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Goals

 Awareness: Subseasonal forecasting
* Crowdsourced science: The Subseasonal Climate Forecast Rodeo

* The SubseasonalRodeo Dataset: https://doi.org/10.7910/DVN/IHBANG

* Machine learning: Weighted locally linear regression, multitask model
selection, multitask KNN, ensembling


https://doi.org/10.7910/DVN/IHBANG

Judah Cohen

 Climatologist, director of seasonal forecasting
at Atmospheric and Environmental Research

* Concern: Community not making the best use of
historical data in weather / climate forecasting

* Landscape dominated by dynamical models, purely
physics-based models of atmospheric and oceanic
evolution




Dynamical Models

e |Initialized with current weather
conditions inferred from
Horizontal Grid
measurements L atitude-Longitude) |

» Simulate future weather / climate by
discretizing partial differential Vertical Grid
equations using supercomputers Helght or Pressure

* Accuracy limited by chaotic nature: TSI
initial error doubles every 5 days B
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Source:
http://celebrating200years.noaa.gov/breakt
hroughs/climate_model/AtmosphericModel
Schematic.png

* Sometimes debiased by comparing
predictions to truth over recent years



Judah Cohen

 Climatologist, director of seasonal forecasting
at Atmospheric and Environmental Research

* Concern: Community not making the best use of
historical data in weather / climate forecasting

* Landscape dominated by numerical weather
prediction and global climate models, purely physics-
based models of atmospheric and oceanic evolution

* Concern: Subseasonal forecasts especially poor




FORECAST SKILL

Weather forecasts
predictability comes from initial
atmospheric conditions

Sub-seasonal forecasts
predictability comes from monitoring the
Madden-Julian Oscillation, land surface
data, and other sources

Seasonal forecasts
excellent predictability comes primarily from
sea-surface temperature data

accuracy dependent on ENSO state
good
Ll m
poor
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Source: https://iri.columbia.edu/news/ga-subseasonal-prediction-project/



Subseasonal Forecasting: What and Why?

* What: Predicting temperature and precipitation 2 — 6 weeks out

° Why: (White et al., 2017, Meteorological Applications) WATER
* Allocating water resources -
* Managing wildfires 3
* Preparing for weather extremes
* e.g., droughts, heavy rainfall, and flooding

* Crop planting, irrigation scheduling, and Saddle up ig
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* “The mission of the [USBR] is to manage, )
develop, and protect water and related _
resources in an environmentally and

economically sound manner in the interest of
the American public.”

* Manages water in 17 western states

* Provides 1 out of 5 Western farmers with
irrigation water for 10 million farmland acres

* Generates enough electricity to power 3.5M U.S.
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* “During the past eight years, every state in
the Western United States has experienced
drought that has affected the economy both
locally and nationally through impacts to
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energy.”
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Credit: David Raff, USBR



The Subseasonal Climate Forecast Rodeo

* A year long, real-time subseasonal
forecasting competition MRTN‘ENT OF THE T3S
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e Advance science ~-_ = = - - -
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* Provide an evaluation platform Credit: David Raff, USBR
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Subseasonal Rodeo Forecasts

* Four separate forecasting tasks
* Two variables: average temperature (degrees C) and total precipitation (mm)
* Two outlooks: weeks 3-4 and weeks 5-6 (forecast is over a 2-week period)

* Issued on a 1°X1° latitude-longitude grid (G = 514 grid points)

* |ssued every two weeks
* Apr 18, 2017 -- May 3, 2018, midnight GMT
* Disqualified if two submissions missed
* One submission was on Christmas day EST

e Uploaded to server in NetCDF format
* Popular format for scientific array data

Acknowledgment: We would not have survived this competition without
tools like CDO, wgrib2, and NCO for processing the NetCDF, GRIB2, ,
and custom byte stream (?!) formats common in meteorological data 17 State Forecast Rodeo Region




Subseasonal Rodeo Evaluation

* For each 2-week period starting on date t, define
 monthday(t), the month-day combination associated with t (e.g., January 1)
* observed outcomes y; € R for each grid point (temperature or precipitation)

* observed anomalies a; = y; — Ciyonthday(t) Where

. i s 1
climatology c; = 30 Zt:monthday(t):d, Yt
1981 <year(t)<2010

* Average outcome for month-day combo d over the climatology period, 1981-2010

* Forecasts judged on skill (cosine similarity) between observed anomalies
and forecast anomalies @; = ¥; — Conthday(t):

Sklu(ét, at) = COS(é.t, at) — ”éiﬂ;’ﬁ;iHQ ~ [—1, 1]

* Unusual objective function for machine learning
* Multitask objective function: couples together the G per-grid point forecasting tasks



Subseasonal Rodeo Benchmarks

* Contestants had to outperform two benchmarks to qualify for prizes

* Debiased Climate Forecasting System v2 (CFSv2)

* Operational physics-based system developed under the guidance of the U.S.
National Centers for Environmental Prediction (NCEP)
* To form debiased CFSv2 benchmark, CFSv2 forecasts for date t were

* Ensembled by averaging 32 forecasts (4 model initializations and 8 lead times)
* Debiased by adding the mean observed outcome for monthday(t) over 1999-2010 and

subtracting the mean CFSv2 reforecast (8 lead times, 1 model initialization)
 Damped persistence
e Statistical forecasting model (no exact description provided)

* “Seasonally developed regression coefficients based on the historical
climatology period of 1981-2010 that relate observations of the past two
weeks to the forecast outlook periods on a grid cell by grid cell basis”



Week 3-4 Forecast submitted 20180109, verifying 20180205 Week 3-4 Forecast submitted 20170905, verifying 20171002
Our skill: 0.8383 Observed Our skill: -0.0077 Observed
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Subseasonal Rodeo Data

* No data was provided!
* Organizers did identify which ground-truth temperature and precipitation
data sources would be used for evaluation
* Contestants encouraged to use whatever data they wanted

* |f using standard physics-based model forecasts as inputs, had to demonstrate
significant improvement over those models



Our SubseasonalRodeo Dataset

* To train and evaluate our predictive models, we constructed a
SubseasonalRodeo dataset from diverse data sources with varying file
formats, spatial layouts, and measurement frequencies

* Organized as a collection of Python Pandas objects in HDF5 format

 Spatial variables (vary with the target grid point but not the target date)
 Temporal variables (vary with the target date but not the target grid point)
» Spatiotemporal variables (vary with both the target grid point and the target date)

* Gridded data interpolated to 1°x1° grid (using distance-weighted average
interpolation) and restricted to contest grid points

* Daily measurements replaced with averages (or, for precipitation, sums)
over ensuing 2-week period

* Released via the Harvard Dataverse https://doi.org/10.7910/DVN/IHBANG



https://doi.org/10.7910/DVN/IHBANG

Our SubseasonalRodeo Dataset

* Temperature
* Source: NOAA’s Climate Prediction Center (CPC) Global Gridded Temperature dataset

* Daily max and min temperature at 2 meters (tmax and tmin) from 1979 onwards
tmax+tmin

2

 Official contest target temperature variable: tmp2m =

CPC Global Tmax Anom Oct 15, 2018
1981-2010 LTM

Maximum Temperature Anomaly
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Our SubseasonalRodeo Dataset

* Precipitation

* Source: NOAA’s CPC Gauge-Based Analysis of Global Daily Precipitation
(Xie, Chen, and Shi 2010)

 Daily precipitation (precip) data from 1979 onward

* Augmented with daily U.S. precipitation data from 1948-1979 from the CPC Unified
Gauge-Based Analysis of Daily Precipitation over CONUS

CPC Daily Precip Anom Oct 15, 2018
1971-2000 LTM

Precipitation Anomaly mm
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Our SubseasonalRodeo Dataset

* Sea surface temperature and sea ice concentration

* Source: NOAA’s Optimum Interpolation Sea Surface Temperature (SST) dataset
(Reynolds et al. 2007)

* Daily SST and sea ice concentration data, from 1981 to the present.

» After interpolation, we extracted the top three principal components (PCs) across
grid points in the Pacific basin region (20S to 65N, 150E to 90W),
(sst))i- and (icec)i;




Our SubseasonalRodeo Dataset

* Multivariate ENSO index (MEI)

* Source: NOAA/Earth System Research Laboratory (wolter 1993; Wolter and Timlin 1998)
* Bimonthly MEI values (mei) from 1949 to the present

* El Nifio/Southern Oscillation (ENSO) is an irregularly periodic variation in winds
and SSTs over the tropical eastern Pacific Ocean that affecting global climate
variability on interannual timescales

* MEIl is a scalar summary of six variables (sea-level pressure, zonal and meridional
surface wind components, SST, surface air temperature, and sky cloudiness)
associated with ENSO

MULTIVARIATE ENSO INDEX
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Our SubseasonalRodeo Dataset

 Madden-Julian oscillation (MJO)

e Source: Australian Government Bureau of Meteorology (wheeler and Hendon 2004)
e Daily MJO amplitude and phase values since 1974 (we do not aggregate)

 MJO is a metric of tropical convection on daily to weekly timescales and can have
significant impact on the western United States’ subseasonal climate.
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Our SubseasonalRodeo Dataset

* Relative humidity and pressure

* Source: NOAA’s National Center for Environmental Prediction (NCEP)/National
Center for Atmospheric Research Reanalysis dataset (Kalnay et al. 1996)

 Daily relative humidity (rhum) near the surface from 1948 to the present
 Daily pressure at the surface (pres) from 1979 to the present.

NCEP/NCAR Reanalysis
Sea Level Pressure (mb) Composite Mean
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Our SubseasonalRodeo Dataset

* Geopotential height
e Source: NCEP Reanalysis dataset (kalnay et al. 1996)
* Daily mean height at which 10mb of pressure occurs since 1948

e Captures variability in the Arctic polar vortex, a large-scale low-pressure area lying
near the North Pole

hysica I Sciences Div

e Extracted the top three principal components (wirid_hgt_loi)l-3:1
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NMME scaled Nino3.4, IC=201810

] CMC1

Our SubseasonalRodeo Dataset® =
1_/ ___________________ ]
. . OE/"__'"" ;
* North American Multi-Model Ensemble (NMME) S
» Source: IRI/LDEO Climate Data Library (kirtman et al. 2014) ‘
* Monthly forecasts of physics-based models from North -2f
America modeling centers May Ju  Sep Nov Jan  Mar  Ma

* Cansips, CanCM3, CanCM4, CCSM3, CCSM4, GFDL-CM2.1-aer04, GFDL-
CM2.5 FLOR-A06 and FLOR-B0O1, NASA-GMAOO062012, and NCEP-CFSv2.

* Each forecast contains monthly mean predictions from 0.5 to
8.5 months ahead.

* Derived 2-week forecasts from a weighted average of the
monthly predictions with weights proportional to the number
of target period days that fell into each month.

* Formed an equally-weighted average (hmme_wo ccsm3_nasa) of all

models save CCSM3 and NASA (which were not reliably updated during
the contest).

* Also created by averaging the most recent monthly forecast of each
model save CCSM3 and NASA (hmme0O_wo_ccsm3_nasa).



Our Forecasting Models

 MultiLLR: Local Linear Regression with Multitask Feature Selection

* Incorporates lagged measurements from all data sources
* Prunes irrelevant regressors using skill-based multitask feature selection

 AutoKNN: Multitask Nearest Neighbor Autoregression

 |dentifies dates most similar to target using skill-based similarity measure
* Regresses onto observed temperature or precipitation of similar dates and fixed lags

* Ensemble: Averages the normalized predicted anomalies
A 1 émultillr 1 éautokmn

a ble = 5 1A 2114 |
ensembple QHamultiHrHQ | 2||aautoanH2

* Proposition If the average of the individual model skills is positive, then the
ensemble skill is strictly greater than the average of the individual skills.




Local Regression with Multitask Feature

temperature, weeks 3-4

Selection (MultiLLR)

1. Extract lagged measurements of
SubseasonalRodeo variables as
regression features x; ,

* Lag based on measurement availability

e “shiftl” indicates that measurements were
from [ days prior

 “anom” indicates that anomalies are used
instead of raw values

* “ones” is a constant feature always =1
(used in lieu of an intercept)

pres_shift30 A

ones -

tmp2m_shift29 1
tmp2m_shift58 A
sst_ 3 shift30 -
tmp2m_shift58 anom A
sst_1_shift30 -
nmme_wo_ccsm3_nasa 1
mei_shift45 -
phase_shift17 4
wind_hgt_10_1_shift30 1
icec_3_shift30 4
wind_hgt_10_2_shift30 1
nmme0_wo_ccsm3_hasa A
sst 2 shift30 -
tmp2m_shift29 _anom -
icec_1_shift30 1
icec_2_shift30 1
rhum_shift30 A
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Local Regression with Multitask Feature
Selection (MultiLLR)

2. Combine features using local linear regression
* Locality determined by the day of the year
* Uniform weights (w; ;, = 1), no offsets (b; ;, = 0)

Algorithm 1 Weighted Local Linear Regression (LLR)

input test day of year d*; span s; training outcomes, features, offsets,
Weights (yt grXt,gs bt,ga wt,g)tET,ge{l G}
DE{teT: 3% —||doy(t) — d*| - 365] < s}
for grid pomts g=1to G do
A . T
/39 € argming ZtED Wi, (Yt,g — b,y — B Xt,g)2

output coefficients (3 0o




Local Regression with Multitask Feature
Selection (MultiLLR)

3. Feature selection: select subset of relevant features for each target date

* Motivation: Not all features are relevant at all times of year

* Use a customized backward stepwise procedure to prune features
 Start with all features included in the model

e Until termination
* Fit LLR model with each remaining candidate feature removed and evaluate predictive performance

* If, in each case, performance is reduced substantially, keep all remaining features and terminate

* Otherwise, remove the feature that reduces skill the least
* Selection is multitask: variables selected jointly for all grid points, while coefficients

are fit separately for each grid point
* Performance measured via leave-one-year-out cross-validated average skill

* For each year in the training set, we find the date t in that year with the same day-of-year as the
target date, withhold one year of data surrounding t from the training set, and measure the skill
of the trained model at predicting the withheld anomalies a;

* The average of these skills across all years is our predictive performance measure



Multitask k—Nearest Neighbor
Autoregression (AutoKNN)

1. Extract features from historical measurements of the outcome variable
* Constant “ones” feature and 3 lagged anomaly measurements
* Lags =29, 58, and 365 days for weeks 3-4 or 43, 56, and 365 days for weeks 5-6
* Observed anomaly patterns of the outcome variable on similar dates in the past
e Similarity measure based on skill objective and measured jointly for all grid points

* Compute mean skill over a history of H = 60 days, starting 1 year prior to target date (¥ = 365)
* Extract anomalies of k = 20 most similar dates for temperature and k = 1 for precipitation

Algorithm 3 Multitask k-Nearest Neighbor Similarities

input test date t*; training anomalies (a;)¢; lag ¢; history H
for all training dates ¢ do

. 1 —1 .
sim; = % ) 5o skill(ay—y—pn,a—¢—p)
output similarities (sim;),




Multitask k—Nearest Neighbor
Autoregression (AutoKNN)

2. Combine features using weighted local linear regression
* Locality determined by the day of the year
* Climatology offsets bt ; = Cmonthday(t),g, SO target variable is anomaly a; 4 rather
than raw measurement y; 4

2
* Weightsw; , = 1/ Zg(at,g — %Zf at’f) to mimic cosine similarity objective

Algorithm 1 Weighted Local Linear Regression (LLR)

input test day of year d*; span s; training outcomes, features, offsets,
weights (yt,g, Xt g bt,g, wt,g)teT,ge{l,...,G}
D={teT:3 —|doy(t) — d*| — 532| < s}
for grid points ¢ =1 to G do
fég € argming Zth We,g(Yt,g — b,g — /6TXt,g)2

output coefficients (3,)5_,




Ensembling

e Our final forecast is an ensemble of the MultiLLR and AutoKNN predictions
* We average of the normalized predicted anomalies of the two models:

A 1 EA’-multillr 1 Agutoknn

a ble = A 2 |
ensemble 2 Hamultillr H2 2 Haautoknn ||2

* Proposition [f the average of the individual model skills is positive, then
the ensemble skill is strictly greater than the average of the individual skills.



Contest Period Evaluation

Table 1 Average contest-period skill of MultiLLR, AutoKNN, the proposed ensemble of MultiLLR
and AutoKNN, the official contest debiased-CFSv2 baseline, the official contest damped-
persistence baseline, and the top-performing competitor in the Forecast Rodeo contest.

task multillr autoknn ensemble debiased cfsv2 damped top competitor
temperature, weeks 3-4 | 0.2856 0.2807 0.3414 0.1589 0.1952 0.2855
temperature, weeks 5-6 | 0.2371 0.2817 0.3077 0.2192 -0.0762 0.2357
precipitation, weeks 3-4 | 0.1675 0.2156 0.2388 0.0713 -0.1463 0.2144
precipitation, weeks 5-6 | 0.2219 0.1870 0.2412 0.0227 -0.1613 0.2162

e All three proposed methods outperform both contest baselines in all four tasks

* The ensemble outperforms the top Rodeo competitor in all four tasks

* Note: the competitor skills represent the real-time evaluations of forecasting systems that
may have evolved over the course of the competition



Contest Period Evaluation

temperature, weeks 3-4 temperature, weeks 5-6 precipitation, weeks 3-4 precipitation, weeks 5-6
7.5-
5.0- é
25- =
0.0-
7.5-
g
5.0- 3
3
2.5- =
0.0-
_ 7.5- 0
c 7}
5.0- @
3 2
©25- >
0.0-
7.5- §
Q
5.0- @
o
25- &
<
N
0.0-
7.5-
&
5.0- 3
el
[0
2.5- =
00 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
skill

Distribution of contest-period skills: baselines tend to have more extreme negative skills



Historical Forecast Evaluation

* We next evaluate the performance of our methods over 2011 — 2017 (all
years following the climatology period)

* We reconstruct the debiased CFSv2 baseline (rec-deb-cfs) following contest
guidelines and using the CFSv2 Operational Forecast dataset

* The forecast is an ensemble of 8 lead times but only 1 model initialization (the other
model initialization forecasts were released in real time but deleted after 1 week)

* We also evaluate a three-way ensemble of MultiLLR, AutoKNN, and rec-
deb-cfs (ens-cfs):

A 1 Amultillr | 1 Agutoknn | 1 Arec-deb-cfs
3 Harec—deb—cfSHQ

Qens-cfs = A 3
ens-cfs 3 ||amultiler2 | 3 HaautoanHQ



Historical Forecast Evaluation

temperature, weeks 3-4 temperature, weeks 5-6

year | multillr autoknn ensemble rec-deb-cfs ens-cfs | multillr autoknn ensemble rec-deb-cfs ens-cfs
2011 | 0.2479 0.3664 0.3433 0.4598 0.4563 | 0.2685 0.3240 0.3646 0.3879 0.4405
2012 | 0.0879 0.3135 0.2173 0.1397 0.2181 | 0.2765 0.3205 0.3529 0.1030 0.3316
2013 | 0.0944 0.2011 0.1688 0.2861 0.2711 | 0.2397  0.0531 0.1895 0.1211 0.1858
2014 | 0.1682 0.2775 0.2803 0.3018 0.3591 | 0.1448 0.3056 0.2596 0.1936 0.3311
2015 | 0.3673 0.3885 0.4339 0.2857 0.4383 | 0.1487 0.3939 0.2970 0.4234 0.4311
2016 | 0.3098 0.3502 0.3663 0.2490 0.3887 | 0.2277 0.2882 0.3023 0.0983 0.2799
2017 | 0.2856 0.2807 0.3414 0.0676 0.3239 | 0.2371 0.2817 0.3077 0.1708 0.2993
all 0.2230 0.3111 0.3073 0.2557 0.3508 | 0.2204 0.2810 0.2962 0.2142 0.3279

 AutoKNN and ensemble have higher mean skill than debiased CFSv2 on both tasks; MultiLLR

has higher mean skill on weeks 5-6
* Ensemble improves over debiased CFSv2 by 20% for weeks 3-4 and 38% for weeks 5-6
* Ens-cfs improves over debiased CFSv2 by 37% for weeks 3-4 and 53% for weeks 5-6



Historical Forecast Evaluation

precipitation, weeks 3-4

precipitation, weeks 5-6

year | multillr autoknn ensemble rec-deb-cfs ens-cfs | multillr autoknn ensemble rec-deb-cfs ens-cfs
2011 | 0.1332 0.2173 0.2081 0.1646 0.2435 | 0.1371 0.2132 0.2195 0.1835 0.2704
2012 | 0.3219 0.3648 0.3999 0.0828 0.3854 | 0.2879 0.3943 0.4026 0.1941 0.4083
2013 | 0.1922 0.2026 0.2353 0.0648 0.1967 | 0.1394 0.1784 0.1969 0.0782 0.1915
2014 | 0.0799 0.1208 0.1378 0.1272 0.1716 | -0.0404 0.0818 0.0372 0.0155 0.0537
2015 | 0.0631  -0.0053 0.0396 0.0837 0.1035 | 0.0701 0.0204 0.0822 0.0292 0.0878
2016 | 0.1436 -0.0568 0.0660 0.0190 0.0467 | 0.1022 -0.0930 0.0125 -0.0160 0.0180
2017 | 0.1675 0.2156 0.2388 0.0596 0.2270 | 0.2219 0.1870 0.2412 -0.0038 0.2026

all 0.1573 0.1513 0.1893 0.0860 0.1964 | 0.1312 0.1403 0.1703 0.0691 0.1755

 MultiLLR, AutoKNN, and ensemble have higher mean skill than debiased CFSv2 on both tasks
 Ensemble improves over debiased CFSv2 by 120% for weeks 3-4 and 146% for weeks 5-6

* Ens-cfs improves over debiased CFSv2 by 128% for weeks 3-4 and 154% for weeks 5-6



Historical Forecast Evaluation
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Exploring MultiLLR Feature Selection

pres_shift30 -
nmme_wo_ccsm3_nasa 1
ones 7

tmp2m_shift29 A
tmp2m_shift29_anom A
sst_1_shift30 -
tmp2m_shift58
wind_hgt_10_1_shift30 1
precip_shift29_anom -
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Exploring MultiLLR Feature Selection
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temperature, weeks 5-6
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Exploring AutoKNN Neighbor Selection
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neighbor rank

Exploring AutoKNN Neighbor Selection

temperature, weeks 3-4
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neighbors for temp
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 Vertical striations

suggest that neighbor
months tend to be
homogenous:
neighbors tend to
come from similar
times of year



Exploring AutoKNN Neighbor Selection

temperature, weeks 3-4

neighbor rank
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