drop port from a dynamically modulated ring resonator. (C) and (G) Measured I(Δω = 0, t) in (B) and (F), respectively. (D) and (H) Comparison of the
synthesized kernel and target kernel. The red bar/line corresponds to the real/imaginary part of the experimental kernel. The gray bar/line corresponds to the real/imag-
inary parts of the target kernel. a.u., arbitrary units.
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as well, with sn defined in Eq. 3. In the Supplementary Materials, we
use an example single cosine modulation to prove that the modula-
tion waveform only results in a change of γ(t) in Eq. 7. We confirm
that the amplitude modulation waveform that is obtained from the
experiment agrees well with what is implemented on the modulator.
This proves that S(0, t) purely results from amplitude modulation,
so S(0, t) is real-valued, and the phase variation in a round-trip is
negligible. From I(0, t) as shown in Fig. 2C and I(0, t) = ∣S(0, t)∣2, we
obtain Sð0; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ið0; tÞ

p
. We then perform a Fourier transform of

S(0, t) to determine the kernel sn that is obtained in the experiment.
In Fig. 2D, we compare the kernel obtained from experiments

and target designs. The sn from the experimental measurement is
shown next to the sn from the target design. Both kernels are nor-
malized such that

X

n
j sn j2 ¼ 1. These two kernels agree well and

verify that the high-boost kernel is synthesized successfully.
As one more example of kernel synthesis, in Fig. 2 (E to H), we

synthesize a quantized Laplacian of Gaussian kernel with its
nonzero elements being s0 = 10, s±1 = 3, and s±2 = −1. This quan-
tized kernel is suitable for compressing features and tracking the
machine learning process (37). The modulation waveform is de-
signed in a similar way as above using Eqs. 4 and 5. The magnitudes
of the modulation waveform are B1 = 0.1539, B2 = 0.1014, B3 =
0.05854, B4 = 0.03525, and B5 = 0.02094. The corresponding
phase angles are β1 = −1.566, β2 = 1.580, β3 = −1.557, β4 = 1.590,
and β5 = −1.547. Using these parameters, the instantaneous loss rate
given by Eq. 7 is plotted in Fig. 2E. Contrary to the prior example,
the instantaneous loss rate is highest in the middle of the roundtrip
in this case. In Fig. 2F, we present the measured time- and frequen-
cy-detuning resolved output intensity I(Δω, t). I(Δω = 0, t) is

plotted in Fig. 2G. Using a similar method as in the previous
example, we extract the experimental kernel sn values from I(Δω
= 0, t). As shown in Fig. 2H, the experimental kernel agrees well
with the target kernel, which verifies that our analytically designed
modulation waveform can faithfully synthesize a multielement
quantized Laplacian of Gaussian kernel.

Convolution kernel construction with an additive offset
As seen in the two examples provided in the previous section, the
implemented kernel typically has a strong s0 component in our
modulated ring setup. This arises because of the high internal loss
factor γcst and the limited modulator strength in our setup. In this
section, we implement the convolution kernel with an additive
offset, as described in the form of

cout;n ¼ bcin;n þ
X

n
sn� mcin;m ð8Þ

where b < 0 is the additive offset. Alternatively, we consider the im-
plementations of Eq. 8 to broaden the kinds of kernels that can be
implemented in a fiber experimental system.

In our setup, the operation of Eq. 8 can be implemented by syn-
thesizing a kernel f~sng where ~s0 ¼ s0 þ b and ~sn ¼ sn for n ≠ 0, in
the same way as we described in the previous section. On the other
hand, in scenarios where the strength of the modulation is insuffi-
cient to directly achieve Eq. 8 using the procedure as described in
the previous section, we note that Eq. 8 can be implemented in an
alternative all-optical implementation (38). In this alternative im-
plementation, one passes the input light through a beam splitter
to separate it into two paths. In the first path, one implements the
operation of the first term in Eq. 8 using a π phase shifter and an

Fig. 3. Construction of convolution kernels with multiple examples of various kernels. (A and D) A standard Laplacian of Gaussian kernel [−1, −4.56, 0.028, 11.304,
0.028, −4.56, −1] with b = −20, (B and E) another standard Laplacian of Gaussian kernel [−1, −2.9, −2.6, 2.8, 7.4, 2.8, −2.6, −2.9, −1] with b = −20, (C and F) a Gaussian
kernel [1, 3.5, 7, 9, 7, 3.5, 1] with b = −8. The top panels of (A) to (C) correspond to the synthesized kernel measured (in red) and target (in gray) kernels with the real and
imaginary parts plotted in bar and lines, respectively. The bottom panels of (D) to (F) correspond to the time- and frequency-detuning resolved output intensity mea-
surements. The experimentally synthesized kernel in (A) to (C) is obtained from (D) to (F), respectively.
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attenuator or amplifier. In the second path, one implements the
second term in Eq. 8 using our modulated fiber ring setup. The
transmitted lights from these two paths are then combined to
realize Eq. 8. A schematic of this realization is provided in the Sup-
plementary Materials.

Here, as an illustration of Eq. 8 and for simplicity, instead of the
all-optical implementation as discussed above, we present results
from a hybrid implementation. In the hybrid implementation, for
a prescribed target kernel f~sng, we separate it into two terms in Eq. 8
such that the second term can be implemented using our modulated
ring setup. We then present the end results assuming that the first
term and the summation operation in Eq. 8 have been carried out
digitally.

In Fig. 3, we present the implementations of various kernels
using this hybrid approach. Figure 3 (A and B) demonstrates a stan-
dard Laplacian of Gaussian kernel with different parameters. In
both cases, the kernel elements are summed to zero. This Laplacian
of Gaussian kernel is widely applied in noise-robust spatial filtering
and edge detection (39). Figure 3A corresponds to a seven-element
kernel with a standard deviation σ = 1.0. Figure 3B corresponds to a
nine-element kernel with an SD σ = 1.4. Figure 3C presents a Gauss-
ian kernel with an SD σ = 1.4. Such a Gaussian kernel is useful for
suppressing high-frequency noise in a limited spatial spread area,
which is essential for digital telecommunications (40). The details
of the modulation waveform parameters can be found in the Sup-
plementary Materials.

Figure 3 (D to F) corresponds to the time- and frequency-detun-
ing resolved output intensity measurement. The experimentally
synthesized kernel in Fig. 3 (A to C) is obtained from Fig. 3 (D to
F), respectively, using the same method discussed in the previous
section. All of the kernels are normalized such that

X

n
j sn j2 ¼ 1.

In Fig. 3 (A to C), the measured kernels agree very well with the
target kernels in both real and imaginary parts. This verifies that
we can synthesize a broad range of kernels at high accuracy with
the approach as described by Eq. 8.

Convolution processing
In the previous sections, we demonstrated the synthesis of several
convolution kernels. In these demonstrations, we performed convo-
lution operations with an input vector that consists of only a single
element. In this section, we provide an experimental demonstration
of the convolution operation of the kernels with various input
vectors that consist of multiple frequency comb lines.

To start with, we first synthesize a modified Laplacian kernel s0 =
3 and s±1 = −1. This functions in a similar way as a high boost kernel
introduced before, but the reduced s0 term enables an improved
edge detection property. We follow the same procedure of applying
a predetermined modulation waveform, as introduced in previous
sections. In Fig. 4A, we compare the kernel obtained from experi-
ments and target designs. The sn from the experimental measure-
ment is shown next to the sn from the target design. Both kernels
are normalized such that

X

n
j sn j2 ¼ 1. These two kernels agree

well and verify that the modified Laplacian kernel is synthesized
successfully. The slice of Δω = 0 in the time- and frequency-detun-
ing resolved drop-port intensity measurement is shown in Fig. 4D,
which shows a consistent lineshape as in the high-boost kernel case.

We emphasize that in this kernel synthesis example, there is no ad-
ditive offset term involved.

To generate the input vector, we use a CW laser operating at a
swept frequency across the resonant frequency of the ring and pass
the output of the CW laser through an electro-optic amplitude
modulator. The modulator is driven by an arbitrary waveform gen-
erator (AWG), which has frequency components of the FSR and its
integer multiples. This modulation is periodic with a periodicity
equal to the round-trip time. Such a modulation results in a comb
of discrete frequencies equally separated by FSR, which is injected
into the ring.

The input vector thus generated can be characterized by measur-
ing the time-dependent intensity Iin(t) that is transmitted through
the modulator. For an amplitude modulator, the amplitude of the
transmitted light, up to a global phase that is unimportant, can be
determined as AinðtÞ ¼

ffiffiffiffiffiffiffiffiffiffi
IinðtÞ

p
. A Fourier transform of Ain(t) then

determines the input vector, i.e., the complex amplitudes of the
input light at various frequencies.

Figure 4 (B and C) shows two different input vectors thus gen-
erated by applying multiple sinusoidal bands and a sharp pulse, re-
spectively. We choose these two modulations to generate as
broadband frequency combs as possible. For each of these input
vectors, we send it through the setup corresponding to the kernel
shown in Fig. 4 (A and D). To determine the generated output
vector, we measure the output intensity Iout(t) as a function of
time. Since only the amplitude modulator is used in synthesizing
the kernels, we determine the output amplitude
AoutðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
IoutðtÞ

p
, we then Fourier-transform Aout(t) to obtain

the output vector. The experimentally determined output vector
agrees very well with the direct calculation of the convolution oper-
ation of the kernels on the input vectors using the output signal
from Fig. 4D, as shown in Fig. 4 (E and F). We have thus demon-
strated that our setup can indeed achieve convolution operation in
the synthetic frequency dimension.

DISCUSSION
In summary, we experimentally demonstrate convolution operation
in the synthetic frequency space. We show that the prescribed kernel
can be implemented by an analytically determined modulation
waveform applied to the electro-optic modulator. Our work dem-
onstrates the promise of using frequency to encode data and imple-
ment convolution tasks. We anticipate that our demonstration of
convolution operation via frequency synthetic dimensions may
lead to new types of scalable photonic computation architecture.

We note that throughout the paper, we only use amplitude mod-
ulators, both for the generation of the input signals and for kernel
synthesis. As a proof-of-principle experiment, this suffices to dem-
onstrate a wide range of convolution. Although we demonstrated
some symmetric convolution kernels in our paper, our work can
be readily generalized to arbitrary convolution kernels within the
capabilities of current experimental setups. For example, an asym-
metric kernel can be encoded using an amplitude modulator and a
phase modulator in the same ring resonator, as demonstrated in our
previous theory work (32). For kernels with an even number of
nonzero elements, we can pad a zero to either side of the kernel
and implement it as an asymmetric kernel with an odd number
of elements. In addition, to realize kernels with a small ∣s0∣, we
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discuss in the Supplementary Materials an all-optical approach
using interference to provide an offset term to the kernel. A deter-
ministic modulation waveform can be obtained in all cases, and we
numerically demonstrate two asymmetric kernels in the Supple-
mentary Materials. In the case of a general asymmetric kernel, de-
coding the output signal would require the retrieval of the phase
information in the output light, which can be done with the use
of heterodyne detection (41).

The size of the kernel matrix is constrained by the modulation
speed bandwidth and FSR, with larger matrices requiring higher
modulation speed bandwidth and lower FSR allowing for higher
modulation orders. To estimate the performance of our scheme im-
plemented in an on-chip integrated platform, we assume a device
with a pump power of 2 mW, 200 input comb lines (12), a modu-
lation speed of 10 GHz, and a modulator power cost of 100 mW for
a 1 mm2 area chip (42). The computation density for this device is
about 4 tera "trillion" operations per second (TOPS) mm−2, four
orders of magnitudes higher than graphics processing unit (43),
and four times faster than the previous state-of-the-art photonic
convolution unit (12). In terms of power efficiency, we achieve 40
TOPS W−1, 6× more power efficiency than Nvidia’s A100X (43).
Our platform is limited only by the photodetector bandwidth. In
anticipation, future advances in fabricating high-speed and high-
confinement modulators, as well as high-speed photodetectors,
will improve our estimations further.

Our system based on electro-optic modulation complements the
previously reported acousto-optic modulation approach (24) and
can be easily integrated with existing electronic circuitry while al-
lowing a wider range of operating frequencies. All components of
the convolution setup demonstrated here can be integrated on a
chip. Potential benefits of moving to an integrated platform
include lower energy consumption with integrated modulators

and lasers, higher computation density with chip-scale compact
areas, and more robust and portable edge computing platforms. A
major limitation of integration is the large FSR for integrated
resonators, which limits the number of modes the modulators
and photodetectors can cover at the same time. With the advances
in on-chip low-loss waveguides and modulators, it is possible to in-
tegrate the entire system without amplifiers and achieve energy-
efficient on-chip convolution processes.

MATERIALS AND METHODS
Calibration of the loss rate
In this section, we describe the experimental calibration process of γ
+ γcst. Without any modulation from the electro-optical modulator
(JDSU model 10020476), we measure the output intensity I(Δω)
from the drop port of the ring resonator, in the same way as de-
scribed in the “Kernel synthesis” section. I(Δω) is related to
γ + γcst by

IðΔωÞ ¼ j
2jγe1γe2

jγþ jγcst � Δω
j
2

ð9Þ

We then perform the least square fitting of I(Δω) to obtain the
optimal parameters of γ + γcst. In our system, the calibrated loss
factor is γ + γcst = 0.027ΩR. We provide more details of extracting
the loss factor in the Supplementary Materials.

Data processing and time sequence acquisition
In our experiments, we use a narrow-linewidth laser with tunable
lasing frequency as input (ORION 1550 nm laser module) under
an amplitude modulator (JDSU, model 10020476) controlled by
the radio frequency signal from an AWG (Agilent 33250A-U 80
MHz function). We use an erbium-doped amplifier (IRE-Polus,

Fig. 4. Convolution processing of the kernels generated from a modulated ring resonator with an input frequency comb consisting of multiple nonzero fre-
quency comb lines. (A) Comparison of the synthesized kernel and target kernel. The red bar/line corresponds to the real/imaginary part of the experimental kernel. The
gray bar/line corresponds to the real/imaginary parts of the target kernel. (B and C) correspond to the input frequency comb measured from experiments. (D) Measured
time-resolved intensity from the drop port of the modulated ring resonator I(Δω = 0, t) for the kernel synthesis in (A). (E and F) correspond to the output frequency comb
measured (in orange) and expected (in gray) outputs with the real and imaginary parts plotted in bar and lines, respectively.
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model EAU-2 M) to amplify the optical signal. We use a radio fre-
quency amplifier (Mini-Circuits, model ZHL-3A+) to amplify the
modulation signal.

To measure the time-dependent output intensity I(Δω, t) at the
drop port, we use a photodiode (Thorlabs DET08CFC) with a 5
GHz bandwidth to detect the output signal and use an oscilloscope
(LeCroy LC584AL) with a bandwidth of 1 GHz to obtain 1-ms time-
sequence data. The 1-ms-long time-sequence data were then re-
shaped into multiple time sequences, one for a round-trip time of
the ring [1/(5.99 MHz) = 167 ns].

We determine the starting time of one round-trip sequence by
comparing the intensity peak of the theoretical design peak loca-
tion. We shift one sequence so that the experimental resonant
peak is aligned with the designed peak. The entire measured time
sequence is shifted by the same amount of time. We then unflatten
the 1D data sequences along the vertical axis to obtain the 2D inten-
sity measurement in Figs. 2 (B and E) and 3 (E to H). The details of
the experimental setup can be found in the Supplementary
Materials.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5
Tables S1 and S2
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