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Part I

Divide-Factor-Combine

Mackey (Stanford) Matrix Completion and Concentration February 9, 2016 2 / 43



Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries ? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5

→
 2 3 1 . . . 4

3 4 5 . . . 1
2 5 3 . . . 5


Examples

Collaborative filtering: How will user i rate movie j?

Netflix: 40 million users, 200K movies and television shows

Ranking on the web: Is URL j relevant to user i?

Google News: millions of articles, 1 billion users

Link prediction: Is user i friends with user j?

Facebook: 1.5 billion users
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Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries ? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5

→
 2 3 1 . . . 4

3 4 5 . . . 1
2 5 3 . . . 5


State of the art MC algorithms

Strong estimation guarantees

Plagued by expensive subroutines (e.g., truncated SVD)

This talk

Present divide and conquer approaches for scaling up any MC
algorithm while maintaining strong estimation guarantees
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Matrix Completion Background

Exact Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries
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Matrix Completion Background

Noisy Matrix Completion

Goal: Given entries from a matrix M = L0 + Z ∈ Rm×n where Z is
entrywise noise and L0 has rank r� m,n, estimate L0

Good news: L0 has ∼ (m+ n)r � mn degrees of freedom

L0 = A

B>

Factored form: AB> for A ∈ Rm×r and B ∈ Rn×r

Bad news: Not all low-rank matrices can be recovered

Question: What can go wrong?

Mackey (Stanford) Matrix Completion and Concentration February 9, 2016 6 / 43



Matrix Completion Background

What can go wrong?

Entire column missing 1 2 ? 3 . . . 4
3 5 ? 4 . . . 1
2 5 ? 2 . . . 5


No hope of recovery!

Standard solution: Uniform observation model

Assume that the set of s observed entries Ω is drawn uniformly at
random:

Ω ∼ Unif(m,n, s)

Can be relaxed to non-uniform row and column sampling
(Negahban and Wainwright, 2010)
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Matrix Completion Background

What can go wrong?

Bad spread of information

L =

1
0
0

[1][1 0 0
]

=

1 0 0
0 0 0
0 0 0


Can only recover L if L11 is observed

Standard solution: Incoherence with standard basis (Candès and Recht, 2009)

A matrix L = UΣV> ∈ Rm×n with rank(L) = r is incoherent if

Singular vectors are not too skewed:

{
maxi ‖UU>ei‖

2 ≤ µr/m

maxi ‖VV>ei‖
2 ≤ µr/n

and not too cross-correlated:‖UV>‖∞ ≤
√

µr

mn

(In this literature, it’s good to be incoherent)
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Matrix Completion Background

How do we estimate L0?

First attempt:

minimizeA rank(A)

subject to
∑

(i,j)∈Ω(Aij −Mij)
2 ≤ ∆2.

Problem: Computationally intractable!

Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and Plan, 2010)

minimizeA ‖A‖∗
subject to

∑
(i,j)∈Ω(Aij −Mij)

2 ≤ ∆2

where ‖A‖∗ =
∑

k σk(A) is the trace/nuclear norm of A.

Questions:

Will the nuclear norm heuristic successfully recover L0?

Can nuclear norm minimization scale to large MC problems?
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Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If L0 with rank r is incoherent, s & rn log2(n) entries of M ∈ Rm×n

are observed uniformly at random, and L̂ solves the noisy nuclear
norm heuristic, then

‖L̂− L0‖F ≤ f(m,n)∆

with high probability when ‖M− L0‖F ≤ ∆.

See Candès and Plan (2010); Mackey, Talwalkar, and Jordan
(2011); Keshavan, Montanari, and Oh (2010); Negahban and
Wainwright (2010)

Implies exact recovery in the noiseless setting (∆ = 0)
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Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

Standard interior point methods (Candès and Recht, 2009):
O(|Ω|(m+ n)3 + |Ω|2(m+ n)2 + |Ω|3)

More efficient, tailored algorithms:

Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)

Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009)

Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)

All require rank-k truncated SVD on every iteration

Take away: These provably accurate MC algorithms are too
expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm
and still retain estimation guarantees?
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Matrix Completion DFC

Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

1 Divide M into submatrices.

2 Complete each submatrix in parallel.

3 Combine submatrix estimates, using techniques from randomized
low-rank approximation.

Advantages

Completing a submatrix often much cheaper than completing M

Multiple submatrix completions can be carried out in parallel

DFC works with any base MC algorithm

The right choices of division and recombination yield estimation
guarantees comparable to those of the base algorithm
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Matrix Completion DFC

DFC-Proj: Partition and Project

1 Randomly partition M into t column submatrices
M =

[
C1 C2 · · · Ct

]
where each Ci ∈ Rm×l

2 Complete the submatrices in parallel to obtain[
Ĉ1 Ĉ2 · · · Ĉt

]
Reduced cost: Expect t-fold speed-up per iteration
Parallel computation: Pay cost of one cheaper MC

3 Project submatrices onto a single low-dimensional column space
Estimate column space of L0 with column space of Ĉ1

L̂proj = Ĉ1Ĉ
+
1

[
Ĉ1 Ĉ2 · · · Ĉt

]
Common technique for randomized low-rank approximation
(Frieze, Kannan, and Vempala, 1998)

Minimal cost: O(mk2 + lk2) where k = rank(L̂proj)

4 Ensemble: Project onto column space of each Ĉj and average
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Matrix Completion DFC

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If L0 with rank r is incoherent and s = ω(r2n log2(n)/ε2) entries of
M ∈ Rm×n are observed uniformly at random, then l = o(n) random
columns suffice to have

‖L̂proj − L0‖F ≤ (2 + ε)f(m,n)∆

with high probability when ‖M− L0‖F ≤ ∆ and the noisy nuclear
norm heuristic is used as a base algorithm.

Can sample vanishingly small fraction of columns (l/n→ 0)

Implies exact recovery for noiseless (∆ = 0) setting

Analysis streamlined by matrix Bernstein inequality

Mackey (Stanford) Matrix Completion and Concentration February 9, 2016 14 / 43



Matrix Completion DFC

DFC: Does it work?

Yes, with high probability.

Proof Ideas:

1 If L0 is incoherent (has good spread of information), its
partitioned submatrices are incoherent w.h.p.

2 Each submatrix has sufficiently many observed entries w.h.p.

⇒ Submatrix completion succeeds
3 Random submatrix captures the full column space of L0 w.h.p.

Analysis builds on randomized `2 regression work of Drineas,
Mahoney, and Muthukrishnan (2008)

⇒ Column projection succeeds
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Matrix Completion Simulations

DFC Noisy Recovery Error
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Figure : Recovery error of DFC relative to base algorithm (APG) with
m = 10K and r = 10.
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Matrix Completion Simulations

DFC Speed-up
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Figure : Speed-up over base algorithm (APG) for random matrices with
r = 0.001m and 4% of entries revealed.
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Matrix Completion CF

Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict
the unobserved ratings

Issues

Full-rank rating matrix

Noisy, non-uniform observations

The Data

Netflix Prize Dataset1

100 million ratings in {1, . . . , 5}
17,770 movies, 480,189 users

1http://www.netflixprize.com/
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Matrix Completion CF

Application: Collaborative filtering

Task: Predict unobserved user-item ratings

Method
Netflix

RMSE Time

Base method (APG) 0.8433 2653.1s

DFC-Proj-25% 0.8436 689.5s
DFC-Proj-10% 0.8484 289.7s
DFC-Proj-Ens-25% 0.8411 689.5s
DFC-Proj-Ens-10% 0.8433 289.7s

Mackey (Stanford) Matrix Completion and Concentration February 9, 2016 19 / 43



Future Directions

Future Directions

New Applications and Datasets

Practical structured recovery problems with large-scale or
real-time requirements

Video background modeling via robust matrix factorization
(Mackey, Talwalkar, and Jordan, 2014b)

Image tagging / video event detection via subspace segmentation
(Talwalkar, Mackey, Mu, Chang, and Jordan, 2013)

New Divide-and-Conquer Strategies

Other ways to reduce computation while preserving accuracy

More extensive use of ensembling
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Future Directions

DFC-Nys: Generalized Nyström Decomposition

1 Choose a random column submatrix C ∈ Rm×l and a random
row submatrix R ∈ Rd×n from M. Call their intersection W.

M =

[
W M12

M21 M22

]
C =

[
W

M21

]
R = [W M12]

2 Recover the low rank components of C and R in parallel to
obtain Ĉ and R̂

3 Recover L0 from Ĉ, R̂, and their intersection Ŵ

L̂nys = ĈŴ+R̂

Generalized Nyström method (Goreinov, Tyrtyshnikov, and Zamarashkin, 1997)

Minimal cost: O(mk2 + lk2 + dk2) where k = rank(L̂nys)

4 Ensemble: Run p times in parallel and average estimates
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Future Directions

Future Directions

New Applications and Datasets

Practical structured recovery problems with large-scale or
real-time requirements

New Divide-and-Conquer Strategies

Other ways to reduce computation while preserving accuracy

More extensive use of ensembling

New Theory

Analyze statistical implications of divide and conquer algorithms
Trade-off between statistical and computational efficiency
Impact of ensembling

Developing suite of matrix concentration inequalities to aid in
the analysis of randomized algorithms with matrix data
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Part II

Stein’s Method for Matrix
Concentration
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Motivation

Concentration Inequalities

Matrix concentration

P{‖X − EX‖ ≥ t} ≤ δ

P{λmax(X − EX) ≥ t} ≤ δ

Non-asymptotic control of random matrices with complex
distributions

Applications

Matrix completion from sparse random measurements
(Gross, 2011; Recht, 2011; Negahban and Wainwright, 2010; Mackey, Talwalkar, and Jordan, 2014b)

Randomized matrix multiplication and factorization
(Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011)

Convex relaxation of robust or chance-constrained optimization
(Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)

Random graph analysis (Christofides and Markström, 2008; Oliveira, 2009)
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Motivation

Concentration Inequalities

Matrix concentration
P{λmax(X − EX) ≥ t} ≤ δ

Difficulty: Matrix multiplication is not commutative
⇒ eX+Y 6= eXeY 6= eY eX

Past approaches (Ahlswede and Winter, 2002; Oliveira, 2009; Tropp, 2011)

Rely on deep results from matrix analysis

Apply to sums of independent matrices and matrix martingales

Our work (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a; Paulin, Mackey, and Tropp, 2016)

Stein’s method of exchangeable pairs (1972), as advanced by
Chatterjee (2007) for scalar concentration
⇒ Improved exponential tail inequalities

(Hoeffding, Bernstein, Bounded differences)
⇒ Polynomial moment inequalities (Khintchine, Rosenthal)
⇒ Dependent sums and more general matrix functionals

Mackey (Stanford) Matrix Completion and Concentration February 9, 2016 25 / 43



Motivation

Roadmap

4 Motivation

5 Stein’s Method Background and Notation

6 Exponential Tail Inequalities

7 Polynomial Moment Inequalities

8 Extensions
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Background

Notation

Hermitian matrices: Hd = {A ∈ Cd×d : A = A∗}
All matrices in this talk are Hermitian.

Maximum eigenvalue: λmax(·)

Trace: trB, the sum of the diagonal entries of B

Spectral norm: ‖B‖, the maximum singular value of B
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Background

Matrix Stein Pair

Definition (Exchangeable Pair)

(Z,Z ′) is an exchangeable pair if (Z,Z ′)
d
= (Z ′, Z).

Definition (Matrix Stein Pair)

Let (Z,Z ′) be an exchangeable pair, and let Ψ : Z → Hd be a
measurable function. Define the random matrices

X := Ψ(Z) and X ′ := Ψ(Z ′).

(X,X ′) is a matrix Stein pair with scale factor α ∈ (0, 1] if

E[X ′ |Z] = (1− α)X.

Matrix Stein pairs are exchangeable pairs

Matrix Stein pairs always have zero mean

Mackey (Stanford) Matrix Completion and Concentration February 9, 2016 28 / 43



Background

Method of Exchangeable Pairs

Why Matrix Stein pairs?

Furnish more convenient expressions for moments of X

Lemma (Method of Exchangeable Pairs)

Let (X,X ′) be a matrix Stein pair with scale factor α and
F : Hd → Hd a measurable function with E‖(X −X ′)F (X)‖ <∞.
Then

E[X F (X)] =
1

2α
E[(X −X ′)(F (X)− F (X ′))]. (1)

Intuition

Expressions like E
[
XeθX

]
and E[Xp] arise naturally in

concentration settings

Eq. 1 allows us to bound these integrals using the smoothness
properties of F and the discrepancy X −X ′
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Background

The Conditional Variance

Why Matrix Stein pairs?

Give rise to a measure of spread of the distribution of X

Definition (Conditional Variance)

Suppose that (X,X ′) is a matrix Stein pair with scale factor α,
constructed from the exchangeable pair (Z,Z ′). The conditional
variance is the random matrix

∆X := ∆X(Z) :=
1

2α
E
[
(X −X ′)2 |Z

]
.

∆X is a stochastic estimate for the variance,
EX2 = 1

2α
E[(X −X ′)2] = E∆X

Take-home Message
Control over ∆X yields control over λmax(X)
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Exponential Tail Inequalities

Exponential Concentration for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let (X,X ′) be a matrix Stein pair with X ∈ Hd. Suppose that

∆X 4 cX + v I almost surely for c, v ≥ 0.

Then, for all t ≥ 0,

P{λmax(X) ≥ t} ≤ d · exp

{
−t2

2v + 2ct

}
.

Control over the conditional variance ∆X yields

Gaussian tail for λmax(X) for small t, exponential tail for large t

When d = 1, reduces to scalar result of Chatterjee (2007)

The dimensional factor d cannot be removed
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Exponential Tail Inequalities

Matrix Hoeffding Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let X =
∑

k Yk for independent matrices in Hd satisfying

EYk = 0 and Y 2
k 4 A2

k

for deterministic matrices (Ak)k≥1. Define the scale parameter

σ2 :=
∥∥∥∑

k
A2
k

∥∥∥.
Then, for all t ≥ 0,

P
{
λmax

(∑
k
Yk

)
≥ t
}
≤ d · e−t2/2σ2

.

Improves upon the matrix Hoeffding inequality of Tropp (2011)
Optimal constant 1/2 in the exponent

Can replace scale parameter with σ2 = 1
2

∥∥∑
k

(
A2
k + EY 2

k

)∥∥
Tighter than classical scalar Hoeffding inequality (1963)
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

1. Matrix Laplace transform method (Ahlswede & Winter, 2002)

Relate tail probability to the trace of the mgf of X

P{λmax(X) ≥ t} ≤ inf
θ>0

e−θt ·m(θ)

where m(θ) := E tr eθX .

How to bound the trace mgf?

Past approaches: Golden-Thompson, Lieb’s concavity theorem

Chatterjee’s strategy for scalar concentration

Control mgf growth by bounding derivative

m′(θ) = E trXeθX for θ ∈ R.

Perfectly suited for rewriting using exchangeable pairs!
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

2. Method of Exchangeable Pairs

Rewrite the derivative of the trace mgf

m′(θ) = E trXeθX =
1

2α
E tr

[
(X −X ′)

(
eθX − eθX

′)]
.

Goal: Use the smoothness of F (X) = eθX to bound the derivative
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Exponential Tail Inequalities

Mean Value Trace Inequality

Lemma (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Suppose that g : R→ R is a weakly increasing function and that
h : R→ R is a function with convex derivative h′. For all matrices
A,B ∈ Hd, it holds that

tr[(g(A)− g(B)) · (h(A)− h(B))] ≤
1

2
tr[(g(A)− g(B)) · (A−B) · (h′(A) + h′(B))].

Standard matrix functions: If g : R→ R and

A := Q

λ1 . . .

λd

Q∗, then g(A) := Q

g(λ1) . . .

g(λd)

Q∗

For exponential concentration we let g(A) = A and h(B) = eθB

Inequality does not hold without the trace
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality

Bound the derivative of the trace mgf

m′(θ) =
1

2α
E tr

[
(X −X ′)

(
eθX − eθX

′)]
≤ θ

4α
E tr

[
(X −X ′)2 ·

(
eθX + eθX

′)]
=

θ

2α
E tr

[
(X −X ′)2 · eθX

]
= θ · E tr

[
1

2α
E
[
(X −X ′)2 |Z

]
· eθX

]
= θ · E tr

[
∆X eθX

]
.
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality

Bound the derivative of the trace mgf

m′(θ) ≤ θ · E tr
[
∆X eθX

]
.

4. Conditional Variance Bound: ∆X 4 cX + v I

Yields differential inequality

m′(θ) ≤ cθE tr
[
X eθX

]
+ vθE tr

[
eθX
]

= cθ ·m′(θ) + vθ ·m(θ).

Solve to bound m(θ) and thereby bound

P{λmax(X) ≥ t} ≤ inf
θ>0

e−θt ·m(θ) ≤ d · exp

{
−t2

2v + 2ct

}
.
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Polynomial Moment Inequalities

Polynomial Moments for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let p = 1 or p ≥ 1.5. Suppose that (X,X ′) is a matrix Stein pair
where E‖X‖2p

2p <∞. Then(
E‖X‖2p

2p

)1/2p ≤
√

2p− 1 ·
(
E‖∆X‖pp

)1/2p
.

Moral: The conditional variance controls the moments of X

Generalizes Chatterjee’s version (2007) of the scalar
Burkholder-Davis-Gundy inequality (Burkholder, 1973)

See also Pisier & Xu (1997); Junge & Xu (2003, 2008)

Proof techniques mirror those for exponential concentration

Also holds for infinite-dimensional Schatten-class operators
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Polynomial Moment Inequalities

Application: Matrix Khintchine Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let (εk)k≥1 be an independent sequence of Rademacher random
variables and (Ak)k≥1 be a deterministic sequence of Hermitian
matrices. Then if p = 1 or p ≥ 1.5,(

E
∥∥∥∑

k
εkAk

∥∥∥2p

2p

)1/2p

≤
√

2p− 1 ·
∥∥∥∥(∑k

A2
k

)1/2
∥∥∥∥

2p

.

Noncommutative Khintchine inequality (Lust-Piquard, 1986; Lust-Piquard

and Pisier, 1991) is a dominant tool in applied matrix analysis

e.g., Used in analysis of column sampling and projection for
approximate SVD (Rudelson and Vershynin, 2007)

Stein’s method offers an unusually concise proof

The constant
√

2p− 1 is within
√

e of optimal
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Extensions

Extensions

Refined Exponential Concentration

Relate trace mgf of conditional variance to trace mgf of X

Yields matrix generalization of classical Bernstein inequality

Offers tool for unbounded random matrices

General Complex Matrices

Map any matrix B ∈ Cd1×d2 to a Hermitian matrix via dilation

D(B) :=

[
0 B
B∗ 0

]
∈ Hd1+d2 .

Preserves spectral information: λmax(D(B)) = ‖B‖
Dependent Sequences

Combinatorial matrix statistics (e.g., sampling w/o replacement)

Dependent bounded differences inequality for matrices

General Exchangeable Matrix Pairs (Paulin, Mackey, and Tropp, 2016)
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