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Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix Ly € R™*" given a subset of its entries

771 4 231 ... 4
3 77 Tl =13 45 ... 1
75 7 2 5 3 >

Examples
@ Collaborative filtering: How will user i rate movie 57
o Netflix: 40 million users, 200K movies and television shows
@ Ranking on the web: Is URL j relevant to user ¢7
e Google News: millions of articles, 1 billion users
@ Link prediction: Is user i friends with user 57
e Facebook: 1.5 billion users
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Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix Ly € R™*" given a subset of its entries

771 4 231 ... 4
3 77 7l—=13 45 ... 1
75 7 2 5 3 5

State of the art MC algorithms
@ Strong estimation guarantees
@ Plagued by expensive subroutines (e.g., truncated SVD)

This talk

@ Present divide and conquer approaches for scaling up any MC
algorithm while maintaining strong estimation guarantees
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Matrix Completion Background

Exact Matrix Completion

Goal: Estimate a matrix Ly € R™*™ given a subset of its entries
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Matrix Completion Background

Noisy Matrix Completion

Goal: Given entries from a matrix M = Ly + Z € R™*" where Z is
entrywise noise and L has rank r < m, n, estimate L

@ Good news: L has ~ (m + n)r < mn degrees of freedom

| BT |

L() = |A

o Factored form: ABT for A € R™*" and B € R"*"

@ Bad news: Not all low-rank matrices can be recovered

Question: What can go wrong?
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Matrix Completion Background

What can go wrong?

Entire column missing

127 3. 4
3 5 7 4 . 1
25 7 2 . 5

@ No hope of recovery!

Standard solution: Uniform observation model

Assume that the set of s observed entries €2 is drawn uniformly at
random:

Q ~ Unif(m, n, s)

@ Can be relaxed to non-uniform row and column sampling
(Negahban and Wainwright, 2010)
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Matrix Completion Background

What can go wrong?

Bad spread of information

1 100
L= |0|[1][t 0 0]=1]0 0 0
0 000

@ Can only recover L if L is observed

Standard solution: Incoherence with standard basis (candes and Recht, 2009)

A matrix L=UXV " € R™" with rank(L) = r is incoherent if
max; HUUTeiH2 < ur/m

Singular vectors are not too skewed: T2
max; [|[VV 'el|” < pr/n

r

and not too cross-correlated:[|[UV || <
mn

(In this literature, it's good to be incoherent)
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Matrix Completion Background

How do we estimate L?

First attempt:

minimizea rank(A)

subject to Z(z j)EQ(Aij — Mij)2 S AQ.
Problem: Computationally intractable!

Solution: Solve convex relaxation (fazel, Hindi, and Boyd, 2001; Candés and Plan, 2010)
minimizea [|A]l,
subject to 3, i cq(Ay — M;;)? < A?

where ||A|[, = >, 0x(A) is the trace/nuclear norm of A.

Questions:
@ Will the nuclear norm heuristic successfully recover Ly?
@ Can nuclear norm minimization scale to large MC problems?
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Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If Ly with rank 7 is incoherent, s > rnlog?(n) entries of M € R™*"
are observed uniformly at random, and L solves the noisy nuclear
norm heuristic, then

IL — Lollr < f(m,n)A
with high probability when |M — Ly || < A.

@ See Candes and Plan (2010); Mackey, Talwalkar, and Jordan
(2011); Keshavan, Montanari, and Oh (2010); Negahban and
Wainwright (2010)

e Implies exact recovery in the noiseless setting (A = 0)

Mackey (Stanford) Matrix Completion and Concentration February 9, 2016 10 / 43



Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...
@ Standard interior point methods (candes and Recht, 2000):
O(|2f(m + n)® + [Q*(m + n)* + |QF)
@ More efficient, tailored algorithms:

o Singular Value Thresholding (SVT) (cai. candss, and shen, 2010)

o Augmented Lagrange Multiplier (ALM) (tin, chen, wu, and Ma, 2000)
o Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)

o All require rank-k truncated SVD on every iteration

Take away: These provably accurate MC algorithms are too
expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm
and still retain estimation guarantees?
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Matrix Completion DFC

Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer
© Divide M into submatrices.
@ Complete each submatrix in parallel.

© Combine submatrix estimates, using techniques from randomized
low-rank approximation.

Advantages
@ Completing a submatrix often much cheaper than completing M
@ Multiple submatrix completions can be carried out in parallel
e DFC works with any base MC algorithm

@ The right choices of division and recombination yield estimation
guarantees comparable to those of the base algorithm
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Matrix Completion DFC

DFC-PR0OJ: Partition and Project

© Randomly partition M into ¢ column submatrices
M= |[C; C, --- G where each C; € R™*!

@ Complete the submatrices in parallel to obtain
[Cl (32 o Ct]
e Reduced cost: Expect t-fold speed-up per iteration
e Parallel computation: Pay cost of one cheaper MC

© Project submatrices onto a single low-dimensional column space
e Estimate column space of Ly with column space of C;

P — G EHE, € - 6

e Common technique for randomized low-rank approximation

(Frieze, Kannan, and Vempala, 1998)

o Minimal cost: O(mk? + Ik2) where k = rank(L?"°7)
© Ensemble: Project onto column space of each Cj and average
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Matrix Completion DFC

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If Lo with rank 7 is incoherent and s = w(r?nlog?(n)/e?) entries of
M € R™*™ are observed uniformly at random, then [ = o(n) random
columns suffice to have

1L = Lol < (2+ €) f(m, n)A

with high probability when ||M — Lg|| . < A and the noisy nuclear
norm heuristic is used as a base algorithm.

@ Can sample vanishingly small fraction of columns ({/n — 0)
@ Implies exact recovery for noiseless (A = 0) setting

@ Analysis streamlined by matrix Bernstein inequality
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Matrix Completion DFC

DFC: Does it work?

Yes, with high probability.

Proof ldeas:

@ If Ly is incoherent (has good spread of information), its
partitioned submatrices are incoherent w.h.p.

@ Each submatrix has sufficiently many observed entries w.h.p.
= Submatrix completion succeeds

© Random submatrix captures the full column space of Ly w.h.p.

e Analysis builds on randomized /5 regression work of Drineas,
Mahoney, and Muthukrishnan (2008)

= Column projection succeeds
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Matrix Completion

Simulations

DFC Noisy Recovery Error

MC
0.25; 1
‘ ' - - -Proj-10%
1 —e— Proj-Ens-10%
0.2/ \ — Base-MC
‘\
A\
w 0-15¢ 1
%]
z
0.1
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0 L L L
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1‘0
% revealed entries
Figure : Recovery error of DFC relative to base algorithm (APG) with
m = 10K and r = 10.
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Matrix Completion Simulations

DFC Speed-up

MC
3500

= ==Proj-10%
3000 | —&—Proj-Ens-10%
——Base-MC

5

x 10°
Figure : Speed-up over base algorithm (APG) for random matrices with

r = 0.001m and 4% of entries revealed.
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Matrix Completion CF

Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict
the unobserved ratings
Issues

o Full-rank rating matrix

@ Noisy, non-uniform observations

The Data
o Netflix Prize Dataset!
e 100 million ratings in {1,...,5}
e 17,770 movies, 480,189 users

'http://www.netflixprize.com/
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Matrix Completion CF

Application: Collaborative filtering

Task: Predict unobserved user-item ratings

Netflix
Method RMSE  Time
Base method (APG) 0.8433 2653.1s
DFC-PRroJ-25% 0.8436 689.5s
DFC-PRr0J-10% 0.8484 289.7s

DFC-ProJ-ENs-25% 0.8411 689.5s
DFC-ProJ-ENs-10% 0.8433 289.7s
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Future Directions

Future Directions

New Applications and Datasets

@ Practical structured recovery problems with large-scale or
real-time requirements

@ Video background modeling via robust matrix factorization
(Mackey, Talwalkar, and Jordan, 2014b)

o Image tagging / video event detection via subspace segmentation
(Talwalkar, Mackey, Mu, Chang, and Jordan, 2013)

New Divide-and-Conquer Strategies
@ Other ways to reduce computation while preserving accuracy

@ More extensive use of ensembling

Mackey (Stanford) Matrix Completion and Concentration February 9, 2016 20 / 43



Future Directions

DFC-NYs: Generalized Nystrom Decomposition

Choose a random column submatrix C € R™*! and a random
row submatrix R € R from M. Call their intersection W.

i 2] o

R=W M
My M, MQJ [ 12

Recover the low rank components of C and R in parallel to
obtain C and R

Recover L from C R and their intersection W
L = CWTR
[+ Generalized Nystrom method (Goreinov, Tyrtyshnikov, and Zamarashkin, 1997)
o Minimal cost: O(mk? + [k? + dk?) where k = rank(L"%*)
Ensemble: Run p times in parallel and average estimates
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Future Directions
Future Directions

New Applications and Datasets

@ Practical structured recovery problems with large-scale or
real-time requirements

New Divide-and-Conquer Strategies
@ Other ways to reduce computation while preserving accuracy
@ More extensive use of ensembling

New Theory
@ Analyze statistical implications of divide and conquer algorithms
e Trade-off between statistical and computational efficiency
e Impact of ensembling
@ Developing suite of matrix concentration inequalities to aid in
the analysis of randomized algorithms with matrix data
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Part I

Stein’'s Method for Matrix
Concentration
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Motivation

Concentration Inequalities

Matrix concentration
P{|X -EX| >t} <4§
P{\nax(X —EX) >t} <0
@ Non-asymptotic control of random matrices with complex
distributions

Applications
@ Matrix completion from sparse random measurements

(Gross, 2011; Recht, 2011; Negahban and Wainwright, 2010; Mackey, Talwalkar, and Jordan, 2014b)

@ Randomized matrix multiplication and factorization
(Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011)

@ Convex relaxation of robust or chance-constrained optimization
(Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)

o Ra ndom gr‘aph ana|ySiS (Christofides and Markstrom, 2008; Oliveira, 2009)
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Motivation
Concentration Inequalities

Matrix concentration
]P){)\maX(X - EX) 2 t} S )

Difficulty: Matrix multiplication is not commutative
= XY L XY L eYeX
Past approaches (Aniswede and Winter, 2002; Oliveira, 2009; Tropp, 2011)

@ Rely on deep results from matrix analysis
@ Apply to sums of independent matrices and matrix martingales

OLII’ work (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a; Paulin, Mackey, and Tropp, 2016)
@ Stein's method of exchangeable pairs (1972), as advanced by
Chatterjee (2007) for scalar concentration
= Improved exponential tail inequalities
(Hoeffding, Bernstein, Bounded differences)
= Polynomial moment inequalities (Khintchine, Rosenthal)
= Dependent sums and more general matrix functionals
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Motivation

Roadmap

@ Motivation

© Stein’s Method Background and Notation
@ Exponential Tail Inequalities

@ Polynomial Moment Inequalities

© Extensions

Mackey (Stanford) Matrix Completion and Concentration February 9, 2016 26 / 43



Background

Notation

Hermitian matrices: HY = {A € C¥™?: A = A*}

o All matrices in this talk are Hermitian.

Maximum eigenvalue: A, (")
Trace: tr B, the sum of the diagonal entries of B

Spectral norm: || B||, the maximum singular value of B
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Background
Matrix Stein Pair

Definition (Exchangeable Pair)

(Z,Z") is an exchangeable pair if (Z,7') 2 (7', 7).

Definition (Matrix Stein Pair)

Let (Z, Z') be an exchangeable pair, and let ¥ : Z — H? be a
measurable function. Define the random matrices
X =¥(Z) and X' :=9(Z).
(X, X') is a matrix Stein pair with scale factor o € (0, 1] if
EX'|Z]=(1-—a)X.

@ Matrix Stein pairs are exchangeable pairs
@ Matrix Stein pairs always have zero mean
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Background

Method of Exchangeable Pairs

Why Matrix Stein pairs?
@ Furnish more convenient expressions for moments of X

Lemma (Method of Exchangeable Pairs)

Let (X, X’) be a matrix Stein pair with scale factor « and
F : H? — H? a measurable function with E[[(X — X')F(X)]|| < ooc.
Then

E[X F(X)]=%E[(X—X’)(F(X)—F(X’))]- (1)

4

Intuition
@ Expressions like E[Xe’X] and E[X?] arise naturally in
concentration settings

@ Eqg. 1 allows us to bound these integrals using the smoothness
properties of F' and the discrepancy X — X'
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Background

The Conditional Variance

Why Matrix Stein pairs?
@ Give rise to a measure of spread of the distribution of X

Definition (Conditional Variance)

Suppose that (X, X’) is a matrix Stein pair with scale factor a,
constructed from the exchangeable pair (Z, Z'). The conditional
variance is the random matrix

Ax = Ax(Z) = i E[(X -X')?Z].

@ Ax is a stochastic estimate for the variance,
EX? = i]E[(X - X" =EAx
Take-home Message
Control over Ax yields control over )., (X)
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Exponential Tail Inequalities

Exponential Concentration for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let (X, X’) be a matrix Stein pair with X € H¢. Suppose that
Ax < cX +vI almost surely for ¢, v > 0.

Then, for all ¢ > 0,

—¢2
P{dmax(X) >t} < d- —
{ (X) ! eXp{2v+20t}

@ Control over the conditional variance A x yields
o Gaussian tail for Apax(X) for small ¢, exponential tail for large ¢

@ When d = 1, reduces to scalar result of Chatterjee (2007)

@ The dimensional factor d cannot be removed
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Exponential Tail Inequalities

Matrix Hoeffding Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)
Let X = Y, Y} for independent matrices in H¢ satisfying
EY,=0 and Y}fﬁAi

for deterministic matrices (Ay)g>1. Define the scale parameter

Then, for all £ > 0,

]P’{/\max (Zk Yk> > t} <d-e 2

@ Improves upon the matrix Hoeffding inequality of Tropp (2011)
o Optimal constant 1/2 in the exponent

o Can replace scale parameter with 02 = 1||3°, (A7 + EY}?) ||
o Tighter than classical scalar Hoeffding inequality (1963)

0% =
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

1. Matrix Laplace transform method (Ahlswede & Winter, 2002)
@ Relate tail probability to the trace of the mgf of X
P{A\nax(X) >t} < éng e m(0)
>

where m(0) := Etre?X.
How to bound the trace mgf?
@ Past approaches: Golden-Thompson, Lieb’s concavity theorem

o Chatterjee's strategy for scalar concentration
e Control mgf growth by bounding derivative

m'(0) = Etr Xe’X  for 6 € R.

o Perfectly suited for rewriting using exchangeable pairs!
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

2. Method of Exchangeable Pairs
@ Rewrite the derivative of the trace mgf

/ 1 / !
m'(0) = Etr XX = %Etr (X — X')(eX — ™).

Goal: Use the smoothness of F(X) = ¢’X to bound the derivative
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Exponential Tail Inequalities
Mean Value Trace Inequality

Lemma (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Suppose that g : R — R is a weakly increasing function and that
h :R — R is a function with convex derivative h'. For all matrices
A, B € H? it holds that

tr{(g(A) = g(B)) - (h(A) = h(B))] <
%tr[(g(A) —9(B))-(A—B) - (I(A) + 1'(B))].

@ Standard matrix functions: If g : R — R and
A1 9(A1)
A:=0Q Q", then g(A):=Q Q"
Ad 9(Aa)
@ For exponential concentration we let g(A) = A and h(B) =e¢
@ Inequality does not hold without the trace
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality
@ Bound the derivative of the trace mgf

m'(8) = %Etr (X = X') ("X — X))
< %Etr [(X = X')? (X +"X)]
= %Etr (X — X')?- e
— 0. Etr %E (X — X')?|Z] - "X

=0 -Etr [AX eex}.
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality
@ Bound the derivative of the trace mgf
m'(0) < 0-Etr [Ax e?X].

4. Conditional Variance Bound: Ax < cX + vl
@ Yields differential inequality
m/(0) < HEtr [X %] + v Etr [¢"X]
=cf-m'(0) + vh - m(0).
@ Solve to bound m(6) and thereby bound

—¢2
> < —0t < d- .
P{Amax(X) > t} < inf ™ - m(0) < d eXp{ 2+ 2025}
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Polynomial Moment Inequalities

Polynomial Moments for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let p =1 or p > 1.5. Suppose that (X, X’) is a matrix Stein pair
where E||X||§p < 00. Then

(EIIX12)"* < /2p— 1 - (E|Ax]|P) ™.

@ Moral: The conditional variance controls the moments of X

o Generalizes Chatterjee's version (2007) of the scalar
Burkholder-Davis-Gundy inequality (Burkholder, 1973)

o See also Pisier & Xu (1997); Junge & Xu (2003, 2008)
@ Proof techniques mirror those for exponential concentration
@ Also holds for infinite-dimensional Schatten-class operators
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Polynomial Moment Inequalities

Application: Matrix Khintchine Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)
Let (x)r>1 be an independent sequence of Rademacher random
variables and (Ay)r>1 be a deterministic sequence of Hermitian

matrices. Thenif p=1or p > 1.5,

IS )< Vo= (5. )

2p
@ Noncommutative Khintchine inequality (Lust-Piquard, 1986; Lust-Piquard
and Pisier, 1991) is @ dominant tool in applied matrix analysis

e e.g., Used in analysis of column sampling and projection for
approximate SVD (Rudelson and Vershynin, 2007)
@ Stein’s method offers an unusually concise proof

@ The constant 1/2p — 1 is within /e of optimal

Matrix Completion and Concentration

1/2

2p
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Extensions
Extensions

Refined Exponential Concentration
@ Relate trace mgf of conditional variance to trace mgf of X
@ Yields matrix generalization of classical Bernstein inequality
@ Offers tool for unbounded random matrices

General Complex Matrices
@ Map any matrix B € C%*92 to a Hermitian matrix via dilation

2(B) = Lg* ](ﬂ € Hhtdz,

@ Preserves spectral information: A\,.x(Z(B)) = || B||

Dependent Sequences
e Combinatorial matrix statistics (e.g., sampling w/o replacement)
@ Dependent bounded differences inequality for matrices

General Exchangeable Matrix Pairs (Paulin, Mackey, and Tropp, 2016)
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