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Motivation: Large-scale Posterior Inference

Example: Bayesian logistic regression
@ Unknown parameter vector: 3 ~ N(0, 1)
@ Fixed covariate vector: v; € RY for each datapoint I =1,...,L

. . ind 1
@ Binary class label: Y} | v, 8~ Ber(m>
@ Generative model simple to express

@ Posterior distribution over unknown parameters is complex
e Normalization constant unknown, exact integration intractable

Standard inferential approach: Use Markov chain Monte Carlo
(MCMQCQ) to (eventually) draw samples from the posterior distribution

° Benefit Approximates intractable posterior expectations

Ep[h(Z)] = [, p(x)h(zx)dz with asymptotically exact sample
estlmates Eq, [MX)] =150 | h(x;)

@ Problem: Each new MCMC sample point x; requires iterating
over entire observed dataset: prohibitive when dataset is large!
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Motivation: Large-scale Posterior Inference

Question: How do we scale Markov chain Monte Carlo (MCMC)
posterior inference to massive datasets?

o MCMC Benefit: Approximates intractable posterior
expectations Ep|h pr x)dx with asymptotically

n

exact sample estlmates Eo, [h(X)] = l Yoy h(x;)

@ Problem: Each point z; requires itera?cing over entire dataset!
Template solution: Approximate MCMC with subset posteriors
[Welling and Teh, 2011, Ahn, Korattikara, and Welling, 2012, Korattikara, Chen, and Welling, 2014]

@ Approximate standard MCMC procedure in a manner that makes

use of only a small subset of datapoints per sample

@ Reduced computational overhead leads to faster sampling and

reduced Monte Carlo variance

@ Introduces asymptotic bias: target distribution is not stationary

@ Hope that for fixed amount of sampling time, variance reduction

will outweigh bias introduced
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Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors

[Welling and Teh, 2011, Ahn, Korattikara, and Welling, 2012, Korattikara, Chen, and Welling, 2014]

@ Hope that for fixed amount of sampling time, variance reduction
will outweigh bias introduced

Introduces new challenges
@ How do we compare and evaluate samples from approximate
MCMC procedures?
@ How do we select samplers and their tuning parameters?
@ How do we quantify the bias-variance trade-off explicitly?

Difficulty: Standard evaluation criteria like effective sample size,
trace plots, and variance diagnostics assume convergence to the
target distribution and do not account for asymptotic bias

This talk: Introduce new quality measure suitable for comparing the
quality of approximate MCMC samples
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Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of
any two samples approximating a common target distribution

Given
e Continuous target distribution P with support X = R? (will
relax to any convex set) and density p
e p known up to normalization, integration under P is intractable
e Sample points z,..., 1, € X
e Define discrete distribution (), with, for any function A,
Eq, [M(X)] = 13" | h(x;) used to approximate Ep[h(Z)]

n
e We make no assumption about the provenance of the z;

Goal: Quantify how well Eq),, approximates Ep in a manner that

|. Detects when a sample sequence is converging to the target

[I. Detects when a sample sequence is not converging to the target
[11. Is computationally feasible
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Integral Probability Metrics

Goal: Quantify how well Eg, approximates Ep

Idea: Consider an integral probability metric (IPM) [Mmiiller, 1997]
(Qn, P) = sup [Eq, [1(X)] = Ep[A(2)]]
S

@ Measures maximum discrepancy between sample and target
expectations over a class of real-valued test functions H

e When H sufficiently large, convergence of dy(Q,, P) to zero
implies (Q,)n>1 converges weakly to P (Requirement II)

Examples
o Total variation distance (H = {h : sup, |h(z)| < 1})
@ Wasserstein (or Kantorovich- Rubenstein) distance, dy
(7‘[ W” | = {h SUpP,2,, [h(z)—h(y)| < 1})

ET yll
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Integral Probability Metrics

Goal: Quantify how well Eq, approximates Ep

Idea: Consider an integral probability metric (IPM) [Mmiiller, 1997]
(Qn, P) = sup [Eq, [1(X)] = Ep[A(2)]]
€
@ Measures maximum discrepancy between sample and target
expectations over a class of real-valued test functions H

e When H sufficiently large, convergence of dy(Q,, P) to zero
implies (Q,,)n>1 converges weakly to P (Requirement II)

Problem: Integration under P intractable!
= Most IPMs cannot be computed in practice

Idea: Only consider functions with Ep[h(Z)] known a priori to be 0
@ Then IPM computation only depends on @),,!
@ How do we select this class of test functions?
@ Will the resulting discrepancy measure track sample sequence
convergence (Requirements | and 11)?
@ How do we solve the resulting optimization problem in practice?
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Stein’'s Method

Stein’s method [1972] provides a recipe for controlling convergence:
@ Identify operator 7 and set G of functions g : X — R? with
Ep[(Tg)(Z)] =0 forall geg.
T and G together define the Stein discrepancy (cormam and Mackey, 2015]
S(Qn,T,6) = up [Bq, (T = drg(Qn, P).

an IPM-type measure with no explicit integration under P

@ Lower bound §(Q,.,7T,G) by reference IPM dy(Q,,, P)
= S(Qn, T,G) — 0 only if (Q,),>1 converges to P (Req. Il)
e Performed once, in advance, for large classes of distributions

© Upper bound S(Q,,, 7,G) by any means necessary to
demonstrate convergence to 0 (Requirement I)

Standard use: As analytical tool to prove convergence
Our goal: Develop Stein discrepancy into practical quality measure
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|dentifying a Stein Operator T

Goal: Identify operator T for which Ep[(T¢)(Z)] =0 forallg € G

Approach: Generator method of Barbour [1988, 1990], Gstze [1991]
o Identify a Markov process (Z;);>¢ with stationary distribution P
@ Under mild conditions, its infinitesimal generator
(Au)(z) = %gn( [w(Z4) | Zo = 2] — u(x))/t
satisfies Ep[(Au)(Z)] =0

Overdamped Langevin diffusion: dZ; = 1V log p(Z;)dt + dW,

o Generator: (Apu)(z) = 3(Vu(z), Vlogp(z)) + :(V, Vu(z))
o Stein operator: (7pg)(x) = (g(z), Vlogp(z)) + (V, g(x))
[Gorham and Mackey, 2015, Oates, Girolami, and Chopin, 2016]

o Depends on P only through V log p; computable even if p
cannot be normalized!
o Ep[(Tpg)(Z)] =0 for all g : X — R? in classical Stein set

G = {9 : sup,, max (lg(@)|", [ Va(w)|", F22=To') < 1}
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Detecting Convergence and Non-convergence

Goal: Show classical Stein discrepancy S(Q,, 7p,Gj.) — 0 if
and only if (Q,),>1 converges to P
@ In the univariate case (d = 1), known that for many targets P,
S(Qn, Tp,Gy) — 0 only if Wasserstein dyy,  (Qn, P) — 0
[Stein, Diaconis, Holmes, and Reinert, 2004, Chatterjee and Shao, 2011, Chen, Goldstein, and Shao, 2011]
e Few multivariate targets have been analyzed (see [Reinert and Rsllin,
2009, Chatterjee and Meckes, 2008, Meckes, 2009] for multivariate Gaussian)

New contribution [Gorham, Duncan, Vollmer, and Mackey, 2016]

Theorem (Stein Discrepancy-Wasserstein Equivalence)

If the Langevin diffusion couples at an integrable rate and V logp is
Lipschitz, then S(Qn, Tp, g”.”) —-0& dWH-H (Qn, P) — 0.

@ Examples: strongly log concave P, Bayesian logistic regression
or robust t regression with Gaussian priors, Gaussian mixtures
o Conditions not necessary: template for bounding S(Q», 7p, Gj.|)
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Computing Stein Discrepancies

Question: How do we compute a Stein discrepancy
S(Qn,Tp,G) = SUD, g |Eq, [(Tpg)(X)]| in practice?
Consider the classical Stein discrepancy optimization problem

S(QueTr ) = stp - > a(r:). Vlozp(z:)) + (V. ()

st lg@)|" <1,V e X
IVg(x)||* <1,V e X
IVg(x) = Vg)l" < lle —yll,Va,y € X

@ Objective only depends on the values of g and Vg at the n
sample points z;
@ Infinite-dimensional problem with infinitude of constraints

Idea: Find alternative Stein set G with equivalent convergence
properties and only finitely many constraints

Mackey (MSR) Stein’s Method for Sample Quality July 30, 2018 11 / 32



Graph Stein Discrepancies

For any graph G = (V, E) with vertices V' = {x1,...,z,}, define
graph Stein set G.|,q,..c of functions g : X — R? with
@ Boundedness constraints imposed only at points x;
@ Smoothness constraints imposed only between pairs (z;, z;) € E
e Benefit: Optimization problem has order |V| + |E| constraints

Proposition (Equivalence of Classical & Complete Graph Stein Discrepancies)

If X =R%, and G, is the complete graph on {x,...,x,}, then
S(Qn, Tr, G) < S(Qn: Tr, G)0n61) < KaS(Qn, T, G)))

for kq > 0 depending only on the dimension d and the norm ||-||.

@ Follows from Whitney-Glaeser extension theorem [Glaeser, 1958]
® S(Qn, Tp,Gj.,0.,c.) inherits convergence properties of classical
e Problem: Complete graph introduces order n? constraints!
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Spanner Stein Discrepancies

Goal: Find equivalent Stein discrepancy with only O(n) constraints

Approach: Geometric spanners [Chew, 1986, Peleg and Schiffer, 1989]
e For a dilation factor t > 1, a t-spanner G = (V, E) has
o The weight ||z — y|| on each edge (z,y) € E
o Path with total weight < t||z — y|| between each (z,y) € V2

Proposition (Equivalence of Spanner and Complete Graph Stein Discrepancies)

If X =R%, G, is the complete graph on {x1,...,x,}, and G, is a
t-spanner on {xy,...,x,}, then

1< S(Qn77}7g“'Hin,Gt)
= S(Qn, Tp, G),00,61)

< 2t%.

e For t =2, can compute spanner with O(k4n) edges in
O(kanlog(n)) expected time [Har-Peled and Mendel, 2006]
e Fix t = 2 and use efficient greedy spanner implementation of

Bouts, ten Brink, and Buchin [2014] IN our experiments
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Decoupled Linear Programs

Norm recommendation: ||-|| = |||,
@ Optimization problem decouples across components g;
e Can solve d subproblems in parallel
@ Each subproblem is a linear program
Recommended spanner Stein discrepancy algorithm
e Compute 2-spanner Gy on V = {xy,...,2,}
@ Solve d finite-dimensional linear programs in parallel
d
> j-1 _ sup o 21V Vilogp(wi) + Ty
’YjERn,FjERdX”
ille < LTl <1, and Vi £ 12 (2, 71) € E,
i—vil I (ei—en)ll oo
"Yj 'Y]l‘ j\€i—€ > S 17

lzi—zi|l,?  [lwi—ailly

max <

Ivji— ’sz (Cjei,xi—z)| |'7ji_'7jl—<rjel,$i—l'l>|> <1

max 1 2
( lzi—a||7 ’ 5=}

o Here vyj; = g]( x;) and Lk = ngj(xi)
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A Simple Example

Scaled
Student's t
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e For target P = N(0,1), compare i.i.d. N(0,1) sample @, to
scaled Student's t sample @)/, with matching variance

o EXpeCt S(Qn, 7}3, gH.||7Qn7G1> —0& S( ;w 7?3, g”.H’QmGl) 7L> 0
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A Simple Example
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@ Middle: Recovered optimal functions ¢

e Right: Associated test functions h(z) = (Tpg)(z) which best
discriminate sample @),, from target P
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A Simple Constrained Example
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@ For two-dimensional target P = Unif(0, 1) x Unif(0, 1), compare
i.i.d. Unif(0,1) x Unif(0,1) sample @, to i.i.d.
Beta(3, 3) x Beta(3,3) sample @/,
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A Simple Constrained Example
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@ Middle: Recovered optimal functions ¢

e Right: Associated test functions h(z) = Tpg which best
discriminate sample @),, from target P
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Comparing Discrepancies

Setup
e Draw n = 30,000 points i.i.d. from A(0,1) or Unif[0, 1]
e Yields sample @,
@ Compare behavior of classical and graph Stein discrepancy
e When d = 1 classical Stein discrepancy solves finite-dimensional
convex quadratically constrained quadratic program with O(n)
variables, O(n) constraints, and linear objective [Gorham and
Mackey, 2015]

@ Compare to Wasserstein distance

Iy, (@ P / 1Qu(t) — P()]dt

o Can adjust smoothness constants (Stein factors) so that Stein
discrepancies directly lower bounded by Wasserstein distance
e For uniform target, classical Stein discrepancy equals

Wasserstein distance
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Comparing Discrepancies

Orange = Classical Stein, Blue = Graph Stein, Green = Wasserstein
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Selecting Sampler Hyperparameters

Target posterior density: p(z) o« 7(x) Hszl (y | x)
@ Prior 7(x), Likelihood 7(y | )

Stochastic Gradient Langevin Dynamics (SGLD)

[Welling and Teh, 2011] .
o1 ~ N (e + 5(Viog m(xk) + 55 D iep, V1ogm(yilor)), )

@ Approximate MCMC procedure designed for scalability
e Approximates Metropolis-adjusted Langevin algorithm and
continuous-time Langevin diffusion
e Random subset Bj, of datapoints used to select each sample
e No Metropolis-Hastings correction step
e Target P is not stationary distribution
@ Choice of step size € critical for accurate inference
e Too small = slow mixing
e Too large = sampling from very different distribution
e Standard MCMC selection criteria like effective sample size

(ESS) and asymptotic variance do not account for this bias
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Selecting Sampler Hyperparameters

Setup [Welling and Teh, 2011]

@ Consider the posterior distribution P induced by L datapoints y;
drawn i.i.d. from a Gaussian mixture likelihood
YiIX S IN(X,2) + AN (X + X5, 2)
under Gaussian priors on the parameters X € R?
X7 ~N(0,10) 1L X5 ~ N(0,1)

o Draw m = 100 datapoints y; with parameters (z1,z2) = (0, 1)
e Induces posterior with second mode at (z1,x2) = (1, —1)
@ For range of step sizes ¢, use SGLD with batch size 10 to draw
approximate posterior sample (),, of size n = 1000
@ Use minimum Stein discrepancy to select appropriate €
e Compare with standard MCMC parameter selection criterion,
effective sample size (ESS), a measure of Markov chain
autocorrelation
e Compute median of diagnostic over 50 random SGLD sequences

Mackey (MSR) Stein's Method for Sample Quality July 30, 2018 22 /32



Selecting Sampler Hyperparameters

Step size, € = 5e-05 Step size, € = 5e-03 Step size, € = 5e-02
44
diagnostic = ESS
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Step size, € X1

@ ESS maximized at step size ¢ = 5 x 102
@ Stein discrepancy minimized at step size ¢ = 5 x 1073
e Right: ESS: 2.6,12.3,14.8; Stein discrepancies: 19.0,1.5,16.7
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Quantifying a Bias-Variance Trade-off

Target posterior density: p(z) o« 7(x) Hszl (y | x)
@ Prior 7(z), Likelihood 7(y | )

Approximate Random Walk Metropolis-Hastings (ARWMH)
[Korattikara, Chen, and Welling, 2014]
@ Approximate MCMC procedure designed for scalability

o Uses Gaussian random walk proposals: xj41 ~ N (zx,021)
e Approximates Metropolis-Hastings correction using random
subset of datapoints to accept or reject proposal

: m(wri1) [/, W(yl\mk+1))
o Exact MH accepts w.p. mm(l, @) TIE w(ulon)

@ Tolerance parameter € controls number of datapoints considered
e Larger ¢ = fewer datapoints considered, fewer likelihood
computations, more rapid sampling, more rapid variance
reduction
e Smaller € = closer approximation to true MH correction, less
bias in stationary distribution

Question: Can we quantify this “bias-variance” trade-off explicitly?
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Quantifying a Bias-Variance Trade-off

Setup
e Nodal dataset [Canty and Ripley, 2015]
e 53 patients, 6 predictors, binary response indicating whether
cancer spread from prostate to lymph nodes
@ Bayesian logistic regression posterior P
o L independent observations (y;,v;) € {1, —1} x R with

P(Y; = 1fvi, X) = 1/(1 + exp(—(u1, X)))

o Gaussian prior on the parameters X € R%: X ~ N(0,1)
e Compare ARWMH (e = 0.1 and batch size 2) to exact RWMH
o Ran each chain until 10° likelihood evaluations computed
o Computed spanner Stein discrepancy after burn-in of 10°
likelihood computations and thinning down to 1,000 samples
e Expect ARWMH quality as a function of likelihood evaluations
to dominate initially and RWMH quality to overtake eventually
@ For external support, also compute deviation between various
expectations under @), and under a MALA chain with 107
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Quantifying a Bias-Variance Trade-off

Discrepancy

Spanner Stein discrepancy Normalized prob. error
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@ Non-Stein measures based on additional, long-running chain
used as surrogate for the target distribution
@ Stein discrepancy computed from sample @),, alone
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Assessing Convergence Rates

An observation

@ The approximating distribution @, in S(Qn, Tp, G|.|,0.,c) Need
not be based on a random sample

@ Stein discrepancy meaningful even for deterministic
pseudosamples (e.g., from quasi-Monte Carlo or herding)

Independent sampling
o E[|Eqg,[h(X)] —Ep[h(Z)]]] = O(1/y/n) for bounded variance h

Sobol sequence [Sobol, 1967]
o dy(Qn, P) = O(log* ! (n)/n) for bounded total variation h

Kernel herding [Chen, Welling, and Smola, 2010]
e dy(Qn, P) = O(1/n) for finite-dimensional Hilbert space H
@ dy(Qn, P) = O(1/+/n) for infinite-dimensional Hilbert space H
o Rate often better in practice (without theoretical explanation)
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Assessing Convergence Rates

Setup [Bach, Lacoste-Julien, and Obozinski, 2012]

e Target P = Unif|0, 1]

@ Draw n = 200 points
e i.i.d. from Unif[0, 1] (repeated 50 times)
e From a Sobol sequence
e From a Herding sequence with Hilbert space H defined by the

norm [[Ally, = fy (h'(x))*dx
@ Compare median Stein discrepancy decay across three samplers

@ Assess convergence rate with best fit line to log-log plot
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Assessing Convergence Rates
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@ Stein discrepancy convergence for deterministic sequences,
kernel herding [Chen, Welling, and Smola, 2010] and Sobol [Sobol, 1967],
versus i.i.d. sample sequence for P = Unif(0, 1)

@ Estimated rates for i.i.d. and Sobol accord with expected
O(1/4/n) and O(1/n) rates from literature

@ Herding rate outpaces its best known O(1/+/n) bound [Bach,
Lacoste-Julien, and Obozinski, 2012]: opportunity for sharper analysis?
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Future Directions

Many opportunities for future development
@ Developing tailored Stein program solvers that exploit problem
structure for greater scalability
e LP constraint matrices are very sparse and, at times, banded
e Leverage stochastic optimization to avoid expensive
summations in Stein program objective
o eg., Viogp(z;) = Viegnm(z;) + 1, Viogn(yi | =)
o Improve scalability with first order methods?
@ Establishing reference IPM lower bounds for Stein discrepancy
o For what other families of distributions P does
S(Qn, Tp,G)) — 0 imply dw,, (Qn, P) — 07
© Exploring the impact of Stein operator choice
e An infinite number of operators 7 characterize P
e How is discrepancy impacted? How do we select the best 77
© Addressing other inferential tasks
o Design of control variates [oates, Girolami, and Chopin, 2014, Oates and Girolami, 2015]
o One-sample testing [chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016]
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