Measuring Sample Quality with Stein’s Method

In Memory of Charles Stein

Lester Mackey*

Joint work with Jackson Gorham†, Andrew Duncan‡, Sebastian Vollmer**

Microsoft Research*, Opendoor Labs†, University of Sussex‡, University of Warwick**

July 30, 2018
Motivation: Large-scale Posterior Inference

Example: Bayesian logistic regression

1. Fixed covariate vector: \(v_l \in \mathbb{R}^d \) for each datapoint \(l = 1, \ldots, L \)
2. Unknown parameter vector: \(\beta \sim \mathcal{N}(0, I) \)
3. Binary class label: \(Y_l \mid v_l, \beta \sim \text{Ber} \left(\frac{1}{1 + e^{-\langle \beta, v_l \rangle}} \right) \)

- Generative model simple to express
- Posterior distribution over unknown parameters is complex
 - Normalization constant unknown, exact integration intractable

Standard inferential approach: Use Markov chain Monte Carlo (MCMC) to (eventually) draw samples from the posterior distribution

- **Benefit:** Approximates intractable posterior expectations
 \[\mathbb{E}_P[h(Z)] = \int_X p(x)h(x)dx \] with asymptotically exact sample estimates
 \[\mathbb{E}_Q[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \]

- **Problem:** Each new MCMC sample point \(x_i \) requires iterating over entire observed dataset: prohibitive when dataset is large!
Motivation: Large-scale Posterior Inference

Question: How do we scale Markov chain Monte Carlo (MCMC) posterior inference to massive datasets?

- **MCMC Benefit:** Approximates intractable posterior expectations $\mathbb{E}_P[h(Z)] = \int_x p(x)h(x)dx$ with asymptotically exact sample estimates $\mathbb{E}_Q[h(X)] = \frac{1}{n} \sum_{i=1}^n h(x_i)$

- **Problem:** Each point x_i requires iterating over entire dataset!

Template solution: Approximate MCMC with subset posteriors

- Approximate standard MCMC procedure in a manner that makes use of only a small subset of datapoints per sample
- Reduced computational overhead leads to faster sampling and reduced Monte Carlo variance
- Introduces **asymptotic bias:** target distribution is not stationary
- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced
Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors

- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced

Introduces new challenges

- How do we compare and evaluate samples from approximate MCMC procedures?
- How do we select samplers and their tuning parameters?
- How do we quantify the bias-variance trade-off explicitly?

Difficulty: Standard evaluation criteria like effective sample size, trace plots, and variance diagnostics assume convergence to the target distribution and do not account for asymptotic bias

This talk: Introduce new quality measures suitable for comparing the quality of approximate MCMC samples
Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of any two samples approximating a common target distribution

Given

- **Continuous target distribution** P with support $\mathcal{X} = \mathbb{R}^d$ and density p
 - p known up to normalization, integration under P is intractable
- **Sample points** $x_1, \ldots, x_n \in \mathcal{X}$
 - Define **discrete distribution** Q_n with, for any function h, $\mathbb{E}_{Q_n}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$ used to approximate $\mathbb{E}_P[h(Z)]$
 - We make no assumption about the provenance of the x_i

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P in a manner that

I. Detects when a sample sequence is **converging** to the target
II. Detects when a sample sequence is **not converging** to the target
III. Is computationally feasible
Integral Probability Metrics

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P

Idea: Consider an integral probability metric (IPM) [Müller, 1997]

$$d_{\mathcal{H}}(Q_n, P) = \sup_{h \in \mathcal{H}} |\mathbb{E}_{Q_n}[h(X)] - \mathbb{E}_P[h(Z)]|$$

- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions \mathcal{H}
- When \mathcal{H} sufficiently large, convergence of $d_{\mathcal{H}}(Q_n, P)$ to zero implies $(Q_n)_{n \geq 1}$ converges weakly to P (Requirement II)

Problem: Integration under P intractable!

\Rightarrow Most IPMs cannot be computed in practice

Idea: Only consider functions with $\mathbb{E}_P[h(Z)]$ known a priori to be 0

- Then IPM computation only depends on Q_n!
- How do we select this class of test functions?
- Will the resulting discrepancy measure track sample sequence convergence (Requirements I and II)?
- How do we solve the resulting optimization problem in practice?
Stein’s Method

Stein’s method [1972] provides a recipe for controlling convergence:

1. **Identify operator** \mathcal{T} and **set** \mathcal{G} of functions $g : \mathcal{X} \rightarrow \mathbb{R}^d$ with $E_P[(\mathcal{T}g)(Z)] = 0$ for all $g \in \mathcal{G}$.

 \mathcal{T} and \mathcal{G} together define the **Stein discrepancy** [Gorham and Mackey, 2015]

 $$S(Q_n, \mathcal{T}, \mathcal{G}) \triangleq \sup_{g \in \mathcal{G}} |E_{Q_n}[(\mathcal{T}g)(X)]| = d_{\mathcal{T}\mathcal{G}}(Q_n, P),$$

 an IPM-type measure with no explicit integration under P.

2. **Lower bound** $S(Q_n, \mathcal{T}, \mathcal{G})$ by reference IPM $d_{\mathcal{H}}(Q_n, P)$

 $\Rightarrow S(Q_n, \mathcal{T}, \mathcal{G}) \rightarrow 0$ only if $(Q_n)_{n \geq 1}$ converges to P (**Req. II**)

 - Performed once, in advance, for large classes of distributions

3. **Upper bound** $S(Q_n, \mathcal{T}, \mathcal{G})$ by any means necessary to demonstrate convergence to 0 (**Requirement I**)

Standard use: As analytical tool to prove convergence

Our goal: Develop Stein discrepancy into practical quality measure
Identifying a Stein Operator \mathcal{T}

Goal: Identify operator \mathcal{T} for which $\mathbb{E}_P[(\mathcal{T}g)(Z)] = 0$ for all $g \in \mathcal{G}$

Approach: Generator method of Barbour [1988, 1990], Götze [1991]

- Identify a Markov process $(Z_t)_{t \geq 0}$ with stationary distribution P
- Under mild conditions, its **infinitesimal generator**
 $$(\mathcal{A}u)(x) = \lim_{t \to 0} (\mathbb{E}[u(Z_t) \mid Z_0 = x] - u(x))/t$$
 satisfies $\mathbb{E}_P[(\mathcal{A}u)(Z)] = 0$

Overdamped Langevin diffusion:
$$dZ_t = \frac{1}{2} \nabla \log p(Z_t) dt + dW_t$$

- **Generator:** $(\mathcal{A}_P u)(x) = \frac{1}{2} \langle \nabla u(x), \nabla \log p(x) \rangle + \frac{1}{2} \langle \nabla, \nabla u(x) \rangle$

- **Stein operator:** $(\mathcal{T}_P g)(x) \triangleq \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle$
 [Gorham and Mackey, 2015, Oates, Girolami, and Chopin, 2016]

 - Depends on P only through $\nabla \log p$; computable even if p cannot be normalized!
 - $\mathbb{E}_P[(\mathcal{T}_P g)(Z)] = 0$ for all $g : \mathcal{X} \to \mathbb{R}^d$ in classical Stein set

$\mathcal{G}_{\| \cdot \|} = \{ g : \sup_{x \neq y} \max (\|g(x)\|*, \|\nabla g(x)\|*, \frac{\|\nabla g(x) - \nabla g(y)\|*}{\|x-y\|}) \leq 1 \}$
Goal: Show classical Stein discrepancy $S(Q_n, T_P, G_{\|\cdot\|}) \to 0$ if and only if $(Q_n)_{n \geq 1}$ converges to P

- In the univariate case ($d = 1$), known that for many targets P, $S(Q_n, T_P, G_{\|\cdot\|}) \to 0$ only if Wasserstein $d_{W_{\|\cdot\|}}(Q_n, P) \to 0$

- Few multivariate targets have been analyzed (see [Reinert and Röllin, 2009, Chatterjee and Meckes, 2008, Meckes, 2009] for multivariate Gaussian)

New contribution [Gorham, Duncan, Vollmer, and Mackey, 2016]

Theorem (Stein Discrepancy-Wasserstein Equivalence)

If the Langevin diffusion couples at an integrable rate and $\nabla \log p$ is Lipschitz, then $S(Q_n, T_P, G_{\|\cdot\|}) \to 0 \iff d_{W_{\|\cdot\|}}(Q_n, P) \to 0$.

- Examples: strongly log concave P, Bayesian logistic regression or robust t regression with Gaussian priors, Gaussian mixtures
- Conditions not necessary: template for bounding $S(Q_n, T_P, G_{\|\cdot\|})$
For target $P = \mathcal{N}(0, 1)$, compare i.i.d. $\mathcal{N}(0, 1)$ sample sequence $Q_{1:n}$ to scaled Student’s t sequence $Q’_{1:n}$ with matching variance.

Expect $S(Q_{1:n}, T_P, G_{|| \cdot ||}, Q, G_1) \to 0 \& S(Q’_{1:n}, T_P, G_{|| \cdot ||}, Q, G_1) \not\to 0$
- **Middle**: Recovered optimal functions g
- **Right**: Associated test functions $h(x) \triangleq (T_P g)(x)$ which best discriminate sample Q from target P
Target posterior density: \(p(x) \propto \pi(x) \prod_{l=1}^{L} \pi(y_l | x) \)

Stochastic Gradient Langevin Dynamics [Welling and Teh, 2011]

\[
x_{k+1} \sim \mathcal{N}(x_k + \frac{\epsilon}{2} (\nabla \log \pi(x_k) + \frac{L}{|B_k|} \sum_{l \in B_k} \nabla \log \pi(y_l | x_k)), \epsilon)
\]

- Random batch \(B_k \) of datapoints used to draw each sample point
 - Step size \(\epsilon \) too small \(\Rightarrow \) slow mixing
 - Step size \(\epsilon \) too large \(\Rightarrow \) sampling from very different distribution
- Standard MCMC selection criteria like **effective sample size** (ESS) and asymptotic variance do not account for this bias

ESS maximized at \(\epsilon = 5 \times 10^{-2} \), Stein minimized at \(\epsilon = 5 \times 10^{-3} \)
Alternative Stein Sets \mathcal{G}

Goal: Identify a more “user-friendly” Stein set \mathcal{G} than the classical

Approach: Reproducing kernels $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ [Oates, Girolami, and Chopin, 2016, Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016]

- A reproducing kernel k is **symmetric** ($k(x, y) = k(y, x)$) and **positive semidefinite** ($\sum_{i,l} c_i c_l k(z_i, z_l) \geq 0, \forall z_i \in \mathcal{X}, c_i \in \mathbb{R}$)

 - **Gaussian:** $k(x, y) = e^{-\frac{1}{2} \|x-y\|^2_2}$, **IMQ:** $k(x, y) = \frac{1}{(1+\|x-y\|^2_2)^{1/2}}$

- Generates a reproducing kernel Hilbert space (RKHS) \mathcal{K}_k

- Define the **kernel Stein set** [Gorham and Mackey, 2017]

 \[\mathcal{G}_k \triangleq \{ g = (g_1, \ldots, g_d) \mid \|v\|^* \leq 1 \text{ for } v_j \triangleq \|g_j\|_{\mathcal{K}_k} \} \]

- Yields **closed-form kernel Stein discrepancy (KSD)**

 \[S(Q_n, \mathcal{T}_P, \mathcal{G}_k) = \|w\| \text{ for } w_j \triangleq \sqrt{\sum_{i,i'=1}^n k^j_0(x_i, x_{i'})}. \]

- Reduces to **parallelizable pairwise evaluations of Stein kernels**

 \[k^j_0(x, y) \triangleq \frac{1}{p(x)p(y)} \nabla x_j \nabla y_j (p(x)k(x,y)p(y)) \]
Detecting Non-convergence

Goal: Show $S(Q_n, T_P, G_k) \to 0$ only if $(Q_n)_{n \geq 1}$ converges to P

Theorem (Univarite KSD detects non-convergence [Gorham and Mackey, 2017])

Suppose $P \in \mathcal{P}$ and $k(x, y) = \Phi(x - y)$ for $\Phi \in \mathcal{C}^2$ with a non-vanishing generalized Fourier transform. If $d = 1$, then $S(Q_n, T_P, G_k) \to 0$ only if $(Q_n)_{n \geq 1}$ converges weakly to P.

- \mathcal{P} is the set of targets P with Lipschitz $\nabla \log p$ and distant strong log concavity $\left(\frac{\langle \nabla \log(p(x)/p(y)), y-x \rangle}{\|x-y\|_2^2} \right) \geq k$ for $\|x - y\|_2 \geq r$
 - Includes Bayesian logistic and Student’s t regression with Gaussian priors, Gaussian mixtures with common covariance, ...

- Justifies use of KSD with popular Gaussian, Matérn, or inverse multiquadric kernels k in the univariate case
Detecting Non-convergence

Goal: Show $S(Q_n, T_P, G_k) \to 0$ only if Q_n converges to P

- In higher dimensions, KSDs based on common kernels fail to detect non-convergence, even for Gaussian targets P

Theorem (KSD fails with light kernel tails [Gorham and Mackey, 2017])

Suppose $d \geq 3$, $P = \mathcal{N}(0, I_d)$, and $\alpha \triangleq \left(\frac{1}{2} - \frac{1}{d}\right)^{-1}$. If $k(x, y)$ and its derivatives decay at a $o(\|x - y\|_2^{-\alpha})$ rate as $\|x - y\|_2 \to \infty$, then $S(Q_n, T_P, G_k) \to 0$ for some $(Q_n)_{n \geq 1}$ not converging to P.

- Gaussian ($k(x, y) = e^{-\frac{1}{2}\|x-y\|_2^2}$) and Matérn kernels fail for $d \geq 3$
- Inverse multiquadric kernels ($k(x, y) = (1 + \|x - y\|_2^2)^\beta$) with $\beta < -1$ fail for $d > \frac{2\beta}{1+\beta}$
- The violating sample sequences $(Q_n)_{n \geq 1}$ are simple to construct

Problem: Kernels with light tails ignore excess mass in the tails
Goal: Show $S(Q_n, T_P, G_k) \to 0$ only if Q_n converges to P

- Consider the inverse multiquadric (IMQ) kernel
 \[k(x, y) = (c^2 + \|x - y\|_2^2)^\beta \text{ for some } \beta < 0, c \in \mathbb{R}. \]
- IMQ KSD fails to detect non-convergence when $\beta < -1$
- However, IMQ KSD detects non-convergence when $\beta \in (-1, 0)$

Theorem (IMQ KSD detects non-convergence [Gorham and Mackey, 2017])

Suppose $P \in \mathcal{P}$ and $k(x, y) = (c^2 + \|x - y\|_2^2)^\beta$ for $\beta \in (-1, 0)$. If $S(Q_n, T_P, G_k) \to 0$, then $(Q_n)_{n \geq 1}$ converges weakly to P.
Detecting Convergence

Goal: Show $S(Q_n, T_P, G_k) \to 0$ when Q_n converges to P

Proposition (KSD detects convergence [Gorham and Mackey, 2017])

If $k \in C_b^{(2,2)}$ and $\nabla \log p$ Lipschitz and square integrable under P, then $S(Q_n, T_P, G_k) \to 0$ whenever the Wasserstein distance $d_{W_{\|\cdot\|_2}}(Q_n, P) \to 0$.

- Covers Gaussian, Matérn, IMQ, and other common bounded kernels k
Stochastic Gradient Fisher Scoring (SGFS)

[Ahn, Korattikara, and Welling, 2012]

- Approximate MCMC procedure designed for scalability
 - Approximates Metropolis-adjusted Langevin algorithm but does not use Metropolis-Hastings correction
 - Target P is not stationary distribution

Goal: Choose between two variants
- SGFS-f inverts a $d \times d$ matrix for each new sample point
- SGFS-d inverts a diagonal matrix to reduce sampling time

MNIST handwritten digits [Ahn, Korattikara, and Welling, 2012]
- 10000 images, 51 features, binary label indicating whether image of a 7 or a 9
- Bayesian logistic regression posterior P
Left: IMQ KSD quality comparison for SGFS Bayesian logistic regression (no surrogate ground truth used)

Right: SGFS sample points \((n = 5 \times 10^4)\) with bivariate marginal means and 95% confidence ellipses (blue) that align best and worst with surrogate ground truth sample (red)

Both suggest small speed-up of SGFS-d \((0.0017s\) per sample vs. \(0.0019s\) for SGFS-f\) outweighed by loss in inferential accuracy
Beyond Sample Quality Comparison

Goodness-of-fit testing

- Chwialkowski, Strathmann, and Gretton [2016] used the KSD $S(Q_n, T_P, G_k)$ to test whether a sample was drawn from a target distribution P (see also Liu, Lee, and Jordan [2016]).
- Test with default Gaussian kernel k experienced considerable loss of power as the dimension d increased.
- We recreate their experiment with IMQ kernel ($\beta = -\frac{1}{2}, c = 1$).
 - For $n = 500$, generate sample $(x_i)_{i=1}^n$ with $x_i = z_i + u_i e_1$
 - $z_i \sim \mathcal{N}(0, I_d)$ and $u_i \sim \text{Unif}[0, 1]$. Target $P = \mathcal{N}(0, I_d)$.
 - Compare with standard normality test of Baringhaus and Henze [1988].

Table: Mean power of multivariate normality tests across 400 simulations

<table>
<thead>
<tr>
<th></th>
<th>d=2</th>
<th>d=5</th>
<th>d=10</th>
<th>d=15</th>
<th>d=20</th>
<th>d=25</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&H</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.91</td>
<td>0.57</td>
<td>0.26</td>
</tr>
<tr>
<td>Gaussian</td>
<td>1.0</td>
<td>1.0</td>
<td>0.88</td>
<td>0.29</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>IMQ</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Improving sample quality

- Given sample points \((x_i)_{i=1}^n\), can minimize KSD \(S(\tilde{Q}_n, \mathcal{T}_P, \mathcal{G}_k)\) over all weighted samples \(\tilde{Q}_n = \sum_{i=1}^n q_n(x_i)\delta_{x_i}\) for \(q_n\) a probability mass function.

- Liu and Lee [2016] do this with Gaussian kernel \(k(x, y) = e^{-\frac{1}{h}||x-y||_2^2}\)
 - Bandwidth \(h\) set to median of the squared Euclidean distance between pairs of sample points.

- We recreate their experiment with the IMQ kernel \(k(x, y) = (1 + \frac{1}{h}||x-y||_2^2)^{-1/2}\)
MSE averaged over 500 simulations (±2 standard errors)

Target $P = \mathcal{N}(0, I_d)$

Starting sample $Q_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ for $x_i \overset{iid}{\sim} P$, $n = 100$.

Sample
- Initial Q_n
- Gaussian KSD
- IMQ KSD
Many opportunities for future development

1. Improve scalability while maintaining convergence control
 - Inexpensive approximations of kernel matrix [Huggins and Mackey, 2018]
 - Subsampling of likelihood terms in $\nabla \log p$

2. Addressing other inferential tasks
 - Control variate design [Assaraf and Caffarel, 1999, Mira, Solgi, and Imparato, 2013, Oates, Girolami, and Chopin, 2016]
 - Variational inference [Liu and Wang, 2016, Ranganath, Tran, Altosaar, and Blei, 2016]
 - Training generative adversarial networks [Wang and Liu, 2016] and variational autoencoders [Pu, Gan, Henao, Li, Han, and Carin, 2017]

3. Exploring the impact of Stein operator choice
 - An infinite number of operators \mathcal{T} characterize P
 - How is discrepancy impacted? How do we select the best \mathcal{T}?
 - **Thm:** If $\nabla \log p$ bounded and $k \in C_0^{(1,1)}$, then
 $$S(Q_n, \mathcal{T}_P, \mathcal{G}_k) \to 0$$
 for some $(Q_n)_{n \geq 1}$ not converging to P
 - Diffusion Stein operators $(\mathcal{T}g)(x) = \frac{1}{p(x)} \langle \nabla, p(x)m(x)g(x) \rangle$
 of Gorham, Duncan, Vollmer, and Mackey [2016] may be appropriate for heavy tails
References

Comparing Discrepancies

Left: Samples drawn i.i.d. from either the bimodal Gaussian mixture target $p(x) \propto e^{-\frac{1}{2}(x+1.5)^2} + e^{-\frac{1}{2}(x-1.5)^2}$ or a single mixture component.

Right: Discrepancy computation time using d cores in d dimensions.
The Importance of Kernel Choice

- Target $P = \mathcal{N}(0, I_d)$
- Off-target Q_n has all $\|x_i\|_2 \leq 2n^{1/d} \log n$, $\|x_i - x_j\|_2 \geq 2 \log n$
- Gaussian and Matérn KSDs driven to 0 by an off-target sequence that does not converge to P
- IMQ KSD ($\beta = -\frac{1}{2}, c = 1$) does not have this deficiency
Selecting Sampler Hyperparameters

Setup [Welling and Teh, 2011]

- Consider the posterior distribution P induced by L datapoints y_l drawn i.i.d. from a Gaussian mixture likelihood
 \[
 Y_l | X \overset{iid}{\sim} \frac{1}{2} \mathcal{N}(X_1, 2) + \frac{1}{2} \mathcal{N}(X_1 + X_2, 2)
 \]
 under Gaussian priors on the parameters $X \in \mathbb{R}^2$
 \[
 X_1 \sim \mathcal{N}(0, 10) \perp \perp X_2 \sim \mathcal{N}(0, 1)
 \]
- Draw $m = 100$ datapoints y_l with parameters $(x_1, x_2) = (0, 1)$
- Induces posterior with second mode at $(x_1, x_2) = (1, -1)$
- For range of parameters ϵ, run approximate slice sampling for 148000 datapoint likelihood evaluations and store resulting posterior sample Q_n
- Use minimum IMQ KSD ($\beta = -\frac{1}{2}$, $c = 1$) to select appropriate ϵ
 - Compare with standard MCMC parameter selection criterion, effective sample size (ESS), a measure of Markov chain autocorrelation
 - Compute median of diagnostic over 50 random sequences
Selecting Samplers

Setup

- **MNIST handwritten digits** [Ahn, Korattikara, and Welling, 2012]
 - 10000 images, 51 features, binary label indicating whether image of a 7 or a 9
- Bayesian logistic regression posterior P
 - L independent observations $(y_l, v_l) \in \{1, -1\} \times \mathbb{R}^d$ with
 \[
 P(Y_l = 1|v_l, X) = \frac{1}{1 + \exp(-\langle v_l, X \rangle)}
 \]
 - Flat improper prior on the parameters $X \in \mathbb{R}^d$
- Use IMQ KSD ($\beta = -\frac{1}{2}, c = 1$) to compare SGFS-f to SGFS-d drawing 10^5 sample points and discarding first half as burn-in
- For external support, compare bivariate marginal means and 95% confidence ellipses with surrogate ground truth Hamiltonian Monte chain with 10^5 sample points [Ahn, Korattikara, and Welling, 2012]
Detecting Non-convergence

Goal: Show \(S(Q_n, T_P, G_k) \to 0 \) only if \((Q_n)_{n \geq 1}\) converges to \(P\)

Theorem (Univariate KSD detects non-convergence [Gorham and Mackey, 2017])

Suppose \(P \in \mathcal{P} \) and \(k(x, y) = \Phi(x - y) \) for \(\Phi \in C^2 \) with a non-vanishing generalized Fourier transform. If \(d = 1 \), then \(S(Q_n, T_P, G_k) \to 0 \) only if \((Q_n)_{n \geq 1}\) converges weakly to \(P\).

- \(\mathcal{P} \) is the set of targets \(P \) with Lipschitz \(\nabla \log p \) and distant strong log concavity \((\frac{\langle \nabla \log(p(x)/p(y)), y-x \rangle}{\|x-y\|^2_2} \geq k \) for \(\|x - y\|_2 \geq r \))
 - Includes Bayesian logistic and Student’s t regression with Gaussian priors, Gaussian mixtures with common covariance, ...

- Justifies use of KSD with popular Gaussian, Matérn, or inverse multiquadric kernels \(k \) in the univariate case
Goal: Show $S(Q_n, T_P, G_k) \to 0$ only if Q_n converges to P

- A sequence $(Q_n)_{n \geq 1}$ is **uniformly tight** if for every $\epsilon > 0$, there is a finite number $R(\epsilon)$ such that $\sup_n Q_n(\|X\|_2 > R(\epsilon)) \leq \epsilon$
- Intuitively, no mass in the sequence escapes to infinity

Theorem (KSD detects tight non-convergence [Gorham and Mackey, 2017])

Suppose that $P \in \mathcal{P}$ and $k(x, y) = \Phi(x - y)$ for $\Phi \in C^2$ with a non-vanishing generalized Fourier transform. If $(Q_n)_{n \geq 1}$ is uniformly tight and $S(Q_n, T_P, G_k) \to 0$, then $(Q_n)_{n \geq 1}$ converges weakly to P.

- **Good news**, but, ideally, KSD would detect non-tight sequences automatically...