Probabilistic Inference and Learning with Stein’s Method

Lester Mackey

Microsoft Research New England

December 15, 2021

Motivation: Large-scale Posterior Inference

Example: Bayesian logistic regression

1. Fixed feature vectors: \(v_l \in \mathbb{R}^d \) for each datapoint \(l = 1, \ldots, L \)
2. Binary class labels: \(Y_l \in \{0, 1\} \), \(\mathbb{P}(Y_l = 1 \mid v_l, \beta) = \frac{1}{1 + e^{-\langle \beta, v_l \rangle}} \)
3. Unknown parameter vector: \(\beta \sim \mathcal{N}(0, I) \)

- Generative model simple to express
- Posterior distribution over unknown parameters is complex
 - Normalization constant unknown, exact integration intractable

Standard inferential approach: Use Markov chain Monte Carlo (MCMC) to (eventually) draw samples from the posterior distribution

- **Benefit:** Approximates intractable posterior expectations
 \[\mathbb{E}_P[h(Z)] = \int_X p(x) h(x) \, dx \] with asymptotically exact sample estimates
 \[\mathbb{E}_Q[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \]

- **Problem:** Each new MCMC sample point \(x_i \) requires iterating over entire observed dataset: prohibitive when dataset is large!
Motivation: Large-scale Posterior Inference

Question: How do we scale Markov chain Monte Carlo (MCMC) posterior inference to massive datasets?

- **MCMC Benefit:** Approximates intractable posterior expectations $\mathbb{E}_P[h(Z)] = \int_X p(x)h(x)dx$ with asymptotically exact sample estimates $\mathbb{E}_Q[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$

- **Problem:** Each point x_i requires iterating over entire dataset!

Template solution: Approximate MCMC with subset posteriors

- Approximate standard MCMC procedure in a manner that makes use of only a small subset of datapoints per sample
- Reduced computational overhead leads to faster sampling and reduced Monte Carlo variance
- Introduces asymptotic bias: target distribution is not stationary
- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced
Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors

- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced

Introduces new challenges

- How do we compare and evaluate samples from approximate MCMC procedures?
- How do we select samplers and their tuning parameters?
- How do we quantify the bias-variance trade-off explicitly?

Difficulty: Standard evaluation criteria like effective sample size, trace plots, and variance diagnostics assume convergence to the target distribution and do not account for asymptotic bias

This talk: Introduce new quality measures suitable for comparing the quality of approximate MCMC samples
Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of *any* two samples approximating a common target distribution

Given

- **Continuous target distribution** P with support $\mathcal{X} = \mathbb{R}^d$ and density p
 - p known up to normalization, integration under P is intractable
- **Sample points** $x_1, \ldots, x_n \in \mathcal{X}$
 - Define **discrete distribution** Q_n with, for any function h,
 $$\mathbb{E}_{Q_n}[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$
 - Used to approximate $\mathbb{E}_P[h(Z)]$
 - We make no assumption about the provenance of the x_i

Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P in a manner that

 I. Detects when a sample sequence is converging to the target
 II. Detects when a sample sequence is not converging to the target
 III. Is computationally feasible
Goal: Quantify how well \mathbb{E}_{Q_n} approximates \mathbb{E}_P

Idea: Consider an integral probability metric (IPM) [Müller, 1997]

$$d_H(Q_n, P) = \sup_{h \in \mathcal{H}} |\mathbb{E}_{Q_n}[h(X)] - \mathbb{E}_P[h(Z)]|$$

- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions \mathcal{H}
- When \mathcal{H} sufficiently large, convergence of $d_H(Q_n, P)$ to zero implies $(Q_n)_{n \geq 1}$ converges weakly to P (Requirement II)

Problem: Integration under P intractable!

\Rightarrow Most IPMs cannot be computed in practice

Idea: Only consider functions with $\mathbb{E}_P[h(Z)]$ known a priori to be 0

- Then IPM computation only depends on Q_n!
- How do we select this class of test functions?
- Will the resulting discrepancy measure track sample sequence convergence (Requirements I and II)?
- How do we solve the resulting optimization problem in practice?
Stein’s Method

Stein’s method [1972] provides a recipe for controlling convergence:

1. **Identify operator \mathcal{T} and set \mathcal{G} of functions $g : \mathcal{X} \to \mathbb{R}^d$ with**
 \[
 \mathbb{E}_P[(\mathcal{T}g)(Z)] = 0 \quad \text{for all} \quad g \in \mathcal{G}.
 \]
 \mathcal{T} and \mathcal{G} together define the **Stein discrepancy** [Gorham and Mackey, 2015]
 \[
 S(Q_n, \mathcal{T}, \mathcal{G}) \triangleq \sup_{g \in \mathcal{G}} |\mathbb{E}_{Q_n}[(\mathcal{T}g)(X)]| = d_{\mathcal{T}\mathcal{G}}(Q_n, P),
 \]
 an IPM-type measure with no explicit integration under P.

2. **Lower bound $S(Q_n, \mathcal{T}, \mathcal{G})$ by reference IPM $d_{\mathcal{H}}(Q_n, P)$**
 \[
 \Rightarrow (Q_n)_{n \geq 1} \text{ converges to } P \text{ whenever } S(Q_n, \mathcal{T}, \mathcal{G}) \to 0 \ (\text{Req. II})
 \]
 Performed once, in advance, for large classes of distributions.

3. **Upper bound $S(Q_n, \mathcal{T}, \mathcal{G})$ by any means necessary to demonstrate convergence to 0 (Requirement I)**

Standard use: As analytical tool to prove convergence

Our goal: Develop Stein discrepancy into practical quality measure
Identifying a Stein Operator \mathcal{T}

Goal: Identify operator \mathcal{T} for which $\mathbb{E}_P[(\mathcal{T}g)(Z)] = 0$ for all $g \in \mathcal{G}$

Approach: Generator method of Barbour [1988, 1990], Götze [1991]
- Identify a Markov process $(Z_t)_{t \geq 0}$ with stationary distribution P
- Under mild conditions, its **infinitesimal generator**
 $$(\mathcal{A}u)(x) = \lim_{t \to 0} \frac{\mathbb{E}[u(Z_t) \mid Z_0 = x] - u(x)}{t}$$
 satisfies $\mathbb{E}_P[(\mathcal{A}u)(Z)] = 0$

Overdamped Langevin diffusion:
$$dZ_t = \frac{1}{2} \nabla \log p(Z_t) dt + dW_t$$
- **Generator:** $(\mathcal{A}_P u)(x) = \frac{1}{2} \langle \nabla u(x), \nabla \log p(x) \rangle + \frac{1}{2} \langle \nabla, \nabla u(x) \rangle$
- **Stein operator:** $(\mathcal{T}_P g)(x) \triangleq \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle$
 [Gorham and Mackey, 2015, Oates, Girolami, and Chopin, 2016]
 - Depends on P only through $\nabla \log p$; computable even if p cannot be normalized!
 - $\mathbb{E}_P[(\mathcal{T}_P g)(Z)] = 0$ for all $g : \mathcal{X} \to \mathbb{R}^d$ in classical Stein set
 $\mathcal{G}_{\| \cdot \|} = \{ g : \sup_{x \neq y} \max \left(\| g(x) \|^*, \| \nabla g(x) \|^*, \frac{\| \nabla g(x) - \nabla g(y) \|}{\| x - y \|} \right) \leq 1 \}$
Detecting Convergence and Non-convergence

Goal: Show classical Stein discrepancy $S(Q_n, T_P, G_{\|\cdot\|}) \to 0$ if and only if $(Q_n)_{n \geq 1}$ converges to P

- In the univariate case ($d = 1$), known that for many targets P, $S(Q_n, T_P, G_{\|\cdot\|}) \to 0$ only if Wasserstein $d_{W_{\|\cdot\|}}(Q_n, P) \to 0$

- Few multivariate targets have been analyzed (see [Reinert and Röllin, 2009, Chatterjee and Meckes, 2008, Meckes, 2009] for multivariate Gaussian)

New contribution [Gorham, Duncan, Vollmer, and Mackey, 2019]

Theorem (Stein Discrepancy-Wasserstein Equivalence)

*If the Langevin diffusion couples at an integrable rate and $\nabla \log p$ is Lipschitz, then $S(Q_n, T_P, G_{\|\cdot\|}) \to 0 \iff d_{W_{\|\cdot\|}}(Q_n, P) \to 0$.***

- Examples: strongly log concave P, Bayesian logistic regression or robust t regression with Gaussian priors, Gaussian mixtures
- Conditions not necessary: template for bounding $S(Q_n, T_P, G_{\|\cdot\|})$
For target $P = \mathcal{N}(0, 1)$, compare i.i.d. $\mathcal{N}(0, 1)$ sample sequence $Q_{1:n}$ to scaled Student’s t sequence $Q'_{1:n}$ with matching variance.

Expect $S(Q_{1:n}, T_P, G_{\|\cdot\|}, Q, G_1) \to 0$ & $S(Q'_{1:n}, T_P, G_{\|\cdot\|}, Q, G_1) \not\to 0$
- **Middle:** Recovered optimal functions g
- **Right:** Associated test functions $h(x) \triangleq (T_P g)(x)$ which best discriminate sample Q from target P
Selecting Sampler Hyperparameters

Target posterior density: \(p(x) \propto \pi(x) \prod_{i=1}^{L} \pi(y_i \mid x) \)

Stochastic Gradient Langevin Dynamics [Welling and Teh, 2011]
\[
x_{k+1} \sim \mathcal{N}(x_k + \frac{\epsilon}{2} (\nabla \log \pi(x_k) + \frac{L}{|B_k|} \sum_{l \in B_k} \nabla \log \pi(y_l \mid x_k)), \epsilon I)
\]
- Random batch \(B_k \) of datapoints used to draw each sample point
 - Step size \(\epsilon \) too small \(\Rightarrow \) slow mixing
 - Step size \(\epsilon \) too large \(\Rightarrow \) sampling from very different distribution
- Standard MCMC selection criteria like **effective sample size** (ESS) and asymptotic variance do not account for this bias
 - ESS maximized at \(\epsilon = 5 \times 10^{-2} \), Stein minimized at \(\epsilon = 5 \times 10^{-3} \)
Alternative Stein Sets \mathcal{G}

Goal: Identify a more “user-friendly” Stein set \mathcal{G} than the classical

Approach: Reproducing kernels $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ [Oates, Girolami, and Chopin, 2016, Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016]

- A reproducing kernel k is symmetric ($k(x, y) = k(y, x)$) and positive semidefinite ($\sum_{i, l} c_i c_l k(z_i, z_l) \geq 0, \forall z_i \in \mathcal{X}, c_i \in \mathbb{R}$)
 - Gaussian: $k(x, y) = e^{-\frac{1}{2} \|x-y\|_2^2}$, IMQ: $k(x, y) = \frac{1}{(1+\|x-y\|_2^2)^{1/2}}$

- Generates a reproducing kernel Hilbert space (RKHS) \mathcal{K}_k

- Define the **kernel Stein set** [Gorham and Mackey, 2017]
 \[\mathcal{G}_k \triangleq \{ g = (g_1, \ldots, g_d) \mid \|v\|^* \leq 1 \text{ for } v_j \triangleq \|g_j\|_{\mathcal{K}_k} \} \]

- Yields closed-form **kernel Stein discrepancy (KSD)**
 \[S(Q_n, \mathcal{T}_P, \mathcal{G}_k) = \|w\| \text{ for } w_j \triangleq \sqrt{\sum_{i,i'=1}^n k^j_0(x_i, x_{i'})}. \]

- Reduces to parallelizable pairwise evaluations of **Stein kernels**
 \[k^j_0(x, y) \triangleq \frac{1}{p(x)p(y)} \nabla x_j \nabla y_j (p(x)k(x, y)p(y)) \]}
Detecting Non-convergence

Goal: Show \((Q_n)_{n \geq 1}\) converges to \(P\) whenever \(S(Q_n, T_P, G_k) \to 0\)

Theorem (Univariate KSD detects non-convergence [Gorham and Mackey, 2017])

Suppose \(P \in \mathcal{P}\) and \(k(x, y) = \Phi(x - y)\) for \(\Phi \in C^2\) with a non-vanishing generalized Fourier transform. If \(d = 1\), then \((Q_n)_{n \geq 1}\) converges weakly to \(P\) whenever \(S(Q_n, T_P, G_k) \to 0\).

- \(\mathcal{P}\) is the set of targets \(P\) with Lipschitz \(\nabla \log p\) and distant strong log concavity \(\frac{\langle \nabla \log(p(x)/p(y)), y - x \rangle}{\|x - y\|_2^2} \geq k\) for \(\|x - y\|_2 \geq r\)
 - Includes Bayesian logistic and Student’s t regression with Gaussian priors, Gaussian mixtures with common covariance, ...

- Justifies use of KSD with popular Gaussian, Matérn, or inverse multiquadric kernels \(k\) **in the univariate case**
Detecting Non-convergence

Goal: Show \((Q_n)_{n \geq 1}\) converges to \(P\) whenever \(S(Q_n, T_P, G_k) \to 0\)

- In higher dimensions, KSDs based on common kernels fail to detect non-convergence, even for Gaussian targets \(P\)

Theorem (KSD fails with light kernel tails [Gorham and Mackey, 2017])

Suppose \(d \geq 3\), \(P = \mathcal{N}(0, I_d)\), and \(\alpha \triangleq (\frac{1}{2} - \frac{1}{d})^{-1}\). If \(k(x, y)\) and its derivatives decay at a \(o(\|x - y\|_2^{-\alpha})\) rate as \(\|x - y\|_2 \to \infty\), then \(S(Q_n, T_P, G_k) \to 0\) for some \((Q_n)_{n \geq 1}\) not converging to \(P\).

- Gaussian \((k(x, y) = e^{-\frac{1}{2}\|x-y\|_2^2})\) and Matérn kernels fail for \(d \geq 3\)
- Inverse multiquadric kernels \((k(x, y) = (1 + \|x - y\|_2^2)^{\beta})\) with \(\beta < -1\) fail for \(d > \frac{2\beta}{1+\beta}\)
- The violating sample sequences \((Q_n)_{n \geq 1}\) are simple to construct

Problem: Kernels with light tails ignore excess mass in the tails
Detecting Non-convergence

Goal: Show \((Q_n)_{n \geq 1}\) converges to \(P\) whenever \(S(Q_n, T_P, G_k) \to 0\)

- Consider the inverse multiquadric (IMQ) kernel
 \[k(x, y) = (c^2 + \|x - y\|_2^2)^\beta \] for some \(\beta < 0, c \in \mathbb{R}\).
- IMQ KSD fails to detect non-convergence when \(\beta < -1\)
- However, IMQ KSD detects non-convergence when \(\beta \in (-1, 0)\)

Theorem (IMQ KSD detects non-convergence [Gorham and Mackey, 2017])

Suppose \(P \in \mathcal{P}\) and \(k(x, y) = (c^2 + \|x - y\|_2^2)^\beta\) for \(\beta \in (-1, 0)\). If \(S(Q_n, T_P, G_k) \to 0\), then \((Q_n)_{n \geq 1}\) converges weakly to \(P\).
The Importance of Kernel Choice

Target $P = \mathcal{N}(0, I_d)$

Off-target Q_n has all
$$\|x_i\|_2 \leq 2n^{1/d} \log n,$$
$$\|x_i - x_j\|_2 \geq 2 \log n$$

Gaussian and Matérn KSDs driven to 0 by an off-target sequence that does not converge to P

IMQ KSD ($\beta = -\frac{1}{2}, c = 1$) does not have this deficiency
Detecting Convergence

Goal: Show $S(Q_n, T_P, G_k) \rightarrow 0$ whenever $(Q_n)_{n \geq 1}$ converges to P

Proposition (KSD detects convergence [Gorham and Mackey, 2017])

If $k \in C_b^{(2,2)}$ and $\nabla \log p$ Lipschitz and square integrable under P, then $S(Q_n, T_P, G_k) \rightarrow 0$ whenever the Wasserstein distance $d_W_{\|\cdot\|_2}(Q_n, P) \rightarrow 0$.

- Covers Gaussian, Matérn, IMQ, and other common bounded kernels k
Selecting Samplers

Stochastic Gradient Fisher Scoring (SGFS)

[Ahn, Korattikara, and Welling, 2012]

- Approximate MCMC procedure designed for scalability
 - Approximates Metropolis-adjusted Langevin algorithm but does not use Metropolis-Hastings correction
 - Target P is not stationary distribution

- **Goal:** Choose between two variants
 - SGFS-f inverts a $d \times d$ matrix for each new sample point
 - SGFS-d inverts a diagonal matrix to reduce sampling time

MNIST handwritten digits [Ahn, Korattikara, and Welling, 2012]

- 10000 images, 51 features, binary label indicating whether image of a 7 or a 9

- Bayesian logistic regression posterior P
Left: IMQ KSD quality comparison for SGFS Bayesian logistic regression (no surrogate ground truth used)

Right: SGFS sample points ($n = 5 \times 10^4$) with bivariate marginal means and 95% confidence ellipses (blue) that align best and worst with surrogate ground truth sample (red)

Both suggest small speed-up of SGFS-d ($0.0017s$ per sample vs. $0.0019s$ for SGFS-f) outweighed by loss in inferential accuracy
Stochastic Stein Discrepancies

Issue: What if $\nabla \log p$ is too expensive to evaluate?
- Posterior $\nabla \log p(x) = \nabla \log \pi(x) + \sum_{l=1}^{L} \nabla \log \pi(y_l \mid x)$

Solution: Stochastic Stein Discrepancies [Gorham, Raj, and Mackey, 2020]
- Replace each $\nabla \log p(x_i)$ with stochastic gradient based on random datapoint batch: $\nabla \log \pi(x_i) + \frac{L}{|B_i|} \sum_{l \in B_i} \nabla \log \pi(y_l \mid x_i)$
- Resulting stochastic Stein discrepancies inherit convergence control of standard SDs with probability 1 [Gorham, Raj, and Mackey, 2020]

SGFS−d BEST

$\nabla \log \pi(x) + \frac{L}{|B_i|} \sum_{l \in B_i} \nabla \log \pi(y_l \mid x_i)$

SGFS−f WORST

$\nabla \log \pi(x) + \frac{L}{|B_i|} \sum_{l \in B_i} \nabla \log \pi(y_l \mid x_i)$

Sampler = SGFS−d

Number of sample points, n

Sampler = SGFS−f

Number of sample points, n

Likelihoods, m

- 10000 (all)
- 1000
- 100
Beyond Sample Quality Comparison

Goodness-of-fit testing

- Chwialkowski, Strathmann, and Gretton [2016] used the KSD $S(Q_n, T_P, G_k)$ to test whether a sample was drawn from a target distribution P (see also Liu, Lee, and Jordan [2016])
- Test with default Gaussian kernel k experienced considerable loss of power as the dimension d increased
- We recreate their experiment with IMQ kernel ($\beta = -\frac{1}{2}, c = 1$)
 - For $n = 500$, generate sample $(x_i)_{i=1}^{n}$ with $x_i = z_i + u_i e_1$
 $z_i \sim \mathcal{N}(0, I_d)$ and $u_i \sim \text{Unif}[0, 1]$. Target $P = \mathcal{N}(0, I_d)$.
- Compare with standard normality test of Baringhaus and Henze [1988]

Table: Mean power of multivariate normality tests across 400 simulations

<table>
<thead>
<tr>
<th></th>
<th>d=2</th>
<th>d=5</th>
<th>d=10</th>
<th>d=15</th>
<th>d=20</th>
<th>d=25</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&H</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.91</td>
<td>0.57</td>
<td>0.26</td>
</tr>
<tr>
<td>Gaussian</td>
<td>1.0</td>
<td>1.0</td>
<td>0.88</td>
<td>0.29</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>IMQ</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Improving sample quality

Given sample points $(x_i)_{i=1}^n$, can minimize KSD $S(\tilde{Q}_n, T_P, G_k)$ over all weighted samples $\tilde{Q}_n = \sum_{i=1}^n q_n(x_i) \delta_{x_i}$ for q_n a probability mass function.

Liu and Lee [2016] do this with Gaussian kernel $k(x, y) = e^{-\frac{1}{h} \|x-y\|^2_2}$
- Bandwidth h set to median of the squared Euclidean distance between pairs of sample points

We recreate their experiment with the IMQ kernel $k(x, y) = (1 + \frac{1}{h} \|x - y\|^2_2)^{-1/2}$
MSE averaged over 500 simulations (±2 standard errors)

Target \(P = \mathcal{N}(0, I_d) \)

Starting sample \(Q_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \) for \(x_i \overset{iid}{\sim} P, \ n = 100.\)
Generating High-quality Samples

Stein Variational Gradient Descent (SVGD) [Liu and Wang, 2016]

- Uses KSD to repeatedly update locations of \(n \) sample points:
 \[
 x_i \leftarrow x_i + \frac{\epsilon}{n} \sum_{l=1}^{n} (k(x_l, x_i) \nabla \log p(x_l) + \nabla x_l k(x_l, x_i))
 \]
- Approximates gradient step in KL divergence
- Asymptotic convergence guarantees [Liu, 2017, Gorham, Raj, and Mackey, 2020]
- Simple to implement (but each update costs \(n^2 \) time)

Stochastic SVGD: uses stochastic KSD \(\Rightarrow \) same guarantees with many fewer likelihood evaluations [Gorham, Raj, and Mackey, 2020]
Stein Points [Chen, Mackey, Gorham, Briol, and Oates, 2018]

- Greedily minimizes KSD by constructing $Q_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ with

$$x_n \in \arg\min_x S\left(\frac{n-1}{n} Q_{n-1} + \frac{1}{n} \delta_x, T_P, G_k\right)$$

$$= \arg\min_x \sum_{j=1}^{d} k_0^j(x,x) + \sum_{i=1}^{n-1} k_0^j(x_i, x)$$

- Sends KSD to zero at $O(\sqrt{\log(n)/n})$ rate

Stein Point MCMC [Chen, Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019]

- Suffices to optimize over iterates of a Markov chain
Future Directions

Many opportunities for future development

1. Improving scalability while maintaining convergence control
 - Subsampling of likelihood terms in $\nabla \log p$ [Gorham, Raj, and Mackey, 2020]
 - Inexpensive approximations of kernel matrix
 - Finite set Stein discrepancies [Jitkrittum, Xu, Szabó, Fukumizu, and Gretton, 2017]: low-rank kernel, linear runtime (but convergence control unclear)
 - Random feature Stein discrepancies [Huggins and Mackey, 2018]: stochastic low-rank kernel, near-linear runtime + high probability convergence control when $(Q_n)_{n \geq 1}$ moments uniformly bounded

2. Exploring the impact of Stein operator choice
 - An infinite number of operators \mathcal{T} characterize P
 - How is discrepancy impacted? How do we select the best \mathcal{T}?
 - **Thm:** If $\nabla \log p$ bounded and $k \in C_0^{(1,1)}$, then $S(Q_n, \mathcal{T}_P, G_k) \to 0$ for some $(Q_n)_{n \geq 1}$ not converging to P
 - Diffusion Stein operators $\langle \mathcal{T}_g(x) = \frac{1}{p(x)} \langle \nabla , p(x)a(x)g(x) \rangle \rangle$ of Gorham, Duncan, Vollmer, and Mackey [2019] may be appropriate for heavy tails
Future Directions

Many opportunities for future development

- Addressing other inferential tasks
 - Training generative adversarial networks [Wang and Liu, 2016] and variational autoencoders [Pu, Gan, Henao, Li, Han, and Carin, 2017]
Many opportunities for future development

- Addressing other inferential tasks
 - Post-selection inference
 - Constrained targets P arise when testing significance after variable selection [Tian and Taylor, 2018]
 - Stein Variational Mirror Descent and Mirrored SVGD can derive confidence intervals for constrained P [Shi, Liu, and Mackey, 2021]
Many opportunities for future development

- Addressing other inferential tasks
 - Post-selection inference
 - Stein Variational Mirror Descent and Mirrored SVGD can derive confidence intervals from constrained P [Shi, Liu, and Mackey, 2021]
 - Non-convex optimization [Erdogdu, Mackey, and Shamir, 2018]

Example (Optimization with Discretized Diffusions [Erdogdu, Mackey, and Shamir, 2018])

- To minimize $f(x)$, choose $a(x) \succ cI$ with $a(x)\nabla f(x)$ Lipschitz and distantly dissipative
 \[
 \left(\frac{\langle a(x)\nabla f(x) - a(y)\nabla f(y), x-y\rangle}{\|x-y\|_2^2}\right) \geq k \text{ for } \|x - y\|_2 \geq r
 \]

- Approximate target sequence $p_n(x) \propto e^{-\gamma_n f(x)}$ using Markov chain
 \[
 x_{n+1} \sim N(x_n - \frac{\epsilon_n}{2}a(x_n)\nabla f(x_n) + \frac{\epsilon_n}{2\gamma_n} \langle \nabla, a(x_n) \rangle, \frac{\epsilon_n}{\gamma_n}a(x_n))
 \]

- Thm: $\min_{1 \leq i \leq n} \mathbb{E} f(x_i) \to \min_x f(x)$ (with explicit error bounds)
 for appropriate ϵ_n and γ_n when $\nabla f, \nabla a$, and $a^{1/2}$ are Lipschitz
Many opportunities for future development

- Addressing other inferential tasks
 - Post-selection inference
 - Stein Variational Mirror Descent and Mirrored SVGD can derive confidence intervals from constrained P [Shi, Liu, and Mackey, 2021]

- Non-convex optimization [Erdogdu, Mackey, and Shamir, 2018]

$$
\min_x f(x) = 5 \log(1 + \frac{1}{2} \|x\|_2^2), \quad a(x) = (1 + \frac{1}{2} \|x\|_2^2)I, \quad a(x) \nabla f(x) = 5x
$$
Future Directions

Many opportunities for future development

1. Improving scalability while maintaining convergence control
 - Subsampling of likelihood terms in $\nabla \log p$ [Gorham, Raj, and Mackey, 2020]
 - Inexpensive approximations of kernel matrix
 - **Finite set Stein discrepancies** [Jitkrittum, Xu, Szabó, Fukumizu, and Gretton, 2017]
 - **Random feature Stein discrepancies** [Huggins and Mackey, 2018]

2. Exploring the impact of Stein operator choice
 - An infinite number of operators \mathcal{T} characterize P
 - How is discrepancy impacted? How do we select the best \mathcal{T}?
 - **Diffusion Stein operators** $(\mathcal{T}g)(x) = \frac{1}{p(x)} \langle \nabla, p(x)m(x)g(x) \rangle$ of Gorham, Duncan, Vollmer, and Mackey [2019] may be appropriate for heavy tails

3. Addressing other inferential tasks
 - **Post-selection inference** [Shi, Liu, and Mackey, 2021]
 - **Non-convex optimization** [Erdogdu, Mackey, and Shamir, 2018]
 - **Parameter estimation** [Barp, Briol, Duncan, Girolami, and Mackey, 2019]
 - **MCMC thinning** [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2020]
 - **Control variates** [Assaraf and Caffarel, 1999, Mira, Solgi, and Imparato, 2013, Oates, Girolami, and Chopin, 2016]
References I

Selecting Sampler Hyperparameters

Setup [Welling and Teh, 2011]

- Consider the posterior distribution P induced by L datapoints y_l drawn i.i.d. from a Gaussian mixture likelihood
 \[Y_l | X \overset{iid}{\sim} \frac{1}{2} \mathcal{N}(X_1, 2) + \frac{1}{2} \mathcal{N}(X_1 + X_2, 2) \]
 under Gaussian priors on the parameters $X \in \mathbb{R}^2$
 \[X_1 \sim \mathcal{N}(0, 10) \perp \perp X_2 \sim \mathcal{N}(0, 1) \]
- Draw $m = 100$ datapoints y_l with parameters $(x_1, x_2) = (0, 1)$
- Induces posterior with second mode at $(x_1, x_2) = (1, -1)$
- For range of parameters ϵ, run approximate slice sampling for 148000 datapoint likelihood evaluations and store resulting posterior sample Q_n
- Use minimum IMQ KSD ($\beta = -\frac{1}{2}, c = 1$) to select appropriate ϵ
 - Compare with standard MCMC parameter selection criterion, effective sample size (ESS), a measure of Markov chain autocorrelation
 - Compute median of diagnostic over 50 random sequences
Selecting Samplers

Setup

- **MNIST handwritten digits** [Ahn, Korattikara, and Welling, 2012]
 - 10000 images, 51 features, binary label indicating whether image of a 7 or a 9

- Bayesian logistic regression posterior P
 - L independent observations $(y_l, v_l) \in \{1, -1\} \times \mathbb{R}^d$ with

$$
\mathbb{P}(Y_l = 1|v_l, X) = 1/(1 + \exp(-\langle v_l, X \rangle))
$$

- Flat improper prior on the parameters $X \in \mathbb{R}^d$

- Use IMQ KSD ($\beta = -\frac{1}{2}, c = 1$) to compare SGFS-f to SGFS-d drawing 10^5 sample points and discarding first half as burn-in

- For external support, compare bivariate marginal means and 95% confidence ellipses with surrogate ground truth Hamiltonian Monte chain with 10^5 sample points [Ahn, Korattikara, and Welling, 2012]
The Importance of Tightness

Goal: Show $S(Q_n, \mathcal{T}_P, \mathcal{G}_k) \to 0$ only if Q_n converges to P

- A sequence $(Q_n)_{n \geq 1}$ is **uniformly tight** if for every $\epsilon > 0$, there is a finite number $R(\epsilon)$ such that $\sup_n Q_n(\|X\|_2 > R(\epsilon)) \leq \epsilon$
 - Intuitively, no mass in the sequence escapes to infinity

Theorem (KSD detects tight non-convergence [Gorham and Mackey, 2017])

Suppose that $P \in \mathcal{P}$ and $k(x, y) = \Phi(x - y)$ for $\Phi \in C^2$ with a non-vanishing generalized Fourier transform. If $(Q_n)_{n \geq 1}$ is uniformly tight and $S(Q_n, \mathcal{T}_P, \mathcal{G}_k) \to 0$, then $(Q_n)_{n \geq 1}$ converges weakly to P.

- **Good news**, but, ideally, KSD would detect non-tight sequences automatically...