Matrix Completion and Matrix Concentration

Lester Mackey†

Collaborators:

Ameet Talwalkar‡, Michael I. Jordan††, Richard Y. Chen*, Brendan Farrell*, Joel A. Tropp*, and Daniel Paulin**

†Stanford University ‡UCLA ††UC Berkeley
*California Institute of Technology **National University of Singapore

February 9, 2016
Part I

Divide-Factor-Combine
Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $L_0 \in \mathbb{R}^{m \times n}$ given a subset of its entries

\[
\begin{bmatrix}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5 \\
\end{bmatrix}
\]

Examples

- Collaborative filtering: How will user i rate movie j?
 - Netflix: 40 million users, 200K movies and television shows
- Ranking on the web: Is URL j relevant to user i?
 - Google News: millions of articles, 1 billion users
- Link prediction: Is user i friends with user j?
 - Facebook: 1.5 billion users
Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $L_0 \in \mathbb{R}^{m \times n}$ given a subset of its entries

State of the art MC algorithms

- Strong estimation guarantees
- Plagued by expensive subroutines (e.g., truncated SVD)

This talk

- Present divide and conquer approaches for scaling up any MC algorithm while maintaining strong estimation guarantees
Goal: Estimate a matrix $L_0 \in \mathbb{R}^{m \times n}$ given a subset of its entries.
Goal: Given entries from a matrix $\mathbf{M} = \mathbf{L}_0 + \mathbf{Z} \in \mathbb{R}^{m \times n}$ where \mathbf{Z} is entrywise noise and \mathbf{L}_0 has rank $r \ll m, n$, estimate \mathbf{L}_0

- **Good news:** \mathbf{L}_0 has $\sim (m + n)r \ll mn$ degrees of freedom

- Factored form: $\mathbf{A}\mathbf{B}^\top$ for $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{n \times r}$

- **Bad news:** Not all low-rank matrices can be recovered

Question: What can go wrong?
What can go wrong?

Entire column missing

\[
\begin{bmatrix}
1 & 2 & ? & 3 & \ldots & 4 \\
3 & 5 & ? & 4 & \ldots & 1 \\
2 & 5 & ? & 2 & \ldots & 5 \\
\end{bmatrix}
\]

- No hope of recovery!

Standard solution: Uniform observation model

Assume that the set of \(s \) observed entries \(\Omega \) is drawn uniformly at random:

\[\Omega \sim \text{Unif}(m, n, s) \]

- Can be relaxed to non-uniform row and column sampling
 (Negahban and Wainwright, 2010)
What can go wrong?

Bad spread of information

\[
L = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

- Can only recover \(L\) if \(L_{11}\) is observed

Standard solution: Incoherence with standard basis (Candès and Recht, 2009)

A matrix \(L = U\Sigma V^\top \in \mathbb{R}^{m \times n}\) with \(\text{rank}(L) = r\) is incoherent if

Singular vectors are not too skewed:

\[
\left\{ \begin{array}{l}
\max_i \|UU^\top e_i\|^2 \leq \frac{\mu r}{m} \\
\max_i \|VV^\top e_i\|^2 \leq \frac{\mu r}{n}
\end{array} \right.
\]

and not too cross-correlated:

\[
\|UV^\top\|_\infty \leq \sqrt{\frac{\mu r}{mn}}
\]

(In this literature, it’s good to be incoherent)
How do we estimate L_0?

First attempt:

$$\begin{align*}
\text{minimize}_A & \quad \text{rank}(A) \\
\text{subject to} & \quad \sum_{(i,j) \in \Omega} (A_{ij} - M_{ij})^2 \leq \Delta^2.
\end{align*}$$

Problem: Computationally intractable!

Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and Plan, 2010)

$$\begin{align*}
\text{minimize}_A & \quad \|A\|_* \\
\text{subject to} & \quad \sum_{(i,j) \in \Omega} (A_{ij} - M_{ij})^2 \leq \Delta^2
\end{align*}$$

where $\|A\|_* = \sum_k \sigma_k(A)$ is the trace/nuclear norm of A.

Questions:

- Will the nuclear norm heuristic successfully recover L_0?
- Can nuclear norm minimization scale to large MC problems?
Yes, with high probability.

Typical Theorem

If L_0 with rank r is incoherent, $s \gtrsim rn \log^2(n)$ entries of $M \in \mathbb{R}^{m \times n}$ are observed uniformly at random, and \hat{L} solves the noisy nuclear norm heuristic, then

$$\|\hat{L} - L_0\|_F \leq f(m,n)\Delta$$

with high probability when $\|M - L_0\|_F \leq \Delta$.

- See Candès and Plan (2010); Mackey, Talwalkar, and Jordan (2011); Keshavan, Montanari, and Oh (2010); Negahban and Wainwright (2010)
- Implies exact recovery in the noiseless setting ($\Delta = 0$)
Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

- **Standard interior point methods** (Candès and Recht, 2009):
 \[O(|Ω|(m + n)^3 + |Ω|^2(m + n)^2 + |Ω|^3) \]

- More efficient, tailored algorithms:
 - Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)
 - Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009)
 - Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)
 - All require rank-\(k\) truncated SVD on every iteration

Take away: These provably accurate MC algorithms are too expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm and still retain estimation guarantees?
Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

1. Divide M into submatrices.
2. Complete each submatrix in parallel.
3. Combine submatrix estimates, using techniques from randomized low-rank approximation.

Advantages

- Completing a submatrix often much cheaper than completing M
- Multiple submatrix completions can be carried out in parallel
- DFC works with any base MC algorithm
- The right choices of division and recombination yield estimation guarantees comparable to those of the base algorithm
DFC-PROJ: Partition and Project

1. Randomly partition \mathbf{M} into t column submatrices

 $\mathbf{M} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \cdots & \mathbf{C}_t \end{bmatrix}$ where each $\mathbf{C}_i \in \mathbb{R}^{m \times l}$

2. Complete the submatrices in parallel to obtain

 $\begin{bmatrix} \hat{\mathbf{C}}_1 & \hat{\mathbf{C}}_2 & \cdots & \hat{\mathbf{C}}_t \end{bmatrix}$

 - Reduced cost: Expect t-fold speed-up per iteration
 - Parallel computation: Pay cost of one cheaper MC

3. Project submatrices onto a single low-dimensional column space

 - Estimate column space of \mathbf{L}_0 with column space of $\hat{\mathbf{C}}_1$

 $\hat{\mathbf{L}}^{proj} = \hat{\mathbf{C}}_1\hat{\mathbf{C}}_1^+[\hat{\mathbf{C}}_1 \hat{\mathbf{C}}_2 \cdots \hat{\mathbf{C}}_t]$}

 - Common technique for randomized low-rank approximation
 (Frieze, Kannan, and Vempala, 1998)

 - Minimal cost: $O(mk^2 + lk^2)$ where $k = \text{rank}(\hat{\mathbf{L}}^{proj})$

4. Ensemble: Project onto column space of each $\hat{\mathbf{C}}_j$ and average
DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If L_0 with rank r is incoherent and $s = \omega(\frac{r^2 n \log^2(n)}{\epsilon^2})$ entries of $M \in \mathbb{R}^{m \times n}$ are observed uniformly at random, then $l = o(n)$ random columns suffice to have

$$\| \hat{L}^{\text{proj}} - L_0 \|_F \leq (2 + \epsilon) f(m, n) \Delta$$

with high probability when $\| M - L_0 \|_F \leq \Delta$ and the noisy nuclear norm heuristic is used as a base algorithm.

- Can sample vanishingly small fraction of columns ($l/n \to 0$)
- Implies exact recovery for noiseless ($\Delta = 0$) setting
- Analysis streamlined by matrix Bernstein inequality
DFC: Does it work?

Yes, with high probability.

Proof Ideas:

1. If L_0 is incoherent (has good spread of information), its partitioned submatrices are incoherent w.h.p.

2. Each submatrix has sufficiently many observed entries w.h.p.

\Rightarrow Submatrix completion succeeds

3. Random submatrix captures the full column space of L_0 w.h.p.
 - Analysis builds on randomized ℓ_2 regression work of Drineas, Mahoney, and Muthukrishnan (2008)

\Rightarrow Column projection succeeds
Figure: Recovery error of DFC relative to base algorithm (APG) with $m = 10K$ and $r = 10$.

Matrix Completion and Concentration
February 9, 2016 16 / 43
Figure: Speed-up over base algorithm (APG) for random matrices with \(r = 0.001m \) and 4\% of entries revealed.
Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict the unobserved ratings

Issues
- Full-rank rating matrix
- Noisy, non-uniform observations

The Data
- Netflix Prize Dataset\(^1\)
 - 100 million ratings in \(\{1, \ldots, 5\}\)
 - 17,770 movies, 480,189 users

\(^1\)http://www.netflixprize.com/
Task: Predict unobserved user-item ratings

<table>
<thead>
<tr>
<th>Method</th>
<th>Netflix</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>Time</td>
</tr>
<tr>
<td>Base method (APG)</td>
<td>0.8433</td>
<td>2653.1s</td>
</tr>
<tr>
<td>DFC-Proj-25%</td>
<td>0.8436</td>
<td>689.5s</td>
</tr>
<tr>
<td>DFC-Proj-10%</td>
<td>0.8484</td>
<td>289.7s</td>
</tr>
<tr>
<td>DFC-Proj-Ens-25%</td>
<td>0.8411</td>
<td>689.5s</td>
</tr>
<tr>
<td>DFC-Proj-Ens-10%</td>
<td>0.8433</td>
<td>289.7s</td>
</tr>
</tbody>
</table>
Future Directions

New Applications and Datasets

- Practical structured recovery problems with large-scale or real-time requirements
- Video background modeling via robust matrix factorization
 (Mackey, Talwalkar, and Jordan, 2014b)
- Image tagging / video event detection via subspace segmentation
 (Talwalkar, Mackey, Mu, Chang, and Jordan, 2013)

New Divide-and-Conquer Strategies

- Other ways to reduce computation while preserving accuracy
- More extensive use of ensembling
Choose a random column submatrix $C \in \mathbb{R}^{m \times l}$ and a random row submatrix $R \in \mathbb{R}^{d \times n}$ from M. Call their intersection W.

$$M = \begin{bmatrix} W & M_{12} \\ M_{21} & M_{22} \end{bmatrix}, \quad C = \begin{bmatrix} W \\ M_{21} \end{bmatrix}, \quad R = \begin{bmatrix} W & M_{12} \end{bmatrix}$$

Recover the low rank components of C and R in parallel to obtain \hat{C} and \hat{R}.

Recover L_0 from \hat{C}, \hat{R}, and their intersection \hat{W}

$$\hat{L}^{\text{nys}} = \hat{C} \hat{W} + \hat{R}$$

- Generalized Nyström method (Goreinov, Tyrtyshnikov, and Zamarashkin, 1997)
- **Minimal cost:** $O(mk^2 + lk^2 + dk^2)$ where $k = \text{rank}(\hat{L}^{\text{nys}})$

Ensemble: Run p times in parallel and average estimates
Future Directions

New Applications and Datasets
- Practical structured recovery problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies
- Other ways to reduce computation while preserving accuracy
- More extensive use of ensembling

New Theory
- Analyze statistical implications of divide and conquer algorithms
 - Trade-off between statistical and computational efficiency
 - Impact of ensembling
- Developing suite of matrix concentration inequalities to aid in the analysis of randomized algorithms with matrix data
Part II

Stein’s Method for Matrix Concentration
Concentration Inequalities

Matrix concentration

\[P\{\|X - \mathbb{E}X\| \geq t\} \leq \delta \]
\[P\{\lambda_{\text{max}}(X - \mathbb{E}X) \geq t\} \leq \delta \]

- Non-asymptotic control of random matrices with complex distributions

Applications

- Matrix completion from sparse random measurements
 (Gross, 2011; Recht, 2011; Negahban and Wainwright, 2010; Mackey, Talwalkar, and Jordan, 2014b)

- Randomized matrix multiplication and factorization
 (Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011)

- Convex relaxation of robust or chance-constrained optimization
 (Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)

- Random graph analysis
 (Christofides and Markström, 2008; Oliveira, 2009)
Motivation

Concentration Inequalities

Matrix concentration
\[\mathbb{P}\{\lambda_{\max}(X - \mathbb{E}X) \geq t\} \leq \delta \]

Difficulty: Matrix multiplication is not commutative
\[e^{X+Y} \neq e^X e^Y \neq e^Y e^X \]

Past approaches (Ahlswede and Winter, 2002; Oliveira, 2009; Tropp, 2011)
- Rely on deep results from matrix analysis
- Apply to sums of independent matrices and matrix martingales

Our work (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a; Paulin, Mackey, and Tropp, 2016)
- Stein’s method of exchangeable pairs (1972), as advanced by Chatterjee (2007) for scalar concentration
 - Improved exponential tail inequalities
 (Hoeffding, Bernstein, Bounded differences)
 - Polynomial moment inequalities (Khintchine, Rosenthal)
 - Dependent sums and more general matrix functionals
Roadmap

4 Motivation

5 Stein’s Method Background and Notation

6 Exponential Tail Inequalities

7 Polynomial Moment Inequalities

8 Extensions
Notation

Hermitian matrices: $\mathbb{H}^d = \{ A \in \mathbb{C}^{d \times d} : A = A^* \}$

- *All matrices in this talk are Hermitian.*

Maximum eigenvalue: $\lambda_{\max}(\cdot)$

Trace: $\text{tr } B$, the sum of the diagonal entries of B

Spectral norm: $\| B \|$, the maximum singular value of B
Matrix Stein Pair

Definition (Exchangeable Pair)

\((Z, Z')\) is an exchangeable pair if \((Z, Z') \overset{d}{=} (Z', Z)\).

Definition (Matrix Stein Pair)

Let \((Z, Z')\) be an exchangeable pair, and let \(\Psi : \mathcal{Z} \to \mathbb{H}^d\) be a measurable function. Define the random matrices

\[
X := \Psi(Z) \quad \text{and} \quad X' := \Psi(Z').
\]

\((X, X')\) is a matrix Stein pair with scale factor \(\alpha \in (0, 1]\) if

\[
\mathbb{E}[X' | Z] = (1 - \alpha)X.
\]

- Matrix Stein pairs are exchangeable pairs
- Matrix Stein pairs always have zero mean
Method of Exchangeable Pairs

Why Matrix Stein pairs?
- Furnish more convenient expressions for moments of X

Lemma (Method of Exchangeable Pairs)

Let (X, X') be a matrix Stein pair with scale factor α and $F : \mathbb{H}^d \to \mathbb{H}^d$ a measurable function with $\mathbb{E}\| (X - X')F(X)\| < \infty$. Then

$$\mathbb{E}[X F(X)] = \frac{1}{2\alpha} \mathbb{E}[(X - X')(F(X) - F(X'))]. \quad (1)$$

Intuition
- Expressions like $\mathbb{E}[X e^{\theta X}]$ and $\mathbb{E}[X^p]$ arise naturally in concentration settings
- Eq. 1 allows us to bound these integrals using the smoothness properties of F and the discrepancy $X - X'$
The Conditional Variance

Why Matrix Stein pairs?
- Give rise to a measure of spread of the distribution of X

Definition (Conditional Variance)
Suppose that (X, X') is a matrix Stein pair with scale factor α, constructed from the exchangeable pair (Z, Z'). The conditional variance is the random matrix

$$\Delta_X := \Delta_X(Z) := \frac{1}{2\alpha} \mathbb{E} \left[(X - X')^2 \mid Z \right].$$

- Δ_X is a stochastic estimate for the variance,
 $$\mathbb{E} X^2 = \frac{1}{2\alpha} \mathbb{E}[(X - X')^2] = \mathbb{E} \Delta_X$$

Take-home Message
Control over Δ_X yields control over $\lambda_{\max}(X)$
Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let \((X, X')\) be a matrix Stein pair with \(X \in \mathbb{H}^d\). Suppose that
\[
\Delta_X \preceq cX + v I
\]
almost surely for \(c, v \geq 0\).

Then, for all \(t \geq 0\),
\[
P\{\lambda_{\text{max}}(X) \geq t\} \leq d \cdot \exp\left\{\frac{-t^2}{2v + 2ct}\right\}.
\]

- Control over the conditional variance \(\Delta_X\) yields
 - Gaussian tail for \(\lambda_{\text{max}}(X)\) for small \(t\), exponential tail for large \(t\)
 - When \(d = 1\), reduces to scalar result of Chatterjee (2007)
- The dimensional factor \(d\) cannot be removed
Matrix Hoeffding Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let \(X = \sum_k Y_k \) for independent matrices in \(\mathbb{H}^d \) satisfying

\[
\mathbb{E} Y_k = 0 \quad \text{and} \quad Y_k^2 \preceq A_k^2
\]

for deterministic matrices \((A_k)_{k \geq 1}\). Define the scale parameter

\[
\sigma^2 := \left\| \sum_k A_k^2 \right\|.
\]

Then, for all \(t \geq 0 \),

\[
P \left\{ \lambda_{\max} \left(\sum_k Y_k \right) \geq t \right\} \leq d \cdot e^{-t^2/2\sigma^2}.
\]

- Improves upon the matrix Hoeffding inequality of Tropp (2011)
 - Optimal constant 1/2 in the exponent
- Can replace scale parameter with \(\sigma^2 = \frac{1}{2} \left\| \sum_k \left(A_k^2 + \mathbb{E} Y_k^2 \right) \right\| \)
 - Tighter than classical scalar Hoeffding inequality (1963)
Exponential Concentration: Proof Sketch

1. **Matrix Laplace transform method** (Ahlswede & Winter, 2002)

 Relate tail probability to the *trace* of the mgf of X

 $$\mathbb{P}\{\lambda_{\text{max}}(X) \geq t\} \leq \inf_{\theta > 0} e^{-\theta t} \cdot m(\theta)$$

 where $m(\theta) := \mathbb{E} \text{tr} e^{\theta X}$.

How to bound the trace mgf?

- Past approaches: Golden-Thompson, Lieb’s concavity theorem
- Chatterjee’s strategy for scalar concentration
 - Control mgf growth by bounding derivative
 $$m'(\theta) = \mathbb{E} \text{tr} X e^{\theta X} \quad \text{for} \ \theta \in \mathbb{R}.$$

 - Perfectly suited for rewriting using exchangeable pairs!
2. Method of Exchangeable Pairs

- Rewrite the derivative of the trace mgf

\[m'(\theta) = \mathbb{E} \text{tr} \ X e^{\theta X} = \frac{1}{2\alpha} \mathbb{E} \text{tr} \left[(X - X')(e^{\theta X} - e^{\theta X'}) \right]. \]

Goal: Use the smoothness of \(F(X) = e^{\theta X} \) to bound the derivative
Mean Value Trace Inequality

Lemma (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Suppose that \(g : \mathbb{R} \rightarrow \mathbb{R} \) is a weakly increasing function and that \(h : \mathbb{R} \rightarrow \mathbb{R} \) is a function with convex derivative \(h' \). For all matrices \(A, B \in \mathbb{H}^d \), it holds that

\[
\text{tr}[(g(A) - g(B)) \cdot (h(A) - h(B))] \leq \frac{1}{2} \text{tr}[(g(A) - g(B)) \cdot (A - B) \cdot (h'(A) + h'(B))].
\]

- **Standard matrix functions:** If \(g : \mathbb{R} \rightarrow \mathbb{R} \) and

\[
A := Q \begin{bmatrix} \lambda_1 & \cdot & \cdot & \cdot \\ \cdot & \ddots & \cdot & \cdot \\ \cdot & \cdot & \ddots & \cdot \\ \cdot & \cdot & \cdot & \lambda_d \end{bmatrix} Q^*, \quad \text{then} \quad g(A) := Q \begin{bmatrix} g(\lambda_1) & \cdot & \cdot & \cdot \\ \cdot & \ddots & \cdot & \cdot \\ \cdot & \cdot & \ddots & \cdot \\ \cdot & \cdot & \cdot & g(\lambda_d) \end{bmatrix} Q^*
\]

- For exponential concentration we let \(g(A) = A \) and \(h(B) = e^{\theta B} \)
- Inequality does not hold without the trace
3. Mean Value Trace Inequality

- Bound the derivative of the trace mgf

\[
m'(\theta) = \frac{1}{2\alpha} \mathbb{E} \text{tr} \left[(X - X') (e^{\theta X} - e^{\theta X'}) \right] \\
\leq \frac{\theta}{4\alpha} \mathbb{E} \text{tr} \left[(X - X')^2 \cdot (e^{\theta X} + e^{\theta X'}) \right] \\
= \frac{\theta}{2\alpha} \mathbb{E} \text{tr} \left[(X - X')^2 \cdot e^{\theta X} \right] \\
= \theta \cdot \mathbb{E} \text{tr} \left[\frac{1}{2\alpha} \mathbb{E} \left[(X - X')^2 \mid Z \right] \cdot e^{\theta X} \right] \\
= \theta \cdot \mathbb{E} \text{tr} \left[\Delta X e^{\theta X} \right].
\]
3. Mean Value Trace Inequality

- Bound the derivative of the trace mgf
 \[m'(\theta) \leq \theta \cdot \mathbb{E} \text{tr} \left[\Delta_X e^{\theta X} \right]. \]

4. Conditional Variance Bound: \(\Delta_X \preceq cX + vI \)

- Yields differential inequality
 \[m'(\theta) \leq c\theta \mathbb{E} \text{tr} \left[X e^{\theta X} \right] + v\theta \mathbb{E} \text{tr} \left[e^{\theta X} \right] \]
 \[= c\theta \cdot m'(\theta) + v\theta \cdot m(\theta). \]

- Solve to bound \(m(\theta) \) and thereby bound
 \[\mathbb{P}\{\lambda_{\max}(X) \geq t\} \leq \inf_{\theta > 0} e^{-\theta t} \cdot m(\theta) \leq d \cdot \exp \left\{ \frac{-t^2}{2v + 2ct} \right\}. \]
Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let \(p = 1 \) or \(p \geq 1.5 \). Suppose that \((X, X')\) is a matrix Stein pair where \(\mathbb{E} \|X\|_{2p}^{2p} < \infty \). Then

\[
(\mathbb{E} \|X\|_{2p}^{2p})^{1/2p} \leq \sqrt{2p - 1} \cdot (\mathbb{E} \|\Delta X\|_p^p)^{1/2p}.
\]

- **Moral:** The conditional variance controls the moments of \(X \)
- Generalizes Chatterjee’s version (2007) of the scalar Burkholder-Davis-Gundy inequality (Burkholder, 1973)
 - See also Pisier & Xu (1997); Junge & Xu (2003, 2008)
- Proof techniques mirror those for exponential concentration
- Also holds for infinite-dimensional Schatten-class operators
Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let \((\varepsilon_k)_{k \geq 1}\) be an independent sequence of Rademacher random variables and \((A_k)_{k \geq 1}\) be a deterministic sequence of Hermitian matrices. Then if \(p = 1\) or \(p \geq 1.5\),

\[
\left(\mathbb{E} \left\| \sum_k \varepsilon_k A_k \right\|_{2p}^{2p} \right)^{1/2p} \leq \sqrt{2p - 1} \cdot \left\| \left(\sum_k A_k^2 \right)^{1/2} \right\|_{2p}.
\]

- Noncommutative Khintchine inequality (Lust-Piquard, 1986; Lust-Piquard and Pisier, 1991) is a dominant tool in applied matrix analysis
 - e.g., Used in analysis of column sampling and projection for approximate SVD (Rudelson and Vershynin, 2007)
- Stein’s method offers an unusually concise proof
- The constant \(\sqrt{2p - 1}\) is within \(\sqrt{e}\) of optimal
Extensions

Refined Exponential Concentration
- Relate trace mgf of conditional variance to trace mgf of X
- Yields matrix generalization of classical Bernstein inequality
- Offers tool for unbounded random matrices

General Complex Matrices
- Map any matrix $B \in \mathbb{C}^{d_1 \times d_2}$ to a Hermitian matrix via dilation
 \[\mathcal{D}(B) := \begin{bmatrix} 0 & B \\ B^* & 0 \end{bmatrix} \in \mathbb{H}^{d_1+d_2}. \]
- Preserves spectral information: $\lambda_{\text{max}}(\mathcal{D}(B)) = \|B\|

Dependent Sequences
- Combinatorial matrix statistics (e.g., sampling w/o replacement)
- Dependent bounded differences inequality for matrices

General Exchangeable Matrix Pairs (Paulin, Mackey, and Tropp, 2016)
References I

Talwalkar, Ameet, Mackey, Lester, Mu, Yadong, Chang, Shih-Fu, and Jordan, Michael I. Distributed low-rank subspace segmentation. December 2013.
