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Abstract. This paper derives exponential concentration inequalities and polynomial moment in-
equalities for the spectral norm of a random matrix. The analysis requires a matrix extension of
the scalar concentration theory developed by Sourav Chatterjee using Stein’s method of exchange-
able pairs. When applied to a sum of independent random matrices, this approach yields matrix
generalizations of the classical inequalities due to Hoeffding, Bernstein, Khintchine, and Rosenthal.
The same technique delivers bounds for sums of dependent random matrices and more general
matrix-valued functions of dependent random variables.

This paper is based on two independent manuscripts from mid-2011 that both applied the method
of exchangeable pairs to establish matrix concentration inequalities. One manuscript is by Mackey
and Jordan; the other is by Chen, Farrell, and Tropp. The authors have combined this research
into a single unified presentation, with equal contributions from both groups.

1. Introduction

Matrix concentration inequalities control the fluctuations of a random matrix about its mean.
At present, these results provide an effective method for studying sums of independent random
matrices and matrix martingales [Oli09, Tro11a, Tro11b, HKZ11]. They have been used to stream-
line the analysis of structured random matrices in a range of applications, including statistical
estimation [Kol11], randomized linear algebra [Git11, CD11b], stability of least-squares approxima-
tion [CDL11], combinatorial and robust optimization [So11, CSW11], matrix completion [Gro11,
Rec11, MTJ11], and random graph theory [Oli09]. These works comprise only a small sample of
the papers that rely on matrix concentration inequalities. Nevertheless, it remains common to
encounter new classes of random matrices that we cannot treat with the available techniques.

The purpose of this paper is to lay the foundations of a new approach for analyzing structured
random matrices. Our work is based on Chatterjee’s technique for developing scalar concentration
inequalities [Cha07, Cha08] via Stein’s method of exchangeable pairs [Ste72]. We extend this
argument to the matrix setting, where we use it to establish exponential concentration results
(Theorems 4.1 and 5.1) and polynomial moment inequalities (Theorem 7.1) for the spectral norm
of a random matrix.

To illustrate the power of this idea, we show that our general results imply several important con-
centration bounds for a sum of independent, random, Hermitian matrices [LPP91, JX03, Tro11b].
We obtain a matrix Hoeffding inequality with optimal constants (Corollary 4.2) and a version of
the matrix Bernstein inequality (Corollary 5.2). Our techniques also yield concise proofs of the
matrix Khintchine inequality (Corollary 7.4) and the matrix Rosenthal inequality (Corollary 7.5).

The method of exchangeable pairs also applies to matrices constructed from dependent random
variables. We offer a hint of the prospects by establishing concentration results for several other
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classes of random matrices. In Section 9, we consider sums of dependent matrices that satisfy
a conditional zero-mean property. In Section 10, we treat a broad class of combinatorial matrix
statistics. Finally, in Section 11, we analyze general matrix-valued functions that have a self-
reproducing property.

1.1. Notation and Preliminaries. The symbol ‖·‖ is reserved for the spectral norm, which
returns the largest singular value of a general complex matrix.

We write M
d for the algebra of all d× d complex matrices. The trace and normalized trace of a

square matrix are defined as

trB :=
∑d

j=1
bjj and t̄rB :=

1

d

∑d

j=1
bjj for B ∈ M

d.

We define the linear space H
d of Hermitian d × d matrices. All matrices in this paper are Her-

mitian unless explicitly stated otherwise. The symbols λmax(A) and λmin(A) refer to the algebraic
maximum and minimum eigenvalues of a matrix A ∈ H

d. For each interval I ⊂ R, we define the
set of Hermitian matrices whose eigenvalues fall in that interval:

H
d(I) := {A ∈ H

d : λmax(A), λmin(A) ∈ I}.

The set Hd
+ consists of all positive-semidefinite (psd) d× d matrices. Curly inequalities refer to the

semidefinite partial order on Hermitian matrices. For example, we write A 4 B to signify that the
matrix B −A is psd.

We require operator convexity properties of the matrix square so often that we state them now.
(

A+B

2

)2

4
A2 +B2

2
for all A,B ∈ H

d. (1.1)

More generally, we have the operator Jensen inequality

(EX)2 4 EX2, (1.2)

valid for any random Hermitian matrix, provided that E ‖X‖2 < ∞. To verify this result, simply
expand the inequality E(X−EX)2 < 0. The operator Jensen inequality also holds for conditional

expectation, again provided that E ‖X‖2 <∞.

2. Exchangeable Pairs of Random Matrices

Our approach to studying random matrices is based on the method of exchangeable pairs, which
originates in the work of Charles Stein [Ste72] on normal approximation for a sum of dependent
random variables. In this section, we explain how some central ideas from this theory extend to
matrices.

2.1. Matrix Stein Pairs. We begin with the definition of an exchangeable pair.

Definition 2.1 (Exchangeable Pair). Let Z and Z ′ be random variables taking values in a Polish
space1 Z. We say that (Z,Z ′) is an exchangeable pair if it has the same distribution as (Z ′, Z). In
particular, Z and Z ′ must share the same distribution.

We can obtain a lot of information about the fluctuations of a random matrix X if we can
construct a good exchangeable pair (X,X ′). With this motivation in mind, let us introduce a
special class of exchangeable pairs.

1A topological space is Polish if we can equip it with a metric to form a complete, separable metric space.
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Definition 2.2 (Matrix Stein Pair). Let (Z,Z ′) be an exchangeable pair of random variables taking
values in a Polish space Z, and let Ψ : Z → H

d be a measurable function. Define the random
Hermitian matrices

X := Ψ(Z) and X ′ := Ψ(Z ′).

We say that (X,X ′) is a matrix Stein pair if there is a constant α ∈ (0, 1] for which

E[X −X ′ |Z] = αX almost surely. (2.1)

The constant α is called the scale factor of the pair. When discussing a matrix Stein pair (X,X ′),
we always assume that E ‖X‖2 <∞.

A matrix Stein pair (X,X ′) has several useful properties. First, (X,X ′) always forms an
exchangeable pair. Second, it must be the case that EX = 0. Indeed,

EX =
1

α
E
[

E[X −X ′ |Z]
]

=
1

α
E[X −X ′] = 0

because of the identity (2.1), the tower property of conditional expectation, and the exchangeability
of (X,X ′). In Section 2.4, we construct a matrix Stein pair for a sum of centered, independent
random matrices. More sophisticated examples appear in Sections 9, 10, and 11.

2.2. The Method of Exchangeable Pairs. A well-chosen matrix Stein pair (X,X ′) provides a
surprisingly powerful tool for studying the random matrix X. The technique depends on a simple
but fundamental technical lemma.

Lemma 2.3 (Method of Exchangeable Pairs). Suppose that (X,X ′) ∈ H
d ×H

d is a matrix Stein
pair with scale factor α. Let F : Hd → H

d be a measurable function that satisfies the regularity
condition

E
∥

∥(X −X ′) · F (X)
∥

∥ <∞. (2.2)

Then

E [X · F (X)] =
1

2α
E
[

(X −X ′)(F (X)− F (X ′))
]

. (2.3)

To appreciate this result, recall that we can characterize the distribution of a random matrix by
integrating it against a sufficiently large class of test functions. The additional randomness in the
Stein pair furnishes an alternative expression for the expected product of X and the test function
F . The identity (2.3) is valuable because it allows us to estimate this integral using the smoothness
properties of the function F and the discrepancy between X and X ′.

Proof. Suppose (X,X ′) is a matrix Stein pair constructed from an auxiliary exchangeable pair
(Z,Z ′). The defining property (2.1) of the Stein pair implies

α · E[X · F (X)] = E
[

E[X −X ′ |Z] · F (X)
]

= E[(X −X ′)F (X)].

We have used the regularity condition (2.2) to invoke the pull-through property of conditional
expectation. Since (X,X ′) is an exchangeable pair,

α · E[X · F (X)] = E[(X −X ′)F (X)] = E[(X ′ −X)F (X ′)] = −E[(X −X ′)F (X ′)].

The identity (2.3) follows when we average the two preceding displays. �
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2.3. The Conditional Variance. To each matrix Stein pair (X,X ′), we may associate a random
matrix called the conditional variance of X. The ultimate purpose of this paper is to argue that
the spectral norm of X is unlikely to be large when the conditional variance is small.

Definition 2.4 (Conditional Variance). Suppose that (X,X ′) is a matrix Stein pair, constructed
from an auxiliary exchangeable pair (Z,Z ′). The conditional variance is the random matrix

∆X := ∆X(Z) :=
1

2α
E
[

(X −X ′)2 |Z
]

, (2.4)

where α is the scale factor of the pair. We may take any version of the conditional expectation in
this definition.

The conditional variance ∆X should be regarded as a stochastic estimate for the variance of the
random matrix X. Indeed,

E[∆X ] = EX2. (2.5)

This identity follows immediately from Lemma 2.3 with the choice F (X) = X.

2.4. Example: A Sum of Independent Random Matrices. To make the definitions in this
section more vivid, we describe a simple but important example of a matrix Stein pair. Consider
an independent sequence Z := (Y1, . . . ,Yn) of random Hermitian matrices that satisfy EYk = 0

and E ‖Yk‖2 <∞ for each k. Introduce the random series

X := Y1 + · · · + Yn.

Let us explain how to build a good matrix Stein pair (X,X ′). We need the exchangeable
counterpart X ′ to have the same distribution as X, but it should also be close to X so that we can
control the conditional variance. To achieve these goals, we construct X ′ by picking a summand
from X at random and replacing it with a fresh copy.

Formally, let Y ′
k be an independent copy of Yk for each index k, and draw a random index

K uniformly at random from {1, . . . , n} and independently from everything else. Define the ran-
dom sequence Z ′ := (Y1, . . . ,YK−1,Y

′
K ,YK+1, . . . ,Yn). It is easy to check that (Z,Z ′) forms an

exchangeable pair. The random matrix

X ′ := Y1 + · · ·+ YK−1 + Y ′
K + YK+1 + · · ·+ Yn

is thus an exchangeable counterpart for X. To verify that (X,X ′) is a Stein pair, calculate that

E[X −X ′ |Z] = E[YK − Y ′
K |Z] = 1

n

∑n

k=1
E[Yk − Y ′

k |Z] =
1

n

∑n

k=1
Yk =

1

n
X.

The third identity holds because Y ′
k is a centered random matrix that is independent from Z.

Therefore, (X,X ′) is a matrix Stein pair with scale factor α = n−1.
Next, we compute the conditional variance.

∆X =
n

2
· E
[

(X −X ′)2 |Z
]

=
n

2
· 1
n

∑n

k=1
E
[

(Yk − Y ′
k)

2 |Z
]

=
1

2

∑n

k=1

[

Y 2
k − Yk(EY ′

k)− (EY ′
k)Yk + E(Y ′

k)
2
]

=
1

2

∑n

k=1

(

Y 2
k + EY 2

k

)

. (2.6)

For the third relation, expand the square and invoke the pull-through property of conditional
expectation. We may drop the conditioning because Y ′

k is independent from Z. In the last line, we
apply the property that Y ′

k has the same distribution as Yk.
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The expression (2.6) shows that we can control the size of the conditional expectation uniformly
if we can control the size of the individual summands. This example also teaches us that we may
use the symmetries of the distribution of the random matrix to construct a matrix Stein pair.

3. Exponential Moments and Eigenvalues of a Random Matrix

Our main goal in this paper is to study the behavior of the extreme eigenvalues of a random
Hermitian matrix. In Section 3.2, we describe an approach to this problem that parallels the
classical Laplace transform method for scalar random variables. The adaptation to the matrix
setting leads us to consider the trace of the moment generating function (mgf) of a random matrix.
After presenting this background, we explain how the method of exchangeable pairs can be used
to control the growth of the trace mgf. This result, which appears in Section 3.5, is the key to our
exponential concentration bounds for random matrices.

3.1. Standard Matrix Functions. Before entering the discussion, recall that a standard matrix
function is obtained by applying a real function to the eigenvalues of a Hermitian matrix. The
book [Hig08] provides an excellent treatment of this concept.

Definition 3.1 (Standard Matrix Function). Let f : I → R be a function on an interval I of the
real line. Suppose that A ∈ H

d(I) has the eigenvalue decomposition A = Q · diag(λ1, . . . , λd) ·Q∗

where Q is a unitary matrix. Then

f(A) := Q







f(λ1)
. . .

f(λd)






Q∗.

The spectral mapping theorem states that f(λ) is an eigenvalue of f(A) if and only if λ is an
eigenvalue of A. This fact follows immediately from Definition 3.1.

When we apply a familiar scalar function to a Hermitian matrix, we are always referring to a
standard matrix function. For instance, |A| is the matrix absolute value, exp(A) is the matrix
exponential, and log(A) is the matrix logarithm. The latter is defined only for positive matrices.

3.2. The Matrix Laplace Transform Method. Let us introduce a matrix variant of the classical
moment generating function. We learned this definition from Ahlswede–Winter [AW02, App.].

Definition 3.2 (Trace Mgf). Let X be a random Hermitian matrix. The (normalized) trace
moment generating function of X is defined as

m(θ) := mX(θ) := E t̄r eθX for θ ∈ R.

We admit the possibility that the expectation may not exist for all values of θ.

Ahlswede and Winter [AW02, App.] had the insight that the classical Laplace transform method
could be extended to the matrix setting by replacing the classical mgf with the trace mgf. This
adaptation allows us to obtain concentration inequalities for the extreme eigenvalues of a random
Hermitian matrix using methods from matrix analysis. The following proposition distills results
from the papers [AW02, Oli10, Tro11b, CGT12].

Proposition 3.3 (Matrix Laplace Transform Method). Let X ∈ H
d be a random matrix with

normalized trace mgf m(θ) := E t̄r eθX . For each t ∈ R,

P {λmax(X) ≥ t} ≤ d · inf
θ>0

exp{−θt+ logm(θ)}. (3.1)

P {λmin(X) ≤ t} ≤ d · inf
θ<0

exp{−θt+ logm(θ)}. (3.2)
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Furthermore,

Eλmax(X) ≤ inf
θ>0

1

θ
[log d+ logm(θ)]. (3.3)

Eλmin(X) ≥ sup
θ<0

1

θ
[log d+ logm(θ)]. (3.4)

The estimates (3.3) and (3.4) for the expectations are usually sharp up to the logarithm of the
dimension. In many situations, the tail bounds (3.1) and (3.2) are reasonable for moderate t, but
they tend to overestimate the probability of a large deviation. Note that, in general, we cannot
dispense with the dimensional factor d. See [Tro11b, Sec. 4] for a detailed discussion of these issues.
Additional inequalities for the interior eigenvalues can be established using the minimax Laplace
transform method [GT11].

Proof. To establish (3.1), fix θ > 0. Using Markov’s inequality, we find that

P {λmax(X) ≥ t} = P

{

eλmax(θX) ≥ eθt
}

≤ e−θt · E eλmax(θX)

= e−θt · Eλmax

(

eθX
)

≤ e−θt · E tr eθX .

The third relation follows from the spectral mapping theorem. The final inequality holds because
the trace of a positive matrix dominates its maximum eigenvalue. Identify the normalized trace
mgf, and take the infimum over θ to complete the argument.

The proof of (3.2) parallels the proof of (3.1). For θ < 0,

P {λmin(X) ≤ t} = P {θλmin(X) ≥ θt} = P {λmax(θX) ≥ θt} .
We have used the property that −λmin(A) = λmax(−A) for each Hermitian matrix A. The remain-
der of the argument is the same as in the preceding paragraph.

For the expectation bound (3.3), fix θ > 0. Jensen’s inequality yields

Eλmax(X) = θ−1
Eλmax(θX) ≤ θ−1 logE eλmax(θX) ≤ θ−1 logE tr eθX .

The justification is the same as above. Identify the normalized trace mgf, and take the infimum
over θ > 0. Similar considerations yield (3.4). �

3.3. Studying the Trace Mgf with Exchangeable Pairs. The technical difficulty in the matrix
Laplace transform method arises because we need to estimate the trace mgf. Previous authors
have applied deep results from matrix analysis to accomplish this bound: the Golden–Thompson
inequality is central to [AW02, Oli09, Oli10], while Lieb’s theorem [Lie73, Thm. 6] animates [Tro11a,
Tro11b, HKZ11].

In this paper, we develop a fundamentally different technique for studying the trace mgf. The
main idea is to control the growth of the trace mgf by bounding its derivative. To see why we have
adopted this strategy, consider a random Hermitian matrix X, and observe that the derivative of
its trace mgf can be written as

m′(θ) = E t̄r
[

XeθX
]

under appropriate regularity conditions. This expression has just the form that we need to invoke
the method of exchangeable pairs, Lemma 2.3, with F (X) = eθX . We obtain

m′(θ) =
1

2α
E t̄r

[

(X −X ′)
(

eθX − eθX
′)]

. (3.5)

This formula strongly suggests that we should apply a mean value theorem to control the derivative;
we establish the result that we need in Section 3.4 below. Ultimately, this argument leads to a
differential inequality for m′(θ), which we can integrate to obtain an estimate for m(θ).
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The technique of bounding the derivative of an mgf lies at the heart of the log-Sobolev method
for studying concentration phenomena [Led01, Ch. 5]. Recently, Chatterjee [Cha07, Cha08] demon-
strated that the method of exchangeable pairs provides another way to control the derivative of
an mgf. Our arguments closely follow the pattern set by Chatterjee; the novelty inheres in the
extension of these ideas to the matrix setting and the striking applications that this extension
permits.

3.4. The Mean Value Trace Inequality. To bound the expression (3.5) for the derivative of
the trace mgf, we need a matrix generalization of the mean value theorem for a function whose
derivative is convex. We state the result in full generality because it plays a role later.

Lemma 3.4 (Mean Value Trace Inequality). Let I be an interval of the real line. Suppose that
g : I → R is a weakly increasing function and that h : I → R is a function whose derivative h′ is
convex. For all matrices A,B ∈ H

d(I), it holds that

t̄r [(g(A) − g(B)) · (h(A)− h(B))] ≤ 1

2
t̄r
[

(g(A) − g(B)) · (A−B) · (h′(A) + h′(B))
]

.

When h′ is concave, the inequality is reversed. The same results hold for the standard trace.

To prove Lemma 3.4, we need a standard trace inequality [Pet94, Prop. 3], which is an easy
consequence of the spectral theorem for Hermitian matrices.

Proposition 3.5 (Generalized Klein Inequality). Let u1, . . . , un and v1, . . . , vn be real-valued func-
tions on an interval I of the real line. Suppose that

∑

k
uk(a) vk(b) ≥ 0 for all a, b ∈ I. (3.6)

Then

t̄r
[

∑

k
uk(A) vk(B)

]

≥ 0 for all A,B ∈ H
d(I).

With the generalized Klein inequality at hand, we can establish Lemma 3.4 by developing the
appropriate scalar inequality.

Proof of Lemma 3.4. Fix a, b ∈ I. Since g is weakly increasing, (g(a) − g(b)) · (a − b) ≥ 0. The
fundamental theorem of calculus and the convexity of h′ yield the estimate

(g(a) − g(b)) · (h(a)− h(b)) = (g(a) − g(b)) · (a− b)

∫ 1

0
h′(τa+ (1− τ)b) dτ

≤ (g(a) − g(b)) · (a− b)

∫ 1

0

[

τ · h′(a) + (1− τ) · h′(b)
]

dτ

=
1

2

[

(g(a) − g(b)) · (a− b) · (h′(a) + h′(b))
]

. (3.7)

The inequality is reversed when h′ is concave.
The bound (3.7) can be written in the form (3.6) by expanding the products and collecting terms

depending on a into functions uk(a) and terms depending on b into functions vk(b). Proposition 3.5
then delivers a trace inequality, which can be massaged into the desired form using the cyclicity of
the trace and the fact that standard functions of the same matrix commute. We omit the algebraic
details. �

Remark 3.6. We must warn the reader that the proof of Lemma 3.4 succeeds because the trace
contains a product of three terms involving two matrices. The obstacle to proving more general
results is that we cannot reorganize expressions like tr(ABAB) and tr(ABC) at will.
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3.5. Bounding the Derivative of the Trace Mgf. The central result in this section applies the
the method of exchangeable pairs and the mean value trace inequality to bound the derivative of
the trace mgf in terms of the conditional variance. This is the most important step in our theory
on the exponential concentration of random matrices.

Lemma 3.7 (The Derivative of the Trace Mgf). Suppose that (X,X ′) ∈ H
d × H

d is a matrix
Stein pair, and assume that X is almost surely bounded in norm. Define the normalized trace mgf
m(θ) := E t̄r eθX . Then

m′(θ) ≤ θ · E t̄r
[

∆X eθX
]

when θ ≥ 0. (3.8)

m′(θ) ≥ θ · E t̄r
[

∆X eθX
]

when θ ≤ 0. (3.9)

The conditional variance ∆X is defined in (2.4).

Proof. Let us begin with the expression for the derivative of the trace mgf:

m′(θ) = E t̄r

[

d

dθ
eθX

]

= E t̄r
[

XeθX
]

. (3.10)

We can move the derivative inside the expectation because of the dominated convergence theorem
and the boundedness of X.

Now, we apply the method of exchangeable pairs, Lemma 2.3, with F (X) = eθX to identify an
alternative representation of the derivative (3.10):

m′(θ) =
1

2α
E t̄r

[

(X −X ′)
(

eθX − eθX
′)]

. (3.11)

We have used the boundedness of X to verify the regularity condition (2.2).
The expression (3.11) is perfectly suited for an application of the mean value trace inequality,

Lemma 3.4. First, assume that θ ≥ 0, and consider the function h : s 7→ eθs. The derivative
h′ : s 7→ θeθs is convex, so Lemma 3.4 implies that

m′(θ) ≤ θ

4α
E t̄r

[

(X −X ′)2 ·
(

eθX + eθX
′)]

=
θ

2α
E t̄r

[

(X −X ′)2 · eθX
]

= θ · E t̄r

[

1

2α
E
[

(X −X ′)2 |Z
]

· eθX
]

.

The second line follows from the fact that (X,X ′) is an exchangeable pair. In the last line, we have
used the boundedness of X and X ′ to invoke the pull-through property of conditional expectation.
Identify the conditional variance ∆X , defined in (2.4), to complete the argument.

The result for θ ≤ 0 follows from an analogous argument. In this case, we simply observe that
the derivative of the function h : s 7→ eθs is now concave, so the mean value trace inequality,
Lemma 3.4, produces a lower bound. The remaining steps are identical. �

Remark 3.8 (Regularity Conditions). To simplify the presentation, we have instated a boundedness
assumption in Lemma 3.7. All the examples we discuss satisfy this requirement. When X is
unbounded, Lemma 3.7 still holds provided that X meets an integrability condition.

4. Exponential Concentration for Bounded Random Matrices

We are now prepared to establish exponential concentration inequalities. Our first major result
demonstrates that an almost-sure bound for the conditional variance yields exponential tail bounds
for the extreme eigenvalues of a random Hermitian matrix. We can also obtain estimates for the
expectation of the extreme eigenvalues.
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Theorem 4.1 (Concentration for Bounded Random Matrices). Consider a matrix Stein pair
(X,X ′) ∈ H

d × H
d. Suppose there exist nonnegative constants c, v for which the conditional

variance (2.4) of the pair satisfies

∆X 4 cX + v I almost surely. (4.1)

Then, for all t ≥ 0,

P {λmin(X) ≤ −t} ≤ d · exp
{−t2

2v

}

.

P {λmax(X) ≥ t} ≤ d · exp
{

− t
c
+
v

c2
log

(

1 +
ct

v

)}

≤ d · exp
{ −t2
2v + 2ct

}

.

Furthermore,

Eλmin(X) ≥ −
√

2v log d

Eλmax(X) ≤
√

2v log d+ c log d.

This result may be viewed as a matrix analogue of Chatterjee’s concentration inequality for scalar
random variables [Cha07, Thm. 1.5(ii)]. The proof of Theorem 4.1 appears below in Section 4.2.
Before we present the argument, let us explain how the result provides a short proof of a Hoeffding-
type inequality for matrices.

4.1. Application: Matrix Hoeffding Inequality. Theorem 4.1 yields an extension of Hoeffd-
ing’s inequality [Hoe63] that holds for an independent sum of bounded random matrices.

Corollary 4.2 (Matrix Hoeffding). Consider a finite sequence (Yk)k≥1 of independent random

matrices in H
d and a finite sequence (Ak)k≥1 of deterministic matrices in H

d. Assume that

EYk = 0 and Y 2
k 4 A2

k for each index k.

Then, for all t ≥ 0,

P

{

λmax

(

∑

k
Yk

)

≥ t
}

≤ d · e−t2/2σ2 where σ2 :=
1

2

∥

∥

∥

∑

k

(

A2
k + EY 2

k

)

∥

∥

∥
.

Furthermore,

Eλmax

(

∑

k
Yk

)

≤ σ
√

2 log d.

Proof. Let X =
∑

k Yk. Since X is a sum of centered, independent random matrices, we can
use the matrix Stein pair constructed in Section 2.4. According to (2.6), the conditional variance
satisfies

∆X =
1

2

∑

k

(

Y 2
k + EY 2

k

)

4 σ2 I

because Y 2
k 4 A2

k. Invoke Theorem 4.1 with c = 0 and v = σ2 to complete the bound. �

In the scalar setting d = 1, Corollary 4.2 reproduces to an inequality of Chatterjee [Cha07,
Sec. 1.5], which itself represents an improvement over the classical scalar Hoeffding bound. In turn,
Corollary 4.2 improves upon the matrix Hoeffding inequality of [Tro11b, Thm. 1.3] in two ways.
First, we have reduced the constant in the exponent to its optimal value 1/2. Second, we have
decreased the size of the variance measure because σ2 ≤

∥

∥

∑

kA
2
k

∥

∥.
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4.2. Proof of Theorem 4.1: Exponential Concentration. Suppose that (X,X ′) is a matrix
Stein pair constructed from an auxiliary exchangeable pair (Z,Z ′). Our aim is to bound the
normalized trace mgf

m(θ) := E t̄r eθX for θ ∈ R. (4.2)

The basic strategy is to develop a differential inequality, which we integrate to control m(θ) itself.
Once these estimates are in place, the matrix Laplace transform method, Proposition 3.3, furnishes
probability inequalities for the extreme eigenvalues of X.

The following result summarizes our bounds for the trace mgf m(θ).

Lemma 4.3 (Trace Mgf Estimates for Bounded Random Matrices). Let (X,X ′) be a matrix Stein
pair, and suppose there exist nonnegative constants c, v for which

∆X 4 cX + v I almost surely. (4.3)

Then the normalized trace mgf m(θ) := E t̄r eθX satisfies the bounds

logm(θ) ≤ vθ2

2
when θ ≤ 0. (4.4)

logm(θ) ≤ v

c2

[

log

(

1

1− cθ

)

− cθ

]

(4.5)

≤ vθ2

2(1 − cθ)
when 0 ≤ θ < 1/c. (4.6)

We establish Lemma 4.3 in Section 4.2.1 et seq. In Section 4.2.4, we finish the proof of Theo-
rem 4.1 by combining these bounds with the matrix Laplace transform method.

4.2.1. Boundedness of the Random Matrix. First, we confirm that the random matrix X is almost
surely bounded under the hypothesis (4.3) on the conditional variance ∆X . Recall the defini-
tion (2.4) of the conditional variance, and compute that

∆X =
1

2α
E[(X −X ′)2 |Z] < 1

2α
(E[X −X ′ |Z])2 = 1

2α
(αX)2 =

α

2
X2.

The semidefinite bound is the operator Jensen inequality (1.2), applied conditionally. The third
relation follows from the definition (2.1) of a matrix Stein pair. Owing to the assumption (4.3),
we reach the quadratic inequality 1

2αX
2 4 cX + v I. The scale factor α is positive, so we may

conclude that the eigenvalues of X are almost surely restricted to a bounded interval.

4.2.2. Differential Inequalities for the Trace Mgf. The fact that X is almost surely bounded ensures
that the derivative of the trace mgf has the form

m′(θ) = E t̄r
[

XeθX
]

for θ ∈ R. (4.7)

To bound the derivative, we combine Lemma 3.7 with the assumed inequality (4.3) for the condi-
tional variance. For θ ≥ 0, we obtain

m′(θ) ≤ θ · E t̄r
[

∆X eθX
]

≤ θ · E t̄r
[

(cX + v I) eθX
]

= cθ · E t̄r
[

XeθX
]

+ vθ · E t̄r eθX

= cθ ·m′(θ) + vθ ·m(θ).

The second relation relies on the fact that the matrix eθX is positive. In the last line, we have
identified the trace mgf (4.2) and its derivative (4.7). For θ ≤ 0, the same argument yields a lower
bound

m′(θ) ≥ cθ ·m′(θ) + vθ ·m(θ).
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Rearrange these inequalities to isolate the log-derivative m′(θ)/m(θ) of the trace mgf. We reach

d

dθ
logm(θ) ≤ vθ

1− cθ
for 0 ≤ θ < 1/c, and (4.8)

d

dθ
logm(θ) ≥ vθ

1− cθ
for θ ≤ 0. (4.9)

4.2.3. Solving the Differential Inequalities. Observe that

logm(0) = log t̄r e0 = log t̄r I = log 1 = 0. (4.10)

Therefore, we may integrate the differential inequalities (4.8) and (4.9), starting at zero, to obtain
bounds on logm(θ) elsewhere.

First, assume that 0 ≤ θ < 1/c. In view of (4.10), the fundamental theorem of calculus and the
differential inequality (4.8) imply that

logm(θ) =

∫ θ

0

d

ds
logm(s) ds ≤

∫ θ

0

vs

1− cs
ds = − v

c2
(cθ + log(1− cθ)).

We can develop a weaker inequality by making a further approximation within the integral:

logm(θ) ≤
∫ θ

0

vs

1− cs
ds ≤

∫ θ

0

vs

1− cθ
ds ≤ vθ2

2(1− cθ)
.

These inequalities are the trace mgf estimates (4.5) and (4.6) appearing in Lemma 4.3.
Next, assume that θ ≤ 0. In this case, the differential inequality (4.9) yields

− logm(θ) =

∫ 0

θ

d

ds
logm(s) ds ≥

∫ 0

θ

vs

1− cs
ds ≥

∫ 0

θ
vs ds = −vθ

2

2
.

This calculation delivers the trace mgf bound (4.4), and the proof of Lemma 4.3 is complete.

4.2.4. The Matrix Laplace Transform Argument. With Lemma 4.3 at hand, we quickly finish the
proof of Theorem 4.1. First, let us establish probability inequalities for the maximum eigenvalue.
The Laplace transform bound (3.1) and the trace mgf estimate (4.5) together yield

P {λmax(X) ≥ t} ≤ d · inf
θ>0

exp
{

−θt− v

c2
(cθ + log(1− cθ))

}

≤ d · exp
{

− t
c
+
v

c2
log

(

1 +
ct

v

)}

.

The second relation follows when we choose θ = t/(v + ct). Similarly, the trace mgf bound (4.6)
delivers

P {λmax(X) ≥ t} ≤ d · inf
θ>0

exp

{

−θt+ vθ2

2(1 − cθ)

}

≤ d · exp
{

− t2

2v + 2ct

}

,

where we have selected θ = t/(v+ct) again. To control the expectation of the maximum eigenvalue,
we invoke the Laplace transform bound (3.3) and the trace mgf bound (4.6) to see that

Eλmax(X) ≤ inf
θ>0

1

θ

[

log d+
vθ2

2(1− cθ)

]

=
√

2v log d+ c log d.

The second relation can be verified using a computer algebra system.
Next, we turn to the results for the minimum eigenvalue. Combine the matrix Laplace transform

bound (3.2) with the trace mgf bound (4.4) to reach

P {λmin(X) ≤ −t} ≤ d · inf
θ<0

exp

{

θt+
vθ2

2

}

= d · e−t2/2v.
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The infimum is attained at θ = −t/v. To compute the expectation of the minimum eigenvalue, we
apply the Laplace transform bound (3.4) and the trace mgf bound (4.4), whence

Eλmin(X) ≥ sup
θ<0

1

θ

[

log d+
vθ2

2

]

= −
√

2v log d.

The infimum is attained at θ = −
√

2v−1 log d.

5. Refined Exponential Concentration for Bounded Random Matrices

Although Theorem 4.1 is a strong result, the hypothesis ∆X 4 cX + v I on the conditional
variance is too stringent for many situations of interest. Our second major result shows that we
can use the typical behavior of the conditional variance to obtain tail bounds for the maximum
eigenvalue of a random Hermitian matrix.

Theorem 5.1 (Refined Concentration for Random Matrices). Let (X,X ′) ∈ H
d×H

d be a matrix
Stein pair, and assume that X is almost surely bounded in norm. Define the function

r(ψ) :=
1

ψ
logE t̄r eψ∆X for each ψ > 0, (5.1)

where ∆X is the conditional variance (2.4). Then, for all t ≥ 0 and all ψ > 0,

P {λmax(X) ≥ t} ≤ d · exp
{ −t2
2r(ψ) + 2t/

√
ψ

}

. (5.2)

Furthermore, for all ψ > 0,

Eλmax(X) ≤
√

2r(ψ) log d+
log d√
ψ
. (5.3)

This theorem is essentially a matrix version of a result from Chatterjee’s thesis [Cha08, Thm. 3.13].
The proof of Theorem 5.1 is similar in spirit to the proof of Theorem 4.1, so we postpone the demon-
stration until Appendix A.

Let us offer some remarks to clarify the meaning of this result. Recall that ∆X is a stochastic
approximation for the variance of the random matrix X. We can interpret the function r(ψ) as a
measure of the typical magnitude of the conditional variance. Indeed, the matrix Laplace transform
result, Proposition 3.3, ensures that

Eλmax(∆X) ≤ inf
ψ>0

[

r(ψ) +
log d

ψ

]

.

The moral of this inequality is that we can often identify a value of ψ to make r(ψ) ≈ Eλmax(∆X).

Ideally, we also want to choose r(ψ) ≫ ψ−1/2 so that the term r(ψ) drives the tail bound (5.2)
when the parameter t is small. In the next subsection, we show that these heuristics yield a matrix
Bernstein inequality.

5.1. Application: The Matrix Bernstein Inequality. As an illustration of Theorem 5.1, we
establish a tail bound for a sum of centered, independent random matrices that are subject to a
uniform norm bound.

Corollary 5.2 (Matrix Bernstein). Consider an independent sequence (Yk)k≥1 of random matrices
in H

d that satisfy

EYk = 0 and ‖Yk‖ ≤ R for each index k.

Then, for all t ≥ 0,

P

{

λmax

(

∑

k
Yk

)

≥ t
}

≤ d · exp
{ −t2
3σ2 + 2Rt

}

where σ2 :=
∥

∥

∥

∑

k
EY 2

k

∥

∥

∥
.
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Furthermore,

Eλmax

(

∑

k
Yk

)

≤ σ
√

3 log d+R log d.

Corollary 5.2 is directly comparable with other matrix Bernstein inequalities in the literature.
The constants here are slightly worse than [Tro11b, Thm. 1.4] and slightly better than [Oli09,
Thm. 1.2]. The hypotheses in the current result are somewhat stricter than those in the prior
works. Nevertheless, the proof provides a template for studying more complicated random matrices
that involve dependent random variables.

Proof. We consider the matrix Stein pair (X,X ′) described in Section 2.4. The calculation (2.6)
shows that the conditional variance of X satisfies

∆X =
1

2

∑

k

(

Y 2
k + EY 2

k

)

.

The function r(ψ) measures the typical size of ∆X . To control r(ψ), we center the conditional
variance and reduce the expression as follows.

r(ψ) :=
1

ψ
logE t̄r eψ∆X ≤ 1

ψ
logE t̄r exp

{

ψ(∆X − E∆X) + ψ ‖E∆X‖ · I
}

=
1

ψ
logE t̄r

[

eψσ
2 · exp

{

ψ(∆X − E∆X)
}]

= σ2 +
1

ψ
logE t̄r eψ(∆X−E∆X). (5.4)

The inequality depends on the monotonicity of the trace exponential [Pet94, Sec. 2]. Afterward, we
have applied the identity ‖E∆X‖ =

∥

∥EX2
∥

∥ = σ2, which follows from (2.5) and the independence
of the sequence (Yk)k≥1.

Introduce the centered random matrix

W := ∆X − E∆X =
1

2

∑

k

(

Y 2
k − EY 2

k

)

. (5.5)

Observe that W consists of a sum of centered, independent random matrices, so we can study it
using the matrix Stein pair discussed in Section 2.4. Adapt the conditional variance calculation (2.6)
to obtain

∆W =
1

2
· 1
4

∑

k

[

(

Y 2
k − EY 2

k

)2
+ E

(

Y 2
k − EY 2

k

)2
]

4
1

8

∑

k

[

2Y 4
k + 2

(

EY 2
k

)2
+ EY 4

k −
(

EY 2
k

)2
]

4
1

4

∑

k

(

Y 4
k + EY 4

k

)

.

To reach the second line, we apply the operator convexity (1.1) of the matrix square to the first
parenthesis, and we compute the second expectation explicitly. The third line follows from the
operator Jensen inequality (1.2). To continue, make the estimate Y 4

k 4 R2 Y 2
k in both terms.

Thus,

∆W 4
R2

4

∑n

k=1

(

Y 2
k + EY 2

k

)

4
R2

2
·W +

R2σ2

2
· I.

The trace mgf bound, Lemma 4.3, delivers

logmW (ψ) = logE t̄r eψW ≤ R2σ2ψ2

4− 2R2ψ
. (5.6)

To complete the proof, combine the bounds (5.4) and (5.6) to reach

r(ψ) ≤ σ2 +
R2σ2ψ

4− 2R2ψ
.
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In particular, it holds that r(R−2) ≤ 1.5σ2. The result now follows from Theorem 5.1. �

6. Polynomial Moments and the Spectral Norm of a Random Matrix

We can also study the spectral norm of a random matrix by bounding its polynomial moments.
To progress toward these results, let us introduce the family of Schatten norms.

Definition 6.1 (Schatten Norm). For each p ≥ 1, the Schatten p-norm is defined as

‖B‖p :=
(

tr |B|p
)1/p

for B ∈ M
d.

In this setting, |B| := (B∗B)1/2. Bhatia’s book [Bha97, Ch. IV] contains a detailed discussion of
these norms and their properties.

The following proposition is a matrix analog of the Chebyshev bound from classical probability.

Proposition 6.2 (Matrix Chebyshev Method). Let X be a random matrix. For all t > 0,

P {‖X‖ ≥ t} ≤ inf
p≥1

t−p · E ‖X‖pp . (6.1)

Furthermore,

E ‖X‖ ≤ inf
p≥1

(

E ‖X‖pp
)1/p

. (6.2)

Proof. To prove (6.1), we use Markov’s inequality. For p ≥ 1,

P {‖X‖ ≥ t} ≤ t−p · E ‖X‖p = t−p · E ‖ |X|p ‖ ≤ t−p · E tr |X|p ,
since the trace of a positive matrix dominates the maximum eigenvalue. To verify (6.2), select
p ≥ 1. Jensen’s inequality implies that

E ‖X‖ ≤ (E ‖X‖p)1/p = (E ‖ |X|p ‖)1/p ≤ (E tr |X|p)1/p .
Identify the Schatten p-norm and take infima to complete the bounds. �

Remark 6.3 (Chebyshev vs. Laplace). The matrix Chebyshev bound (6.1) is at least as tight as the
analogous matrix Laplace transform bound (3.1) from Proposition 3.3. Indeed, suppose that X is
a bounded random matrix. For all θ, t > 0, we have

e−θt · E tr eθ|X| = e−θt ·
∑∞

q=0

θq

q!
(tqt−q)E tr |X|q

≥ e−θt ·
∑∞

q=0

(θt)q

q!
·
[

1 ∧ inf
p≥1

(

t−p · E tr |X|p
)

]

= 1 ∧ inf
p≥1

(

t−p · E ‖X‖pp
)

.

The first identity follows from the Taylor expansion of the matrix exponential. A similar argument
allows us to convert polynomial moment bounds into bounds on the trace mgf.

7. Polynomial Moment Inequalities for Random Matrices

Our last major result demonstrates that the polynomial moments of a random Hermitian matrix
are controlled by the moments of the conditional variance. By combining this result with the matrix
Chebyshev method, Proposition 6.2, we can obtain probability inequalities for the spectral norm
of a random Hermitian matrix.

Theorem 7.1 (Matrix BDG Inequality). Let p = 1 or p ≥ 1.5. Suppose that (X,X ′) is a matrix

Stein pair where E ‖X‖2p2p <∞. Then

(

E ‖X‖2p2p
)1/2p ≤

√

2p− 1 ·
(

E ‖∆X‖pp
)1/2p

.

The conditional variance ∆X is defined in (2.4).
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This theorem extends a result of Chatterjee [Cha07, Thm. 1.5(iii)] to the matrix setting. Chat-
terjee’s bound can be viewed as an exchangeable pairs version of the Burkholder–Davis–Gundy
(BDG) inequality from classical martingale theory [Bur73]. Matrix extensions of the BDG inequal-
ity appear in the work of Pisier–Xu [PX97] and the work of Junge–Xu [JX03, JX08].

The proof of Theorem 7.1 appears below in Section 7.3. Before we present the argument, let us
offer a few tangential remarks and describe a few striking applications of this inequality.

Remark 7.2 (Missing Values). The Matrix BDG inequality also holds when 1 < p < 1.5. In this
range, our best bound for the constant is

√
4p− 2. The proof requires a variant of the mean value

trace inequality for a convex function h.

Remark 7.3 (Infinite-Dimensional Versions). Theorem 7.1 and its corollaries extend to Schatten-
class operators.

7.1. Application: Matrix Khintchine Inequality. First, we demonstrate that the matrix BDG
inequality contains an improvement of the noncommutative Khintchine inequality [LP86, LPP91]
in the matrix setting. This result has been a dominant tool in several application areas over the
last few years, largely because of the articles [Rud99, RV07].

Corollary 7.4 (Matrix Khintchine). Suppose that p = 1 or p ≥ 1.5. Consider a finite sequence
(Yk)k≥1 of independent, random, Hermitian matrices and a deterministic sequence (Ak)k≥1 for
which

EYk = 0 and Y 2
k 4 A2

k for each index k. (7.1)

Then
(

E

∥

∥

∥

∑

k
Yk

∥

∥

∥

2p

2p

)1/2p

≤
√

p− 0.5 ·
∥

∥

∥

∥

(

∑

k

(

A2
k + EY 2

k

)

)1/2
∥

∥

∥

∥

2p

.

In particular, when (εk)k≥1 is an independent sequence of Rademacher random variables,

(

E

∥

∥

∥

∑

k
εkAk

∥

∥

∥

2p

2p

)1/2p

≤
√

2p− 1 ·
∥

∥

∥

∥

(

∑

k
A2
k

)1/2
∥

∥

∥

∥

2p

. (7.2)

Proof. Consider the random matrix X =
∑

k Yk. We use the matrix Stein pair constructed in
Section 2.4. According to (2.6), the conditional variance ∆X satisfies

∆X =
1

2

∑

k
(Y 2

k + EY 2
k ) 4

1

2

∑

k
(A2

k + EY 2
k ).

An application of Theorem 7.1 completes the argument. �

Buchholz [Buc01, Thm. 5] has demonstrated that the optimal constant C2p in (7.2) satisfies

C2p
2p = (2p − 1)!! =

(2p)!

2p p!
for p = 1, 2, 3, . . . .

It can be verified using basic analysis that

(2p − 1)p

(2p − 1)!!
< ep−1/2.

As a consequence, the constant in (7.2) lies within a factor
√
e of optimal. Previous methods

for establishing the matrix Khintchine inequality are rather involved, so it is remarkable that the
simple argument based on exchangeable pairs leads to a result that is so accurate.
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7.2. Application: Matrix Rosenthal Inequality. As a second example, we can develop a
more sophisticated set of moment inequalities that are roughly the polynomial equivalent of the
exponential moment bound underlying the matrix Bernstein inequality.

Corollary 7.5 (Matrix Rosenthal Inequality). Suppose that p = 1 or p ≥ 1.5. Consider a finite

sequence (Pk)k≥1 of independent, random psd matrices that satisfy E ‖Pk‖2p2p <∞. Then
(

E

∥

∥

∥

∑

k
Pk

∥

∥

∥

2p

2p

)1/2p

≤
[

∥

∥

∥

∑

k
EPk

∥

∥

∥

1/2

2p
+
√

4p − 2 ·
(

∑

k
E ‖Pk‖2p2p

)1/4p
]2

. (7.3)

Now, consider a finite sequence (Yk)k≥1 of centered, independent, random Hermitian matrices, and

assume that E ‖Yk‖4p4p <∞. Then
(

E

∥

∥

∥

∑

k
Yk

∥

∥

∥

4p

4p

)1/4p

≤
√

4p− 1 ·
∥

∥

∥

∥

(

∑

k
EY 2

k

)1/2
∥

∥

∥

∥

4p

+ (4p− 1) ·
(

∑

k
E ‖Yk‖4p4p

)1/4p
. (7.4)

Turn to Appendix B for our proof of Corollary 7.5. This result extends a moment inequality
due to Nagaev and Pinelis [NP77], which refines the constants in Rosenthal’s inequality [Ros70,
Lem. 1]. See the historical discussion [Pin94, Sec. 5] for details. As we were finishing this paper,
we learned that Junge and Zheng have recently established a noncommutative moment inequal-
ity [JZ11, Thm. 0.4] that is quite similar to Corollary 7.5.

7.3. Proof of the Matrix BDG Inequality. In many respects, the proof of the matrix BDG
inequality is similar to the proof of the exponential concentration result, Theorem 4.1. Both are
based on moment comparison arguments that ultimately depend on the method of exchangeable
pairs and the mean value trace inequality.

Suppose that (X,X ′) is a matrix Stein pair with scale factor α. First, observe that the result
for p = 1 already follows from (2.5). Therefore, we may assume that p ≥ 1.5. Let us introduce
notation for the quantity of interest:

E := E ‖X‖2p2p = E tr |X|2p .
Rewrite the expression for E by peeling off a copy of |X|. This move yields

E = E tr
[

|X| · |X|2p−1 ] = E tr
[

X · sgn (X) · |X|2p−1 ].

Apply the method of exchangeable pairs, Lemma 2.3, with F (X) = sgn (X) · |X|2p−1 to reach

E =
1

2α
E tr

[

(X −X ′) ·
(

sgn (X) · |X|2p−1 − sgn (X ′) ·
∣

∣X ′∣
∣

2p−1 )]
.

To verify the regularity condition (2.2) we need for Lemma 2.3, compute that

E
∥

∥(X −X ′) · sgn (X) · |X|2p−1
∥

∥ ≤ E
(

‖X‖ ‖X‖2p−1 )+ E
( ∥

∥X ′∥
∥ ‖X‖2p−1 )

≤ 2
(

E ‖X‖2p
)1/2p(

E ‖X‖2p
)(2p−1)/2p

= 2E ‖X‖2p <∞.

We have used the fact that sgn (X) is a unitary matrix, the exchangeability of (X,X ′), Hölder’s
inequality for expectation, and the fact that the Schatten 2p-norm dominates the spectral norm.

We intend to apply the mean value trace inequality to obtain an estimate for the quantity E.
Consider the function h : s 7→ sgn (s) · |s|2p−1. Its derivative, h′(s) = (2p − 1) · |s|2p−2, is convex
because p ≥ 1.5. Lemma 3.4 delivers the bound

E ≤ 2p − 1

4α
E tr

[

(X −X ′)2 ·
(

|X|2p−2 +
∣

∣X ′∣
∣

2p−2 )]

=
2p − 1

2α
E tr

[

(X −X ′)2 · |X|2p−2 ]

= (2p − 1) · E tr
[

∆X · |X|2p−2 ].
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The second line follows from the exchangeability of X and X ′. In the last line, we identify the
conditional variance ∆X , defined in (2.4). As before, the moment bound E ‖X‖2p2p < ∞ is strong
enough to justify using the pull-through property in this step.

To continue, we must find a copy of E within the latter expression. We can accomplish this goal
using one of the basic results from the theory of Schatten norms [Bha97, Cor. IV.2.6].

Proposition 7.6 (Hölder Inequality for Trace). Let p and q be Hölder conjugate indices, i.e.,
positive numbers with the relationship q = p/(p− 1). Then

tr(BC) ≤ ‖B‖p ‖C‖q for all B,C ∈ M
d.

To complete the argument, apply the Hölder inequality for the trace followed by the Hölder
inequality for the expectation. Thus,

E ≤ (2p − 1) · E
[

‖∆X‖p ·
∥

∥|X|2p−2
∥

∥

p/(p−1)

]

= (2p − 1) · E
[

‖∆X‖p · ‖X‖2p−2
2p

]

≤ (2p − 1) ·
(

E ‖∆X‖pp
)1/p ·

(

E ‖X‖2p2p
)(p−1)/p

= (2p − 1) ·
(

E ‖∆X‖pp
)1/p ·E(p−1)/p.

Solve this algebraic inequality for the positive number E to conclude that

E ≤ (2p − 1)p · E ‖∆X‖pp .
Extract the (2p)th root to establish the matrix BDG inequality.

8. Extension to General Complex Matrices

Although it may seem that our theory is limited to random Hermitian matrices, results for
general random matrices follow as a formal corollary [Rec11, Tro11b]. The approach is based on a
device from operator theory [Pau02].

Definition 8.1 (Hermitian Dilation). Let B be a matrix in C
d1×d2 , and set d = d1 + d2. The

Hermitian dilation of B is the matrix

D(B) :=

[

0 B

B∗ 0

]

∈ H
d. (8.1)

The dilation has two valuable properties. First, it preserves spectral information:

λmax(D(B)) = ‖D(B)‖ = ‖B‖ . (8.2)

Second, the square of the dilation satisfies

D(B)2 =

[

BB∗ 0

0 B∗B

]

. (8.3)

We can study a random matrix—not necessarily Hermitian—by applying our matrix concentra-
tion inequalities to the Hermitian dilation of the random matrix. As an illustration, let us prove a
Bernstein inequality for general random matrices.

Corollary 8.2 (Bernstein Inequality for General Matrices). Consider a finite sequence (Zk)k≥1 of

independent random matrices in C
d1×d2 that satisfy

EZk = 0 and ‖Zk‖ ≤ R for each index k.

Define d := d1 + d2, and introduce the variance measure

σ2 := max
{∥

∥

∥

∑

k
E(ZkZ

∗
k)
∥

∥

∥
,
∥

∥

∥

∑

k
E(Z∗

kZk)
∥

∥

∥

}

.



18 MACKEY ET AL.

Then, for all t ≥ 0,

P

{
∥

∥

∥

∑

k
Zk

∥

∥

∥
≥ t
}

≤ d · exp
{ −t2
3σ2 + 2Rt

}

.

Furthermore,

E

∥

∥

∥

∑

k
Zk

∥

∥

∥
≤ σ

√

3 log d+R log d.

Proof. Consider the random series
∑

k D(Zk). The summands are independent, random Hermitian
matrices that satisfy

ED(Zk) = 0 and ‖D(Zk)‖ ≤ R.

The second identity depends on the spectral property (8.2). Therefore, the matrix Bernstein
inequality, Corollary 5.2, applies. To state the outcome, we first note that λmax(

∑

k D(Zk)) =
‖∑k Zk‖, again because of the spectral property (8.2). Next, use the formula (8.3) to compute
that

∥

∥

∥

∑

k
E
[

D(Zk)
2
]

∥

∥

∥
=

∥

∥

∥

∥

[
∑

k E(ZkZ
∗
k) 0

0
∑

k E(Z
∗
kZk)

]
∥

∥

∥

∥

= σ2.

This observation completes the proof. �

9. The Sum of Conditionally Zero-Mean Matrices

A chief advantage of the method of exchangeable pairs is its ability to handle random matrices
constructed from dependent random variables. In this section, we briefly describe a way to relax
the independence requirement when studying a sum of random matrices. In Sections 10 and 11,
we develop more elaborate examples.

9.1. Formulation. Consider a finite sequence (Y1, . . . ,Yn) of random Hermitian matrices. We say
that the sequence has the conditional zero-mean property when

E[Yk | (Yj)j 6=k] = 0 almost surely for each index k. (9.1)

This definition is related to the conditional expectation property of a martingale difference sequence,
although it is more restrictive. Suppose that we are interested in a sum of conditionally zero-mean
random matrices:

X := Y1 + · · · + Yn. (9.2)

This type of series is quite common because it includes the case of a Rademacher series with random
matrix coefficients.

Example 9.1 (Rademacher Series with Random Matrix Coefficients). Consider a finite sequence
(Wk)k≥1 of random Hermitian matrices. Suppose that the sequence (εk)k≥1 consists of independent
Rademacher random variables that are independent from the random matrices. Consider the
random series

∑

k
εkWk.

The summands may be strongly dependent on each other, but the independence of the Rademacher
variables ensures that the summands satisfy the conditional zero-mean property (9.1).
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9.2. A Matrix Stein Pair. Let us describe how to build a matrix Stein pair (X,X ′) for the
sum (9.2) of conditionally zero-mean random matrices. The approach is similar to the case of
an independent sum, which appears in Section 2.4. For each k, we draw a random matrix Y ′

k so
that Y ′

k and Yk are conditionally i.i.d. given (Yj)j 6=k. Then, independently, we draw an index K
uniformly at random from {1, . . . , n}. As in Section 2.4, the random matrix

X ′ := Y1 + · · ·+ YK−1 + Y ′
K + YK+1 + · · ·+ Yn

is an exchangeable counterpart to X. The conditional zero-mean property (9.1) ensures that

E[X −X ′ | (Yj)j≥1] = E[YK − Y ′
K | (Yj)j≥1]

=
1

n

∑n

k=1

(

Yk − E[Y ′
k | (Yj)j 6=k]

)

=
1

n

∑n

k=1
Yk =

1

n
X.

Therefore, (X,X ′) is a matrix Stein pair with scale factor α = n−1.
We can determine the conditional variance after a short argument that parallels the computation

(2.6) in the independent setting:

∆X =
n

2
· E
[

(YK − Y ′
K)2 | (Yj)j≥1

]

=
1

2

∑n

k=1

(

Y 2
k + E[Y 2

k | (Yj)j 6=k]
)

. (9.3)

The expression (9.3) shows that, even in the presence of some dependence, we can control the size
of the conditional expectation uniformly if we control the size of the individual summands.

Using the Stein pair (X,X ′) and the expression (9.3), we may develop a variety of concentration
inequalities for conditionally zero-mean sums that are analogous to our results for independent
sums. We omit detailed examples.

10. Combinatorial Sums of Matrices

The method of exchangeable pairs can also be applied to many types of highly symmetric dis-
tributions. In this section, we study a class of combinatorial matrix statistics, which generalize the
scalar statistics studied by Hoeffding [Hoe51].

10.1. Formulation. Consider a deterministic array (Ajk)
n
j,k=1 of Hermitian matrices, and let π be

a uniformly random permutation on {1, . . . , n}. Define the random matrix

Y :=
∑n

j=1
Ajπ(j) whose mean EY =

1

n

∑n

j,k=1
Ajk. (10.1)

The combinatorial sum Y is a natural candidate for an exchangeable pair analysis because the
random permutation is highly symmetric. Before we describe how to construct a matrix Stein pair,
let us mention a few problems that lead to a random matrix of the form Y .

Example 10.1 (Sampling without Replacement). Consider a finite collection B := {B1, . . . ,Bn}
of deterministic Hermitian matrices. Suppose that we want to study a sum of s matrices sampled
randomly from B without replacement. We can express this type of series in the form

W :=
∑s

j=1
Bπ(j),

where π is a random permutation on {1, . . . , n}. The matrix W is therefore an example of a
combinatorial sum.

Example 10.2 (A Randomized “Inner Product”). Consider two fixed sequences of complex ma-
trices

B1, . . . ,Bn ∈ C
d1×s and C1, . . . ,Cn ∈ C

s×d2 .
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We may form a permuted matrix “inner product” by arranging one sequence in random order,
multiplying the elements of the two sequences together, and summing the terms. In other words,
we are interested in the random matrix

Z :=
∑n

j=1
BjCπ(j).

Then the random matrix D(Z) is a combinatorial sum of Hermitian matrices.

10.2. A Matrix Stein Pair. To study the combinatorial sum (10.1) of matrices using the method
of exchangeable pairs, we first introduce the zero-mean random matrix

X := Y − EY .

To construct a matrix Stein pair (X,X ′), we draw a pair (J,K) of indices independently of π and
uniformly at random from {1, . . . , n}2. Define a second random permutation π′ := π ◦ (J,K) by
composing π with the transposition of the random indices J andK. The pair (π, π′) is exchangeable,
so the matrix

X ′ :=
∑n

j=1
Ajπ′(j) − EY

is an exchangeable counterpart to X.
To verify that (X,X ′) is a matrix Stein pair, we calculate that

E[X −X ′ |π] = E
[

AJπ(J) +AKπ(K) −AJπ(K) −AKπ(J) |π
]

=
1

n2

∑n

j,k=1

[

Ajπ(j) +Akπ(k) −Ajπ(k) −Akπ(j)

]

=
2

n
(Y − EY ) =

2

n
X.

The first identity holds because the random sums X and X ′ differ for only four choices of indices.
We see that (X,X ′) is a Stein pair with scale factor α = 2/n.

Turning to the conditional variance, we find that

∆X(π) =
n

4
E
[

(X −X ′)2 |π
]

=
1

4n

∑n

j,k=1

[

Ajπ(j) +Akπ(k) −Ajπ(k) −Akπ(j)

]2
. (10.2)

The structure of the conditional variance is somewhat different from previous examples, but we
recognize that ∆X is controlled when the matrices Ajk are bounded.

10.3. Exponential Concentration for a Combinatorial Sum. We can apply our matrix con-
centration results to study the behavior of a combinatorial sum of matrices. As an example, let us
present a Bernstein-type inequality. The argument is similar to the proof of Corollary 5.2, so we
leave the details to Appendix C.

Corollary 10.3 (Bernstein Inequality for a Combinatorial Sum of Matrices). Consider an array
(Ajk)

n
j,k=1 of deterministic matrices in H

d that satisfy
∑n

j,k=1
Ajk = 0 and ‖Ajk‖ ≤ R for each pair (j, k) of indices.

Define the random matrix X :=
∑n

j=1Ajπ(j), where π is a uniformly random permutation on

{1, . . . , n}. Then, for all t ≥ 0,

P {λmax(X) ≥ t} ≤ d · exp
{ −t2
12σ2 + 4

√
2Rt

}

where σ2 :=
1

n

∥

∥

∥

∑n

j,k=1
A2
jk

∥

∥

∥
.

Furthermore,

Eλmax(X) ≤ σ
√

12 log d+ 2
√
2R log d.

11. Self-Reproducing Matrix Functions

The method of exchangeable pairs can also be used to analyze nonlinear matrix-valued functions
of random variables. In this section, we explain how to analyze matrix functions that satisfy a
self-reproducing property.
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11.1. Example: Matrix Second-Order Rademacher Chaos. We begin with an example that
shows how the self-reproducing property might arise. Consider a quadratic form that takes on
random matrix values:

H(ε) :=
∑

k

∑

j<k
εjεkAjk. (11.1)

In this expression, ε is a finite vector of independent Rademacher random variables. The array
(Ajk)j,k≥1 consists of deterministic Hermitian matrices, and we assume that Ajk = Akj.

Observe that the summands inH(ε) are dependent and that they need not satisfy the conditional
zero-mean property (9.1). Nevertheless, H(ε) does satisfy a fruitful self-reproducing property:

∑

k
(H(ε) − E[H(ε) | (εj )j 6=k]) =

∑

k

∑

j 6=k
εj(εk − E[εk])Ajk

=
∑

k

∑

j 6=k
εjεkAjk = 2H(ε).

We have applied the pull-through property of conditional expectation, the assumption that the
Rademacher variables are independent, and the fact that Ajk = Akj. As we will see, this type of
self-reproducing property can be used to construct a matrix Stein pair.

A random matrix of the form (11.1) is called a second-order Rademacher chaos. This class of
random matrices arises in a variety of situations, including randomized linear algebra [CD11a],
compressed sensing [Rau10, Sec. 9], and chance-constrained optimization [CSW11]. Indeed, con-
centration inequalities for the matrix-valued Rademacher chaos have a wide range of potential
applications.

11.2. Formulation and Matrix Stein Pair. In this section, we describe a more general version
of the self-reproducing property. Suppose that z := (Z1, . . . , Zn) is a random vector taking values
in a Polish space Z. First, we construct an exchangeable counterpart

z′ := (Z1, . . . , ZK−1, Z
′
K , ZK+1, . . . , Zn) (11.2)

where Zk and Z ′
k are conditionally i.i.d. given (Zj)j 6=k and K is an independent coordinate drawn

uniformly at random from {1, . . . , n}.
Next, let H : Zn → H

d be a bounded measurable function. Assume that H(z) satisfies an
abstract self-reproducing property : for a parameter s > 0,

∑n

k=1

(

H(z) − E[H(Z1, . . . , Z
′
k, . . . , Zn) |z]

)

= s · (H(z) − EH(z)) almost surely. (11.3)

Under this assumption, we can easily check that the random matrices

X := H(z) − EH(z) and X ′ := H(z′)− EH(z)

form a matrix Stein pair. Indeed,

E[X −X ′ |z] = E[H(z) −H(z′) |z] = s

n
(H(z) − EH(z)) =

s

n
X.

We determine that (X,X ′) is a matrix Stein pair with scaling factor α = s/n.
Finally, we compute the conditional variance:

∆X(z) =
n

2s
E
[

(H(z) −H(z′))2 |z
]

=
1

2s

∑n

k=1
E
[

(H(z) −H(Z1, . . . , Z
′
k, . . . , Zn))

2 |z
]

.

We discover that the conditional variance is small when each coordinate of H has controlled vari-
ance. In this case, the method of exchangeable pairs provides good concentration inequalities for
the random matrix X.



22 MACKEY ET AL.

11.3. Matrix Bounded Differences Inequality. As an example of this framework, we can
develop a bounded differences inequality for random matrices by appealing to Theorem 4.1.

Corollary 11.1 (Matrix Bounded Differences). Let z := (Z1, . . . , Zn) be a random vector taking
values in a Polish space Z, and let z′ be an exchangeable counterpart, constructed as in (11.2).
Suppose that H : Zn → H

d is a bounded function that satisfies the self-reproducing property
∑n

k=1

(

H(z) − E[H(Z1, . . . , Z
′
k, . . . , Zn) |z]

)

= s · (H(z) − EH(z)) almost surely

for a parameter s > 0 as well as the bounded differences condition

E
[(

H(z) −H(Z1, . . . , Z
′
k, . . . , Zn)

)2 ∣
∣z
]

4 A2
k almost surely for each index k, (11.4)

where Ak is a deterministic matrix in H
d. Then, for all t ≥ 0,

P {λmax(H(z) − EH(z)) ≥ t} ≤ d · e−st2/L where L :=
∥

∥

∥

∑n

k=1
A2
k

∥

∥

∥
.

Furthermore,

Eλmax(H(z) − EH(z)) ≤
√

L log d

s
.

In the scalar setting, Corollary 11.1 reduces to a version of McDiarmid’s bounded difference in-
equality [McD89]. The result also complements the matrix bounded difference inequality of [Tro11b,
Cor. 7.5], which requires independent input variables but makes no self-reproducing assumption.

Proof. Since H(z) is self-reproducing, we may construct a matrix Stein pair (X,X ′) with scale
factor α = s/n as in Section 11. According to (11.2), the conditional variance of the pair satisfies

∆X =
1

2s

∑n

k=1
E
[

(H(z) −H(Z1, . . . , Z
′
k, . . . , Zn))

2 |z
]

4
1

2s

∑n

k=1
A2
k 4

L

2s
· I.

We have used the bounded differences condition (11.4) and the definition of the bound L. To
complete the proof, we apply the concentration result, Theorem 4.1, with the parameters c = 0
and v = L/2s. �

12. Extensions and Future Work

Although the examples we treat in this work all involve matrix Stein pairs, we are aware of
problems that require a larger class of exchangeable pairs. The following definition represents a
significant extension of the matrix Stein pair formalism.

Definition 12.1 (Generalized Matrix Stein Pair). Let g : R → R be a weakly increasing function.
Let (Z,Z ′) be an exchangeable pair of random variables taking values in a Polish space Z, and let
Ψ : Z → H

d be a measurable function. Define the random Hermitian matrices

X := Ψ(Z) and X ′ := Ψ(Z ′).

We say that (X,X ′) is a generalized matrix Stein pair if there is a constant α ∈ (0, 1] for which

E[g(X) − g(X ′) |Z] = αX almost surely.

When the function g is linear, a generalized matrix Stein pair reduces to a matrix Stein pair. The
conditional variance of the generalized pair is defined as

∆X := ∆X(Z) :=
1

2α
·ReE

[

(g(X) − g(X ′)) · (X −X ′) |Z
]

,

where Re(A) := 1
2 (A+A∗) refers to the Hermitian part of a square matrix.
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We have chosen to focus on the simpler definition of a Stein pair because the presentation is
more transparent. Nevertheless, the results in this paper all extend readily to generalized matrix
Stein pairs with little extra work. We leave applications of generalized matrix Stein pairs for future
research.
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Appendix A. Proof of Theorem 5.1: Refined Exponential Concentration

The proof of Theorem 5.1 parallels the argument in Theorem 4.1, but it differs at an important
point. In the earlier result, we used an almost-sure bound on the conditional variance to control
the derivative of the trace mgf. This time, we use entropy inequalities to introduce finer informa-
tion about the behavior of the conditional variance. The proof is essentially a matrix version of
Chatterjee’s argument [Cha08, Thm. 3.13].

Let (X,X ′) be a matrix Stein pair. Consider the normalized trace mgf

m(θ) := E t̄r eθX for θ ≥ 0. (A.1)

Our main object is to establish the following inequality for the trace mgf.

logm(θ) ≤ r(ψ) θ2

2(1− θ2/ψ)
for 0 ≤ θ <

√

ψ and ψ > 0. (A.2)

arXiv:0911.0600
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The function r(ψ) is defined in (5.1). We establish (A.2) in Section A.1 et seq. Afterward, in
Section A.5, we invoke the matrix Laplace transform bound to complete the proof of Theorem 5.1.

A.1. The Derivative of the Trace Mgf. The first steps of the argument are the same as in
the proof of Theorem 4.1. Since X is almost surely bounded, we need not worry about regularity
conditions. The derivative of the trace mgf satisfies

m′(θ) = E tr
[

XeθX
]

for θ ∈ R. (A.3)

Lemma 3.7 provides a bound for the derivative in terms of the conditional variance:

m′(θ) ≤ θ · E t̄r
[

∆X eθX
]

for θ ≥ 0. (A.4)

In the proof of Lemma 4.3, we applied an almost-sure bound for the conditional variance to control
the derivative of the mgf. This time, we incorporate information about the typical size of ∆X by
developing a bound in terms of the function r(ψ).

A.2. Entropy for Random Matrices and Duality. Let us introduce an entropy function for
random matrices.

Definition A.1 (Entropy for Random Matrices). Let W be a random matrix in H
d
+ subject to

the normalization E t̄rW = 1. The (negative) matrix entropy is defined as

ent(W ) := E t̄r(W logW ). (A.5)

We enforce the convention that 0 log 0 = 0.

The matrix entropy is relevant to our discussion because its Fenchel–Legendre conjugate is the
cumulant generating function. The Young inequality for matrix entropy provides one way to for-
mulate this duality relationship.

Proposition A.2 (Young Inequality for Matrix Entropy). Suppose that V is a random matrix in
H
d that is almost surely bounded in norm, and suppose that W is a random matrix in H

d
+ subject

to the normalization E t̄rW = 1. Then

E t̄r(V W ) ≤ logE t̄r eV + ent(W ).

Proposition A.2 follows from an easy variant of the argument in [Car10, Thm. 2.13].

A.3. A Refined Differential Inequality for the Trace Mgf. We intend to apply the Young
inequality for matrix entropy to decouple the product of random matrices in (A.4). First, we must
rescale the exponential in (A.4) so its expected trace equals one:

W (θ) :=
1

E t̄r eθX
· eθX =

1

m(θ)
· eθX . (A.6)

For each ψ > 0, we can rewrite (A.4) as

m′(θ) ≤ θm(θ)

ψ
· E t̄r

[

ψ∆X ·W (θ)
]

.

The Young inequality for matrix entropy, Proposition A.2, implies that

m′(θ) ≤ θm(θ)

ψ

[

logE t̄r eψ∆X + ent(W (θ))
]

. (A.7)

The first term in the bracket is precisely ψ r(ψ). Let us examine the second term more closely.
To control the matrix entropy of W (θ), we need to bound its logarithm. Referring back to the

definition (A.6), we see that

logW (θ) = θX −
(

logE t̄r eθX
)

· I 4 θX −
(

log t̄r eθ EX
)

· I = θX. (A.8)
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The second relation depends on Jensen’s inequality and the fact that the trace exponential is
convex [Pet94, Sec. 2]. The third relation relies on the property that EX = 0. Since the matrix
W (θ) is positive, we can substitute the semidefinite bound (A.8) into the definition (A.5) of the
matrix entropy:

ent(W (θ)) = E t̄r
[

W (θ) · logW (θ)
]

≤ θ · E t̄r
[

W (θ) ·X
]

=
θ

m(θ)
· E t̄r

[

XeθX
]

.

We have reintroduced the definition (A.6) of W (θ) in the last relation. Identify the derivative (A.3)
of the trace mgf to reach

ent(W (θ)) ≤ θm′(θ)
m(θ)

. (A.9)

To establish a differential inequality, substitute the definition (5.1) of r(ψ) and the bound (A.9)
into the estimate (A.7) to discover that

m′(θ) ≤ θm(θ)

ψ

[

ψ r(ψ) +
θm′(θ)
m(θ)

]

= r(ψ) θ ·m(θ) +
θ2

ψ
·m′(θ).

Rearrange this formula to isolate the log-derivative m′(θ)/m(θ) of the trace mgf. We conclude that

d

dθ
logm(θ) ≤ r(ψ) θ

1− θ2/ψ
for 0 ≤ θ <

√

ψ. (A.10)

A.4. Solving the Differential Inequality. To integrate (A.10), recall that logm(0) = 0, and
invoke the fundamental theorem of calculus to see that

logm(θ) ≤
∫ θ

0

r(ψ) s

1− s2/ψ
ds ≤

∫ θ

0

r(ψ) s

1− θ2/ψ
ds =

r(ψ) θ2

2(1− θ2/ψ)
.

This calculation is valid whenever 0 ≤ θ <
√
ψ. This is the claim (A.2).

A.5. The Matrix Laplace Transform Argument. With the trace mgf bound (A.2) at hand,
we can complete the proof of Theorem 5.1. Proposition 3.3, the matrix Laplace transform method,
yields the estimate

P {λmax(X) ≥ t} ≤ d · inf
0<θ<

√
ψ

exp

{

−θt+ θ

2
· r(ψ) θ

1− θ2/ψ

}

≤ d · e−t θ⋆(t)/2, (A.11)

where we define θ⋆(t) implicitly as the positive root of the quadratic equation

r(ψ) θ

1− θ2/ψ
= t.

Solve the quadratic equation to obtain the explicit formula

θ⋆(t) =
ψ r(ψ)

2t

(
√

1 +
4t2

ψ r(ψ)2
− 1

)

. (A.12)

The numerical fact
√
1 + a < 1 +

√
a, valid for a > 0, allows us to verify that θ⋆(t) <

√
ψ. We can

obtain a lower bound

θ⋆(t) ≥
t

r(ψ) + t/
√
ψ

(A.13)

from the inequality
√
1 + a− 1 ≥ a/(2 +

√
a), which holds for a ≥ 0. Indeed,

a = (
√
1 + a− 1)(

√
1 + a+ 1) ≤ (

√
1 + a− 1)(2 +

√
a).

Introduce the estimate (A.13) into the probability inequality (A.11) to complete the proof of the
tail bound (5.2).
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To establish the inequality (5.3) for the expectation of the maximum eigenvalue, we can apply
Proposition 3.3 and the trace mgf bound (A.2) a second time. Indeed,

Eλmax(X) ≤ inf
0<θ<

√
ψ

{

log d

θ
+

1

2
· r(ψ) θ

1− θ2/
√
ψ

}

≤ inf
t≥0

{

log d

θ⋆(t)
+
t

2

}

,

where θ⋆(t) is the function defined in (A.12). Incorporate the lower bound (A.13) to reach

Eλmax(X) ≤ inf
t≥0

{

r(ψ) log d

t
+
t

2
+

log d√
ψ

}

=
√

2r(ψ) log d+
log d√
ψ
.

This observation completes the proof of Theorem 5.1.

Appendix B. Proof of Theorem 7.5: Matrix Rosenthal Inequality

The proof of the matrix Rosenthal inequality takes place in two steps. First, we verify that the
bound (7.3) holds for psd random matrices. Then, we use this result to provide a short proof of
the bound (7.4) for Hermitian random matrices. Before we start, let us remind the reader that the

Lp norm of a scalar random variable Z is given by the expression (E |Z|p)1/p for each p ≥ 1.

B.1. A Sum of Random Psd Matrices. We begin with the moment bound (7.3) for an inde-
pendent sum of random psd matrices. Introduce the quantity of interest

E2 :=

(

E

∥

∥

∥

∑

k
Pk

∥

∥

∥

2p

2p

)1/2p

.

We may invoke the triangle inequality for the L2p norm to obtain

E2 ≤
(

E

∥

∥

∥

∑

k
(Pk − EPk)

∥

∥

∥

2p

2p

)1/2p

+
∥

∥

∥

∑

k
EPk

∥

∥

∥

2p
=:
(

E ‖X‖2p2p
)1/2p

+ µ.

We can apply the matrix BDG inequality to control this expectation, which yields an algebraic
inequality between E2 and E. We solve this inequality to bound E2.

The series X consists of centered, independent random matrices, so we can use the Stein pair
described in Section 2.4. According to (2.6), the conditional variance ∆X takes the form

∆X =
1

2

∑

k

[

(Pk − EPk)
2 + E(Pk − EPk)

2
]

4
1

2

∑

k

[

2P 2
k + 2(EPk)

2 + EP 2
k − (EPk)

2
]

4
∑

k

(

P 2
k + EP 2

k

)

.

The first inequality follows from the operator convexity (1.1) of the square function; we have
computed the second expectation exactly. The last bound follows from the operator Jensen in-
equality (1.2). Now, the matrix BDG inequality yields

E2 ≤
√

2p− 1 ·
(

E ‖∆X‖pp
)1/2p

+ µ

≤
√

2p− 1 ·
(

E

∥

∥

∥

∑

k

(

P 2
k + EP 2

k

)

∥

∥

∥

p

p

)1/2p

+ µ

≤
√

4p− 2 ·
(

E

∥

∥

∥

∑

k
P 2
k

∥

∥

∥

p

p

)1/2p

+ µ.

The third line follows from the triangle inequality for the Lp norm and Jensen’s inequality.
Next, we search for a copy of E2 inside this expectation. To accomplish this goal, we want to

draw a factor Pk off of each term in the sum. The following result of Pisier and Xu [PX97, Lem. 2.6]
has the form we desire.
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Proposition B.1 (A Matrix Schwarz-Type Inequality). Consider a finite sequence (Ak)k≥1 of
deterministic psd matrices. For each p ≥ 1,

∥

∥

∥

∑

k
A2
k

∥

∥

∥

p
≤
(

∑

k
‖Ak‖2p2p

)1/2p ∥
∥

∥

∑

k
Ak

∥

∥

∥

2p

Apply the matrix Schwarz-type inequality, Proposition B.1, to reach

E2 ≤
√

4p − 2 ·
[

E

(

∑

k
‖Pk‖2p2p

)1/2 ∥
∥

∥

∑

k
Pk

∥

∥

∥

p

2p

]1/2p

+ µ

≤
√

4p − 2 ·
(

∑

k
E ‖Pk‖2p2p

)1/4p
(

E

∥

∥

∥

∑

k
Pk

∥

∥

∥

2p

2p

)1/4p

+ µ.

The second bound is the Cauchy–Schwarz inequality for expectation. The resulting estimate takes
the form E2 ≤ cE + µ. Solutions of this quadratic inequality must satisfy E ≤ c+

√
µ. We reach

E ≤
√

4p− 2 ·
(

∑

k
E ‖Pk‖2p2p

)1/4p
+
∥

∥

∥

∑

k
EPk

∥

∥

∥

1/2

2p
.

Square this expression to complete the proof of (7.3).

B.2. A Sum of Centered, Random Hermitian Matrices. We are now prepared to establish
the bound (7.4) for a sum of centered, independent, random Hermitian matrices. Define the random
matrix X :=

∑

k Yk. We may use the matrix Stein pair described in Section 2.4. According to (2.6),
the conditional variance ∆X takes the form

∆X =
1

2

∑

k

(

Y 2
k + EY 2

k

)

.

The matrix BDG inequality, Theorem 7.1, yields
(

E ‖X‖4p4p
)1/4p

≤
√

4p − 1 ·
(

E ‖∆X‖2p2p
)1/4p

=
√

4p − 1 ·
(

E

∥

∥

∥

∥

1

2

∑

k

(

Y 2
k + EY 2

k

)

∥

∥

∥

∥

2p

2p

)1/4p

≤
√

4p − 1 ·
(

E

∥

∥

∥

∑

k
Y 2
k

∥

∥

∥

2p

2p

)1/4p

.

The third line follows from the triangle inequality for the L2p norm and Jensen’s inequality. To
bound the remaining expectation, we simply note that the sum consists of independent, random psd
matrices. We complete the proof by invoking the matrix Rosenthal inequality (7.3) and simplifying.

Appendix C. Proof of Theorem 10.3: A Combinatorial Sum of Matrices

Consider the matrix Stein pair (X,X ′) constructed in Section 10.2. The expression (10.2) and
the operator convexity (1.1) of the matrix square allow us to bound the conditional variance as
follows.

∆X(π) =
1

4n

∑n

j,k=1

[

Ajπ(j) +Akπ(k) −Ajπ(k) −Akπ(j)

]2

4
1

n

∑n

j,k=1

[

A2
jπ(j) +A2

kπ(k) +A2
jπ(k) +A2

kπ(j)

]

= 2
∑n

j=1
A2
jπ(j) +

2

n

∑n

j,k=1
A2
jk

= W + 4Σ
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where

W := 2
(

∑n

j=1
A2
jπ(j)

)

− 2Σ and Σ :=
1

n

∑n

j,k=1
A2
jk.

Substitute the bound for ∆X(π) into the definition (5.1) of r(ψ) to see that

r(ψ) :=
1

ψ
logE t̄r eψ∆X(π) ≤ 1

ψ
logE t̄r eψ(W+4Σ) ≤ 4σ2 +

1

ψ
logE t̄r eψW . (C.1)

The inequalities follow from the monotonicity of the trace exponential [Pet94, Sec. 2] and the fact
that σ2 = ‖Σ‖. Therefore, it suffices to bound the trace mgf of W .

Our approach is to construct a matrix Stein pair for W and to argue that the associated condi-
tional variance ∆W (π) satisfies a semidefinite bound. We may then exploit the trace mgf bounds
from Lemma 4.3. Observe that W and X take the same form: both have mean zero and share the
structure of a combinatorial sum. Therefore, we can study the behavior of W using the matrix
Stein pair from Section 10.2. Adapting (10.2), we see that the conditional variance of W satisfies

∆W (π) =
1

n

∑n

j,k=1

[

A2
jπ(j) +A2

kπ(k) −A2
jπ(k) −A2

kπ(j)

]2

4
4

n

∑n

j,k=1

[

A4
jπ(j) +A4

kπ(k) +A4
jπ(k) +A4

kπ(j)

]

4
4R2

n

∑n

j,k=1

[

A2
jπ(j) +A2

kπ(k) +A2
jπ(k) +A2

kπ(j)

]

.

In the first line, the centering terms in W cancel each other out. Then we apply the operator
convexity (1.1) of the matrix square and the bound A4

jk 4 R2A2
jk. Finally, identify W and Σ to

reach
∆W (π) 4 4R2(W + 4Σ) 4 4R2 ·W + 16R2σ2 · I. (C.2)

The matrix inequality (C.2) gives us access to established trace mgf bounds. Indeed,

logE t̄r eψW ≤ 8R2σ2ψ2

1− 4R2ψ

as a consequence of Lemma 4.3 with parameters c = 4R2 and v = 16R2σ2.
At last, we substitute the latter bound into (C.1) to discover that

r(ψ) ≤ 4σ2 +
8R2σ2ψ

1− 4R2ψ
.

In particular, setting ψ = (8R2)−1, we find that r(ψ) ≤ 6σ2. Apply Theorem 5.1 to wrap up.
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