Measuring Sample Quality with Stein’s Method

Lester Mackey∗,†

Joint work with Jackson Gorham†

Microsoft Research∗ Stanford University†

October 3, 2016
Motivation: Large-scale Posterior Inference

Example: Bayesian logistic regression

1. Unknown parameter vector: \(\beta \sim \mathcal{N}(0, I) \)
2. Fixed covariate vector: \(v_l \in \mathbb{R}^d \) for each datapoint \(l = 1, \ldots, L \)
3. Binary class label: \(Y_l | v_l, \beta \sim \text{Ber}\left(\frac{1}{1 + e^{-\langle \beta, v_l \rangle}}\right) \)

- Generative model simple to express
- Posterior distribution over unknown parameters is complex
 - Normalization constant unknown, exact integration intractable

Standard inferential approach: Use Markov chain Monte Carlo (MCMC) to (eventually) draw samples from the posterior distribution

- **Benefit:** Approximates intractable posterior expectations
 \[\mathbb{E}_P[h(Z)] = \int_X p(x)h(x)dx \] with asymptotically exact sample estimates
 \[\mathbb{E}_Q[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \]
- **Problem:** Each new MCMC sample point \(x_i \) requires iterating over entire observed dataset: prohibitive when dataset is large!
Motivation: Large-scale Posterior Inference

Question: How do we scale Markov chain Monte Carlo (MCMC) posterior inference to massive datasets?

- **MCMC Benefit:** Approximates intractable posterior expectations \(\mathbb{E}_P[h(Z)] = \int_X p(x) h(x) dx \) with asymptotically exact sample estimates \(\mathbb{E}_Q[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \)

- **Problem:** Each point \(x_i \) requires iterating over entire dataset!

Template solution: Approximate MCMC with subset posteriors

- Approximate standard MCMC procedure in a manner that makes use of only a small subset of datapoints per sample
- Reduced computational overhead leads to faster sampling and reduced Monte Carlo variance
- Introduces asymptotic bias: target distribution is not stationary
- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced
Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors

- Hope that for fixed amount of sampling time, variance reduction will outweigh bias introduced

Introduces new challenges

- How do we compare and evaluate samples from approximate MCMC procedures?
- How do we select samplers and their tuning parameters?
- How do we quantify the bias-variance trade-off explicitly?

Difficulty: Standard evaluation criteria like effective sample size, trace plots, and variance diagnostics assume convergence to the target distribution and do not account for asymptotic bias

This talk: Introduce new quality measure suitable for comparing the quality of approximate MCMC samples
Challenge: Develop measure suitable for comparing the quality of any two samples approximating a common target distribution

Given

- **Continuous target distribution** P with support $\mathcal{X} = \mathbb{R}^d$ (will relax to any convex set) and density p
 - p known up to normalization, integration under P is intractable
- **Sample points** $x_1, \ldots, x_n \in \mathcal{X}$
 - Define **discrete distribution** Q with, for any function h,
 $$\mathbb{E}_Q[h(X)] = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$
 - Used to approximate $\mathbb{E}_P[h(Z)]$

Goal: Quantify how well \mathbb{E}_Q approximates \mathbb{E}_P in a manner that

I. Detects when a sample sequence is **converging** to the target

II. Detects when a sample sequence is **not converging** to the target

III. Is computationally feasible
Goal: Quantify how well E_Q approximates E_P

Idea: Consider an *integral probability metric (IPM)* [Müller, 1997]
\[
d_H(Q, P) = \sup_{h \in \mathcal{H}} |E_Q[h(X)] - E_P[h(Z)]|
\]
- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions \mathcal{H}
- When \mathcal{H} sufficiently large, convergence of $d_H(Q_m, P)$ to zero implies $(Q_m)_{m \geq 1}$ converges weakly to P (Requirement II)

Examples
- Total variation distance ($\mathcal{H} = \{h : \sup_x |h(x)| \leq 1\}$)
- Wasserstein (or Kantorovich-Rubenstein) distance, $d_{\mathcal{W}_{\|\cdot\|}}$
 \[
 (\mathcal{H} = \mathcal{W}_{\|\cdot\|} \triangleq \{h : \sup_{x \neq y} \frac{|h(x) - h(y)|}{\|x-y\|} \leq 1\})
 \]
Goal: Quantify how well \mathbb{E}_Q approximates \mathbb{E}_P

Idea: Consider an integral probability metric (IPM) [Müller, 1997]

$$d_H(Q, P) = \sup_{h \in \mathcal{H}} |\mathbb{E}_Q[h(X)] - \mathbb{E}_P[h(Z)]|$$

- Measures maximum discrepancy between sample and target expectations over a class of real-valued test functions \mathcal{H}
- When \mathcal{H} sufficiently large, convergence of $d_H(Q_m, P)$ to zero implies $(Q_m)_{m \geq 1}$ converges weakly to P (Requirement II)

Problem: Integration under P intractable!

⇒ Most IPMs cannot be computed in practice

Idea: Only consider functions with $\mathbb{E}_P[h(Z)]$ known a priori to be 0

- Then IPM computation only depends on Q!
- How do we select this class of test functions?
- Will the resulting discrepancy measure track sample sequence convergence (Requirements I and II)?
- How do we solve the resulting optimization problem in practice?
Stein’s Method

Stein’s method for bounding IPMs [Stein, 1972] proceeds in 3 steps:

1. **Identify operator** \mathcal{T} **and set** \mathcal{G} **of functions** $g : \mathcal{X} \to \mathbb{R}^d$ **with**
 \[
 \mathbb{E}_P[(\mathcal{T}g)(Z)] = 0 \quad \text{for all} \quad g \in \mathcal{G}.
 \]
 Together, \mathcal{T} and \mathcal{G} define the **Stein discrepancy**
 \[
 S(Q, \mathcal{T}, \mathcal{G}) \triangleq \sup_{g \in \mathcal{G}} |\mathbb{E}_Q[(\mathcal{T}g)(X)]| = d_{\mathcal{T}g}(Q, P),
 \]
 an IPM-type measure with no explicit integration under P.

2. **Lower bound** $S(Q, \mathcal{T}, \mathcal{G})$ **by reference IPM** $d_{\mathcal{H}}(Q, P)$
 \[
 \Rightarrow S(Q_m, \mathcal{T}, \mathcal{G}) \text{ converges to 0 only if } d_{\mathcal{H}}(Q_m, P) \text{ does (Req. II)}
 \]
 - Performed once, in advance, for large classes of distributions

3. **Upper bound** $S(Q, \mathcal{T}, \mathcal{G})$ **by any means necessary** to demonstrate convergence to 0 (Requirement I)

Standard use: As analytical tool to prove convergence

Our goal: Develop Stein discrepancy into practical quality measure
Identifying a Characterizing Operator \mathcal{T}

Goal: Identify operator \mathcal{T} for which $\mathbb{E}_P[(\mathcal{T}g)(Z)] = 0$ for all $g \in \mathcal{G}$

Approach: Generator method of Barbour [1988, 1990], Götze [1991]
- Identify a Markov process $(Z_t)_{t \geq 0}$ with stationary distribution P
- Under mild conditions, its **infinitesimal generator**
 $$ \langle \mathcal{A}u \rangle(x) = \lim_{t \to 0} \mathbb{E}[u(Z_t) \mid Z_0 = x] - u(x)/t $$
satisfies $\mathbb{E}_P[(\mathcal{A}u)(Z)] = 0$

Overdamped Langevin diffusion:
$$ dZ_t = \frac{1}{2} \nabla \log p(Z_t) \, dt + dW_t $$
- **Generator:** $(\mathcal{A}_P u)(x) = \frac{1}{2} \langle \nabla u(x), \nabla \log p(x) \rangle + \frac{1}{2} \langle \nabla, \nabla u(x) \rangle$
- **Stein operator:** $(\mathcal{T}_P g)(x) \triangleq \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle$
 - Depends on P only through $\nabla \log p$; computable even if p
cannot be normalized!
 - $\mathbb{E}_P[(\mathcal{T}_P g)(Z)] = 0$ for all $g : \mathcal{X} \to \mathbb{R}^d$ in classical Stein set

$$ \mathcal{G}_{\| \cdot \|} = \left\{ g : \sup_{x \neq y} \max \left(\| g(x) \|^*, \| \nabla g(x) \|^*, \frac{\| \nabla g(x) - \nabla g(y) \|^*}{\| x - y \|^*} \right) \leq 1 \right\} $$
Goal: Lower bound classical Stein discrepancy $S(Q, T_P, G_{\|\cdot\|})$ by reference IPM $d_H(Q, P)$

- In the univariate case ($d = 1$), known that for many targets P, $S(Q_m, T_P, G_{\|\cdot\|}) \to 0$ only if Wasserstein $d_{W_{\|\cdot\|}}(Q_m, P) \to 0$

- Few multivariate targets have been analyzed (see [Reinert and Röllin, 2009, Chatterjee and Meckes, 2008, Meckes, 2009] for multivariate Gaussian)

New contribution [Gorham, Duncan, Vollmer, and Mackey, 2016]

Theorem (Stein Discrepancy Lower Bound)

If the Langevin diffusion couples at an integrable rate and $\nabla \log p$ is Lipschitz, then $S(Q_m, T_P, G_{\|\cdot\|}) \to 0 \Rightarrow d_{W_{\|\cdot\|}}(Q_m, P) \to 0$.

Examples: Bayesian logistic regression or robust Student’s t regression with Gaussian priors, Gaussian mixtures, ...
Question: Under what conditions on a sample sequence \((Q_m)_{m \geq 1}\) will Stein discrepancy \(S(Q_m, T_P, G_{\|\cdot\|}) \to 0\)?

Proposition (Convergence of Stein Discrepancy [Gorham and Mackey, 2015])

If \(X \sim Q\) and \(Z \sim P\) with \(\nabla \log p(Z)\) integrable, then
\[
S(Q, T_P, G_{\|\cdot\|}) \leq \mathbb{E}[\|X - Z\|] + \mathbb{E}[\|\nabla \log p(X) - \nabla \log p(Z)\|] + \\
\mathbb{E}[\|\nabla \log p(Z)(X - Z)^\top\|] \\
\leq \mathbb{E}[\|X - Z\|] + \mathbb{E}[\|\nabla \log p(X) - \nabla \log p(Z)\|] + \\
\sqrt{\mathbb{E}[\|\nabla \log p(Z)\|^2] \mathbb{E}[\|X - Z\|^2]}.
\]

- **One take-away:** If \(\nabla \log p\) Lipschitz and square integrable, then \(S(Q_m, T_P, G_{\|\cdot\|}) \to 0\) if \(L^2\) Wasserstein \(W_{2,\|\cdot\|}(Q_M, P) \to 0\).
- \(L^2\) Wasserstein \(W_{2,\|\cdot\|}(Q, P) \triangleq \inf_{X \sim Q, Z \sim P} \sqrt{\mathbb{E}[\|X - Z\|^2]}\)
Question: How do we compute a Stein discrepancy
\[S(Q, T_P, G) = \sup_{g \in G} \left| \mathbb{E}_Q[(T_P g)(X)] \right| \] in practice?

Consider the classical Stein discrepancy optimization problem

\[S(Q, T_P, G_{\|\cdot\|}) = \sup_g \frac{1}{n} \sum_{i=1}^{n} \langle g(x_i), \nabla \log p(x_i) \rangle + \langle \nabla, g(x_i) \rangle \]

s.t. \[\|g(x)\|^* \leq 1, \forall x \in \mathcal{X} \]
\[\|\nabla g(x)\|^* \leq 1, \forall x \in \mathcal{X} \]
\[\|\nabla g(x) - \nabla g(y)\|^* \leq \|x - y\|, \forall x, y \in \mathcal{X} \]

- Objective only depends on the values of \(g \) and \(\nabla g \) at the \(n \) sample points \(x_i \)
- Infinite-dimensional problem with infinitude of constraints

Idea: Find alternative Stein set \(G \) with equivalent convergence properties and only finitely many constraints
Graph Stein Discrepancies

For any graph $G = (V, E)$ with vertices $V = \{x_1, \ldots, x_n\}$, define graph Stein set $\mathcal{G}_{\|\cdot\|, Q, G}$ of functions $g : \mathbf{X} \rightarrow \mathbb{R}^d$ with

- Boundedness constraints imposed only at points x_i
- Smoothness constraints imposed only between pairs $(x_i, x_k) \in E$

Benefit: Optimization problem has order $|V| + |E|$ constraints

Proposition (Equivalence of Classical & Complete Graph Stein Discrepancies)

If $\mathbf{X} = \mathbb{R}^d$, and G_1 is the complete graph on $\{x_1, \ldots, x_n\}$, then

$$S(Q, T_P, \mathcal{G}_{\|\cdot\|}) \leq S(Q, T_P, \mathcal{G}_{\|\cdot\|, Q, G_1}) \leq \kappa_d S(Q, T_P, \mathcal{G}_{\|\cdot\|})$$

for $\kappa_d > 0$ depending only on the dimension d and the norm $\|\cdot\|$.

- Follows from Whitney-Glaeser extension theorem [Glaeser, 1958]
- $S(Q, T_P, \mathcal{G}_{\|\cdot\|, Q, G_1})$ inherits convergence properties of classical
- **Problem:** Complete graph introduces order n^2 constraints!
Spanner Stein Discrepancies

Goal: Find equivalent Stein discrepancy with only $O(n)$ constraints

- For a dilation factor $t \geq 1$, a t-spanner $G = (V, E)$ has
 - The weight $\|x - y\|$ on each edge $(x, y) \in E$
 - Path with total weight $\leq t\|x - y\|$ between each $(x, y) \in V^2$

Proposition (Equivalence of Spanner and Complete Graph Stein Discrepancies)

If $\chi = \mathbb{R}^d$, G_1 is the complete graph on $\{x_1, \ldots, x_n\}$, and G_t is a t-spanner on $\{x_1, \ldots, x_n\}$, then

$$S(Q, T_P, G_{\|\cdot\|}, Q, G_1) \leq S(Q, T_P, G_{\|\cdot\|}, Q, G_t) \leq 2t^2 S(Q, T_P, G_{\|\cdot\|}, Q, G_1).$$

- For $t = 2$, can compute spanner with $O(\kappa_d n)$ edges in $O(\kappa_d n \log(n))$ expected time [Har-Peled and Mendel, 2006]
- Fix $t = 2$ and use efficient greedy spanner implementation of Bouts, ten Brink, and Buchin [2014] in our experiments
Decoupled Linear Programs

Norm recommendation: \(\| \cdot \| = \| \cdot \|_1 \)

- Optimization problem **decouples** across components \(g_j \)
- Can solve \(d \) subproblems **in parallel**
- Each subproblem is a **linear program**

Recommended spanner Stein discrepancy algorithm

- Compute 2-spanner \(G_2 \) on \(V = \{ x_1, \ldots, x_n \} \)
- Solve \(d \) finite-dimensional linear programs in parallel

\[
\sum_{j=1}^{d} \sup_{\gamma_j \in \mathbb{R}^n, \Gamma_j \in \mathbb{R}^{d \times n}} \frac{1}{n} \sum_{i=1}^{n} \gamma_{ji} \nabla_j \log p(x_i) + \Gamma_{jji}
\]

s.t. \(\| \gamma_j \|_{\infty} \leq 1, \| \Gamma_j \|_{\infty} \leq 1, \text{ and } \forall i \neq l : (x_i, x_l) \in E, \)

\[
\max \left(\frac{|\gamma_{ji} - \gamma_{jl}|}{\|x_i - x_l\|_1}, \frac{\|\Gamma_j (e_i - e_l)\|_{\infty}}{\|x_i - x_l\|_1} \right) \leq 1,
\]

\[
\max \left(\frac{|\gamma_{ji} - \gamma_{jl} - \langle \Gamma_j e_i, x_i - x_l \rangle|}{\frac{1}{2} \|x_i - x_l\|_2^2}, \frac{|\gamma_{ji} - \gamma_{jl} - \langle \Gamma_j e_l, x_i - x_l \rangle|}{\frac{1}{2} \|x_i - x_l\|_2^2} \right) \leq 1.
\]

- Here \(\gamma_{ji} = g_j(x_i) \) and \(\Gamma_{jki} = \nabla_k g_j(x_i) \)
For target $P = \mathcal{N}(0, 1)$, compare i.i.d. $\mathcal{N}(0, 1)$ sample sequence $Q_{1:n}$ to scaled Student’s t sequence $Q'_{1:n}$ with matching variance.

Expect $S(Q_{1:n}, T_P, \mathcal{G}_{\|\cdot\|}, Q, G_1) \to 0$ & $S(Q'_{1:n}, T_P, \mathcal{G}_{\|\cdot\|}, Q, G_1) \not\to 0$
• **Middle**: Recovered optimal functions g

• **Right**: Associated test functions $h(x) \triangleq (\mathcal{T}_P g)(x)$ which best discriminate sample Q from target P
For two-dimensional target $P = \text{Unif}(0, 1) \times \text{Unif}(0, 1)$, compare i.i.d. $\text{Unif}(0, 1) \times \text{Unif}(0, 1)$ sample sequence $Q_{1:n}$ to i.i.d. $\text{Beta}(3, 3) \times \text{Beta}(3, 3)$ sequence $Q'_{1:n}$.
Middle: Recovered optimal functions g

Right: Associated test functions $h(x) \triangleq \mathcal{T}_P g$ which best discriminate sample Q from target P
Comparing Discrepancies

Setup

- Draw $n = 30,000$ points i.i.d. from $\mathcal{N}(0, 1)$ or Unif$[0, 1]$
 - Yields sample sequence $Q_{1:n}$
- Compare behavior of classical and graph Stein discrepancy
 - When $d = 1$ classical Stein discrepancy solves finite-dimensional convex quadratically constrained quadratic program with $O(n)$ variables, $O(n)$ constraints, and linear objective [Gorham and Mackey, 2015]
- Compare to Wasserstein distance
 \[
 d_{\mathcal{W}_{\|\cdot\|}}(Q, P) = \int_{\mathbb{R}} |Q(t) - P(t)| dt
 \]
 - Can adjust smoothness constants (Stein factors) so that Stein discrepancies directly lower bounded by Wasserstein distance
 - For uniform target, classical Stein discrepancy equals Wasserstein distance
Comparing Discrepancies

Orange = Classical Stein, Blue = Graph Stein, Green = Wasserstein

Orange = Classical Stein, Blue = Graph Stein, Green = Wasserstein

Discrepancy value

Number of sample points, n

Discrepancy value

Discrepance
Selecting Sampler Hyperparameters

Target posterior density: \(p(x) \propto \pi(x) \prod_{l=1}^{L} \pi(y_l \mid x) \)
- Prior \(\pi(x) \), Likelihood \(\pi(y \mid x) \)

Stochastic Gradient Langevin Dynamics (SGLD)

[Welling and Teh, 2011]
\[
x_{k+1} \sim \mathcal{N}(x_k + \frac{\epsilon}{2} (\nabla \log \pi(x_k) + \frac{L}{|B_k|} \sum_{l \in B_k} \nabla \log \pi(y_l \mid x_k)), \epsilon)
\]
- Approximate MCMC procedure designed for scalability
 - Approximates Metropolis-adjusted Langevin algorithm and continuous-time Langevin diffusion
 - Random subset \(B_k \) of datapoints used to select each sample
 - No Metropolis-Hastings correction step
 - Target \(P \) is not stationary distribution
- Choice of step size \(\epsilon \) critical for accurate inference
 - Too small \(\Rightarrow \) slow mixing
 - Too large \(\Rightarrow \) sampling from very different distribution
- Standard MCMC selection criteria like effective sample size (ESS) and asymptotic variance do not account for this bias
Selecting Sampler Hyperparameters

Setup [Welling and Teh, 2011]

- Consider the posterior distribution P induced by L datapoints y_l drawn i.i.d. from a Gaussian mixture likelihood
 $Y_l|X \overset{iid}{\sim} \frac{1}{2} \mathcal{N}(X_1, 2) + \frac{1}{2} \mathcal{N}(X_1 + X_2, 2)$
 under Gaussian priors on the parameters $X \in \mathbb{R}^2$

 $X_1 \sim \mathcal{N}(0, 10) \perp \perp X_2 \sim \mathcal{N}(0, 1)$

- Draw $m = 100$ datapoints y_l with parameters $(x_1, x_2) = (0, 1)$
- Induces posterior with second mode at $(x_1, x_2) = (1, -1)$

- For range of step sizes ϵ, use SGLD with batch size 10 to draw approximate posterior sample Q of size $n = 1000$

- Use minimum Stein discrepancy to select appropriate ϵ
 - Compare with standard MCMC parameter selection criterion, effective sample size (ESS), a measure of Markov chain autocorrelation
 - Compute median of diagnostic over 50 random SGLD sequences
Selecting Sampler Hyperparameters

- ESS maximized at step size $\epsilon = 5 \times 10^{-2}$
- Stein discrepancy minimized at step size $\epsilon = 5 \times 10^{-3}$
- **Right**: ESS: 2.6, 12.3, 14.8; Stein discrepancies: 19.0, 1.5, 16.7
Hidden Markov Model

Target posterior density: \(p(x) \propto \pi(x) \prod_{l=1}^{L} \pi(y_l | x) \)

- Prior \(\pi(x) \), Likelihood \(\pi(y_l | x) \)

Approximate Random Walk Metropolis-Hastings (ARWMH)

[Corattikara, Chen, and Welling, 2014]

- Approximate MCMC procedure designed for scalability
 - Uses Gaussian random walk proposals: \(x_{k+1} \sim \mathcal{N}(x_k, \sigma^2 I) \)
 - Approximates Metropolis-Hastings correction using random subset of datapoints to accept or reject proposal
 - Exact MH accepts w.p. \(\min(1, \frac{\pi(x_{k+1}) \prod_{l=1}^{L} \pi(y_l | x_{k+1})}{\pi(x_k) \prod_{l=1}^{L} \pi(y_l | x_k)}) \)
 - Tolerance parameter \(\epsilon \) controls number of datapoints considered
 - Larger \(\epsilon \) \(\Rightarrow \) fewer datapoints considered, fewer likelihood computations, more rapid sampling, more rapid variance reduction
 - Smaller \(\epsilon \) \(\Rightarrow \) closer approximation to true MH correction, less bias in stationary distribution

Question: Can we quantify this “bias-variance” trade-off explicitly?
Quantifying a Bias-Variance Trade-off

Setup

- **Nodal dataset** [Canty and Ripley, 2015]
 - 53 patients, 6 predictors, binary response indicating whether cancer spread from prostate to lymph nodes
- Bayesian logistic regression posterior P
 - L independent observations $(y_l, v_l) \in \{1, -1\} \times \mathbb{R}^d$ with
 $$\mathbb{P}(Y_l = 1 | v_l, X) = 1 / (1 + \exp(-\langle v_l, X \rangle))$$
 - Gaussian prior on the parameters $X \in \mathbb{R}^d$: $X \sim \mathcal{N}(0, I)$
- Compare ARWMH ($\epsilon = 0.1$ and batch size 2) to exact RWMH
 - Ran each chain until 10^5 likelihood evaluations computed
 - Computed spanner Stein discrepancy after burn-in of 10^3 likelihood computations and thinning down to 1,000 samples
 - Expect ARWMH quality as a function of likelihood evaluations to dominate initially and RWMH quality to overtake eventually
- For external support, also compute deviation between various expectations under Q and under a MALA chain with 10^7 samples
Non-Stein measures based on additional, long-running chain used as surrogate for the target distribution

Stein discrepancy computed from sample Q alone
Assessing Convergence Rates

An observation

- The approximating distribution Q in $\mathcal{S}(Q, T_P, G_{\|\cdot\|, Q, G})$ need not be based on a random sample
- Stein discrepancy meaningful even for deterministic pseudosamples (e.g., from quasi-Monte Carlo or herding)

Independent sampling

- $\mathbb{E}[\mathbb{E}_{Q_n}[h(X)] - \mathbb{E}_P[h(Z)]] = O(1/\sqrt{n})$ for bounded variance h

Sobol sequence [Sobol, 1967]

- $d_H(Q_n, P) = O(\log^{d-1}(n)/n)$ for bounded total variation h

Kernel herding [Chen, Welling, and Smola, 2010]

- $d_H(Q_n, P) = O(1/n)$ for finite-dimensional Hilbert space \mathcal{H}
- $d_H(Q_n, P) = O(1/\sqrt{n})$ for infinite-dimensional Hilbert space \mathcal{H}
 - Rate often better in practice (without theoretical explanation)
Assessing Convergence Rates

Setup [Bach, Lacoste-Julien, and Obozinski, 2012]

- Target $P = \text{Unif}[0, 1]$
- Draw $n = 200$ points
 - i.i.d. from $\text{Unif}[0, 1]$ (repeated 50 times)
 - From a Sobol sequence
 - From a Herding sequence with Hilbert space \mathcal{H} defined by the norm $\|h\|_{\mathcal{H}} = \int_0^1 (h'(x))^2 dx$
- Compare median Stein discrepancy decay across three samplers
- Assess convergence rate with best fit line to log-log plot
Stein discrepancy convergence for deterministic sequences, kernel herding [Chen, Welling, and Smola, 2010] and Sobol [Sobol, 1967], versus i.i.d. sample sequence for $P = \text{Unif}(0, 1)$.

Estimated rates for i.i.d. and Sobol accord with expected $O(1/\sqrt{n})$ and $O(1/n)$ rates from literature.

Herding rate outpaces its best known $O(1/\sqrt{n})$ bound [Bach, Lacoste-Julien, and Obozinski, 2012]: opportunity for sharper analysis?
Many opportunities for future development

1. Developing tailored Stein program solvers that exploit problem structure for greater scalability
 - LP constraint matrices are very sparse and, at times, banded
 - Leverage stochastic optimization to avoid expensive summations in Stein program objective
 - e.g., $\nabla \log p(x_i) = \nabla \log \pi(x_i) + \sum_{l=1}^{L} \nabla \log \pi(y_l | x_i)$
 - Improve scalability with first order methods?

2. Establishing reference IPM lower bounds for Stein discrepancy
 - For what other families of distributions P does $S(Q_m, T_P, G_{\|\cdot\|}) \rightarrow 0$ imply $d_{\mathcal{W}_{\|\cdot\|}}(Q_m, P) \rightarrow 0$?

3. Exploring the impact of Stein operator choice
 - An infinite number of operators T characterize P
 - How is discrepancy impacted? How do we select the best T?

4. Addressing other inferential tasks
 - One-sample testing [Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016]

P. Chew. There is a Planar Graph Almost As Good As the Complete Graph. In *Proc. 2nd SOCG*, pages 169–177, New York, NY, 1986. ACM.

