Divide-and-Conquer Matrix Factorization

Lester Mackey†

Collaborators:

Ameet Talwalkar‡
Michael I. Jordan††

†Stanford University
‡UCLA
††UC Berkeley

December 14, 2015
Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $L_0 \in \mathbb{R}^{m \times n}$ given a subset of its entries

$$
\begin{bmatrix}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{bmatrix} \rightarrow
\begin{bmatrix}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5
\end{bmatrix}
$$

Examples

- Collaborative filtering: How will user i rate movie j?
 - Netflix: 40 million users, 200K movies and television shows
- Ranking on the web: Is URL j relevant to user i?
 - Google News: millions of articles, 1 billion users
- Link prediction: Is user i friends with user j?
 - Facebook: 1.5 billion users
Goal: Estimate a matrix $L_0 \in \mathbb{R}^{m \times n}$ given a subset of its entries

\[
\begin{bmatrix}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5 \\
\end{bmatrix}
\]

State of the art MC algorithms
- **Strong estimation guarantees**
- **Plagued by expensive subroutines** (e.g., truncated SVD)

This talk
- Present divide and conquer approaches for **scaling up** any MC algorithm while **maintaining strong estimation guarantees**
Exact Matrix Completion

Goal: Estimate a matrix $L_0 \in \mathbb{R}^{m\times n}$ given a subset of its entries
Goal: Given entries from a matrix $M = L_0 + Z \in \mathbb{R}^{m \times n}$ where Z is entrywise noise and L_0 has rank $r \ll m, n$, estimate L_0

- **Good news:** L_0 has $\sim (m + n)r \ll mn$ degrees of freedom

- **Factored form:** AB^\top for $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{n \times r}$

- **Bad news:** Not all low-rank matrices can be recovered

Question: What can go wrong?
What can go wrong?

Entire column missing

\[
\begin{bmatrix}
1 & 2 & ? & 3 & \ldots & 4 \\
3 & 5 & ? & 4 & \ldots & 1 \\
2 & 5 & ? & 2 & \ldots & 5 \\
\end{bmatrix}
\]

- No hope of recovery!

Solution: Uniform observation model

Assume that the set of s observed entries Ω is drawn uniformly at random:

$\Omega \sim \text{Unif}(m, n, s)$
What can go wrong?

Bad spread of information

\[L = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} [1] \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

- Can only recover \(L \) if \(L_{11} \) is observed

Solution: Incoherence with standard basis (Candès and Recht, 2009)

A matrix \(L = U \Sigma V^\top \in \mathbb{R}^{m \times n} \) with \(\text{rank}(L) = r \) is incoherent if

Singular vectors are not too skewed:

\[
\begin{align*}
\max_i \|UU^\top e_i\|^2 &\leq \frac{\mu r}{m} \\
\max_i \|VV^\top e_i\|^2 &\leq \frac{\mu r}{n}
\end{align*}
\]

and not too cross-correlated:

\[\|UV^\top\|_{\infty} \leq \sqrt{\frac{\mu r}{mn}}\]

(In this literature, it’s good to be incoherent)
How do we estimate \mathbf{L}_0?

First attempt:

$$\begin{align*}
\text{minimize}_A & \quad \text{rank}(A) \\
\text{subject to} & \quad \sum_{(i,j) \in \Omega} (A_{ij} - M_{ij})^2 \leq \Delta^2.
\end{align*}$$

Problem: Computationally intractable!

Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and Plan, 2010)

$$\begin{align*}
\text{minimize}_A & \quad \|A\|_* \\
\text{subject to} & \quad \sum_{(i,j) \in \Omega} (A_{ij} - M_{ij})^2 \leq \Delta^2
\end{align*}$$

where $\|A\|_* = \sum_k \sigma_k(A)$ is the trace/nuclear norm of A.

Questions:

- Will the nuclear norm heuristic successfully recover \mathbf{L}_0?
- Can nuclear norm minimization scale to large MC problems?
Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If L_0 with rank r is incoherent, $s \gtrsim r n \log^2(n)$ entries of $M \in \mathbb{R}^{m \times n}$ are observed uniformly at random, and \hat{L} solves the noisy nuclear norm heuristic, then

$$\|\hat{L} - L_0\|_F \leq f(m, n) \Delta$$

with high probability when $\|M - L_0\|_F \leq \Delta$.

- See Candès and Plan (2010); Mackey, Talwalkar, and Jordan (2014b); Keshavan, Montanari, and Oh (2010); Negahban and Wainwright (2010)
- Implies exact recovery in the noiseless setting ($\Delta = 0$)
Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

- **Standard interior point methods** (Candès and Recht, 2009):
 \[O(|\Omega|(m + n)^3 + |\Omega|^2(m + n)^2 + |\Omega|^3) \]

- More efficient, tailored algorithms:
 - Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)
 - Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009a)
 - Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)
 - All require rank-\(k\) truncated SVD on **every** iteration

Take away: These provably accurate MC algorithms are too expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm and still retain estimation guarantees?
Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

1. Divide M into submatrices.
2. Factor each submatrix in parallel.
3. Combine submatrix estimates to estimate L_0.

Advantages

- Submatrix completion is often much cheaper than completing M
- Multiple submatrix completions can be carried out in parallel
- DFC works with any base MC algorithm
- With the right choice of division and recombination, yields estimation guarantees comparable to those of the base algorithm
DFC-Proj: Partition and Project

1. Randomly partition M into t column submatrices

 \[M = \begin{bmatrix} C_1 & C_2 & \cdots & C_t \end{bmatrix} \text{ where each } C_i \in \mathbb{R}^{m \times l} \]

2. Complete the submatrices **in parallel** to obtain

 \[\begin{bmatrix} \hat{C}_1 & \hat{C}_2 & \cdots & \hat{C}_t \end{bmatrix} \]

 - **Reduced cost**: Expect t-fold speed-up per iteration
 - **Parallel computation**: Pay cost of one cheaper MC

3. Project submatrices onto a single low-dimensional column space

 Estimate column space of L_0 with column space of \hat{C}_1

 \[\hat{L}^{proj} = \hat{C}_1 \hat{C}_1^+ \begin{bmatrix} \hat{C}_1 & \hat{C}_2 & \cdots & \hat{C}_t \end{bmatrix} \]

 - Common technique for randomized low-rank approximation

 (Frieze, Kannan, and Vempala, 1998)
 - **Minimal cost**: $O(mk^2 + lk^2)$ where $k = \text{rank}(\hat{L}^{proj})$

4. **Ensemble**: Project onto column space of each \hat{C}_j and average
DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If L_0 with rank r is incoherent and $s = \omega \left(r^2 n \log^2(n) / \epsilon^2 \right)$ entries of $M \in \mathbb{R}^{m \times n}$ are observed uniformly at random, then $l = o(n)$ random columns suffice to have

$$\| \hat{L}^\text{proj} - L_0 \|_F \leq (2 + \epsilon) f(m, n) \Delta$$

with high probability when $\| M - L_0 \|_F \leq \Delta$ and the noisy nuclear norm heuristic is used as a base algorithm.

- Can sample vanishingly small fraction of columns ($l/n \to 0$)
- Implies exact recovery for noiseless ($\Delta = 0$) setting
- Analysis streamlined by matrix Bernstein inequality
Yes, with high probability.

Proof Ideas:

1. If L_0 is incoherent (has good spread of information), its partitioned submatrices are incoherent w.h.p.

2. Each submatrix has sufficiently many observed entries w.h.p.

\Rightarrow Submatrix completion succeeds

3. Random submatrix captures the full column space of L_0 w.h.p.
 - Analysis builds on randomized ℓ_2 regression work of Drineas, Mahoney, and Muthukrishnan (2008)

\Rightarrow Column projection succeeds
Figure: Recovery error of DFC relative to base algorithm (APG) with $m = 10K$ and $r = 10$.
Figure: Speed-up over base algorithm (APG) for random matrices with $r = 0.001m$ and 4% of entries revealed.
Task: Given a sparsely observed matrix of user-item ratings, predict the unobserved ratings

Issues

- Full-rank rating matrix
- Noisy, non-uniform observations

The Data

- Netflix Prize Dataset\(^1\)
 - 100 million ratings in \(\{1, \ldots, 5\}\)
 - 17,770 movies, 480,189 users

\(^1\)http://www.netflixprize.com/
Application: Collaborative filtering

Task: Predict unobserved user-item ratings

<table>
<thead>
<tr>
<th>Method</th>
<th>Netflix</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>Time</td>
</tr>
<tr>
<td>APG</td>
<td>0.8433</td>
<td>2653.1s</td>
</tr>
<tr>
<td>DFC-PROJ-25%</td>
<td>0.8436</td>
<td>689.5s</td>
</tr>
<tr>
<td>DFC-PROJ-10%</td>
<td>0.8484</td>
<td>289.7s</td>
</tr>
<tr>
<td>DFC-PROJ-ENS-25%</td>
<td>0.8411</td>
<td>689.5s</td>
</tr>
<tr>
<td>DFC-PROJ-ENS-10%</td>
<td>0.8433</td>
<td>289.7s</td>
</tr>
</tbody>
</table>
Goal: Given a matrix $M = L_0 + S_0 + Z$ where L_0 is low-rank, S_0 is sparse, and Z is entrywise noise, recover L_0 (Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010)

Examples:

- Background modeling/foreground activity detection

(Candès, Li, Ma, and Wright, 2011)
Goal: Given a matrix $M = L_0 + S_0 + Z$ where L_0 is low-rank, S_0 is sparse, and Z is entrywise noise, recover L_0 (Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010).

- S_0 can be viewed as an outlier/gross corruption matrix.
- Ordinary PCA breaks down in this setting.
- **Harder than MC:** outlier locations are unknown.
- **More expensive than MC:** dense, fully observed matrices.

S_0 can be viewed as an outlier/gross corruption matrix.

- Ordinary PCA breaks down in this setting.

Harder than MC: outlier locations are unknown.

More expensive than MC: dense, fully observed matrices.
How do we recover L_0?

First attempt:

$$\min_{L,S} \quad \text{rank}(L) + \lambda \text{card}(S)$$

subject to $\|M - L - S\|_F \leq \Delta$.

Problem: Computationally intractable!

Solution: Convex relaxation

$$\min_{L,S} \quad \|L\|_* + \lambda \|S\|_1$$

subject to $\|M - L - S\|_F \leq \Delta$.

where $\|S\|_1 = \sum_{ij} S_{ij}$ is the ℓ_1 entrywise norm of S.

Question: Does it work?

- Will noisy *Principal Component Pursuit (PCP)* recover L_0?

Question: Is it efficient?

- Can noisy PCP scale to large RMF problems?
Noisy Principal Component Pursuit: Does it work?

Yes, with high probability.

Theorem (Zhou, Li, Wright, Candès, and Ma, 2010)

If \(\mathbf{L}_0 \) with rank \(r \) is incoherent, and \(\mathbf{S}_0 \in \mathbb{R}^{m \times n} \) contains \(s \) non-zero entries with uniformly distributed locations, then if

\[
r = O\left(\frac{m}{\log^2 n}\right) \quad \text{and} \quad s \leq c \cdot mn,
\]

the minimizer to the problem

\[
\text{minimize}_{\mathbf{L}, \mathbf{S}} \quad \| \mathbf{L} \|_* + \lambda \| \mathbf{S} \|_1
\]

subject to \(\| \mathbf{M} - \mathbf{L} - \mathbf{S} \|_F \leq \Delta \).

with \(\lambda = 1/\sqrt{n} \) satisfies

\[
\| \hat{\mathbf{L}} - \mathbf{L}_0 \|_F \leq f(m, n)\Delta
\]

with high probability when \(\| \mathbf{M} - \mathbf{L}_0 - \mathbf{S}_0 \|_F \leq \Delta \).

See also Agarwal, Negahban, and Wainwright (2011)
Not quite...

- Standard interior point methods: $O(n^6)$ (Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009)

- More efficient, tailored algorithms:
 - Accelerated Proximal Gradient (APG) (Lin, Ganesh, Wright, Wu, Chen, and Ma, 2009b)
 - Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009a)
 - Require rank-k truncated SVD on every iteration
 - Best case $\text{SVD}(m, n, k) = O(mnk)$

Idea: Leverage the divide-and-conquer techniques developed for MC in the RMF setting
DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If L_0 with rank r is incoherent, and $S_0 \in \mathbb{R}^{m \times n}$ contains $s \leq c \cdot mn$ non-zero entries with uniformly distributed locations, then

$$l = O\left(\frac{r^2 \log^2(n)}{\epsilon^2}\right)$$

random columns suffice to have

$$\|\hat{L}^{proj} - L_0\|_F \leq (2 + \epsilon)f(m, n)\Delta$$

with high probability when $\|M - L_0 - S_0\|_F \leq \Delta$ and noisy principal component pursuit is used as the base algorithm.

- Can sample polylogarithmic number of columns
- Implies exact recovery for noiseless ($\Delta = 0$) setting
Figure: Estimation error of DFC and base algorithm (APG) with $m = 1K$ and $r = 10$.
Figure: Speed-up over base algorithm (APG) for random matrices with $r = 0.01m$ and 10% of entries corrupted.
Application: Video background modeling

Task
- Each video frame forms one column of matrix \mathbf{M}
- Decompose \mathbf{M} into stationary background \mathbf{L}_0 and moving foreground objects \mathbf{S}_0

Challenges
- Video is noisy
- Foreground corruption is often clustered, not uniform
Application: Video background modeling

Example: Significant foreground variation

Specs
- 1 minute of airport surveillance (Li, Huang, Gu, and Tian, 2004)
- 1000 frames, 25344 pixels
- Base algorithm: half an hour
- DFC: 7 minutes
Example: Changes in illumination

Specs
- 1.5 minutes of lobby surveillance (Li, Huang, Gu, and Tian, 2004)
- 1546 frames, 20480 pixels
- Base algorithm: 1.5 hours
- DFC: 8 minutes
Future Directions

New Applications and Datasets

- Practical problems with large-scale or real-time requirements
Example: Large-scale Affinity Estimation

Goal: Estimate semantic similarity between pairs of datapoints
- **Motivation:** Assign class labels to datapoints based on similarity

Examples from computer vision
- **Image tagging:** tree vs. firefighter vs. Tony Blair
- **Video / multimedia content detection:** wedding vs. concert

- Face clustering:

Application: Content detection, 9K YouTube videos, 20 classes
- **Baseline:** Low Rank Representation (Liu, Lin, and Yu, 2010)
 - **Strong guarantees** but 1.5 days to run
- **Divide and conquer** (Talwalkar, Mackey, Mu, Chang, and Jordan, 2013)
 - Comparable guarantees
 - Comparable performance in 1 hour (5 subproblems)
Future Directions

New Applications and Datasets
- Practical problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies
- Other ways to reduce computation while preserving accuracy
DFC-Nys: Generalized Nyström Decomposition

1. Choose a random column submatrix $C \in \mathbb{R}^{m \times l}$ and a random row submatrix $R \in \mathbb{R}^{d \times n}$ from M. Call their intersection W.

 $$M = \begin{bmatrix} W & M_{12} \\ M_{21} & M_{22} \end{bmatrix}, \quad C = \begin{bmatrix} W \\ M_{21} \end{bmatrix}, \quad R = \begin{bmatrix} W & M_{12} \end{bmatrix}$$

2. Recover the low rank components of C and R in parallel to obtain \hat{C} and \hat{R}.

3. Recover L_0 from \hat{C}, \hat{R}, and their intersection \hat{W}

 $$\hat{L}^{nys} = \hat{C}\hat{W} + \hat{R}$$

 - Generalized Nyström method (Goreinov, Tyryshnikov, and Zamarashkin, 1997)
 - Minimal cost: $O(mk^2 + lk^2 + dk^2)$ where $k = \text{rank}(\hat{L}^{nys})$

4. Ensemble: Run p times in parallel and average estimates.
Future Directions

New Applications and Datasets
- Practical problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies
- Other ways to reduce computation while preserving accuracy
- More extensive use of ensembling

New Theory
- Analyze statistical implications of divide and conquer algorithms
 - Trade-off between statistical and computational efficiency
 - Impact of ensembling
- Developing suite of matrix concentration inequalities to aid in the analysis of randomized algorithms with matrix data
Concentration Inequalities

Matrix concentration

\[\mathbb{P}\{\|X - \mathbb{E}X\| \geq t\} \leq \delta \]
\[\mathbb{P}\{\lambda_{\text{max}}(X - \mathbb{E}X) \geq t\} \leq \delta \]

- Non-asymptotic control of random matrices with complex distributions

Applications

- Matrix completion from sparse random measurements
 (Gross, 2011; Recht, 2011; Negahban and Wainwright, 2010; Mackey, Talwalkar, and Jordan, 2014b)
- Randomized matrix multiplication and factorization
 (Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011)
- Convex relaxation of robust or chance-constrained optimization
 (Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)
- Random graph analysis (Christofides and Markström, 2008; Oliveira, 2009)
Concentration Inequalities

Matrix concentration

\[\mathbb{P}\{ \lambda_{\text{max}}(X - \mathbb{E}X) \geq t \} \leq \delta \]

Difficulty: Matrix multiplication is not commutative

\[e^{X+Y} \neq e^X e^Y \neq e^Y e^X \]

Past approaches (Ahlswede and Winter, 2002; Oliveira, 2009; Tropp, 2011)

- Rely on deep results from matrix analysis
- Apply to sums of independent matrices and matrix martingales

Our work (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a; Paulin, Mackey, and Tropp, 2015)

- Stein’s method of exchangeable pairs (1972), as advanced by Chatterjee (2007) for scalar concentration
 - Improved exponential tail inequalities
 (Hoeffding, Bernstein, Bounded differences)
 - Polynomial moment inequalities (Khintchine, Rosenthal)
 - Dependent sums and more general matrix functionals
Example: Matrix Bounded Differences Inequality

Corollary (Paulin, Mackey, and Tropp, 2015)

Suppose $Z = (Z_1, \ldots, Z_n)$ has independent coordinates, and

$$
(H(z_1, \ldots, z_j, \ldots, z_n) - H(z_1, \ldots, z_j', \ldots, z_n))^2 \leq A_j^2
$$

for all j and values z_1, \ldots, z_n, z'_j. Define the boundedness parameter

$$
\sigma^2 := \left\| \sum_{j=1}^{n} A_j^2 \right\|
$$

If each A_j is $d \times d$, then, for all $t \geq 0$,

$$
P\{\lambda_{\text{max}}(H(Z) - \mathbb{E} H(Z)) \geq t\} \leq d \cdot e^{-t^2/(2\sigma^2)}.
$$

- Improves prior results in the literature (e.g., Tropp, 2011)
- Useful for analyzing
 - Multiclass classifier performance (Machart and Ralaivola, 2012)
 - Crowdsourcing accuracy (Dalvi, Dasgupta, Kumar, and Rastogi, 2013)
 - Convergence in non-differentiable optimization (Zhou and Hu, 2014)
Future Directions

New Applications and Datasets
- Practical problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies
- Other ways to reduce computation while preserving accuracy
- More extensive use of ensembling

New Theory
- Analyze statistical implications of divide and conquer algorithms
 - Trade-off between statistical and computational efficiency
 - Impact of ensembling
- Developing suite of **matrix concentration inequalities** to aid in the analysis of randomized algorithms with matrix data
Future Directions

The End

Thanks!

\[P_\Omega(M) \xrightarrow{\text{Divide}} P_\Omega(C_1) P_\Omega(C_2) \cdots P_\Omega(C_t) \xrightarrow{\text{Factor}} \hat{C}_1 \hat{C}_2 \cdots \hat{C}_t \xrightarrow{\text{Combine (Project)}} \hat{L}^{proj} \]

\[P_\Omega(M) \xrightarrow{\text{Divide}} P_\Omega(C) P_\Omega(R) \xrightarrow{\text{Factor}} \hat{C} \hat{R} \xrightarrow{\text{Combine (Nyström)}} \hat{L}^{nys} \]
References

Talwalkar, Ameet, Mackey, Lester, Mu, Yadong, Chang, Shih-Fu, and Jordan, Michael I. Distributed low-rank subspace segmentation. December 2013.

