On the Consistency of Ranking Algorithms

John Duchi, Lester Mackey, Michael I. Jordan

University of California, Berkeley

International Conference on Machine Learning, 2010
Goal: Order set of inputs/results to best match the preferences of an individual or a population

- Web search: Return most relevant results for user queries
- Recommendation systems:
 - Suggest movies to watch based on user’s past ratings
 - Suggest news articles to read based on past browsing history
- Advertising placement: Maximize profit and click-through
Supervised ranking setup

Observe: Sequence of training examples

- **Query** q: e.g., search term
- **Set of results** x to rank
 - Items $\{1, 2, 3, 4\}$
- **Weighted DAG** G representing preferences over results
 - Item 1 preferred to $\{2, 3\}$ and item 3 to 4

Observe multiple preference graphs for the same query q and results x
Supervised ranking setup

Learn: Scoring function $f(x)$ to rank results x

- Real-valued score for result i
 \[s_i := f_i(x) \]

- Result i ranked above j iff $f_i(x) > f_j(x)$

- Loss suffered when scores s disagree with preference graph G:
 \[L(s, G) = \sum_{i,j} a_{ij} 1_{(s_i < s_j)} \]

Example:

\[L(s, G) = a_{12} 1_{(s_1 < s_2)} + a_{23} 1_{(s_1 < s_3)} + a_{34} 1_{(s_3 < s_4)} \]
Supervised ranking setup

Example: Scoring function f optimally ranks results in G

$$f_1(x) > f_2(x)$$

$$f_2(x) > f_3(x)$$
Detour to classification

Consider the simpler problem of classification

- Given: Input x, label $y \in \{-1, 1\}$
- Learn: Classification function $f(x)$. Have margin $s = yf(x)$

Loss $L(s) = 1_{(s \leq 0)}$

Surrogate loss $\phi(s)$

Hard Tractable
Classification and surrogate consistency

Question: Does minimizing expected ϕ-loss minimize expected L?

Minimize $\sum_{i=1}^{n} \phi(y_i f(x_i))$ \(n \to \infty \) Minimize $\mathbb{E}\phi(Y f(X))$

Minimize $\mathbb{E}L(Y f(X))$

Theorem: If ϕ is convex, procedure based on minimizing ϕ is consistent if and only if $\phi'(0) < 0$.\(^1\)
What about ranking consistency?

Minimization of true ranking loss is hard

- Replace ranking loss $L(s, G)$ with tractable surrogate $\varphi(s, G)$

Question: When is surrogate minimization consistent for ranking?
Conditional losses

\[
p(G_1) = .5 \quad p(G_2) = .5
\]

\[\ell(p, s) = \sum_G p(G|x, q)L(s, G)\]

\[\ell(p, s) = .5a_{21}1_{s_2<s_1} + .5(a_{12} + a'_{12})1_{s_1<s_2} + .5(a_{23} + a'_{23})1_{s_1<s_3} + .5(a_{34} + a'_{34})1_{s_3<s_4}\]

\[\text{Optimal score vectors}\]

\[A(p) = \arg\min_s \ell(p, s)\]
Consistency theorem

Theorem: Procedure minimizing \(\varphi \) is asymptotically consistent if and only if

\[
\inf_s \left\{ \sum_{G} p(G) \varphi(s, G) \mid s \notin A(p) \right\} > \inf_s \left\{ \sum_{G} p(G) \varphi(s, G) \right\}
\]

In other words, \(\varphi \) is consistent if and only if minimization gives correct order to the results

Goal: Find tractable \(\varphi \) so \(s \) that minimizes

\[
\sum_{G} p(G) \varphi(s, G)
\]

minimizes \(\ell(p, s) \).
Consistent and Tractable?

Hard to get consistent and tractable φ

- In general, it is NP-hard even to find s minimizing

$$\sum_G p(G) L(s, G).$$

(reduction from feedback arc-set problem)

Some restrictions on the problem space necessary...
Low noise setting

Definition: Low noise if $a_{ij} - a_{ji} > 0$ and $a_{jk} - a_{kj} > 0$

implies $a_{ik} - a_{ki} \geq (a_{ij} - a_{ji}) + (a_{jk} - a_{kj})$

![Diagram]

- Intuition: weight on path reinforces local weights, local weights reinforce paths.
- Reverse triangle inequality
- True when DAG derived from user ratings
Trying to achieve consistency

Try ideas from classification: ϕ is convex, bounded below, $\phi'(0) < 0$. Common in ranking literature.2

$$\varphi(s, G) = \sum_{ij} a_{ij} \phi(s_i - s_j)$$

$$\varphi(s, G) = a_{12} \phi(s_1 - s_2) + a_{34} \phi(s_3 - s_4)$$

Theorem: φ is not consistent, even in low noise settings.

2Herbrich et al., 2000; Freund et al., 2003; Dekel et al., 2004, etc.
What is the problem?

Surrogate loss \(\varphi(s, G) = \sum_{ij} a_{ij} \phi(s_i - s_j) \)

\[
p(G_1) = .5 \\
p(G_2) = .5
\]

Aggregate

\[
\sum_{G} p(G) \varphi(s, G) = \frac{1}{2} \varphi(s, G_1) + \frac{1}{2} \varphi(s, G_2)
\]

\[
\propto a_{12} \phi(s_1 - s_2) + a_{13} \phi(s_1 - s_3) + a_{23} \phi(s_2 - s_3) + a_{31} \phi(s_3 - s_1)
\]
What is the problem?

\[a_{12} \phi(s_1 - s_2) + a_{13} \phi(s_1 - s_3) + a_{23} \phi(s_2 - s_3) + a_{31} \phi(s_3 - s_1) \]

More bang for your $$ by increasing to 0 from left: \ s_1 \downarrow. \ Result:

\[s^* = \arg \min_s \sum_{ij} a_{ij} \phi(s_i - s_j) \]

can have \(s_2^* > s_1^* \), even if \(a_{13} - a_{31} > a_{12} + a_{23} \).
Trying to achieve consistency, II

Idea: Use margin-based penalty

$$\phi(s, G) = \sum_{i,j} \phi(s_i - s_j - a_{ij})$$

Inconsistent: Take $a_{ij} \equiv c$; can reduce to previous case

3Shashua and Levin 2002
Ranking is challenging

- Inconsistent in general
- Low noise settings
 - Inconsistent for edge-based convex losses
 \[\varphi(s, G) = \sum_{i,j} a_{ij} \phi(s_i - s_j) \]
 - Inconsistent for margin-based convex losses
 \[\varphi(s, G) = \sum_{i,j} \phi(s_i - s_j - a_{ij}) \]
- Question: Do tractable consistent losses exist?
 Yes.
A solution in the low noise setting

Recall reverse triangle inequality

\[a_{12} \quad a_{13} \]
\[a_{23} \quad a_{31} \]

- Idea 1: make loss reduction proportional to weight difference \(a_{ij} - a_{ji} \)
- Idea 2: regularize to keep loss well-behaved

Theorem: For \(r \) strongly convex, following loss is consistent:

\[
\varphi(s, G) = \sum_{ij} a_{ij}(s_j - s_i) + \sum_{j} r(s_j)
\]
Consistency proof sketch

Write surrogate, take derivatives:

\[
\sum_{G} p(G) \varphi(s, G) = \sum_{ij} a_{ij} (s_j - s_i) + \sum_{j} r(s_j)
\]

\[
\frac{\partial}{\partial s_i} = \sum_{j} (a_{ij} - a_{ji}) + r'(s_i) = 0
\]

Simply note that \(r'\) is strictly increasing, see that

\[
s_i > s_k \quad \iff \quad \sum_{j} a_{ij} - a_{ji} > \sum_{j} a_{kj} - a_{jk}
\]

Last holds by low-noise assumption.
Experimental results

- MovieLens dataset: 4 100,000 ratings for 1682 movies by 943 users
- Query is user u, results $X = \{1, \ldots, 1682\}$ are movies
- Scoring function: $f_i(x, u) = w^T \psi(x_i, u)$
- ψ maps from movie x_i and user u to features
- Per-user pair weight a^u_{ij} is difference of user’s ratings for movies x_i, x_j

4GroupLens Lab, 2008
Surrogate risks

Losses based on pairwise comparisons

Ours
\[\sum_{i,j,u} a_{ij}^u w^T (\psi(x_j, u) - \psi(x_i, u)) + \theta \sum_{i,u} (w^T \psi(x_i, u))^2 \]

Hinge
\[\sum_{i,j,u} a_{ij}^u \left[1 - w^T (\psi(x_j, u) - \psi(x_i, u)) \right]_+ \]

Logistic
\[\sum_{i,j,u} a_{ij}^u \log \left(1 + e^{w^T (\psi(x_j, u) - \psi(x_i, u))} \right) \]
Experimental results

Test losses for each surrogate (standard error in parenthesis)

<table>
<thead>
<tr>
<th>Num training pairs</th>
<th>Hinge</th>
<th>Logistic</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000</td>
<td>.478 (.008)</td>
<td>.479 (.010)</td>
<td>.465 (.006)</td>
</tr>
<tr>
<td>40000</td>
<td>.477 (.008)</td>
<td>.478 (.010)</td>
<td>.464 (.006)</td>
</tr>
<tr>
<td>80000</td>
<td>.480 (.007)</td>
<td>.478 (.009)</td>
<td>.462 (.005)</td>
</tr>
<tr>
<td>120000</td>
<td>.477 (.008)</td>
<td>.477 (.009)</td>
<td>.463 (.006)</td>
</tr>
<tr>
<td>160000</td>
<td>.474 (.007)</td>
<td>.474 (.007)</td>
<td>.461 (.004)</td>
</tr>
</tbody>
</table>
Conclusions

- General theorem for consistency of ranking algorithms
- General inconsistency results as well as inconsistency results for several natural and commonly used losses, even in low noise settings
- Consistent loss for low noise settings
Open questions

- What are appropriate ranking losses? Click-based loss, ratings-based losses?
- Other consistent losses?
- Convergence rates?