Improving Subseasonal Forecasting with Machine Learning

Lester Mackey
Microsoft Research New England

Joint work with Judah Cohen, Jessica Hwang, Paulo Orenstein, Soukayna Mouatadid, Genevieve Flasphohler, Sonja Totz, Miruna Oprescu, Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Karl Pfeiffer, Ernest Fraenkel
Judah Cohen

• Climatologist, director of seasonal forecasting at Atmospheric and Environmental Research

• Concern: Community not making the best use of historical data in weather / climate forecasting
 • Landscape dominated by **dynamical models**, purely physics-based models of atmospheric and oceanic evolution
Dynamical Models

- Initialized with current weather conditions estimated from measurements
- Simulate future weather / climate by discretizing partial differential equations using supercomputers
- Accuracy limited by chaotic nature: errors in inputs rapidly amplified
- Ensembles with varying initial conditions / model parameters often formed to capture uncertainty
- Sometimes debiased by comparing predictions to truth over recent years

Source: http://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModel_Schematic.png
Judah Cohen

- Climatologist, director of seasonal forecasting at Atmospheric and Environmental Research
- **Concern:** Community not making the best use of historical data in weather / climate forecasting
 - Landscape dominated by *dynamical models*, purely physics-based models of atmospheric and oceanic evolution
- **Concern:** *Subseasonal forecasts* especially poor
Weather forecasts
predictability comes from initial atmospheric conditions

Sub-seasonal forecasts
predictability comes from monitoring the Madden-Julian Oscillation, land surface data, and other sources

Climate forecasts
predictability comes primarily from sea-surface temperature data accuracy dependent on ENSO state

Source: https://iri.columbia.edu/news/qa-subseasonal-prediction-project/
U.S. Bureau of Reclamation

• “The mission of the [USBR] is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.”

• Manages water in 17 western states
 • Provides 1 out of 5 Western farmers with irrigation water for 10 million farmland acres
 • Generates enough electricity to power 3.5M U.S. homes

• “During the past eight years, every state in the Western United States has experienced drought that has affected the economy both locally and nationally through impacts to agricultural production, water supply, and energy.”

Credit: David Raff, USBR
To train and evaluate our models, we constructed a **SubseasonalClimateUSA dataset** from diverse data sources.

- Updated daily + accessed via `subseasonal_data` Python package.
Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

- Doubles or triples the forecasting skill of US operational dynamical model (CFSv2)
- Outperforms state-of-the-art machine learning and deep learning methods
Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

• Can be used to correct any dynamical model
• Including leading model from European Centre for Medium-Range Weather Forecasts
Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

- Can be used to correct any dynamical model
- Including leading model from European Centre for Medium-Range Weather Forecasts
Adaptive Bias Correction for Improved Subseasonal Forecasting
arxiv.org/abs/2209.10666

Learned Benchmarks for Subseasonal Forecasting
arxiv.org/abs/2109.10399

Online Learning with Optimism and Delay
arxiv.org/abs/2106.06885

Improving Subseasonal Forecasting in the Western U.S. with Machine Learning arxiv.org/abs/1809.07394

Photo Credit: BLM Photo