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Abstract

Topic models such as Latent Dirichlet Allocation (LDA) and probabilistic Latent
Semantic Analysis have shown great success in segmenting and recognizing the
component objects of images. However, such models frequently ignore the spatial
relationships among image regions and hence fail to capture important local cor-
relations. In this paper, we introduce the Latent Dirichlet Markov Random Field
(LDMREF), a model which improves the spatial coherence of LDA by introduc-
ing a Markov random field prior over hidden object class labels. We evaluate the
model on a number of semi-supervised joint segmentation and object recognition
tasks and compare its performance with LDA. We further demonstrate the advan-
tages of multi-modal feature selection for LDA and LDMREF. Finally, we propose
a new combination of variational inference procedures for approximate inference
in the LDMRF model and demonstrate its efficacy.

1 Introduction

Two problems of wide interest in the vision community are image segmentation, dividing an image
into its distinct, semantically meaningful regions, and object recognition, labeling the regions of
images according to their semantic object classes. Solutions to these problems are at the core of
applications like content-based image retrieval, video surveying, and object tracking. While seg-
mentation and recognition are often studied independently in the literature ([1, 2, 3, 4, 9, 10, 5, 6]),
many recent works have focused on the joint problem of simultaneously recognizing and localizing
objects within images ([11, 12, 7, 16, 13, 15, 17, 14, 18, 19, 20]).

Studies of simultaneous recognition and segmentation frequently focus on the extremes of the super-
vision spectrum, either considering completely supervised image models ([7, 16, 13, 15]), with class
labels for every pixel or region of an image, or completely unsupervised image models ([17, 14, 18])
with no auxiliary annotations or segmentation information. Both extremes have their disadvantages.
The supervised setting offers a predefined interpretation of learned classes and the potential for
greater accuracy. However, such supervised learning comes at the cost of labeling each pixel or
region of every training image, a task too expensive for many image collections. Unsupervised
learning dispenses with the need for manual labeling but suffers from identifiability issues. That is,
when an unsupervised model labels image regions, human intervention (or a separate procedure) is
needed to map those labels back to meaningful object classes.



One middle ground explored by several authors ([19, 20]) is that of “weak supervision,” labeling
each image with only the names of the categories it contains. This drastically reduces the amount
of external information needed but still requires some degree of annotation for every image. More-
over, both weakly supervised and unsupervised models ignore detailed annotations when they are
available. A second middle ground, semi-supervised learning, escapes these problems by accom-
modating both labeled and unlabeled training data. Models designed for the semi-supervised setting
thus benefit both from the accuracy and identifiability granted by labeled images and from the rela-
tive abundance of unlabeled images. In this paper, we will focus on the task of joint segmentation
and recognition in a semi-supervised setting.

Latent topic models such as Probabilistic Latent Semantic Analysis (pLSA) [22] and Latent Dirich-
let Allocation (LDA) [21] naturally lend themselves to our task, as they have shown impressive
performance on unsupervised classification and recognition tasks ([18]) and are readily extensible
to the semi-supervised setting. However, topic models suffer from poor spatial coherence: they
ignore local label correlations by assuming a conditional independence of labels given the image.

In [20], the authors demonstrate that the segmentation and recognition accuracy of the pLSA model
can be improved by introducing a Markov Random Field (MRF) to enforce spatial coherence on the
labels of an image. The authors analyze their Markov Random Field Aspect Model (pLSA-MRF) in
fully supervised and weakly supervised settings.

In this paper, we give similar treatment to LDA, extending the topic model with a Markov random
field prior over its hidden labels. The resulting Latent Dirichlet Markov Random Field (LDMRF)
exhibits significant boosts in classification and segmentation performance over standard LDA. In
addition, LDMREF inherits the benefits of LDA over pLSA. Whereas the number of parameters of
pLSA-MRF grows linearly with the number of training images, the number of LDMRF parameters
does not grow with the training set size and hence is less susceptible to overfitting. Moreover,
LDMREF provides a well-defined model of previously unseen images, whereas pLSA-MREF relies on
a heuristic “folding-in” procedure ([22]) to analyze new images.

The LDMRF model also poses new challenges to learning, due to its doubly intractable structure. As
a result, we propose a new combination of variational inference procedure for the model and demon-
strate its efficacy in the semi-supervised setting. Further, we achieve increased joint segmentation
and classification accuracy by extending the set of image features used in [20] to train pLSA-MRF.

This paper is structured as follows. Section 2 describes the latent Dirichlet Markov random field
model. Feature selection is discussed in Section 3. Section 4 describes our approach to inference
and parameter estimation. Section 5 introduces the data set used for evaluation. Experiments and
results are detailed in Section 6. Finally, we summarize our contributions in Section 7.

2 The Latent Dirichlet Markov Random Field Model

2.1 LDA
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Figure 1: Graphical model representation of LDA.



Latent Dirichlet allocation was originally developed for text document modeling, and we will use
the terminology of that field to describe the model. LDA is a generative model for documents. It
asserts that every document is a finite mixture over latent topics; each topic is in turn a mixture over
words. A graphical model representation is depicted in Figure 1.

Associated with every document, d, is a vector of topic weights, 64, drawn independently from
a Dirichlet distribution parameterized by a global hyperparameter, o. 6y represents the mixing
proportions of topics specific to that document. Thus for any topic z, 04, = p(z|d).

An underlying topic is drawn for each word of a document, and all topics of a document are assumed
to be conditionally independent of one another given the document vector. This is often called the
“bag-of-words” or “bag-of-features” assumption.

Associated with every topic, z, is a topic vector, 3., representing the probability of each word being
generated by that topic. Thus for any word, w, (.., = p(w|z). Note that the topic vectors are global
parameters shared by all documents. We will represent the vectors as a single matrix, 3, where
topics index the rows of the matrix.

In the terms of our problem, each image is a document, and one word is assigned to every n X
n pixel patch extracted from a regular grid covering the image. Words are thus feature descriptors
representing the patches of an image. The topic associated with each feature is a label corresponding
to the object class which produced that feature. For example, one word of an image might be a
descriptor for a small square of blue pixels, and the associated topic might be ’sky”.

In assuming that image topics are conditionally independent, LDA ignores the known spatial re-
lationship among image patches. This bag-of-features assumption is responsible for the spatial
incoherence of LDA in the image setting.

2.2 Improving spatial coherence with an MRF prior

To improve the spatial coherence of our image model, we move from a bag-of-features to a ”grid-of-
features” representation. The latent Dirichlet Markov random field, depicted as a graphical model
in Figure 2, introduces explicit couplings between the labels of neighboring patches of an image.
This allows the model to capture local correlations that would be missed under the conditional
independence assumption of LDA. The transition from LDA to LDMRF is equivalent to placing a
Markov random field prior on the vector of labels, z:

p(z]04) x emp(Zlog@dzi + Z f(zi,25)) (1)
@ N(4.5)

Here, i runs over all patches in the image and N (, j) runs over all pairs of neighboring patches. The

terms f(z;, z;) are edge potentials between neighboring nodes. As in [20], we parameterize these

potentials with a single parameter o, according to the Potts model

f(zi,2j) = 0 [z = 2] 2
where [-] represents the indicator function and o is set empirically.
A positive value of o awards configurations in which neighboring patches have the same label; a

negative value discourages these configurations. Note that if we set o to 0 we obtain the original
decoupled LDA model.

We have experimented with four-neighbor connectivity (connecting each topic node to its neighbors
in the four cardinal directions) and eight-neighbor connectivity (connecting each topic node to its
eight surrounding neighbors). We report results from the eight-neighbor connectivity model.

3 Feature Selection

To capture different aspects of the image data, we use words drawn from multiple modalities to
describe each image patch. The authors of [20] suggest three complementary modalities: texture,
hue, and location. In this work, we introduce a fourth: opponent angle.

To describe hue, we use the robust hue descriptor of [25], which grants invariance to illuminant vari-
ations, lighting geometry, and specularities. For texture description we use “dense SIFT” features



Figure 2: LDMRF with 4-neighbor connectivity: w-nodes are patch-level image features, z-nodes
are latent object classes.

[24, 23], histograms of oriented gradients computed not at local keypoints but rather at a single scale
over each patch. To describe coarse location, we cover each image with a regular ¢ x ¢ grid of cells
and assign each patch the index of the covering cell. We have experimented with ¢ = 5 and ¢ = 10
and achieve better performance with the latter. The opponent angle descriptor of [25] captures a sec-
ond characterization of image patch color. These features are invariant to specularities, illuminant
variations, and diffuse lighting conditions.

To build a discrete visual vocabulary from these raw descriptors, we vector quantize the dense SIFT,
hue, and opponent angle descriptors using k-means, producing 1000, 100, and 100 clusters respec-
tively. The word describing each patch is formed by concatenating the corresponding modality
components into a single vector. However, learning a vocabulary with 107 - ¢? possible values
is infeasible, so we introduce the following assumption into our model (as in [20]): the multiple
modality word components describing a patch are conditionally independent given the latent topic
of the patch. This assumption is equivalent to the following conditional probability factorization:

M

p(wlz) = T p(w™2) 3)

m=1

where M is the number of modalities and w™ is the mth component (mth modality value) of word
w.



4 Inference and Parameter Estimation

4.1 Learning the model

Training the LDMRF model is equivalent to estimating the model parameters from a set of training
images. Given that we are working in a semi-supervised setting, expectation-maximization (E-M) is
a natural choice for parameter estimation. E-M iterates between an E-step, estimating the values of
unknown variables (i.e. document vectors and the patch labels of unlabeled images), and an M-step,
computing maximum likelihood estimates of model parameters given the estimated variable values.

The E-step of the E-M algorithm requires that we compute the posterior distribution of the unknown
variables given the observed image features:

p(0, 2, w|a, B)
p(wle, B)

However, this distribution is doubly intractable to compute, first because of the implicit coupling be-

tween 6 and § ([21]) and second because of the intractable nature of inference in MRFs. Fortunately,

approximate inference can be achieved through Markov Chain Monte Carlo methods or variational
inference procedures. In this paper, we propose a method for variational inference.

p(0, 2w, o, B) = “4)

4.2 Variational inference

To eliminate the first source of intractability, we introduce a variational distribution in which 6 is

decoupled from z:
404, z|va, #) = a(0alva)q(2|®). ()

Here ¢ and 4 are image-specific variational parameters that depend on the observed words of the
image. 4 is a Dirichlet parameter for 64 under the variational distribution. ¢; is the vector of node
potentials for class label z;, so that

p(z]¢) o< exp(Y logiz, + > f(2i,2)). 6)
i N(4,5)

This family of distributions, shown in graphical form in Figure 3, is related to the family introduced

Figure 3: Variational distribution for approximating LDMRF posterior.

in [21] for approximate inference in the LDA model. Indeed, if we remove the edges between
z nodes we recover the original LDA variational family. However, the presence of these edges
implies that exact inference is intractable even in our variational model. We deal with this second
instance of intractability by embedding a second variational approximation into the standard LDA



variational inference algorithm detailed in [21]. The original algorithm updates the ¢ parameters
assuming uncoupled label nodes; we instead approximate these posterior node potentials with the
pseudomarginals returned by running Tree-Reweighted Belief Propagation' (TRWBP) [26] on the
variational MRF. We have experimented with a number of constant edge appearance probabilities
(tij = a,V1i,7 s.t. N(4,7)), and results are reported for p;; = 1 (note that this corresponds to
standard loopy belief propagation).

Our full inference procedure learns the parameters of the variational model by alternating TRWBP
updates of ¢ and the standard variational updates of ~ until convergence. We use the resulting
variational distribution as a surrogate for the posterior. To learn the original LDMRF parameters,
we interleave the variational E-step of approximating the posterior with the M-step of updating «
and [ as described in [21].

4.3 Inferring class labels

To obtain a segmentation and labeling for a test image, the final task is to infer the most probable con-
figuration of labels given the estimated parameters and the test words. Note that there is a distinction
between inferring the most probable label for each patch and inferring the most probable configura-
tion of labels. When labels are especially correlated or anticorrelated, favored configurations may
differ significantly from those derived by examining each node individually. Thus, we cannot sim-
ply maximize the pseudomarginals returned by TRWBP for our final inference, for these estimate
only locally probable configurations. Instead, at test time, we culminate the inference procedure
described above with a computation of approximate max-marginals using the Tree-Reweighted Max
Product algorithm?> (TRWMP) [27]. We maximize over these max-marginals to obtain our predicted
maximum a posteriori class label configuration.

5 Evaluation Data

We use the Microsoft Research Cambridge pixel-wise labeled image database v1° in our experi-
ments. The data set consists of 240 images, each of size 213 x 320 pixels (some were rotated to
conform to this standard). Each image has an associated pixel-wise ground truth labeling. Each
pixel is labeled as belonging to one of 13 semantic classes or to the void class. Pixels have a ground
truth label of void when they do not belong to any semantic class or when they lie on the bound-
aries between classes in an image (to ease the burden of manual segmentation). It is noted on the
associated website that there are not sufficiently many instances of horse, mountain, sheep, or water
to learn these classes, so, as in [20], we treat these ground truth labels as void as well. Thus, our
general task is to learn and segment the remaining 9 semantic object classes.

In the experiments which follow, we use 20 x 20 pixel patches spaced at 10 pixel intervals across the
image, and we assume a eight-neighbor connectivity LDMRF model. As in [20], we assign ground
truth patch labels based on the most frequent pixel label within a patch. For prediction, we assign to
each pixel the label predicted for the nearest patch center.

Unless otherwise specified, our patch-level classification accuracies are averaged over twenty ran-
domly generated 90% training / 10% test divisions of the data set. We utilize semi-supervised
training in each experiment, so our model will only view the ground-truth labels of a specified per-
centage of all training images. We measure overall accuracy by averaging over class-level rates (an
average over patch level rates would be unfairly biased towards the most frequent classes).

6 Experiments and Results

6.1 Experiment 1: Merits of multiple modalities

In our first experiment we examine the merits of a multi-modal model, that is, a model which extracts
features from multiple modalities. We train four single modality versions of LDMREF, one trimodal

"For a detailed description of the TRWBP algorithm, see [26].
For a detailed description of the TRWMP algorithm, see [27].
3http://research.microsoft.com/vision/cambridge/recognition/



version, incorporating only the three modalities suggested in [20], and the full model, utilizing all
four modalities. We implement LDA using the same feature bases for comparison. The resulting
per-semantic-class classification rates averaged over twenty data splits are reported in Figure 4. We
use 99% of all training labels in this experiment.

sel

SIFT 50.3%  67.0% 72.0% 63.7% 49.6% 64.7% 57.0% 60.0% 75.7% 62.2%
Hue 32.6%  70.6% 55.3% 50.2% 71.0% 27.6%  77.7% 57.2% 35.9% 53.2%
L OpAng 40.1%  72.0% 60.2% 26.7% 45.8% 25.2%  73.7% 31.1% 63.5% 48.7%
e 51.4%  65.2% 0.0% 17.5% 4.9% 0.0% 0.0% 1.5% 11.3% 17.0%
- S,H,L 65.5%  82.9% 73.3% 76.6% 90.4% 78.1%  78.2% 75.2% 69.9% 76.7%
All 69.5%  88.0% 74.2% 72.4% 91.5% 74.8%  80.1% 74.3% 68.4% 77.0%
SIFT 58.7%  60.9% 77.2% 63.8% 39.3% 80.7% 57.0% 37.2% 90.8% 62.8%
L e 30.6%  70.7% 53.7% 47.0% 71.1% 10.4%  79.9% 58.2% 31.7% 50.3%
- OpAng 30.4%  73.0% 59.2% 16.7% 45.9% 26.2%  79.3% 27.4% 76.2% 48.2%
M e 0.0% 60.7% 0.0% 0.0% 83.3% 76.6% 0.0% 0.0% 0.0% 24.5%
E S,H,L 74.9%  84.6% 77.4% 80.2% 94.6% 82.9% 82.3% 78.1% 67.5% 80.3%
All 78.8%  89.5% 78.5% 77.2% 94.9% 78.6%  83.9% 77.0% 71.0% 81.0%

Figure 4: Supervised patch-level classification accuracies for LDA and LDMREF trained over various
modalities. S = SIFT, H = hue, L = location.

It is clear from both the LDA and LDMREF results that the SIFT-based texture is the most discrimi-
nant of our modalities. Grid location on the other hand leads to decidedly poor object recognition.
This coarse descriptor detects most classes with 0% percent accuracy and only recognizes the most
readily localizable classes, like sky.

The results also show the merit of incorporating multiple modalities into our model. The trimodal
model of hue, location, and SIFT significantly outperforms the unimodal SIFT model, and intro-
ducing opponent angle extends accuracy even further. These results give evidence that our other
modalities are capturing complementary information, not discernible through the SIFT vocabulary
alone.

Finally, although the LDMRF and LDA models perform comparably when trained on most single
modalities, the LDMREF significantly outperforms LDA in multi-modal settings. Indeed, the gains in
accuracy for the multi-modal models are comparable to those reported for pPLSA-MRF over pLSA in
[20] (the authors do not report unimodal pLSA-MRF performance). Interestingly, LDMREF realizes
the greatest accuracy increase on the least discriminant feature modality: location.

Several example segmentations produced by quadmodal LDA and quadmodal LDMREF are displayed
in Figure 5.

6.2 Experiment 2: Robustness to fewer labeled examples

In our second experiment, we test the robustness of quadmodal LDA and LDMREF to decreased
proportions of labeled training examples. We fix the training set size, and on each evaluation run, we
allow our models to view a varying fraction of the labels of the training set images. The remaining
training images are incorporated as unlabeled training data. We apply this procedure to a range
of percentages of labeled data and evaluate the model on twenty random training-test splits per
percentage. The results are summarized in Figure 6.

We observe a similar pattern of decline in the LDA and LDMRF models: for most object cate-
gories, accuracy falls slowly but steadily as the percentage of supervised training examples falls
from 100% to 30%. Nevertheless, the LDMRF model continues to outperform the LDA model in
this semi-supervised environment. Indeed, LDMREF trained with only 60% labeled data achieves



Figure 5: Example test images from the MSRC Dataset (top) and segmentations produced by quad-

modal LDA (middle) and quadmodal LDMREF (bottom). (Best viewed in color.)
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Figure 6: Variation of LDA (left) and LDMREF (right) classification accuracy with percentage of
labeled training examples

higher accuracy than the 99% supervised LDA model. Further, the LDMRF model maintains a high
degree of discrimination in all test cases, classifying with 74% accuracy with access to only 40% of
the training labels. For comparison, recall that LDMRF unimodal classification with SIFT achieves
63% accuracy on the 99% labeled training set. Thus, multi-modality once again shows its benefit.




A more surprising occurrence revealed by Figure 6 is the large jump in cow, airplane, and bicycle
classification accuracy realized by both models in the transition from 99% to 90% labeled training
data. It is possible that the models are overfitting the training data in the 99% setting and that the
greater number of unknown variables in the 90% setting allows for a more regularized and hence
more robust model.

6.3 Experiment 3: Enhanced accuracy using additional unlabeled training images

Our third experiment demonstrates how accuracy improves in LDA and LDMRF when additional
unlabeled training images are made available. We begin with our standard training set size and select
a random 30% to serve as labeled data for our models. We ignore the remaining training data and
evaluate the resulting models. We then repeat this procedure, adding in anywhere from 10% to 100%
of the remaining training data as additional unlabeled examples on top of the labeled examples. The
results of this experiment are displayed in Figure 7.
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Average | 64.8 66.5 66.8 67.1 67.1 67.7 67.5 67.4 67.6 67.5 67.6 Average  62.9 65.9 66.5 66.9 67.8  67.9 67.1 67.3 67.8 67.8 67.9

Figure 7: Variation of LDA (left) and LDMRF (right) classification accuracy with percentage of
unlabeled training examples added. (See text for details.)

Again we observe similar behavior by the LDA and LDMRF models: both models enjoy moderate
growth in classification accuracy as unsupervised images are added. We were limited in this study
by the size of the dataset, but an interesting focus of future work would be the limits of this process.
Given sufficiently many unsupervised images, would the model eventually become saturated and
unable to increase its performance? If so, what is its asymptotic performance level? A metric
like asymptotic performance level could prove useful in model selection or in ranking the utility of
various learning procedures. Moreover, such a study could place an upper bound on how much data
is required to maximize performance.

Another notable aspect of our experiment 3 results is the overall performance of LDMRF under
the impoverished conditions of 30% labeled and 0% additional unlabeled data. At 63% accuracy,
the multimodal LDMRF model still achieves classification rates on par with the 99% supervised
unimodal SIFT LDMRF.

Finally, it is noteworthy that while recognition accuracies for all other classes show a net increase
as unlabeled images are added, recognition rates for buildings decrease significantly under both the
LDA and LDMRF models. This phenomenon may relate to the relative frequency with which build-
ings co-occur with objects of other categories. In the MSRC dataset, buildings appear frequently
in images focused on bicycles, cars, airplanes, and even cows. In addition, the images focused
on buildings frequently feature sky, grass, and trees. Thus, the building category appears in close
proximity to nearly every other category. Moreover, unlike sky or grass, the building category is




not readily localizable to one region of an image. Taken together, these conditions make building a
difficult category to learn and an easy category to confuse in a a principally unsupervised setting.

7 Conclusion

We have introduced the latent Dircihlet Markov random field, a new model for spatially coherent
image segmentation and object recognition, and compared its performance with LDA in a number
of semi-supervised segmentation and classification tasks. We have additionally augmented the fea-
ture base suggested by [20] for multi-modal training and demonstrated the advantages of drawing
features from multiple modalities. Finally, we have proposed a new combination of variational pro-
cedures for inference and learning in the LDMRF and demonstrated its efficacy and accuracy in
learning joint segmentations and classifications.
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