
Advances in Distribution Compression

Lester Mackey

Microsoft Research New England

July 15, 2024

Joint work with Raaz Dwivedi, Marina Riabiz, Wilson Ye Chen, Jon Cockayne, Pawel Swietach,
Steven A. Niederer, Chris J. Oates, Abhishek Shetty, and Carles Domingo-Enrich

Mackey (MSR) Advances in Distribution Compression July 15, 2024 1 / 29

Motivation: Computational Cardiology

Computational Cardiology: Developing multiscale digital twins of human hearts to
non-invasively predict disease progression and therapy response [Niederer, Sacks, Girolami, and Willcox, 2021]

Organ scale
<latexit sha1_base64="tb7H8EVnsmshWv1rgVqSlSn2iBI=">AAAB9HicbVBNS8NAEJ34WeNX1aOXxSJ4Kkk96LHoxZsV7Ae0oUy2m3bpZhN3N4US+ju8eFDEqz/Gm//GpM1BWx8MPN6bYWaeHwuujeN8W2vrG5tb26Ude3dv/+CwfHTc0lGiKGvSSESq46NmgkvWNNwI1okVw9AXrO2Pb3O/PWFK80g+mmnMvBCHkgecoskk714NURJNUTDb7pcrTtWZg6wStyAVKNDol796g4gmIZOGCtS66zqx8VJUhlPBZnYv0SxGOsYh62ZUYsi0l86PnpHzTBmQIFJZSUPm6u+JFEOtp6GfdYZoRnrZy8X/vG5igmsv5TJODJN0sShIBDERyRMgA64YNWKaEaSKZ7cSOkKF1GQ55SG4yy+vklat6l5Waw+1Sv2miKMEp3AGF+DCFdThDhrQBApP8Ayv8GZNrBfr3fpYtK5ZxcwJ/IH1+QNmlZEx</latexit>

Tissue scale
<latexit sha1_base64="d37eTTHEYHWpxsIBEMJ+3E1MvT8=">AAAB9XicbVC7TsNAEFyHVzCvACXNiQiJKrJDAWUEDWWQ8kBKTHS+rJNTzg/dnUGRlf+goQAhWv6Fjr/hnLiAhJFWGs3sanfHTwRX2nG+rdLa+sbmVnnb3tnd2z+oHB51VJxKhm0Wi1je+1Sh4BG2NdcC7xOJNPQFdv3JTe53H1EqHkctPU3QC+ko4gFnVBvpocWVSpEoRgXa9qBSdWrOHGSVuAWpQoHmoPLVH8YsDTHSTFCleq6TaC+jUnMmcGb3U4UJZRM6wp6hEQ1Redn86hk5M8qQBLE0FWkyV39PZDRUahr6pjOkeqyWvVz8z+ulOrjyMh4lqcaILRYFqSA6JnkEZMglMi2mhlAmubmVsDGVlGkTVB6Cu/zyKunUa+5FrX5XrzauizjKcAKncA4uXEIDbqEJbWAg4Rle4c16sl6sd+tj0Vqyiplj+APr8wddI5HB</latexit>

Single cell scale
<latexit sha1_base64="U+5TJMPnWOyG3lvju3p6V8LEoS8=">AAAB/HicbVBNS8NAEN34WeNXtEcvi0XwVJJ60GPRi8eK9gPaUDbbSbt0swm7GyGE+le8eFDEqz/Em//GTZuDtj4YeLw3w8y8IOFMadf9ttbWNza3tis79u7e/sGhc3TcUXEqKbRpzGPZC4gCzgS0NdMceokEEgUcusH0pvC7jyAVi8WDzhLwIzIWLGSUaCMNneo9E2MOmALnWFHCwbaHTs2tu3PgVeKVpIZKtIbO12AU0zQCoSknSvU9N9F+TqRmlMPMHqQKEkKnZAx9QwWJQPn5/PgZPjPKCIexNCU0nqu/J3ISKZVFgemMiJ6oZa8Q//P6qQ6v/JyJJNUg6GJRmHKsY1wkgUdMAtU8M4RQycytmE6IJFSbvIoQvOWXV0mnUfcu6o27Rq15XcZRQSfoFJ0jD12iJrpFLdRGFGXoGb2iN+vJerHerY9F65pVzlTRH1ifPyhqk8k=</latexit>

Figure
credit:
Marina
Riabiz

Example (Heartbeats and arrhythmias)

Whole-organ heartbeats are coordinated by calcium signaling in heart cells

Dysregulation known to lead to life-threatening heart arrhythmias

Goal: Model impact of calcium signaling dysregulation on heart function [Campos,

Shiferaw, Prassl, Boyle, Vigmond, and Plank, 2015, Niederer, Lumens, and Trayanova, 2019, Colman, 2019]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 2 / 29

Motivation: Computational Cardiology

Computational Cardiology: Developing multiscale digital twins of human hearts to
non-invasively predict disease progression and therapy response [Niederer, Sacks, Girolami, and Willcox, 2021]

Organ scale
<latexit sha1_base64="tb7H8EVnsmshWv1rgVqSlSn2iBI=">AAAB9HicbVBNS8NAEJ34WeNX1aOXxSJ4Kkk96LHoxZsV7Ae0oUy2m3bpZhN3N4US+ju8eFDEqz/Gm//GpM1BWx8MPN6bYWaeHwuujeN8W2vrG5tb26Ude3dv/+CwfHTc0lGiKGvSSESq46NmgkvWNNwI1okVw9AXrO2Pb3O/PWFK80g+mmnMvBCHkgecoskk714NURJNUTDb7pcrTtWZg6wStyAVKNDol796g4gmIZOGCtS66zqx8VJUhlPBZnYv0SxGOsYh62ZUYsi0l86PnpHzTBmQIFJZSUPm6u+JFEOtp6GfdYZoRnrZy8X/vG5igmsv5TJODJN0sShIBDERyRMgA64YNWKaEaSKZ7cSOkKF1GQ55SG4yy+vklat6l5Waw+1Sv2miKMEp3AGF+DCFdThDhrQBApP8Ayv8GZNrBfr3fpYtK5ZxcwJ/IH1+QNmlZEx</latexit>

Tissue scale
<latexit sha1_base64="d37eTTHEYHWpxsIBEMJ+3E1MvT8=">AAAB9XicbVC7TsNAEFyHVzCvACXNiQiJKrJDAWUEDWWQ8kBKTHS+rJNTzg/dnUGRlf+goQAhWv6Fjr/hnLiAhJFWGs3sanfHTwRX2nG+rdLa+sbmVnnb3tnd2z+oHB51VJxKhm0Wi1je+1Sh4BG2NdcC7xOJNPQFdv3JTe53H1EqHkctPU3QC+ko4gFnVBvpocWVSpEoRgXa9qBSdWrOHGSVuAWpQoHmoPLVH8YsDTHSTFCleq6TaC+jUnMmcGb3U4UJZRM6wp6hEQ1Redn86hk5M8qQBLE0FWkyV39PZDRUahr6pjOkeqyWvVz8z+ulOrjyMh4lqcaILRYFqSA6JnkEZMglMi2mhlAmubmVsDGVlGkTVB6Cu/zyKunUa+5FrX5XrzauizjKcAKncA4uXEIDbqEJbWAg4Rle4c16sl6sd+tj0Vqyiplj+APr8wddI5HB</latexit>

Single cell scale
<latexit sha1_base64="U+5TJMPnWOyG3lvju3p6V8LEoS8=">AAAB/HicbVBNS8NAEN34WeNXtEcvi0XwVJJ60GPRi8eK9gPaUDbbSbt0swm7GyGE+le8eFDEqz/Em//GTZuDtj4YeLw3w8y8IOFMadf9ttbWNza3tis79u7e/sGhc3TcUXEqKbRpzGPZC4gCzgS0NdMceokEEgUcusH0pvC7jyAVi8WDzhLwIzIWLGSUaCMNneo9E2MOmALnWFHCwbaHTs2tu3PgVeKVpIZKtIbO12AU0zQCoSknSvU9N9F+TqRmlMPMHqQKEkKnZAx9QwWJQPn5/PgZPjPKCIexNCU0nqu/J3ISKZVFgemMiJ6oZa8Q//P6qQ6v/JyJJNUg6GJRmHKsY1wkgUdMAtU8M4RQycytmE6IJFSbvIoQvOWXV0mnUfcu6o27Rq15XcZRQSfoFJ0jD12iJrpFLdRGFGXoGb2iN+vJerHerY9F65pVzlTRH1ifPyhqk8k=</latexit>

Figure
credit:
Marina
Riabiz

Example (Heartbeats and arrhythmias)

Whole-organ heartbeats are coordinated by calcium signaling in heart cells

Dysregulation known to lead to life-threatening heart arrhythmias

Goal: Model impact of calcium signaling dysregulation on heart function [Campos,

Shiferaw, Prassl, Boyle, Vigmond, and Plank, 2015, Niederer, Lumens, and Trayanova, 2019, Colman, 2019]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 2 / 29

Motivation: Computational Cardiology

Computational Cardiology: Developing multiscale digital twins of human hearts to
non-invasively predict disease progression and therapy response [Niederer, Sacks, Girolami, and Willcox, 2021]

Organ scale
<latexit sha1_base64="tb7H8EVnsmshWv1rgVqSlSn2iBI=">AAAB9HicbVBNS8NAEJ34WeNX1aOXxSJ4Kkk96LHoxZsV7Ae0oUy2m3bpZhN3N4US+ju8eFDEqz/Gm//GpM1BWx8MPN6bYWaeHwuujeN8W2vrG5tb26Ude3dv/+CwfHTc0lGiKGvSSESq46NmgkvWNNwI1okVw9AXrO2Pb3O/PWFK80g+mmnMvBCHkgecoskk714NURJNUTDb7pcrTtWZg6wStyAVKNDol796g4gmIZOGCtS66zqx8VJUhlPBZnYv0SxGOsYh62ZUYsi0l86PnpHzTBmQIFJZSUPm6u+JFEOtp6GfdYZoRnrZy8X/vG5igmsv5TJODJN0sShIBDERyRMgA64YNWKaEaSKZ7cSOkKF1GQ55SG4yy+vklat6l5Waw+1Sv2miKMEp3AGF+DCFdThDhrQBApP8Ayv8GZNrBfr3fpYtK5ZxcwJ/IH1+QNmlZEx</latexit>

Tissue scale
<latexit sha1_base64="d37eTTHEYHWpxsIBEMJ+3E1MvT8=">AAAB9XicbVC7TsNAEFyHVzCvACXNiQiJKrJDAWUEDWWQ8kBKTHS+rJNTzg/dnUGRlf+goQAhWv6Fjr/hnLiAhJFWGs3sanfHTwRX2nG+rdLa+sbmVnnb3tnd2z+oHB51VJxKhm0Wi1je+1Sh4BG2NdcC7xOJNPQFdv3JTe53H1EqHkctPU3QC+ko4gFnVBvpocWVSpEoRgXa9qBSdWrOHGSVuAWpQoHmoPLVH8YsDTHSTFCleq6TaC+jUnMmcGb3U4UJZRM6wp6hEQ1Redn86hk5M8qQBLE0FWkyV39PZDRUahr6pjOkeqyWvVz8z+ulOrjyMh4lqcaILRYFqSA6JnkEZMglMi2mhlAmubmVsDGVlGkTVB6Cu/zyKunUa+5FrX5XrzauizjKcAKncA4uXEIDbqEJbWAg4Rle4c16sl6sd+tj0Vqyiplj+APr8wddI5HB</latexit>

Single cell scale
<latexit sha1_base64="U+5TJMPnWOyG3lvju3p6V8LEoS8=">AAAB/HicbVBNS8NAEN34WeNXtEcvi0XwVJJ60GPRi8eK9gPaUDbbSbt0swm7GyGE+le8eFDEqz/Em//GTZuDtj4YeLw3w8y8IOFMadf9ttbWNza3tis79u7e/sGhc3TcUXEqKbRpzGPZC4gCzgS0NdMceokEEgUcusH0pvC7jyAVi8WDzhLwIzIWLGSUaCMNneo9E2MOmALnWFHCwbaHTs2tu3PgVeKVpIZKtIbO12AU0zQCoSknSvU9N9F+TqRmlMPMHqQKEkKnZAx9QwWJQPn5/PgZPjPKCIexNCU0nqu/J3ISKZVFgemMiJ6oZa8Q//P6qQ6v/JyJJNUg6GJRmHKsY1wkgUdMAtU8M4RQycytmE6IJFSbvIoQvOWXV0mnUfcu6o27Rq15XcZRQSfoFJ0jD12iJrpFLdRGFGXoGb2iN+vJerHerY9F65pVzlTRH1ifPyhqk8k=</latexit>

Figure
credit:
Marina
Riabiz

Example (Heartbeats and arrhythmias)

Whole-organ heartbeats are coordinated by calcium signaling in heart cells

Dysregulation known to lead to life-threatening heart arrhythmias

Goal: Model impact of calcium signaling dysregulation on heart function [Campos,

Shiferaw, Prassl, Boyle, Vigmond, and Plank, 2015, Niederer, Lumens, and Trayanova, 2019, Colman, 2019]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 2 / 29

Motivation: Computational Cardiology

Computational Cardiology: Developing multiscale digital twins of human hearts to
non-invasively predict disease progression and therapy response [Niederer, Sacks, Girolami, and Willcox, 2021]

Organ scale
<latexit sha1_base64="tb7H8EVnsmshWv1rgVqSlSn2iBI=">AAAB9HicbVBNS8NAEJ34WeNX1aOXxSJ4Kkk96LHoxZsV7Ae0oUy2m3bpZhN3N4US+ju8eFDEqz/Gm//GpM1BWx8MPN6bYWaeHwuujeN8W2vrG5tb26Ude3dv/+CwfHTc0lGiKGvSSESq46NmgkvWNNwI1okVw9AXrO2Pb3O/PWFK80g+mmnMvBCHkgecoskk714NURJNUTDb7pcrTtWZg6wStyAVKNDol796g4gmIZOGCtS66zqx8VJUhlPBZnYv0SxGOsYh62ZUYsi0l86PnpHzTBmQIFJZSUPm6u+JFEOtp6GfdYZoRnrZy8X/vG5igmsv5TJODJN0sShIBDERyRMgA64YNWKaEaSKZ7cSOkKF1GQ55SG4yy+vklat6l5Waw+1Sv2miKMEp3AGF+DCFdThDhrQBApP8Ayv8GZNrBfr3fpYtK5ZxcwJ/IH1+QNmlZEx</latexit>

Tissue scale
<latexit sha1_base64="d37eTTHEYHWpxsIBEMJ+3E1MvT8=">AAAB9XicbVC7TsNAEFyHVzCvACXNiQiJKrJDAWUEDWWQ8kBKTHS+rJNTzg/dnUGRlf+goQAhWv6Fjr/hnLiAhJFWGs3sanfHTwRX2nG+rdLa+sbmVnnb3tnd2z+oHB51VJxKhm0Wi1je+1Sh4BG2NdcC7xOJNPQFdv3JTe53H1EqHkctPU3QC+ko4gFnVBvpocWVSpEoRgXa9qBSdWrOHGSVuAWpQoHmoPLVH8YsDTHSTFCleq6TaC+jUnMmcGb3U4UJZRM6wp6hEQ1Redn86hk5M8qQBLE0FWkyV39PZDRUahr6pjOkeqyWvVz8z+ulOrjyMh4lqcaILRYFqSA6JnkEZMglMi2mhlAmubmVsDGVlGkTVB6Cu/zyKunUa+5FrX5XrzauizjKcAKncA4uXEIDbqEJbWAg4Rle4c16sl6sd+tj0Vqyiplj+APr8wddI5HB</latexit>

Single cell scale
<latexit sha1_base64="U+5TJMPnWOyG3lvju3p6V8LEoS8=">AAAB/HicbVBNS8NAEN34WeNXtEcvi0XwVJJ60GPRi8eK9gPaUDbbSbt0swm7GyGE+le8eFDEqz/Em//GTZuDtj4YeLw3w8y8IOFMadf9ttbWNza3tis79u7e/sGhc3TcUXEqKbRpzGPZC4gCzgS0NdMceokEEgUcusH0pvC7jyAVi8WDzhLwIzIWLGSUaCMNneo9E2MOmALnWFHCwbaHTs2tu3PgVeKVpIZKtIbO12AU0zQCoSknSvU9N9F+TqRmlMPMHqQKEkKnZAx9QwWJQPn5/PgZPjPKCIexNCU0nqu/J3ISKZVFgemMiJ6oZa8Q//P6qQ6v/JyJJNUg6GJRmHKsY1wkgUdMAtU8M4RQycytmE6IJFSbvIoQvOWXV0mnUfcu6o27Rq15XcZRQSfoFJ0jD12iJrpFLdRGFGXoGb2iN+vJerHerY9F65pVzlTRH1ifPyhqk8k=</latexit>

Figure
credit:
Marina
Riabiz

Example (Heartbeats and arrhythmias)

Whole-organ heartbeats are coordinated by calcium signaling in heart cells

Dysregulation known to lead to life-threatening heart arrhythmias

Goal: Model impact of calcium signaling dysregulation on heart function [Campos,

Shiferaw, Prassl, Boyle, Vigmond, and Plank, 2015, Niederer, Lumens, and Trayanova, 2019, Colman, 2019]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 2 / 29

Motivation: Computational Cardiology

Figure
credit:
Augustin
et al.
2020

Inferential Pipeline (Impact of calcium signaling dysregulation on heart function)

1 Estimate unknown calcium signaling model parameters from patient data
2 Capture uncertainty by sampling many likely parameter configurations

Run Markov chain Monte Carlo (MCMC) to (eventually) draw sample points
from the posterior distribution P over unknown parameters
May require millions of sample points to adequately explore target distribution P

3 Propagate uncertainty by simulating whole-heart model for each configuration

Problem: Each simulation requires thousands of CPU hours!

Questions: Can we accurately summarize P using many fewer points? If so, how?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 3 / 29

Motivation: Computational Cardiology

Figure
credit:
Augustin
et al.
2020

Inferential Pipeline (Impact of calcium signaling dysregulation on heart function)

1 Estimate unknown calcium signaling model parameters from patient data

2 Capture uncertainty by sampling many likely parameter configurations

Run Markov chain Monte Carlo (MCMC) to (eventually) draw sample points
from the posterior distribution P over unknown parameters
May require millions of sample points to adequately explore target distribution P

3 Propagate uncertainty by simulating whole-heart model for each configuration

Problem: Each simulation requires thousands of CPU hours!

Questions: Can we accurately summarize P using many fewer points? If so, how?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 3 / 29

Motivation: Computational Cardiology

Figure
credit:
Augustin
et al.
2020

Inferential Pipeline (Impact of calcium signaling dysregulation on heart function)

1 Estimate unknown calcium signaling model parameters from patient data
2 Capture uncertainty by sampling many likely parameter configurations

Run Markov chain Monte Carlo (MCMC) to (eventually) draw sample points
from the posterior distribution P over unknown parameters
May require millions of sample points to adequately explore target distribution P

3 Propagate uncertainty by simulating whole-heart model for each configuration

Problem: Each simulation requires thousands of CPU hours!

Questions: Can we accurately summarize P using many fewer points? If so, how?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 3 / 29

Motivation: Computational Cardiology

Figure
credit:
Augustin
et al.
2020

Inferential Pipeline (Impact of calcium signaling dysregulation on heart function)

1 Estimate unknown calcium signaling model parameters from patient data
2 Capture uncertainty by sampling many likely parameter configurations

Run Markov chain Monte Carlo (MCMC) to (eventually) draw sample points
from the posterior distribution P over unknown parameters

May require millions of sample points to adequately explore target distribution P
3 Propagate uncertainty by simulating whole-heart model for each configuration

Problem: Each simulation requires thousands of CPU hours!

Questions: Can we accurately summarize P using many fewer points? If so, how?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 3 / 29

Motivation: Computational Cardiology

Figure
credit:
Augustin
et al.
2020

Inferential Pipeline (Impact of calcium signaling dysregulation on heart function)

1 Estimate unknown calcium signaling model parameters from patient data
2 Capture uncertainty by sampling many likely parameter configurations

Run Markov chain Monte Carlo (MCMC) to (eventually) draw sample points
from the posterior distribution P over unknown parameters
May require millions of sample points to adequately explore target distribution P

3 Propagate uncertainty by simulating whole-heart model for each configuration

Problem: Each simulation requires thousands of CPU hours!

Questions: Can we accurately summarize P using many fewer points? If so, how?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 3 / 29

Motivation: Computational Cardiology

Figure
credit:
Augustin
et al.
2020

Inferential Pipeline (Impact of calcium signaling dysregulation on heart function)

1 Estimate unknown calcium signaling model parameters from patient data
2 Capture uncertainty by sampling many likely parameter configurations

Run Markov chain Monte Carlo (MCMC) to (eventually) draw sample points
from the posterior distribution P over unknown parameters
May require millions of sample points to adequately explore target distribution P

3 Propagate uncertainty by simulating whole-heart model for each configuration

Problem: Each simulation requires thousands of CPU hours!

Questions: Can we accurately summarize P using many fewer points? If so, how?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 3 / 29

Motivation: Computational Cardiology

Figure
credit:
Augustin
et al.
2020

Inferential Pipeline (Impact of calcium signaling dysregulation on heart function)

1 Estimate unknown calcium signaling model parameters from patient data
2 Capture uncertainty by sampling many likely parameter configurations

Run Markov chain Monte Carlo (MCMC) to (eventually) draw sample points
from the posterior distribution P over unknown parameters
May require millions of sample points to adequately explore target distribution P

3 Propagate uncertainty by simulating whole-heart model for each configuration

Problem: Each simulation requires thousands of CPU hours!

Questions: Can we accurately summarize P using many fewer points? If so, how?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 3 / 29

Motivation: Computational Cardiology

Figure
credit:
Augustin
et al.
2020

Inferential Pipeline (Impact of calcium signaling dysregulation on heart function)

1 Estimate unknown calcium signaling model parameters from patient data
2 Capture uncertainty by sampling many likely parameter configurations

Run Markov chain Monte Carlo (MCMC) to (eventually) draw sample points
from the posterior distribution P over unknown parameters
May require millions of sample points to adequately explore target distribution P

3 Propagate uncertainty by simulating whole-heart model for each configuration

Problem: Each simulation requires thousands of CPU hours!

Questions: Can we accurately summarize P using many fewer points? If so, how?
Mackey (MSR) Advances in Distribution Compression July 15, 2024 3 / 29

Distribution Compression

Goal: Accurately summarize a distribution P using a small number of points

Standard solutions

i.i.d. sampling directly from P
MCMC with Markov chain converging to P

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

Benefits: Readily available and eventually high-quality

Provide asymptotically exact sample estimates Pnf = 1
n

∑n
i=1 f(xi) for intractable

expectations Pf = EX∼P[f(X)]

Drawback: Samples are too large!

Typical integration error Pnf − Pf = Θ(n−1/2): need n = 10000 for 1% error

Prohibitive for expensive downstream tasks and function evaluations

Idea: Directly compress the high-quality sample approximations Pn

Reduces general problem to approximating empirical distributions

Mackey (MSR) Advances in Distribution Compression July 15, 2024 4 / 29

Distribution Compression

Goal: Accurately summarize a distribution P using a small number of points

Standard solutions

i.i.d. sampling directly from P
MCMC with Markov chain converging to P

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

Benefits: Readily available and eventually high-quality

Provide asymptotically exact sample estimates Pnf = 1
n

∑n
i=1 f(xi) for intractable

expectations Pf = EX∼P[f(X)]

Drawback: Samples are too large!

Typical integration error Pnf − Pf = Θ(n−1/2): need n = 10000 for 1% error

Prohibitive for expensive downstream tasks and function evaluations

Idea: Directly compress the high-quality sample approximations Pn

Reduces general problem to approximating empirical distributions

Mackey (MSR) Advances in Distribution Compression July 15, 2024 4 / 29

Distribution Compression

Goal: Accurately summarize a distribution P using a small number of points

Standard solutions

i.i.d. sampling directly from P

MCMC with Markov chain converging to P
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

Benefits: Readily available and eventually high-quality

Provide asymptotically exact sample estimates Pnf = 1
n

∑n
i=1 f(xi) for intractable

expectations Pf = EX∼P[f(X)]

Drawback: Samples are too large!

Typical integration error Pnf − Pf = Θ(n−1/2): need n = 10000 for 1% error

Prohibitive for expensive downstream tasks and function evaluations

Idea: Directly compress the high-quality sample approximations Pn

Reduces general problem to approximating empirical distributions

Mackey (MSR) Advances in Distribution Compression July 15, 2024 4 / 29

Distribution Compression

Goal: Accurately summarize a distribution P using a small number of points

Standard solutions

i.i.d. sampling directly from P
MCMC with Markov chain converging to P

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

Benefits: Readily available and eventually high-quality

Provide asymptotically exact sample estimates Pnf = 1
n

∑n
i=1 f(xi) for intractable

expectations Pf = EX∼P[f(X)]

Drawback: Samples are too large!

Typical integration error Pnf − Pf = Θ(n−1/2): need n = 10000 for 1% error

Prohibitive for expensive downstream tasks and function evaluations

Idea: Directly compress the high-quality sample approximations Pn

Reduces general problem to approximating empirical distributions

Mackey (MSR) Advances in Distribution Compression July 15, 2024 4 / 29

Distribution Compression

Goal: Accurately summarize a distribution P using a small number of points

Standard solutions

i.i.d. sampling directly from P
MCMC with Markov chain converging to P

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

Benefits: Readily available and eventually high-quality

Provide asymptotically exact sample estimates Pnf = 1
n

∑n
i=1 f(xi) for intractable

expectations Pf = EX∼P[f(X)]

Drawback: Samples are too large!

Typical integration error Pnf − Pf = Θ(n−1/2): need n = 10000 for 1% error

Prohibitive for expensive downstream tasks and function evaluations

Idea: Directly compress the high-quality sample approximations Pn

Reduces general problem to approximating empirical distributions

Mackey (MSR) Advances in Distribution Compression July 15, 2024 4 / 29

Distribution Compression

Goal: Accurately summarize a distribution P using a small number of points

Standard solutions

i.i.d. sampling directly from P
MCMC with Markov chain converging to P

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

Benefits: Readily available and eventually high-quality

Provide asymptotically exact sample estimates Pnf = 1
n

∑n
i=1 f(xi) for intractable

expectations Pf = EX∼P[f(X)]

Drawback: Samples are too large!

Typical integration error Pnf − Pf = Θ(n−1/2): need n = 10000 for 1% error

Prohibitive for expensive downstream tasks and function evaluations

Idea: Directly compress the high-quality sample approximations Pn

Reduces general problem to approximating empirical distributions

Mackey (MSR) Advances in Distribution Compression July 15, 2024 4 / 29

Distribution Compression

Goal: Accurately summarize a distribution P using a small number of points

Standard solutions

i.i.d. sampling directly from P
MCMC with Markov chain converging to P

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

Benefits: Readily available and eventually high-quality

Provide asymptotically exact sample estimates Pnf = 1
n

∑n
i=1 f(xi) for intractable

expectations Pf = EX∼P[f(X)]

Drawback: Samples are too large!

Typical integration error Pnf − Pf = Θ(n−1/2): need n = 10000 for 1% error

Prohibitive for expensive downstream tasks and function evaluations

Idea: Directly compress the high-quality sample approximations Pn

Reduces general problem to approximating empirical distributions

Mackey (MSR) Advances in Distribution Compression July 15, 2024 4 / 29

Distribution Compression

Goal: Accurately summarize a distribution P using a small number of points

Standard solutions

i.i.d. sampling directly from P
MCMC with Markov chain converging to P

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

Benefits: Readily available and eventually high-quality

Provide asymptotically exact sample estimates Pnf = 1
n

∑n
i=1 f(xi) for intractable

expectations Pf = EX∼P[f(X)]

Drawback: Samples are too large!

Typical integration error Pnf − Pf = Θ(n−1/2): need n = 10000 for 1% error

Prohibitive for expensive downstream tasks and function evaluations

Idea: Directly compress the high-quality sample approximations Pn

Reduces general problem to approximating empirical distributions
Mackey (MSR) Advances in Distribution Compression July 15, 2024 4 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
Ω(n−1/2) for any compression procedure returning

√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
Ω(n−1/2) for any compression procedure returning

√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
Ω(n−1/2) for any compression procedure returning

√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
Ω(n−1/2) for any compression procedure returning

√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
Ω(n−1/2) for any compression procedure returning

√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P

Ω(n−1/2) for any compression procedure returning
√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
Ω(n−1/2) for any compression procedure returning

√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
Ω(n−1/2) for any compression procedure returning

√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
Ω(n−1/2) for any compression procedure returning

√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Distribution Compression

Question: How do we effectively compress an empirical distribution Pn?

Standard solutions

Uniform subsampling / i.i.d. sampling

Standard thinning: Keep every t-th point
−2.5 0.0 2.5

x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Drawback: Large loss in accuracy, worst case integration error = Θ(
√

t/n)

Compression from n to
√
n points increases error from Θ(n−1/2) to Θ(n−1/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
Ω(n−1/2) for any compression procedure returning

√
n points [Phillips and Tai, 2020]

Ω(n−1/2) for any function of n i.i.d. points from P [Tolstikhin, Sriperumbudur, and Muandet, 2017]

Θ(n−1/2 log
d−1
2 n) for best

√
n points if P = Unif([0, 1]d) [Novak and Wozniakowski, 2010]

This talk: Introduce a practical compression strategy – kernel thinning – that matches
these lower bounds up to log factors, even for nonuniform and unbounded P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 5 / 29

Problem Setup

Given:

Input points Sin = {x1, . . . , xn} ⊂ Rd with empirical distribution Pn = 1
n

∑n
i=1 δxi

Pre-generated by any algorithm (i.i.d. sampling, MCMC, quadrature, kernel herding)

Target output size s (e.g., s =
√
n for heavy compression)

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
(better-than-i.i.d.) worst-case integration error between Pn and Q

Mackey (MSR) Advances in Distribution Compression July 15, 2024 6 / 29

Problem Setup

Given:

Input points Sin = {x1, . . . , xn} ⊂ Rd with empirical distribution Pn = 1
n

∑n
i=1 δxi

Pre-generated by any algorithm (i.i.d. sampling, MCMC, quadrature, kernel herding)

Target output size s (e.g., s =
√
n for heavy compression)

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
(better-than-i.i.d.) worst-case integration error between Pn and Q

Mackey (MSR) Advances in Distribution Compression July 15, 2024 6 / 29

Problem Setup

Given:

Input points Sin = {x1, . . . , xn} ⊂ Rd with empirical distribution Pn = 1
n

∑n
i=1 δxi

Pre-generated by any algorithm (i.i.d. sampling, MCMC, quadrature, kernel herding)

Target output size s (e.g., s =
√
n for heavy compression)

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
(better-than-i.i.d.) worst-case integration error between Pn and Q

Mackey (MSR) Advances in Distribution Compression July 15, 2024 6 / 29

Problem Setup

Given:

Input points Sin = {x1, . . . , xn} ⊂ Rd with empirical distribution Pn = 1
n

∑n
i=1 δxi

Pre-generated by any algorithm (i.i.d. sampling, MCMC, quadrature, kernel herding)

Target output size s (e.g., s =
√
n for heavy compression)

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
(better-than-i.i.d.) worst-case integration error between Pn and Q

Mackey (MSR) Advances in Distribution Compression July 15, 2024 6 / 29

Problem Setup

Given:

Input points Sin = {x1, . . . , xn} ⊂ Rd with empirical distribution Pn = 1
n

∑n
i=1 δxi

Pre-generated by any algorithm (i.i.d. sampling, MCMC, quadrature, kernel herding)

Target output size s (e.g., s =
√
n for heavy compression)

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx,

and o(s−1/2)
(better-than-i.i.d.) worst-case integration error between Pn and Q

Mackey (MSR) Advances in Distribution Compression July 15, 2024 6 / 29

Problem Setup

Given:

Input points Sin = {x1, . . . , xn} ⊂ Rd with empirical distribution Pn = 1
n

∑n
i=1 δxi

Pre-generated by any algorithm (i.i.d. sampling, MCMC, quadrature, kernel herding)

Target output size s (e.g., s =
√
n for heavy compression)

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
(better-than-i.i.d.) worst-case integration error between Pn and Q

Mackey (MSR) Advances in Distribution Compression July 15, 2024 6 / 29

Maximum Mean Discrepancies

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
worst-case integration error between Pn and Q

Quality measure: Maximum mean discrepancy (MMD) [Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012]

MMDk(Pn,Q) = sup
∥f∥k≤1

|Pnf −Qf |

Measures maximum discrepancy between input and coreset expectations over a
class of real-valued test functions (unit ball of a reproducing kernel Hilbert space)

Parameterized by a reproducing kernel k: any symmetric (k(x, y) = k(y, x)) and
positive semidefinite (

∑
i,l ciclk(zi, zl) ≥ 0,∀zi ∈ Rd, ci ∈ R) function

Gaussian: k(x, y) = e−
1
2
∥x−y∥22 , Inverse multiquadric: k(x, y) = 1

(1+∥x−y∥22)1/2

Metrizes convergence in distribution for popular infinite-dimensional kernels (e.g.,
Gaussian, Matérn, B-spline, inverse multiquadric, sech, and Wendland)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 7 / 29

Maximum Mean Discrepancies

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
worst-case integration error between Pn and Q

Quality measure: Maximum mean discrepancy (MMD) [Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012]

MMDk(Pn,Q) = sup
∥f∥k≤1

|Pnf −Qf |

Measures maximum discrepancy between input and coreset expectations over a
class of real-valued test functions (unit ball of a reproducing kernel Hilbert space)

Parameterized by a reproducing kernel k: any symmetric (k(x, y) = k(y, x)) and
positive semidefinite (

∑
i,l ciclk(zi, zl) ≥ 0,∀zi ∈ Rd, ci ∈ R) function

Gaussian: k(x, y) = e−
1
2
∥x−y∥22 , Inverse multiquadric: k(x, y) = 1

(1+∥x−y∥22)1/2

Metrizes convergence in distribution for popular infinite-dimensional kernels (e.g.,
Gaussian, Matérn, B-spline, inverse multiquadric, sech, and Wendland)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 7 / 29

Maximum Mean Discrepancies

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
worst-case integration error between Pn and Q

Quality measure: Maximum mean discrepancy (MMD) [Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012]

MMDk(Pn,Q) = sup
∥f∥k≤1

|Pnf −Qf |

Measures maximum discrepancy between input and coreset expectations over a
class of real-valued test functions (unit ball of a reproducing kernel Hilbert space)

Parameterized by a reproducing kernel k

: any symmetric (k(x, y) = k(y, x)) and
positive semidefinite (

∑
i,l ciclk(zi, zl) ≥ 0,∀zi ∈ Rd, ci ∈ R) function

Gaussian: k(x, y) = e−
1
2
∥x−y∥22 , Inverse multiquadric: k(x, y) = 1

(1+∥x−y∥22)1/2

Metrizes convergence in distribution for popular infinite-dimensional kernels (e.g.,
Gaussian, Matérn, B-spline, inverse multiquadric, sech, and Wendland)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 7 / 29

Maximum Mean Discrepancies

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
worst-case integration error between Pn and Q

Quality measure: Maximum mean discrepancy (MMD) [Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012]

MMDk(Pn,Q) = sup
∥f∥k≤1

|Pnf −Qf |

Measures maximum discrepancy between input and coreset expectations over a
class of real-valued test functions (unit ball of a reproducing kernel Hilbert space)

Parameterized by a reproducing kernel k: any symmetric (k(x, y) = k(y, x)) and
positive semidefinite (

∑
i,l ciclk(zi, zl) ≥ 0,∀zi ∈ Rd, ci ∈ R) function

Gaussian: k(x, y) = e−
1
2
∥x−y∥22 , Inverse multiquadric: k(x, y) = 1

(1+∥x−y∥22)1/2

Metrizes convergence in distribution for popular infinite-dimensional kernels (e.g.,
Gaussian, Matérn, B-spline, inverse multiquadric, sech, and Wendland)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 7 / 29

Maximum Mean Discrepancies

Goal: Return coreset Sout ⊂ Sin with |Sout| = s, Q = 1
s

∑
x∈Sout

δx, and o(s−1/2)
worst-case integration error between Pn and Q

Quality measure: Maximum mean discrepancy (MMD) [Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012]

MMDk(Pn,Q) = sup
∥f∥k≤1

|Pnf −Qf |

Measures maximum discrepancy between input and coreset expectations over a
class of real-valued test functions (unit ball of a reproducing kernel Hilbert space)

Parameterized by a reproducing kernel k: any symmetric (k(x, y) = k(y, x)) and
positive semidefinite (

∑
i,l ciclk(zi, zl) ≥ 0,∀zi ∈ Rd, ci ∈ R) function

Gaussian: k(x, y) = e−
1
2
∥x−y∥22 , Inverse multiquadric: k(x, y) = 1

(1+∥x−y∥22)1/2

Metrizes convergence in distribution for popular infinite-dimensional kernels (e.g.,
Gaussian, Matérn, B-spline, inverse multiquadric, sech, and Wendland)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 7 / 29

Square-root Kernels

Definition (Square-root kernel)

A reproducing kernel krt is a square-root kernel for k if

k(x, y) =
∫
Rd krt(x, z)krt(y, z)dz.

k(x, y) = κ(x−y) κ(z) Square-root krt

Gaussian(σ) exp
(
−∥z∥22

2σ2

)
Gaussian

(
σ√
2

)
Matérn(ν, γ) (γ∥z∥2)ν−

d
2Kν− d

2
(γ∥z∥2) Matérn(ν2 , γ)

B-spline(2β + 1)
∏d

j=1⊛
2β+21[− 1

2
, 1
2
](zj) B-spline(β)

Theorem (L∞ coresets for krt are MMD coresets for k [Dwivedi and Mackey, 2024])

MMDk(Pn,Q) =

{
O(∥Pnkrt−Qkrt∥∞) Compact support krt,Pn

O(∥Pnkrt−Qkrt∥∞ log(1
∥Pnkrt−Qkrt∥∞

)
d+1
2) Subexponential krt,Pn

Mackey (MSR) Advances in Distribution Compression July 15, 2024 8 / 29

Square-root Kernels

Definition (Square-root kernel)

A reproducing kernel krt is a square-root kernel for k if

k(x, y) =
∫
Rd krt(x, z)krt(y, z)dz.

k(x, y) = κ(x−y) κ(z) Square-root krt

Gaussian(σ) exp
(
−∥z∥22

2σ2

)
Gaussian

(
σ√
2

)
Matérn(ν, γ) (γ∥z∥2)ν−

d
2Kν− d

2
(γ∥z∥2) Matérn(ν2 , γ)

B-spline(2β + 1)
∏d

j=1⊛
2β+21[− 1

2
, 1
2
](zj) B-spline(β)

Theorem (L∞ coresets for krt are MMD coresets for k [Dwivedi and Mackey, 2024])

MMDk(Pn,Q) =

{
O(∥Pnkrt−Qkrt∥∞) Compact support krt,Pn

O(∥Pnkrt−Qkrt∥∞ log(1
∥Pnkrt−Qkrt∥∞

)
d+1
2) Subexponential krt,Pn

Mackey (MSR) Advances in Distribution Compression July 15, 2024 8 / 29

Square-root Kernels

Definition (Square-root kernel)

A reproducing kernel krt is a square-root kernel for k if

k(x, y) =
∫
Rd krt(x, z)krt(y, z)dz.

k(x, y) = κ(x−y) κ(z) Square-root krt

Gaussian(σ) exp
(
−∥z∥22

2σ2

)
Gaussian

(
σ√
2

)
Matérn(ν, γ) (γ∥z∥2)ν−

d
2Kν− d

2
(γ∥z∥2) Matérn(ν2 , γ)

B-spline(2β + 1)
∏d

j=1⊛
2β+21[− 1

2
, 1
2
](zj) B-spline(β)

Theorem (L∞ coresets for krt are MMD coresets for k [Dwivedi and Mackey, 2024])

MMDk(Pn,Q) =

{
O(∥Pnkrt−Qkrt∥∞) Compact support krt,Pn

O(∥Pnkrt−Qkrt∥∞ log(1
∥Pnkrt−Qkrt∥∞

)
d+1
2) Subexponential krt,Pn

Mackey (MSR) Advances in Distribution Compression July 15, 2024 8 / 29

Kernel Thinning [Dwivedi and Mackey, 2024]

1 Initialization: kt-split

Partitions input Sin into balanced candidate coresets, each of size s

Input 
 (points)n

 (points)
n
2

Output 
 (points)

n
2m

After Kernel Halving roundsm

Kernel Halving

 (points)
n
4

Kernel Halving

<latexit sha1_base64="dM2tpuvUYF3a17jCjaY7CCNIIg4=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEClISFXVZdOOyon1AG8tkOmmHTh7MTIQagr/ixoUibv0Pd/6NkzYLrR4YOJxzL/fMcSPOpLKsL6MwN7+wuFRcLq2srq1vmJtbTRnGgtAGCXko2i6WlLOANhRTnLYjQbHvctpyR5eZ37qnQrIwuFXjiDo+HgTMYwQrLfXMna6P1ZBgntykd0nFPkT2Qdozy1bVmgD9JXZOypCj3jM/u/2QxD4NFOFYyo5tRcpJsFCMcJqWurGkESYjPKAdTQPsU+kkk/Qp2tdKH3mh0C9QaKL+3EiwL+XYd/VkllXOepn4n9eJlXfuJCyIYkUDMj3kxRypEGVVoD4TlCg+1gQTwXRWRIZYYKJ0YSVdgj375b+keVS1T6vH1yfl2kVeRxF2YQ8qYMMZ1OAK6tAAAg/wBC/wajwaz8ab8T4dLRj5zjb8gvHxDQ8YlFE=</latexit>

S(1,1)

<latexit sha1_base64="IzjRe/pKMhG0lDpZnAr+uYI87CU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFaTMVFGXRTcuK9oHtGPJpGkbmnmQZIQ6DP6KGxeKuPU/3Pk3ZtpZaOuBwOGce7knxw05k8qyvo3cwuLS8kp+tbC2vrG5ZW7vNGQQCULrJOCBaLlYUs58WldMcdoKBcWey2nTHV2lfvOBCskC/06NQ+p4eOCzPiNYaalr7nU8rIYE8/g2uY9LlWNkHyVds2iVrQnQPLEzUoQMta751ekFJPKorwjHUrZtK1ROjIVihNOk0IkkDTEZ4QFta+pjj0onnqRP0KFWeqgfCP18hSbq740Ye1KOPVdPplnlrJeK/3ntSPUvnJj5YaSoT6aH+hFHKkBpFajHBCWKjzXBRDCdFZEhFpgoXVhBl2DPfnmeNCpl+6x8cnNarF5mdeRhHw6gBDacQxWuoQZ1IPAIz/AKb8aT8WK8Gx/T0ZyR7ezCHxifPxChlFI=</latexit>

S(2,1)

<latexit sha1_base64="3Lu/QOS+4D9PDX/fWpjFkMdWhok=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCBSkzKuqy6MZlRfuAdiyZNNOGJpkhyQh1GPwVNy4Ucet/uPNvzLSz0OqBwOGce7knx48YVdpxvqzC3PzC4lJxubSyura+YW9uNVUYS0waOGShbPtIEUYFaWiqGWlHkiDuM9LyR5eZ37onUtFQ3OpxRDyOBoIGFCNtpJ690+VIDzFiyU16l1T4IXQP0p5ddqrOBPAvcXNSBjnqPfuz2w9xzInQmCGlOq4TaS9BUlPMSFrqxopECI/QgHQMFYgT5SWT9CncN0ofBqE0T2g4UX9uJIgrNea+mcyyqlkvE//zOrEOzr2EiijWRODpoSBmUIcwqwL2qSRYs7EhCEtqskI8RBJhbQormRLc2S//Jc2jqntaPb4+Kdcu8jqKYBfsgQpwwRmogStQBw2AwQN4Ai/g1Xq0nq036306WrDynW3wC9bHN2s0lI0=</latexit>

S(m,1)

<latexit sha1_base64="f2RiQ3d0Z6heUOlpz815K7Ji2Lk=">AAACAnicbVC7TsMwFHV4lvIKMCEWiwqJqUoAAWMFC2MR9CG1UeS4TmvVdiLbQaqiiIVfYWEAIVa+go2/wUkzQMuRLB2fc6/uvSeIGVXacb6thcWl5ZXVylp1fWNza9ve2W2rKJGYtHDEItkNkCKMCtLSVDPSjSVBPGCkE4yvc7/zQKSikbjXk5h4HA0FDSlG2ki+vd/nSI8wYuld5qfFR/KUiizz7ZpTdwrAeeKWpAZKNH37qz+IcMKJ0JghpXquE2svRVJTzEhW7SeKxAiP0ZD0DBWIE+WlxQkZPDLKAIaRNE9oWKi/O1LElZrwwFTmO6pZLxf/83qJDi89c1CcaCLwdFCYMKgjmOcBB1QSrNnEEIQlNbtCPEISYW1Sq5oQ3NmT50n7pO6e109vz2qNqzKOCjgAh+AYuOACNMANaIIWwOARPINX8GY9WS/Wu/UxLV2wyp498AfW5w+b3pg5</latexit>Sin

Mackey (MSR) Advances in Distribution Compression July 15, 2024 9 / 29

Kernel Thinning [Dwivedi and Mackey, 2024]

1 Initialization: kt-split

Partitions input Sin into balanced candidate coresets, each of size s

Input 
 (points)n

 (points)
n
2

Output 
 (points)

n
2m

After Kernel Halving roundsm

Kernel Halving

 (points)
n
4

Kernel Halving

<latexit sha1_base64="dM2tpuvUYF3a17jCjaY7CCNIIg4=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEClISFXVZdOOyon1AG8tkOmmHTh7MTIQagr/ixoUibv0Pd/6NkzYLrR4YOJxzL/fMcSPOpLKsL6MwN7+wuFRcLq2srq1vmJtbTRnGgtAGCXko2i6WlLOANhRTnLYjQbHvctpyR5eZ37qnQrIwuFXjiDo+HgTMYwQrLfXMna6P1ZBgntykd0nFPkT2Qdozy1bVmgD9JXZOypCj3jM/u/2QxD4NFOFYyo5tRcpJsFCMcJqWurGkESYjPKAdTQPsU+kkk/Qp2tdKH3mh0C9QaKL+3EiwL+XYd/VkllXOepn4n9eJlXfuJCyIYkUDMj3kxRypEGVVoD4TlCg+1gQTwXRWRIZYYKJ0YSVdgj375b+keVS1T6vH1yfl2kVeRxF2YQ8qYMMZ1OAK6tAAAg/wBC/wajwaz8ab8T4dLRj5zjb8gvHxDQ8YlFE=</latexit>

S(1,1)

<latexit sha1_base64="IzjRe/pKMhG0lDpZnAr+uYI87CU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFaTMVFGXRTcuK9oHtGPJpGkbmnmQZIQ6DP6KGxeKuPU/3Pk3ZtpZaOuBwOGce7knxw05k8qyvo3cwuLS8kp+tbC2vrG5ZW7vNGQQCULrJOCBaLlYUs58WldMcdoKBcWey2nTHV2lfvOBCskC/06NQ+p4eOCzPiNYaalr7nU8rIYE8/g2uY9LlWNkHyVds2iVrQnQPLEzUoQMta751ekFJPKorwjHUrZtK1ROjIVihNOk0IkkDTEZ4QFta+pjj0onnqRP0KFWeqgfCP18hSbq740Ye1KOPVdPplnlrJeK/3ntSPUvnJj5YaSoT6aH+hFHKkBpFajHBCWKjzXBRDCdFZEhFpgoXVhBl2DPfnmeNCpl+6x8cnNarF5mdeRhHw6gBDacQxWuoQZ1IPAIz/AKb8aT8WK8Gx/T0ZyR7ezCHxifPxChlFI=</latexit>

S(2,1)

<latexit sha1_base64="3Lu/QOS+4D9PDX/fWpjFkMdWhok=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCBSkzKuqy6MZlRfuAdiyZNNOGJpkhyQh1GPwVNy4Ucet/uPNvzLSz0OqBwOGce7knx48YVdpxvqzC3PzC4lJxubSyura+YW9uNVUYS0waOGShbPtIEUYFaWiqGWlHkiDuM9LyR5eZ37onUtFQ3OpxRDyOBoIGFCNtpJ690+VIDzFiyU16l1T4IXQP0p5ddqrOBPAvcXNSBjnqPfuz2w9xzInQmCGlOq4TaS9BUlPMSFrqxopECI/QgHQMFYgT5SWT9CncN0ofBqE0T2g4UX9uJIgrNea+mcyyqlkvE//zOrEOzr2EiijWRODpoSBmUIcwqwL2qSRYs7EhCEtqskI8RBJhbQormRLc2S//Jc2jqntaPb4+Kdcu8jqKYBfsgQpwwRmogStQBw2AwQN4Ai/g1Xq0nq036306WrDynW3wC9bHN2s0lI0=</latexit>

S(m,1)

<latexit sha1_base64="f2RiQ3d0Z6heUOlpz815K7Ji2Lk=">AAACAnicbVC7TsMwFHV4lvIKMCEWiwqJqUoAAWMFC2MR9CG1UeS4TmvVdiLbQaqiiIVfYWEAIVa+go2/wUkzQMuRLB2fc6/uvSeIGVXacb6thcWl5ZXVylp1fWNza9ve2W2rKJGYtHDEItkNkCKMCtLSVDPSjSVBPGCkE4yvc7/zQKSikbjXk5h4HA0FDSlG2ki+vd/nSI8wYuld5qfFR/KUiizz7ZpTdwrAeeKWpAZKNH37qz+IcMKJ0JghpXquE2svRVJTzEhW7SeKxAiP0ZD0DBWIE+WlxQkZPDLKAIaRNE9oWKi/O1LElZrwwFTmO6pZLxf/83qJDi89c1CcaCLwdFCYMKgjmOcBB1QSrNnEEIQlNbtCPEISYW1Sq5oQ3NmT50n7pO6e109vz2qNqzKOCjgAh+AYuOACNMANaIIWwOARPINX8GY9WS/Wu/UxLV2wyp498AfW5w+b3pg5</latexit>Sin

Mackey (MSR) Advances in Distribution Compression July 15, 2024 9 / 29

Kernel Halving [Dwivedi and Mackey, 2024]

Goal: Split Sin into two balanced coresets Sout,S ′
out of equal size

Balance: Qkrt ≈ Q′krt ⇔ Pnkrt ≈ Qkrt for Q′krt ≜ 1
|S′

out|
∑

x∈S′
out

krt(x, ·)

Uniformly random halving: ∥Pnkrt −Qkrt∥∞ = Ω(1√
n
) with high probability

Kernel halving: Check for balance before assigning points to coresets

Hilbert space generalization of self-balancing walk of Alweiss, Liu, and Sawhney [2020]

Start with empty coresets Sout,S ′
out

Assign input points (x, x′) = (x1, x2), . . . , (xn−1, xn) to coresets two at a time:
1 Try adding x to Sout and x′ to S ′out and record αheads = ∥Qkrt −Q′krt∥krt

2 Try adding x′ to Sout and x to S ′out and record αtails = ∥Qkrt −Q′krt∥krt

3 Final assignment: flip coin biased toward the more balanced option (the smaller α)

Theorem: ∥Pnkrt −Qkrt∥∞ = O(
√
d log(n)

n
) with high probability [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 10 / 29

Kernel Halving [Dwivedi and Mackey, 2024]

Goal: Split Sin into two balanced coresets Sout,S ′
out of equal size

Balance: Qkrt ≈ Q′krt ⇔ Pnkrt ≈ Qkrt for Q′krt ≜ 1
|S′

out|
∑

x∈S′
out

krt(x, ·)

Uniformly random halving: ∥Pnkrt −Qkrt∥∞ = Ω(1√
n
) with high probability

Kernel halving: Check for balance before assigning points to coresets

Hilbert space generalization of self-balancing walk of Alweiss, Liu, and Sawhney [2020]

Start with empty coresets Sout,S ′
out

Assign input points (x, x′) = (x1, x2), . . . , (xn−1, xn) to coresets two at a time:
1 Try adding x to Sout and x′ to S ′out and record αheads = ∥Qkrt −Q′krt∥krt

2 Try adding x′ to Sout and x to S ′out and record αtails = ∥Qkrt −Q′krt∥krt

3 Final assignment: flip coin biased toward the more balanced option (the smaller α)

Theorem: ∥Pnkrt −Qkrt∥∞ = O(
√
d log(n)

n
) with high probability [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 10 / 29

Kernel Halving [Dwivedi and Mackey, 2024]

Goal: Split Sin into two balanced coresets Sout,S ′
out of equal size

Balance: Qkrt ≈ Q′krt ⇔ Pnkrt ≈ Qkrt for Q′krt ≜ 1
|S′

out|
∑

x∈S′
out

krt(x, ·)

Uniformly random halving: ∥Pnkrt −Qkrt∥∞ = Ω(1√
n
) with high probability

Kernel halving: Check for balance before assigning points to coresets

Hilbert space generalization of self-balancing walk of Alweiss, Liu, and Sawhney [2020]

Start with empty coresets Sout,S ′
out

Assign input points (x, x′) = (x1, x2), . . . , (xn−1, xn) to coresets two at a time:
1 Try adding x to Sout and x′ to S ′out and record αheads = ∥Qkrt −Q′krt∥krt

2 Try adding x′ to Sout and x to S ′out and record αtails = ∥Qkrt −Q′krt∥krt

3 Final assignment: flip coin biased toward the more balanced option (the smaller α)

Theorem: ∥Pnkrt −Qkrt∥∞ = O(
√
d log(n)

n
) with high probability [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 10 / 29

Kernel Halving [Dwivedi and Mackey, 2024]

Goal: Split Sin into two balanced coresets Sout,S ′
out of equal size

Balance: Qkrt ≈ Q′krt ⇔ Pnkrt ≈ Qkrt for Q′krt ≜ 1
|S′

out|
∑

x∈S′
out

krt(x, ·)

Uniformly random halving: ∥Pnkrt −Qkrt∥∞ = Ω(1√
n
) with high probability

Kernel halving: Check for balance before assigning points to coresets

Hilbert space generalization of self-balancing walk of Alweiss, Liu, and Sawhney [2020]

Start with empty coresets Sout,S ′
out

Assign input points (x, x′) = (x1, x2), . . . , (xn−1, xn) to coresets two at a time:

1 Try adding x to Sout and x′ to S ′out and record αheads = ∥Qkrt −Q′krt∥krt

2 Try adding x′ to Sout and x to S ′out and record αtails = ∥Qkrt −Q′krt∥krt

3 Final assignment: flip coin biased toward the more balanced option (the smaller α)

Theorem: ∥Pnkrt −Qkrt∥∞ = O(
√
d log(n)

n
) with high probability [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 10 / 29

Kernel Halving [Dwivedi and Mackey, 2024]

Goal: Split Sin into two balanced coresets Sout,S ′
out of equal size

Balance: Qkrt ≈ Q′krt ⇔ Pnkrt ≈ Qkrt for Q′krt ≜ 1
|S′

out|
∑

x∈S′
out

krt(x, ·)

Uniformly random halving: ∥Pnkrt −Qkrt∥∞ = Ω(1√
n
) with high probability

Kernel halving: Check for balance before assigning points to coresets

Hilbert space generalization of self-balancing walk of Alweiss, Liu, and Sawhney [2020]

Start with empty coresets Sout,S ′
out

Assign input points (x, x′) = (x1, x2), . . . , (xn−1, xn) to coresets two at a time:
1 Try adding x to Sout and x′ to S ′out and record αheads = ∥Qkrt −Q′krt∥krt

2 Try adding x′ to Sout and x to S ′out and record αtails = ∥Qkrt −Q′krt∥krt

3 Final assignment: flip coin biased toward the more balanced option (the smaller α)

Theorem: ∥Pnkrt −Qkrt∥∞ = O(
√
d log(n)

n
) with high probability [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 10 / 29

Kernel Halving [Dwivedi and Mackey, 2024]

Goal: Split Sin into two balanced coresets Sout,S ′
out of equal size

Balance: Qkrt ≈ Q′krt ⇔ Pnkrt ≈ Qkrt for Q′krt ≜ 1
|S′

out|
∑

x∈S′
out

krt(x, ·)

Uniformly random halving: ∥Pnkrt −Qkrt∥∞ = Ω(1√
n
) with high probability

Kernel halving: Check for balance before assigning points to coresets

Hilbert space generalization of self-balancing walk of Alweiss, Liu, and Sawhney [2020]

Start with empty coresets Sout,S ′
out

Assign input points (x, x′) = (x1, x2), . . . , (xn−1, xn) to coresets two at a time:
1 Try adding x to Sout and x′ to S ′out and record αheads = ∥Qkrt −Q′krt∥krt

2 Try adding x′ to Sout and x to S ′out and record αtails = ∥Qkrt −Q′krt∥krt

3 Final assignment: flip coin biased toward the more balanced option (the smaller α)

Theorem: ∥Pnkrt −Qkrt∥∞ = O(
√
d log(n)

n
) with high probability [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 10 / 29

Kernel Halving [Dwivedi and Mackey, 2024]

Goal: Split Sin into two balanced coresets Sout,S ′
out of equal size

Balance: Qkrt ≈ Q′krt ⇔ Pnkrt ≈ Qkrt for Q′krt ≜ 1
|S′

out|
∑

x∈S′
out

krt(x, ·)

Uniformly random halving: ∥Pnkrt −Qkrt∥∞ = Ω(1√
n
) with high probability

Kernel halving: Check for balance before assigning points to coresets

Hilbert space generalization of self-balancing walk of Alweiss, Liu, and Sawhney [2020]

Start with empty coresets Sout,S ′
out

Assign input points (x, x′) = (x1, x2), . . . , (xn−1, xn) to coresets two at a time:
1 Try adding x to Sout and x′ to S ′out and record αheads = ∥Qkrt −Q′krt∥krt

2 Try adding x′ to Sout and x to S ′out and record αtails = ∥Qkrt −Q′krt∥krt

3 Final assignment: flip coin biased toward the more balanced option (the smaller α)

Theorem: ∥Pnkrt −Qkrt∥∞ = O(
√
d log(n)

n
) with high probability [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 10 / 29

Kernel Halving [Dwivedi and Mackey, 2024]

Goal: Split Sin into two balanced coresets Sout,S ′
out of equal size

Balance: Qkrt ≈ Q′krt ⇔ Pnkrt ≈ Qkrt for Q′krt ≜ 1
|S′

out|
∑

x∈S′
out

krt(x, ·)

Uniformly random halving: ∥Pnkrt −Qkrt∥∞ = Ω(1√
n
) with high probability

Kernel halving: Check for balance before assigning points to coresets

Hilbert space generalization of self-balancing walk of Alweiss, Liu, and Sawhney [2020]

Start with empty coresets Sout,S ′
out

Assign input points (x, x′) = (x1, x2), . . . , (xn−1, xn) to coresets two at a time:
1 Try adding x to Sout and x′ to S ′out and record αheads = ∥Qkrt −Q′krt∥krt

2 Try adding x′ to Sout and x to S ′out and record αtails = ∥Qkrt −Q′krt∥krt

3 Final assignment: flip coin biased toward the more balanced option (the smaller α)

Theorem: ∥Pnkrt −Qkrt∥∞ = O(
√
d log(n)

n
) with high probability [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 10 / 29

Kernel Thinning [Dwivedi and Mackey, 2024]

1 Initialization: kt-split
Partitions input Sin into balanced candidate coresets, each of size s

Input 
 (points)n

 (points)
n
2

Output 
 (points)

n
2m

After Kernel Halving roundsm

Kernel Halving

 (points)
n
4

Kernel Halving

<latexit sha1_base64="dM2tpuvUYF3a17jCjaY7CCNIIg4=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEClISFXVZdOOyon1AG8tkOmmHTh7MTIQagr/ixoUibv0Pd/6NkzYLrR4YOJxzL/fMcSPOpLKsL6MwN7+wuFRcLq2srq1vmJtbTRnGgtAGCXko2i6WlLOANhRTnLYjQbHvctpyR5eZ37qnQrIwuFXjiDo+HgTMYwQrLfXMna6P1ZBgntykd0nFPkT2Qdozy1bVmgD9JXZOypCj3jM/u/2QxD4NFOFYyo5tRcpJsFCMcJqWurGkESYjPKAdTQPsU+kkk/Qp2tdKH3mh0C9QaKL+3EiwL+XYd/VkllXOepn4n9eJlXfuJCyIYkUDMj3kxRypEGVVoD4TlCg+1gQTwXRWRIZYYKJ0YSVdgj375b+keVS1T6vH1yfl2kVeRxF2YQ8qYMMZ1OAK6tAAAg/wBC/wajwaz8ab8T4dLRj5zjb8gvHxDQ8YlFE=</latexit>

S(1,1)

<latexit sha1_base64="IzjRe/pKMhG0lDpZnAr+uYI87CU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFaTMVFGXRTcuK9oHtGPJpGkbmnmQZIQ6DP6KGxeKuPU/3Pk3ZtpZaOuBwOGce7knxw05k8qyvo3cwuLS8kp+tbC2vrG5ZW7vNGQQCULrJOCBaLlYUs58WldMcdoKBcWey2nTHV2lfvOBCskC/06NQ+p4eOCzPiNYaalr7nU8rIYE8/g2uY9LlWNkHyVds2iVrQnQPLEzUoQMta751ekFJPKorwjHUrZtK1ROjIVihNOk0IkkDTEZ4QFta+pjj0onnqRP0KFWeqgfCP18hSbq740Ye1KOPVdPplnlrJeK/3ntSPUvnJj5YaSoT6aH+hFHKkBpFajHBCWKjzXBRDCdFZEhFpgoXVhBl2DPfnmeNCpl+6x8cnNarF5mdeRhHw6gBDacQxWuoQZ1IPAIz/AKb8aT8WK8Gx/T0ZyR7ezCHxifPxChlFI=</latexit>

S(2,1)

<latexit sha1_base64="3Lu/QOS+4D9PDX/fWpjFkMdWhok=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCBSkzKuqy6MZlRfuAdiyZNNOGJpkhyQh1GPwVNy4Ucet/uPNvzLSz0OqBwOGce7knx48YVdpxvqzC3PzC4lJxubSyura+YW9uNVUYS0waOGShbPtIEUYFaWiqGWlHkiDuM9LyR5eZ37onUtFQ3OpxRDyOBoIGFCNtpJ690+VIDzFiyU16l1T4IXQP0p5ddqrOBPAvcXNSBjnqPfuz2w9xzInQmCGlOq4TaS9BUlPMSFrqxopECI/QgHQMFYgT5SWT9CncN0ofBqE0T2g4UX9uJIgrNea+mcyyqlkvE//zOrEOzr2EiijWRODpoSBmUIcwqwL2qSRYs7EhCEtqskI8RBJhbQormRLc2S//Jc2jqntaPb4+Kdcu8jqKYBfsgQpwwRmogStQBw2AwQN4Ai/g1Xq0nq036306WrDynW3wC9bHN2s0lI0=</latexit>

S(m,1)

<latexit sha1_base64="f2RiQ3d0Z6heUOlpz815K7Ji2Lk=">AAACAnicbVC7TsMwFHV4lvIKMCEWiwqJqUoAAWMFC2MR9CG1UeS4TmvVdiLbQaqiiIVfYWEAIVa+go2/wUkzQMuRLB2fc6/uvSeIGVXacb6thcWl5ZXVylp1fWNza9ve2W2rKJGYtHDEItkNkCKMCtLSVDPSjSVBPGCkE4yvc7/zQKSikbjXk5h4HA0FDSlG2ki+vd/nSI8wYuld5qfFR/KUiizz7ZpTdwrAeeKWpAZKNH37qz+IcMKJ0JghpXquE2svRVJTzEhW7SeKxAiP0ZD0DBWIE+WlxQkZPDLKAIaRNE9oWKi/O1LElZrwwFTmO6pZLxf/83qJDi89c1CcaCLwdFCYMKgjmOcBB1QSrNnEEIQlNbtCPEISYW1Sq5oQ3NmT50n7pO6e109vz2qNqzKOCjgAh+AYuOACNMANaIIWwOARPINX8GY9WS/Wu/UxLV2wyp498AfW5w+b3pg5</latexit>Sin

Non-uniform randomness ensures ∥Pnkrt −Qkrt∥∞ small after each halving round

Theorem: MMDk =

O(
√

logn
n) Compact support krt,Pn

O((logn)
d+1
2

√
log logn√

n
) Subexponential krt,Pn

with high prob.

when s =
√
n vs. Ω(n−

1
4) for i.i.d. coreset [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 11 / 29

Kernel Thinning [Dwivedi and Mackey, 2024]

1 Initialization: kt-split
Partitions input Sin into balanced candidate coresets, each of size s

Input 
 (points)n

 (points)
n
2

Output 
 (points)

n
2m

After Kernel Halving roundsm

Kernel Halving

 (points)
n
4

Kernel Halving

<latexit sha1_base64="dM2tpuvUYF3a17jCjaY7CCNIIg4=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEClISFXVZdOOyon1AG8tkOmmHTh7MTIQagr/ixoUibv0Pd/6NkzYLrR4YOJxzL/fMcSPOpLKsL6MwN7+wuFRcLq2srq1vmJtbTRnGgtAGCXko2i6WlLOANhRTnLYjQbHvctpyR5eZ37qnQrIwuFXjiDo+HgTMYwQrLfXMna6P1ZBgntykd0nFPkT2Qdozy1bVmgD9JXZOypCj3jM/u/2QxD4NFOFYyo5tRcpJsFCMcJqWurGkESYjPKAdTQPsU+kkk/Qp2tdKH3mh0C9QaKL+3EiwL+XYd/VkllXOepn4n9eJlXfuJCyIYkUDMj3kxRypEGVVoD4TlCg+1gQTwXRWRIZYYKJ0YSVdgj375b+keVS1T6vH1yfl2kVeRxF2YQ8qYMMZ1OAK6tAAAg/wBC/wajwaz8ab8T4dLRj5zjb8gvHxDQ8YlFE=</latexit>

S(1,1)

<latexit sha1_base64="IzjRe/pKMhG0lDpZnAr+uYI87CU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFaTMVFGXRTcuK9oHtGPJpGkbmnmQZIQ6DP6KGxeKuPU/3Pk3ZtpZaOuBwOGce7knxw05k8qyvo3cwuLS8kp+tbC2vrG5ZW7vNGQQCULrJOCBaLlYUs58WldMcdoKBcWey2nTHV2lfvOBCskC/06NQ+p4eOCzPiNYaalr7nU8rIYE8/g2uY9LlWNkHyVds2iVrQnQPLEzUoQMta751ekFJPKorwjHUrZtK1ROjIVihNOk0IkkDTEZ4QFta+pjj0onnqRP0KFWeqgfCP18hSbq740Ye1KOPVdPplnlrJeK/3ntSPUvnJj5YaSoT6aH+hFHKkBpFajHBCWKjzXBRDCdFZEhFpgoXVhBl2DPfnmeNCpl+6x8cnNarF5mdeRhHw6gBDacQxWuoQZ1IPAIz/AKb8aT8WK8Gx/T0ZyR7ezCHxifPxChlFI=</latexit>

S(2,1)

<latexit sha1_base64="3Lu/QOS+4D9PDX/fWpjFkMdWhok=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCBSkzKuqy6MZlRfuAdiyZNNOGJpkhyQh1GPwVNy4Ucet/uPNvzLSz0OqBwOGce7knx48YVdpxvqzC3PzC4lJxubSyura+YW9uNVUYS0waOGShbPtIEUYFaWiqGWlHkiDuM9LyR5eZ37onUtFQ3OpxRDyOBoIGFCNtpJ690+VIDzFiyU16l1T4IXQP0p5ddqrOBPAvcXNSBjnqPfuz2w9xzInQmCGlOq4TaS9BUlPMSFrqxopECI/QgHQMFYgT5SWT9CncN0ofBqE0T2g4UX9uJIgrNea+mcyyqlkvE//zOrEOzr2EiijWRODpoSBmUIcwqwL2qSRYs7EhCEtqskI8RBJhbQormRLc2S//Jc2jqntaPb4+Kdcu8jqKYBfsgQpwwRmogStQBw2AwQN4Ai/g1Xq0nq036306WrDynW3wC9bHN2s0lI0=</latexit>

S(m,1)

<latexit sha1_base64="f2RiQ3d0Z6heUOlpz815K7Ji2Lk=">AAACAnicbVC7TsMwFHV4lvIKMCEWiwqJqUoAAWMFC2MR9CG1UeS4TmvVdiLbQaqiiIVfYWEAIVa+go2/wUkzQMuRLB2fc6/uvSeIGVXacb6thcWl5ZXVylp1fWNza9ve2W2rKJGYtHDEItkNkCKMCtLSVDPSjSVBPGCkE4yvc7/zQKSikbjXk5h4HA0FDSlG2ki+vd/nSI8wYuld5qfFR/KUiizz7ZpTdwrAeeKWpAZKNH37qz+IcMKJ0JghpXquE2svRVJTzEhW7SeKxAiP0ZD0DBWIE+WlxQkZPDLKAIaRNE9oWKi/O1LElZrwwFTmO6pZLxf/83qJDi89c1CcaCLwdFCYMKgjmOcBB1QSrNnEEIQlNbtCPEISYW1Sq5oQ3NmT50n7pO6e109vz2qNqzKOCjgAh+AYuOACNMANaIIWwOARPINX8GY9WS/Wu/UxLV2wyp498AfW5w+b3pg5</latexit>Sin

Non-uniform randomness ensures ∥Pnkrt −Qkrt∥∞ small after each halving round

Theorem: MMDk =

O(
√

logn
n) Compact support krt,Pn

O((logn)
d+1
2

√
log logn√

n
) Subexponential krt,Pn

with high prob.

when s =
√
n vs. Ω(n−

1
4) for i.i.d. coreset [Dwivedi and Mackey, 2024]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 11 / 29

Kernel Thinning [Dwivedi and Mackey, 2024]

1 Initialization: kt-split

Partitions input Sin into balanced candidate coresets, each of size s
Non-uniform randomness ensures ∥Pnkrt −Qkrt∥∞ small after each halving round
Thm: MMDk = Õd(s

−1) for subexponential krt,Pn vs. Ω(s−
1
2) for i.i.d. [Dwivedi and Mackey, 2024]

2 Refinement: kt-swap

Selects candidate coreset closest to Sin in terms of MMDk

Iteratively refines the coreset by replacing each coreset point in turn with the best
alternative in Sin, as measured by MMDk

Complexity

Time: dominated by O(n2) kernel evaluations

Reduces to O(n log3 n) for s = √n using Compress++ of Shetty, Dwivedi, and Mackey [2022]

Space: O(min(nd, n2))

Reduces to O(√nd log n) for s = √n using Compress++

Mackey (MSR) Advances in Distribution Compression July 15, 2024 12 / 29

Kernel Thinning [Dwivedi and Mackey, 2024]

1 Initialization: kt-split

Partitions input Sin into balanced candidate coresets, each of size s
Non-uniform randomness ensures ∥Pnkrt −Qkrt∥∞ small after each halving round
Thm: MMDk = Õd(s

−1) for subexponential krt,Pn vs. Ω(s−
1
2) for i.i.d. [Dwivedi and Mackey, 2024]

2 Refinement: kt-swap

Selects candidate coreset closest to Sin in terms of MMDk

Iteratively refines the coreset by replacing each coreset point in turn with the best
alternative in Sin, as measured by MMDk

Complexity

Time: dominated by O(n2) kernel evaluations

Reduces to O(n log3 n) for s = √n using Compress++ of Shetty, Dwivedi, and Mackey [2022]

Space: O(min(nd, n2))

Reduces to O(√nd log n) for s = √n using Compress++

Mackey (MSR) Advances in Distribution Compression July 15, 2024 12 / 29

Kernel Thinning [Dwivedi and Mackey, 2024]

1 Initialization: kt-split

Partitions input Sin into balanced candidate coresets, each of size s
Non-uniform randomness ensures ∥Pnkrt −Qkrt∥∞ small after each halving round
Thm: MMDk = Õd(s

−1) for subexponential krt,Pn vs. Ω(s−
1
2) for i.i.d. [Dwivedi and Mackey, 2024]

2 Refinement: kt-swap

Selects candidate coreset closest to Sin in terms of MMDk

Iteratively refines the coreset by replacing each coreset point in turn with the best
alternative in Sin, as measured by MMDk

Complexity

Time: dominated by O(n2) kernel evaluations

Reduces to O(n log3 n) for s = √n using Compress++ of Shetty, Dwivedi, and Mackey [2022]

Space: O(min(nd, n2))

Reduces to O(√nd log n) for s = √n using Compress++

Mackey (MSR) Advances in Distribution Compression July 15, 2024 12 / 29

Kernel Thinning [Dwivedi and Mackey, 2024]

1 Initialization: kt-split

Partitions input Sin into balanced candidate coresets, each of size s
Non-uniform randomness ensures ∥Pnkrt −Qkrt∥∞ small after each halving round
Thm: MMDk = Õd(s

−1) for subexponential krt,Pn vs. Ω(s−
1
2) for i.i.d. [Dwivedi and Mackey, 2024]

2 Refinement: kt-swap

Selects candidate coreset closest to Sin in terms of MMDk

Iteratively refines the coreset by replacing each coreset point in turn with the best
alternative in Sin, as measured by MMDk

Complexity

Time: dominated by O(n2) kernel evaluations

Reduces to O(n log3 n) for s = √n using Compress++ of Shetty, Dwivedi, and Mackey [2022]

Space: O(min(nd, n2))

Reduces to O(√nd log n) for s = √n using Compress++

Mackey (MSR) Advances in Distribution Compression July 15, 2024 12 / 29

Kernel Thinning vs. i.i.d. Sampling: Mixture of Gaussians

10

5

0

5
-17

.50
0

-17.500

-17.500

-1
7.5

00

-15
.00

0

-15.000

-15.000
-1

5.
00

0

-1
2.5

00

-12.500

-12.500

-1
2.

50
0

-10.000

-7
.5

00

-7.500

8 iid points

-17
.50

0

-17.500

-17.500

-1
7.5

00

-15
.00

0

-15.000

-15.000

-1
5.

00
0

-1
2.5

00

-12.500

-12.500

-1
2.

50
0

-10.000

-7
.5

00

-7.500

16 iid points

-17
.50

0

-17.500

-17.500

-1
7.5

00

-15
.00

0

-15.000

-15.000

-1
5.

00
0

-1
2.5

00

-12.500

-12.500

-1
2.

50
0

-10.000

-7
.5

00

-7.500

32 iid points

10 5 0 510

5

0

5
-17

.50
0

-17.500

-17.500

-1
7.5

00

-15
.00

0

-15.000

-15.000

-1
5.

00
0

-1
2.5

00

-12.500

-12.500

-1
2.

50
0

-10.000

-7
.5

00

-7.500

8 KT points

10 5 0 5

-17
.50

0

-17.500

-17.500

-1
7.5

00

-15
.00

0

-15.000

-15.000

-1
5.

00
0

-1
2.5

00

-12.500

-12.500

-1
2.

50
0

-10.000

-7
.5

00

-7.500

16 KT points

10 5 0 5

-17
.50

0

-17.500

-17.500

-1
7.5

00

-15
.00

0

-15.000

-15.000

-1
5.

00
0

-1
2.5

00

-12.500

-12.500

-1
2.

50
0

-10.000

-7
.5

00

-7.500

32 KT points

P = 1
M

∑M
j=1N (µj, Id)

k(x, y) = exp(− 1
2σ2∥x− y∥22)

with σ2 = 2d

Even for small sample sizes,
kernel thinning (KT) provides

Better stratification across
components
Less clumping and fewer
gaps within components

Mackey (MSR) Advances in Distribution Compression July 15, 2024 13 / 29

Kernel Thinning vs. i.i.d. Sampling: Mixture of Gaussians

22 24 26

Coreset size n

2 6

2 4

2 2

M
ea

n
M

M
D

M=4

iid: n 0.26

KT: n 0.52

22 24 26

Coreset size n

M=6

iid: n 0.25

KT: n 0.51

22 24 26

Coreset size n

M=8

iid: n 0.25

KT: n 0.52

Kernel thinning (KT) improves both rate of decay and order of magnitude of
MMDk(P,QKT)

P = 1
M

∑M
j=1N (µj, Id), d = 2

k(x, y) = exp(− 1
2σ2∥x− y∥22) with σ2 = 2d

Mackey (MSR) Advances in Distribution Compression July 15, 2024 14 / 29

Kernel Thinning vs. i.i.d. Sampling: Higher Dimensions

22 24 26

Coreset size n

2 7

2 5

2 3

2 1

M
ea

n
M

M
D

d=2

iid: n 0.25

KT: n 0.51

22 24 26

Coreset size n

d=4

iid: n 0.25

KT: n 0.48

22 24 26

Coreset size n

d=10

iid: n 0.25

KT: n 0.43

22 24 26

Coreset size n

d=100

iid: n 0.25

KT: n 0.34

Kernel thinning (KT) improves both rate of decay and order of magnitude of
MMDk(P,QKT) even for high dimensions and small sample sizes

P = N (0, Id)

k(x, y) = exp(− 1
2σ2∥x− y∥22) with σ2 = 2d

Mackey (MSR) Advances in Distribution Compression July 15, 2024 15 / 29

Kernel Thinning vs. Standard MCMC Thinning

Posterior inference for systems of ordinary differential equations (ODEs)

P = posterior distribution of coupled ODE model parameters given observed data

Goodwin model of oscillatory enzymatic control (d = 4) [Goodwin, 1965]

Lotka-Volterra model of oscillatory predator-prey evolution (d = 4) [Lotka, 1925, Volterra, 1926]

Hinch model of cardiac calcium signalling (d = 38) [Hinch, Greenstein, Tanskanen, Xu, and Winslow, 2004]

Downstream goal: propagate model uncertainty through whole-heart simulation
Every sample point discarded via compression = 1000s of CPU hours saved

MCMC input points [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Gaussian random walk (RW), adaptive RW (adaRW) [Haario, Saksman, and Tamminen, 1999]

2 weeks of CPU time to generate each RW Hinch chain of length 4× 106

Metropolis-adjusted Langevin algorithm (MALA) [Roberts and Tweedie, 1996]

Pre-conditioned MALA (pMALA) [Girolami and Calderhead, 2011]

Discarded burn-in and standard thinned to form Pn

k(x, y) = exp(− 1
2σ2∥x− y∥22) with median heuristic σ2

[Garreau, Jitkrittum, and Kanagawa, 2017]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 16 / 29

Kernel Thinning vs. Standard MCMC Thinning

Posterior inference for systems of ordinary differential equations (ODEs)

P = posterior distribution of coupled ODE model parameters given observed data

Goodwin model of oscillatory enzymatic control (d = 4) [Goodwin, 1965]

Lotka-Volterra model of oscillatory predator-prey evolution (d = 4) [Lotka, 1925, Volterra, 1926]

Hinch model of cardiac calcium signalling (d = 38) [Hinch, Greenstein, Tanskanen, Xu, and Winslow, 2004]

Downstream goal: propagate model uncertainty through whole-heart simulation
Every sample point discarded via compression = 1000s of CPU hours saved

MCMC input points [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Gaussian random walk (RW), adaptive RW (adaRW) [Haario, Saksman, and Tamminen, 1999]

2 weeks of CPU time to generate each RW Hinch chain of length 4× 106

Metropolis-adjusted Langevin algorithm (MALA) [Roberts and Tweedie, 1996]

Pre-conditioned MALA (pMALA) [Girolami and Calderhead, 2011]

Discarded burn-in and standard thinned to form Pn

k(x, y) = exp(− 1
2σ2∥x− y∥22) with median heuristic σ2

[Garreau, Jitkrittum, and Kanagawa, 2017]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 16 / 29

Kernel Thinning vs. Standard MCMC Thinning

Posterior inference for systems of ordinary differential equations (ODEs)

P = posterior distribution of coupled ODE model parameters given observed data

Goodwin model of oscillatory enzymatic control (d = 4) [Goodwin, 1965]

Lotka-Volterra model of oscillatory predator-prey evolution (d = 4) [Lotka, 1925, Volterra, 1926]

Hinch model of cardiac calcium signalling (d = 38) [Hinch, Greenstein, Tanskanen, Xu, and Winslow, 2004]

Downstream goal: propagate model uncertainty through whole-heart simulation
Every sample point discarded via compression = 1000s of CPU hours saved

MCMC input points [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Gaussian random walk (RW), adaptive RW (adaRW) [Haario, Saksman, and Tamminen, 1999]

2 weeks of CPU time to generate each RW Hinch chain of length 4× 106

Metropolis-adjusted Langevin algorithm (MALA) [Roberts and Tweedie, 1996]

Pre-conditioned MALA (pMALA) [Girolami and Calderhead, 2011]

Discarded burn-in and standard thinned to form Pn

k(x, y) = exp(− 1
2σ2∥x− y∥22) with median heuristic σ2

[Garreau, Jitkrittum, and Kanagawa, 2017]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 16 / 29

Kernel Thinning vs. Standard MCMC Thinning

Posterior inference for systems of ordinary differential equations (ODEs)

P = posterior distribution of coupled ODE model parameters given observed data

Goodwin model of oscillatory enzymatic control (d = 4) [Goodwin, 1965]

Lotka-Volterra model of oscillatory predator-prey evolution (d = 4) [Lotka, 1925, Volterra, 1926]

Hinch model of cardiac calcium signalling (d = 38) [Hinch, Greenstein, Tanskanen, Xu, and Winslow, 2004]

Downstream goal: propagate model uncertainty through whole-heart simulation
Every sample point discarded via compression = 1000s of CPU hours saved

MCMC input points [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Gaussian random walk (RW), adaptive RW (adaRW) [Haario, Saksman, and Tamminen, 1999]

2 weeks of CPU time to generate each RW Hinch chain of length 4× 106

Metropolis-adjusted Langevin algorithm (MALA) [Roberts and Tweedie, 1996]

Pre-conditioned MALA (pMALA) [Girolami and Calderhead, 2011]

Discarded burn-in and standard thinned to form Pn

k(x, y) = exp(− 1
2σ2∥x− y∥22) with median heuristic σ2

[Garreau, Jitkrittum, and Kanagawa, 2017]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 16 / 29

Kernel Thinning vs. Standard MCMC Thinning

Posterior inference for systems of ordinary differential equations (ODEs)

P = posterior distribution of coupled ODE model parameters given observed data

Goodwin model of oscillatory enzymatic control (d = 4) [Goodwin, 1965]

Lotka-Volterra model of oscillatory predator-prey evolution (d = 4) [Lotka, 1925, Volterra, 1926]

Hinch model of cardiac calcium signalling (d = 38) [Hinch, Greenstein, Tanskanen, Xu, and Winslow, 2004]

Downstream goal: propagate model uncertainty through whole-heart simulation
Every sample point discarded via compression = 1000s of CPU hours saved

MCMC input points [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Gaussian random walk (RW), adaptive RW (adaRW) [Haario, Saksman, and Tamminen, 1999]

2 weeks of CPU time to generate each RW Hinch chain of length 4× 106

Metropolis-adjusted Langevin algorithm (MALA) [Roberts and Tweedie, 1996]

Pre-conditioned MALA (pMALA) [Girolami and Calderhead, 2011]

Discarded burn-in and standard thinned to form Pn

k(x, y) = exp(− 1
2σ2∥x− y∥22) with median heuristic σ2

[Garreau, Jitkrittum, and Kanagawa, 2017]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 16 / 29

Kernel Thinning vs. Standard MCMC Thinning

Posterior inference for systems of ordinary differential equations (ODEs)

P = posterior distribution of coupled ODE model parameters given observed data

Goodwin model of oscillatory enzymatic control (d = 4) [Goodwin, 1965]

Lotka-Volterra model of oscillatory predator-prey evolution (d = 4) [Lotka, 1925, Volterra, 1926]

Hinch model of cardiac calcium signalling (d = 38) [Hinch, Greenstein, Tanskanen, Xu, and Winslow, 2004]

Downstream goal: propagate model uncertainty through whole-heart simulation
Every sample point discarded via compression = 1000s of CPU hours saved

MCMC input points [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Gaussian random walk (RW), adaptive RW (adaRW) [Haario, Saksman, and Tamminen, 1999]

2 weeks of CPU time to generate each RW Hinch chain of length 4× 106

Metropolis-adjusted Langevin algorithm (MALA) [Roberts and Tweedie, 1996]

Pre-conditioned MALA (pMALA) [Girolami and Calderhead, 2011]

Discarded burn-in and standard thinned to form Pn

k(x, y) = exp(− 1
2σ2∥x− y∥22) with median heuristic σ2

[Garreau, Jitkrittum, and Kanagawa, 2017]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 16 / 29

22 24 26

Coreset size n

2 7

2 5

2 3

M
ea

n
M

M
D

Goodwin RW

standard: n 0.19

KT: n 0.50

22 24 26

Coreset size n

Goodwin adaRW

standard: n 0.15

KT: n 0.48

22 24 26

Coreset size n

Goodwin MALA

standard: n 0.28

KT: n 0.49

22 24 26

Coreset size n

Goodwin pMALA

standard: n 0.30

KT: n 0.50

22 24 26

Coreset size n

2 8

2 6

2 4

2 2

M
ea

n
M

M
D

Lotka-Volterra RW

standard: n 0.14

KT: n 0.56

22 24 26

Coreset size n

Lotka-Volterra adaRW

standard: n 0.24

KT: n 0.57

22 24 26

Coreset size n

Lotka-Volterra MALA

standard: n 0.40

KT: n 0.56

22 24 26

Coreset size n

Lotka-Volterra pMALA

standard: n 0.31

KT: n 0.57

22 24 26

Coreset size n

2 7

2 5

2 3

2 1

M
ea

n
M

M
D

Hinch 1

standard: n 0.46

KT: n 0.53

22 24 26

Coreset size n

Hinch 2

standard: n 0.43

KT: n 0.49

22 24 26

Coreset size n

Hinch Tempered 1

standard: n 0.35

KT: n 0.38

22 24 26

Coreset size n

Hinch Tempered 2

standard: n 0.32

KT: n 0.38

KT improves rate of decay and magnitude of MMD, even when standard thinning is accurate
Mackey (MSR) Advances in Distribution Compression July 15, 2024 17 / 29

Something’s Wrong

Problem: The Hinch Markov chains haven’t mixed!

Solution: Use a more diffuse tempered posterior P̃ for faster mixing

Problem: Tempering introduces a persistent bias

MCMC points Pn will be summarizing the wrong distribution P̃

Question: Can we correct for such biases during compression?

P
ar

am
et

er
1

med sclmed smpcov MCMC

seed 1

seed 2

prior

P
ar

am
et

er
2

P
ar

am
et

er
3

P
ar

am
et

er
4

P
ar

am
et

er
5

P
ar

am
et

er
6

P
ar

am
et

er
7

P
ar

am
et

er
8

P
ar

am
et

er
9

P
ar

am
et

er
10

Mackey (MSR) Advances in Distribution Compression July 15, 2024 18 / 29

Something’s Wrong

Problem: The Hinch Markov chains haven’t mixed!

Solution: Use a more diffuse tempered posterior P̃ for faster mixing

Problem: Tempering introduces a persistent bias

MCMC points Pn will be summarizing the wrong distribution P̃

Question: Can we correct for such biases during compression?

P
ar

am
et

er
1

med sclmed smpcov MCMC

seed 1

seed 2

prior

P
ar

am
et

er
2

P
ar

am
et

er
3

P
ar

am
et

er
4

P
ar

am
et

er
5

P
ar

am
et

er
6

P
ar

am
et

er
7

P
ar

am
et

er
8

P
ar

am
et

er
9

P
ar

am
et

er
10

Mackey (MSR) Advances in Distribution Compression July 15, 2024 18 / 29

Something’s Wrong

Problem: The Hinch Markov chains haven’t mixed!

Solution: Use a more diffuse tempered posterior P̃ for faster mixing

Problem: Tempering introduces a persistent bias

MCMC points Pn will be summarizing the wrong distribution P̃

Question: Can we correct for such biases during compression?

P
ar

am
et

er
1

med sclmed smpcov MCMC

seed 1

seed 2

prior

P
ar

am
et

er
2

P
ar

am
et

er
3

P
ar

am
et

er
4

P
ar

am
et

er
5

P
ar

am
et

er
6

P
ar

am
et

er
7

P
ar

am
et

er
8

P
ar

am
et

er
9

P
ar

am
et

er
10

Mackey (MSR) Advances in Distribution Compression July 15, 2024 18 / 29

Something’s Wrong

Problem: The Hinch Markov chains haven’t mixed!

Solution: Use a more diffuse tempered posterior P̃ for faster mixing

Problem: Tempering introduces a persistent bias

MCMC points Pn will be summarizing the wrong distribution P̃

Question: Can we correct for such biases during compression?

P
ar

am
et

er
1

med sclmed smpcov MCMC

seed 1

seed 2

prior

P
ar

am
et

er
2

P
ar

am
et

er
3

P
ar

am
et

er
4

P
ar

am
et

er
5

P
ar

am
et

er
6

P
ar

am
et

er
7

P
ar

am
et

er
8

P
ar

am
et

er
9

P
ar

am
et

er
10

Mackey (MSR) Advances in Distribution Compression July 15, 2024 18 / 29

Compression with Bias Correction

Question: Can we correct for distributional biases in Pn during compression?

e.g., Biases due to off-target sampling, tempering, approximate MCMC, or burn-in

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Difficulty: Pn alone is insufficient; need to measure distance to the true target P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 19 / 29

Compression with Bias Correction

Question: Can we correct for distributional biases in Pn during compression?

e.g., Biases due to off-target sampling, tempering, approximate MCMC, or burn-in

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Difficulty: Pn alone is insufficient; need to measure distance to the true target P

Mackey (MSR) Advances in Distribution Compression July 15, 2024 19 / 29

Measuring Distance to P

Quality measure: Maximum mean discrepancy (MMD) [Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012]

MMDk(P,Q) = sup
∥f∥k≤1

|Pf −Qf |

=
√
(P× P)k+ (Q×Q)k− 2(Q× P)k

Problem: Integration under P is typically intractable!

⇒ Pk and MMDk(P,Q) cannot be computed in practice for most kernels

Idea: Only consider kernels kP with PkP known a priori to be 0

Then MMD computation only depends on Q!

Mackey (MSR) Advances in Distribution Compression July 15, 2024 20 / 29

Measuring Distance to P

Quality measure: Maximum mean discrepancy (MMD) [Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012]

MMDk(P,Q) = sup
∥f∥k≤1

|Pf −Qf | =
√

(P× P)k+ (Q×Q)k− 2(Q× P)k

Problem: Integration under P is typically intractable!

⇒ Pk and MMDk(P,Q) cannot be computed in practice for most kernels

Idea: Only consider kernels kP with PkP known a priori to be 0

Then MMD computation only depends on Q!

Mackey (MSR) Advances in Distribution Compression July 15, 2024 20 / 29

Measuring Distance to P

Quality measure: Maximum mean discrepancy (MMD) [Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012]

MMDk(P,Q) = sup
∥f∥k≤1

|Pf −Qf | =
√

(P× P)k+ (Q×Q)k− 2(Q× P)k

Problem: Integration under P is typically intractable!

⇒ Pk and MMDk(P,Q) cannot be computed in practice for most kernels

Idea: Only consider kernels kP with PkP known a priori to be 0

Then MMD computation only depends on Q!

Mackey (MSR) Advances in Distribution Compression July 15, 2024 20 / 29

Measuring Distance to P

Quality measure: Maximum mean discrepancy (MMD) [Gretton, Borgwardt, Rasch, Schölkopf, and Smola, 2012]

MMDk(P,Q) = sup
∥f∥k≤1

|Pf −Qf | =
√

(P× P)k+ (Q×Q)k− 2(Q× P)k

Problem: Integration under P is typically intractable!

⇒ Pk and MMDk(P,Q) cannot be computed in practice for most kernels

Idea: Only consider kernels kP with PkP known a priori to be 0

Then MMD computation only depends on Q!

Mackey (MSR) Advances in Distribution Compression July 15, 2024 20 / 29

Kernel Stein Discrepancies

Idea: Consider MMDkP with PkP known a priori to be 0

Kernel Stein discrepancy (KSD)
[Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016, Gorham and Mackey, 2017]

kP(x, y) =
∑d

j=1
1

p(x)p(y)
∇xj
∇yj(p(x)k(x, y)p(y)) [Oates, Girolami, and Chopin, 2017]

P has differentiable Lebesgue density p
k is a bounded base kernel with bounded continuous derivatives

PkP = 0 whenever ∇ log p is integrable [Gorham and Mackey, 2017]

Depends on P through ∇ log p: computable when normalization constant unknown
⇒ Kernel Stein discrepancy MMDkP(P,Q) is computable!

Theorem (KSD controls convergence in distribution
[Gorham and Mackey, 2017, Chen, Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019])

Consider the base kernel k(x, y) = (c2 + ∥Γ(x− y)∥22)−1/2 for any c > 0 and positive
definite Γ. If P has strongly log concave tails and Lipschitz ∇ log p, then Qs ⇒ P
whenever MMDkP(P,Qs)→ 0.

Mackey (MSR) Advances in Distribution Compression July 15, 2024 21 / 29

Kernel Stein Discrepancies

Idea: Consider MMDkP with PkP known a priori to be 0

Kernel Stein discrepancy (KSD)
[Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016, Gorham and Mackey, 2017]

kP(x, y) =
∑d

j=1
1

p(x)p(y)
∇xj
∇yj(p(x)k(x, y)p(y)) [Oates, Girolami, and Chopin, 2017]

P has differentiable Lebesgue density p
k is a bounded base kernel with bounded continuous derivatives

PkP = 0 whenever ∇ log p is integrable [Gorham and Mackey, 2017]

Depends on P through ∇ log p: computable when normalization constant unknown

⇒ Kernel Stein discrepancy MMDkP(P,Q) is computable!

Theorem (KSD controls convergence in distribution
[Gorham and Mackey, 2017, Chen, Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019])

Consider the base kernel k(x, y) = (c2 + ∥Γ(x− y)∥22)−1/2 for any c > 0 and positive
definite Γ. If P has strongly log concave tails and Lipschitz ∇ log p, then Qs ⇒ P
whenever MMDkP(P,Qs)→ 0.

Mackey (MSR) Advances in Distribution Compression July 15, 2024 21 / 29

Kernel Stein Discrepancies

Idea: Consider MMDkP with PkP known a priori to be 0

Kernel Stein discrepancy (KSD)
[Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016, Gorham and Mackey, 2017]

kP(x, y) =
∑d

j=1
1

p(x)p(y)
∇xj
∇yj(p(x)k(x, y)p(y)) [Oates, Girolami, and Chopin, 2017]

P has differentiable Lebesgue density p
k is a bounded base kernel with bounded continuous derivatives

PkP = 0 whenever ∇ log p is integrable [Gorham and Mackey, 2017]

Depends on P through ∇ log p: computable when normalization constant unknown
⇒ Kernel Stein discrepancy MMDkP(P,Q) is computable!

Theorem (KSD controls convergence in distribution
[Gorham and Mackey, 2017, Chen, Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019])

Consider the base kernel k(x, y) = (c2 + ∥Γ(x− y)∥22)−1/2 for any c > 0 and positive
definite Γ. If P has strongly log concave tails and Lipschitz ∇ log p, then Qs ⇒ P
whenever MMDkP(P,Qs)→ 0.

Mackey (MSR) Advances in Distribution Compression July 15, 2024 21 / 29

Kernel Stein Discrepancies

Idea: Consider MMDkP with PkP known a priori to be 0

Kernel Stein discrepancy (KSD)
[Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016, Gorham and Mackey, 2017]

kP(x, y) =
∑d

j=1
1

p(x)p(y)
∇xj
∇yj(p(x)k(x, y)p(y)) [Oates, Girolami, and Chopin, 2017]

P has differentiable Lebesgue density p
k is a bounded base kernel with bounded continuous derivatives

PkP = 0 whenever ∇ log p is integrable [Gorham and Mackey, 2017]

Depends on P through ∇ log p: computable when normalization constant unknown
⇒ Kernel Stein discrepancy MMDkP(P,Q) is computable!

Theorem (KSD controls convergence in distribution
[Gorham and Mackey, 2017, Chen, Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019])

Consider the base kernel k(x, y) = (c2 + ∥Γ(x− y)∥22)−1/2 for any c > 0 and positive
definite Γ.

If P has strongly log concave tails and Lipschitz ∇ log p, then Qs ⇒ P
whenever MMDkP(P,Qs)→ 0.

Mackey (MSR) Advances in Distribution Compression July 15, 2024 21 / 29

Kernel Stein Discrepancies

Idea: Consider MMDkP with PkP known a priori to be 0

Kernel Stein discrepancy (KSD)
[Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016, Gorham and Mackey, 2017]

kP(x, y) =
∑d

j=1
1

p(x)p(y)
∇xj
∇yj(p(x)k(x, y)p(y)) [Oates, Girolami, and Chopin, 2017]

P has differentiable Lebesgue density p
k is a bounded base kernel with bounded continuous derivatives

PkP = 0 whenever ∇ log p is integrable [Gorham and Mackey, 2017]

Depends on P through ∇ log p: computable when normalization constant unknown
⇒ Kernel Stein discrepancy MMDkP(P,Q) is computable!

Theorem (KSD controls convergence in distribution
[Gorham and Mackey, 2017, Chen, Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019])

Consider the base kernel k(x, y) = (c2 + ∥Γ(x− y)∥22)−1/2 for any c > 0 and positive
definite Γ. If P has strongly log concave tails and Lipschitz ∇ log p, then Qs ⇒ P
whenever MMDkP(P,Qs)→ 0.

Mackey (MSR) Advances in Distribution Compression July 15, 2024 21 / 29

Stein Thinning

Idea: Greedily minimize KSD using points from Sin = {x1, . . . , xn}
[Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Choose initial approximation Q1 = δy1 with

y1 ∈ argminy∈Sin
MMDkP(P, δy) = argminy∈Sin

kP(y, y)

Iteratively construct Qs =
1
s

∑s
i=1 δyi with

ys ∈ argminy∈Sin
MMDkP(P, s−1

s
Qs−1 +

1
s
δy)

= argminy∈Sin
kP(y, y) + 2

∑s−1
i=1 kP(yi, y)

Same point xi can be selected multiple times

Runtime = O(n∑s
i=1 ri) for ri ≤ i the number of distinct points selected prior to

round i (worst case = O(ns2))

Mackey (MSR) Advances in Distribution Compression July 15, 2024 22 / 29

Stein Thinning

Idea: Greedily minimize KSD using points from Sin = {x1, . . . , xn}
[Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Choose initial approximation Q1 = δy1 with

y1 ∈ argminy∈Sin
MMDkP(P, δy) = argminy∈Sin

kP(y, y)

Iteratively construct Qs =
1
s

∑s
i=1 δyi with

ys ∈ argminy∈Sin
MMDkP(P, s−1

s
Qs−1 +

1
s
δy)

= argminy∈Sin
kP(y, y) + 2

∑s−1
i=1 kP(yi, y)

Same point xi can be selected multiple times

Runtime = O(n∑s
i=1 ri) for ri ≤ i the number of distinct points selected prior to

round i (worst case = O(ns2))

Mackey (MSR) Advances in Distribution Compression July 15, 2024 22 / 29

Stein Thinning

Idea: Greedily minimize KSD using points from Sin = {x1, . . . , xn}
[Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Choose initial approximation Q1 = δy1 with

y1 ∈ argminy∈Sin
MMDkP(P, δy) = argminy∈Sin

kP(y, y)

Iteratively construct Qs =
1
s

∑s
i=1 δyi with

ys ∈ argminy∈Sin
MMDkP(P, s−1

s
Qs−1 +

1
s
δy)

= argminy∈Sin
kP(y, y) + 2

∑s−1
i=1 kP(yi, y)

Same point xi can be selected multiple times

Runtime = O(n∑s
i=1 ri) for ri ≤ i the number of distinct points selected prior to

round i (worst case = O(ns2))

Mackey (MSR) Advances in Distribution Compression July 15, 2024 22 / 29

Stein Thinning

Idea: Greedily minimize KSD using points from Sin = {x1, . . . , xn}
[Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]

Choose initial approximation Q1 = δy1 with

y1 ∈ argminy∈Sin
MMDkP(P, δy) = argminy∈Sin

kP(y, y)

Iteratively construct Qs =
1
s

∑s
i=1 δyi with

ys ∈ argminy∈Sin
MMDkP(P, s−1

s
Qs−1 +

1
s
δy)

= argminy∈Sin
kP(y, y) + 2

∑s−1
i=1 kP(yi, y)

Same point xi can be selected multiple times

Runtime = O(n∑s
i=1 ri) for ri ≤ i the number of distinct points selected prior to

round i (worst case = O(ns2))

Mackey (MSR) Advances in Distribution Compression July 15, 2024 22 / 29

Stein Thinning Guarantees
Theorem (Stein thinning KSD guarantee [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021])

MMDkP(P,Qs)
2 ≤ infw∈∆n−1 MMDkP(P,

∑n
i=1 wiδxi

)2 + (1+log(s))
s

maxx∈Sin
kP(x, x)

Expect maxx∈Sin kP(x, x) = O(log(n)) for sub-Gaussian input and kP(x, x) = O(∥x∥22)

Takeaway: Stein thinning performs nearly as well as best simplex reweighting of Sin

⇒ Nearly as well as Markov chain with burn-in removed!
⇒ Nearly as well as off-target sample after optimal importance sampling reweighting!

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Mackey (MSR) Advances in Distribution Compression July 15, 2024 23 / 29

Stein Thinning Guarantees
Theorem (Stein thinning KSD guarantee [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021])

MMDkP(P,Qs)
2 ≤ infw∈∆n−1 MMDkP(P,

∑n
i=1 wiδxi

)2 + (1+log(s))
s

maxx∈Sin
kP(x, x)

Expect maxx∈Sin kP(x, x) = O(log(n)) for sub-Gaussian input and kP(x, x) = O(∥x∥22)

Takeaway: Stein thinning performs nearly as well as best simplex reweighting of Sin
⇒ Nearly as well as Markov chain with burn-in removed!

⇒ Nearly as well as off-target sample after optimal importance sampling reweighting!

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Mackey (MSR) Advances in Distribution Compression July 15, 2024 23 / 29

Stein Thinning Guarantees
Theorem (Stein thinning KSD guarantee [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021])

MMDkP(P,Qs)
2 ≤ infw∈∆n−1 MMDkP(P,

∑n
i=1 wiδxi

)2 + (1+log(s))
s

maxx∈Sin
kP(x, x)

Expect maxx∈Sin kP(x, x) = O(log(n)) for sub-Gaussian input and kP(x, x) = O(∥x∥22)

Takeaway: Stein thinning performs nearly as well as best simplex reweighting of Sin
⇒ Nearly as well as Markov chain with burn-in removed!
⇒ Nearly as well as off-target sample after optimal importance sampling reweighting!

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2

0

2

x
2

−2.5 0.0 2.5
x1

−2.5

0.0

2.5

x
2

Mackey (MSR) Advances in Distribution Compression July 15, 2024 23 / 29

Stein Thinning Guarantees

Takeaway: Stein thinning performs nearly as well as best simplex reweighting of Sin
⇒ Nearly as well as Markov chain with burn-in removed!

⇒ Neary as well as off-target sample after optimal importance sampling reweighting!

Theorem (Stein thinning corrects off-target sampling
[Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021])

If Sin drawn i.i.d. from P̃, then, under mild conditions (s ≤ n, log(n) = O(sβ/2) for
some β < 1, and E[eγmax(1,dP

dP̃
(Xi)

2)kP(Xi,Xi)] <∞ for some γ > 0),
MMDkP(P,Qs)→ 0 almost surely as s, n→∞.

Result extends to sufficiently ergodic Markov chains targeting P̃

Mackey (MSR) Advances in Distribution Compression July 15, 2024 24 / 29

Stein Thinning in Action: Correcting for Burn-in

Goodwin model of oscillatory enzymatic control

Projections on the first two coordinates of the MALA MCMC output

First s = 20 points from Stein thinning vs. burn-in removal + standard thinning

Substantial burn-in: b̂ points out of 2× 106 removed for standard thinning

Mackey (MSR) Advances in Distribution Compression July 15, 2024 25 / 29

Stein Thinning in Action: Correcting for Burn-in

Goodwin model of oscillatory enzymatic control101

102
K

S
D

RW ADA-RW

100 101 102

m

101

102

K
S

D

MALA

100 101 102

m

P-MALA

Standard Thinning (high burn-in)

Standard Thinning (low burn-in)

Support Points

Stein Thinning (med)

Stein Thinning (sclmed)

Stein Thinning (smpcov)

2.3× 10−2

2.4× 10−2

2.5× 10−2

2.6× 10−2

2.7× 10−2

2.8× 10−2

E
D

RW ADA-RW

101 102

m

2.3× 10−2

2.4× 10−2

2.5× 10−2

2.6× 10−2

2.7× 10−2

2.8× 10−2

E
D

MALA

101 102

m

P-MALA

Standard Thinning, high burn-in

Standard Thinning, low burn-in

Support Points

Stein Thinning (med)

Stein Thinning (sclmed)

Stein Thinning (smpcov)
10−6

10−4

10−2

A
b

so
lu

te
E

rr
or

F
ir

st
M

om
en

t

Parameter 1 Parameter 2

100 101 102

m

10−6

10−4

10−2
A

b
so

lu
te

E
rr

or
F

ir
st

M
om

en
t

Parameter 3

100 101 102

m

Parameter 4

Standard Thinning (high burn-in)

Standard Thinning (low burn-in)

Support Points

Stein Thinning (med)

Stein Thinning (sclmed)

Stein Thinning (smpcov)

Stein thinning outperforms standard thinning with high and low levels of burn-in
removal in terms of KSD, energy distance (ED), and first moment estimation

Mackey (MSR) Advances in Distribution Compression July 15, 2024 26 / 29

Stein Thinning in Action: Correcting for Tempering

Hinch model of cardiac calcium signalling: Tempering improves mixing
P

ar
am

et
er

1
med sclmed smpcov MCMC

seed 1

seed 2

prior

P
ar

am
et

er
2

P
ar

am
et

er
3

P
ar

am
et

er
4

P
ar

am
et

er
5

P
ar

am
et

er
6

P
ar

am
et

er
7

P
ar

am
et

er
8

P
ar

am
et

er
9

P
ar

am
et

er
10

Mackey (MSR) Advances in Distribution Compression July 15, 2024 27 / 29

Stein Thinning in Action: Correcting for Tempering

Hinch model of cardiac calcium signalling

100 101 102

m

102

103

104
K

S
D

RW
Support Points

Support Points (tempered)

Stein Thinning (med)

Stein Thinning (sclmed)

Stein Thinning (smpcov)

Untempered support points compression yields poor summary due to poor mixing

Tempered SP without bias correction is even worse (due to tempering bias)

Tempering + Stein thinning bias correction improves approximation to P
Mackey (MSR) Advances in Distribution Compression July 15, 2024 28 / 29

Conclusions

Summary

New tools for summarizing a probability distribution more effectively than i.i.d.
sampling or standard MCMC thinning

Kernel thinning compresses an n point summary into a
√
n point summary with

better-than-i.i.d. approximation error

Stein thinning simultaneously compresses and reduces biases due to off-target
sampling, tempering, or burn-in

Compress++ speeds up thinning algorithms without ruining their quality

Kernel Thinning and Compress++

Papers:


arxiv.org/abs/2105.05842

arxiv.org/abs/2110.01593

arxiv.org/abs/2111.07941

Package: github.com/microsoft/goodpoints

Stein Thinning

Website: stein-thinning.org

Paper: arxiv.org/abs/2105.05842

Video: youtu.be/WwmTeLrNmOQ

Mackey (MSR) Advances in Distribution Compression July 15, 2024 29 / 29

https://arxiv.org/abs/2105.05842
https://arxiv.org/abs/2110.01593
https://arxiv.org/abs/2111.07941
https://github.com/microsoft/goodpoints
http://stein-thinning.org
https://arxiv.org/abs/2105.05842
https://youtu.be/WwmTeLrNmOQ

Generalized Kernel Thinning [Dwivedi and Mackey, 2022]

Question: Do you really need a square-root kernel?

1 kt-split with target kernel k yields

Similar or better MMD guarantees for analytic kernels (like Gaussian, IMQ, & sinc)

Dimension-free O(
√
log s
s) single-function integration error for any k and P

2 kt-split with fractional power kernel kα yields

Improved MMD for kernels without krt (like Laplace and non-smooth Matérn)

3 kt-split with k+ kα yields all of the above simultaneously!

We call this kernel thinning+ (KT+)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 30 / 29

Generalized Kernel Thinning [Dwivedi and Mackey, 2022]

Question: Do you really need a square-root kernel?
1 kt-split with target kernel k yields

Similar or better MMD guarantees for analytic kernels (like Gaussian, IMQ, & sinc)

Dimension-free O(
√
log s
s) single-function integration error for any k and P

2 kt-split with fractional power kernel kα yields

Improved MMD for kernels without krt (like Laplace and non-smooth Matérn)

3 kt-split with k+ kα yields all of the above simultaneously!

We call this kernel thinning+ (KT+)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 30 / 29

Generalized Kernel Thinning [Dwivedi and Mackey, 2022]

Question: Do you really need a square-root kernel?
1 kt-split with target kernel k yields

Similar or better MMD guarantees for analytic kernels (like Gaussian, IMQ, & sinc)

Dimension-free O(
√
log s
s) single-function integration error for any k and P

2 kt-split with fractional power kernel kα yields

Improved MMD for kernels without krt (like Laplace and non-smooth Matérn)

3 kt-split with k+ kα yields all of the above simultaneously!

We call this kernel thinning+ (KT+)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 30 / 29

Generalized Kernel Thinning [Dwivedi and Mackey, 2022]

Question: Do you really need a square-root kernel?
1 kt-split with target kernel k yields

Similar or better MMD guarantees for analytic kernels (like Gaussian, IMQ, & sinc)

Dimension-free O(
√
log s
s) single-function integration error for any k and P

2 kt-split with fractional power kernel kα yields

Improved MMD for kernels without krt (like Laplace and non-smooth Matérn)

3 kt-split with k+ kα yields all of the above simultaneously!

We call this kernel thinning+ (KT+)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 30 / 29

Generalized Kernel Thinning [Dwivedi and Mackey, 2022]

Question: Do you really need a square-root kernel?
1 kt-split with target kernel k yields

Similar or better MMD guarantees for analytic kernels (like Gaussian, IMQ, & sinc)

Dimension-free O(
√
log s
s) single-function integration error for any k and P

2 kt-split with fractional power kernel kα yields

Improved MMD for kernels without krt (like Laplace and non-smooth Matérn)

3 kt-split with k+ kα yields all of the above simultaneously!

We call this kernel thinning+ (KT+)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 30 / 29

Distribution Compression in Near-linear Time [Shetty, Dwivedi, and Mackey, 2022]

Question: Can we speed up thinning algorithms without ruining their quality?

103 104 105 106

Input size n

2 10

2 8

2 6

2 4

M
ea

n
M

M
D

d=2

ST: n 0.24

KT-Comp: n 0.46

KT-Comp++: n 0.50

KT: n 0.52

103 104 105 106

Input size n

2 9

2 7

2 5

2 3

d=4

ST: n 0.23

KT-Comp: n 0.41

KT-Comp++: n 0.46

KT: n 0.48

103 104 105 106

Input size n

2 8

2 6

2 4

d=10

ST: n 0.25

KT-Comp: n 0.38

KT-Comp++: n 0.41

KT: n 0.43

103 104 105 106

Input size n

2 7

2 6

2 5

2 4

2 3

d=100

ST: n 0.25

KT-Comp: n 0.32

KT-Comp++: n 0.31

KT: n 0.32

103 104 105 106

Input size n

1s

1m

10m
1hr
8hr
1day

Si
ng

le
 c

or
e

ru
nt

im
e

d=2
KT
KT-Comp++
KT-Comp

103 104 105 106

Input size n

1s

1m

10m
1hr
8hr
1day

d=4

103 104 105 106

Input size n

1s

1m

10m
1hr
8hr
1day

d=10

103 104 105 106

Input size n

1s

1m

10m
1hr
8hr
1day

d=100

Compress++ reduces n2 runtime to n log3 n, applies to any thinning algorithm, and
inflates error by at most a constant factor

Mackey (MSR) Advances in Distribution Compression July 15, 2024 31 / 29

Distribution Compression in Near-linear Time [Shetty, Dwivedi, and Mackey, 2022]

Question: Can we speed up thinning algorithms without ruining their quality?

103 104 105 106

Input size n

2 10

2 8

2 6

2 4

M
ea

n
M

M
D

d=2

ST: n 0.24

KT-Comp: n 0.46

KT-Comp++: n 0.50

KT: n 0.52

103 104 105 106

Input size n

2 9

2 7

2 5

2 3

d=4

ST: n 0.23

KT-Comp: n 0.41

KT-Comp++: n 0.46

KT: n 0.48

103 104 105 106

Input size n

2 8

2 6

2 4

d=10

ST: n 0.25

KT-Comp: n 0.38

KT-Comp++: n 0.41

KT: n 0.43

103 104 105 106

Input size n

2 7

2 6

2 5

2 4

2 3

d=100

ST: n 0.25

KT-Comp: n 0.32

KT-Comp++: n 0.31

KT: n 0.32

103 104 105 106

Input size n

1s

1m

10m
1hr
8hr
1day

Si
ng

le
 c

or
e

ru
nt

im
e

d=2
KT
KT-Comp++
KT-Comp

103 104 105 106

Input size n

1s

1m

10m
1hr
8hr
1day

d=4

103 104 105 106

Input size n

1s

1m

10m
1hr
8hr
1day

d=10

103 104 105 106

Input size n

1s

1m

10m
1hr
8hr
1day

d=100

Compress++ reduces n2 runtime to n log3 n, applies to any thinning algorithm, and
inflates error by at most a constant factor

Mackey (MSR) Advances in Distribution Compression July 15, 2024 31 / 29

Distribution Compression in Near-linear Time [Shetty, Dwivedi, and Mackey, 2022]

Question: Can we speed up thinning algorithms without ruining their quality?

44 45 46 47 48

Input size n

2 8

2 6

2 4

M
ea

n
M

M
D

d=2

ST: n 0.27

Herd-Comp: n 0.45

Herd-Comp++: n 0.51

Herd: n 0.49

44 45 46 47 48

Input size n

2 7

2 5

2 3

d=4

ST: n 0.24

Herd-Comp: n 0.42

Herd-Comp++: n 0.45

Herd: n 0.45

44 45 46 47 48

Input size n

2 7

2 6

2 5

2 4

2 3

d=10

ST: n 0.25

Herd-Comp: n 0.37

Herd-Comp++: n 0.42

Herd: n 0.46

44 45 46 47 48

Input size n
2 6

2 5

2 4

2 3

d=100

ST: n 0.24

Herd-Comp: n 0.32

Herd-Comp++: n 0.32

Herd: n 0.32

103 104 105 106

Input size n

1s
10s
1m
10m
1hr
10hr

Si
ng

le
 c

or
e

ru
nt

im
e

d=2
Herd
Herd-Comp++
Herd-Comp

103 104 105 106

Input size n

1s
10s
1m
10m
1hr
10hr

d=4

103 104 105 106

Input size n

1s
10s
1m
10m
1hr
10hr

d=10

103 104 105 106

Input size n

1s
10s
1m
10m
1hr
10hr

d=100

Compress++ reduces n2 runtime to n log3 n, applies to any thinning algorithm
(e.g., kernel herding), and inflates error by at most a constant factor

Mackey (MSR) Advances in Distribution Compression July 15, 2024 32 / 29

Distribution Compression in Near-linear Time [Shetty, Dwivedi, and Mackey, 2022]

Algorithm 1: Compress: Given n points return thinned coreset of size
√
n

Input: halving algorithm Halve, point sequence Sin of size n

if n = 1 then return Sin
Partition Sin into four arbitrary subsequences {Si}4i=1 each of size n/4

for i = 1, 2, 3, 4 do

S̃i ← Compress(Si,Halve) // return coresets of size
√

n
4

end

S̃ ← Concatenate(S̃1, S̃2, S̃3, S̃4) // coreset of size 2
√
n

return Halve(S̃) // coreset of size
√
n

Mackey (MSR) Advances in Distribution Compression July 15, 2024 33 / 29

Powerful Kernel Testing in Near-linear Time [Domingo-Enrich, Dwivedi, and Mackey, 2023]

1 2 5 10 20 50 100 200 500 1k 2k 5k 10k
Total computation time (s)

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2
g=3

B=49

ℓ= 49−1
2 n

Downsampled EMNIST (peven= 0.49, n=49)

CTT
W-Block
W-Incomp.
A-Block I
A-Block II
A-Incomp.
Level 0.05

0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500
Total computation time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1 g=2 g=3 g=4

ℓ= 47−1
2 nℓ= 47−1
2 n

Higgs (n=47)

ACTT
Agg. W-Incomp.
CTT (median λ)
W-Incomp. (median λ)
Level 0.05

1 2 5 10 20 50 100 200 500 1k 2k 5k
Total computation time (s)

0.0

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2
g=3

B=49 ℓ= 49−1
2 n

B=48

Gaussian (mean separation= 0.012, n=49)

CTT
W-Block
W-Incomp.
A-Block I
A-Block II
A-Incomp.
Level 0.05

0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500
Total computation time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2

g=3 ℓ= 47−1
2 nℓ= 47−1
2 n

Blobs (ε= 1.4, n=47)

ACTT
Agg. W-Incomp.
CTT (median λ)
W-Incomp. (median λ)
Level 0.05

Compress Then Test (▶ above) accelerates kernel two-sample testing with compression
Mackey (MSR) Advances in Distribution Compression July 15, 2024 34 / 29

Conclusions
Summary

New tools for summarizing a probability distribution more effectively than i.i.d.
sampling or standard MCMC thinning

Kernel thinning compresses an n point summary into a
√
n point summary with

better-than-i.i.d. approximation error

Stein thinning simultaneously compresses and reduces biases due to off-target
sampling, tempering, or burn-in

Compress++ speeds up thinning algorithms without ruining their quality

Compress Then Test (CTT) accelerates kernel testing with compression

Kernel Thinning, Compress++, and CTT

Papers:

{
arxiv:2105.05842, arxiv:2110.01593

arxiv:2111.07941, arxiv:2301.05974

Package: github.com/microsoft/goodpoints

Stein Thinning

Website: stein-thinning.org

Paper: arxiv.org/abs/2105.05842

Video: youtu.be/WwmTeLrNmOQ

Mackey (MSR) Advances in Distribution Compression July 15, 2024 35 / 29

https://arxiv.org/abs/2105.05842
https://arxiv.org/abs/2110.01593
https://arxiv.org/abs/2111.07941
https://arxiv.org/abs/2301.05974
https://github.com/microsoft/goodpoints
http://stein-thinning.org
https://arxiv.org/abs/2105.05842
https://youtu.be/WwmTeLrNmOQ

Future Directions

Many opportunities for future development
1 Unifying kernel thinning and Stein thinning

Can we simultaneously bias-correct Pn and, in the absence of bias, guarantee
better-than-i.i.d. compression?

2 Value of swapping

kt-swap refinement stage typically leads to significant quality improvements over
kt-split alone. Can we establish stronger guarantees for kt-swap?

3 Weighted compression

For applications that support weights, can we establish stronger guarantees for
optimally weighted kernel and Stein thinning coresets?

4 Other metrics

For which other metrics is (significantly) better-than-i.i.d. compression achievable?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 36 / 29

Future Directions

Many opportunities for future development
1 Unifying kernel thinning and Stein thinning

Can we simultaneously bias-correct Pn and, in the absence of bias, guarantee
better-than-i.i.d. compression?

2 Value of swapping

kt-swap refinement stage typically leads to significant quality improvements over
kt-split alone. Can we establish stronger guarantees for kt-swap?

3 Weighted compression

For applications that support weights, can we establish stronger guarantees for
optimally weighted kernel and Stein thinning coresets?

4 Other metrics

For which other metrics is (significantly) better-than-i.i.d. compression achievable?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 36 / 29

Future Directions

Many opportunities for future development
1 Unifying kernel thinning and Stein thinning

Can we simultaneously bias-correct Pn and, in the absence of bias, guarantee
better-than-i.i.d. compression?

2 Value of swapping

kt-swap refinement stage typically leads to significant quality improvements over
kt-split alone. Can we establish stronger guarantees for kt-swap?

3 Weighted compression

For applications that support weights, can we establish stronger guarantees for
optimally weighted kernel and Stein thinning coresets?

4 Other metrics

For which other metrics is (significantly) better-than-i.i.d. compression achievable?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 36 / 29

Future Directions

Many opportunities for future development
1 Unifying kernel thinning and Stein thinning

Can we simultaneously bias-correct Pn and, in the absence of bias, guarantee
better-than-i.i.d. compression?

2 Value of swapping

kt-swap refinement stage typically leads to significant quality improvements over
kt-split alone. Can we establish stronger guarantees for kt-swap?

3 Weighted compression

For applications that support weights, can we establish stronger guarantees for
optimally weighted kernel and Stein thinning coresets?

4 Other metrics

For which other metrics is (significantly) better-than-i.i.d. compression achievable?

Mackey (MSR) Advances in Distribution Compression July 15, 2024 36 / 29

Related Work on MMD Coresets

Uniform distribution P on [0, 1]d: L2 discrepancy MMD, s points

Quasi-Monte Carlo [Chen, Skriganov, et al., 2002]: O(s−1 log
d−1
2 s)

Online Haar strategy [Dwivedi, Feldheim, Gurel-Gurevich, and Ramdas, 2019]: O(s−1 log2d s)

Order s−
1
2 MMD coresets for general P

i.i.d. [Tolstikhin, Sriperumbudur, and Muandet, 2017], geometrically ergodic MCMC [Dwivedi and Mackey, 2024]

Kernel herding [Chen, Welling, and Smola, 2010, Lacoste-Julien, Lindsten, and Bach, 2015], Stein points MCMC [Chen,

Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019], Greedy sign selection [Karnin and Liberty, 2019]

Finite-dimensional linear kernels on Rd: O(
√
ds−1 log2.5 s), s points

Discrepancy construction [Harvey and Samadi, 2014]: does not cover infinite-dimensional k

Unknown coreset quality
Super-sampling with a reservoir [Paige, Sejdinovic, and Wood, 2016]: coreset quality not analyzed
Support points [Mak and Joseph, 2018]

Optimal s coreset has o(s−
1
2) energy distance MMD but no construction given

Practical convex-concave procedures not analyzed or shown to be optimal
Mackey (MSR) Advances in Distribution Compression July 15, 2024 37 / 29

References I
R. Alweiss, Y. P. Liu, and M. Sawhney. Discrepancy minimization via a self-balancing walk. arXiv preprint arXiv:2006.14009, 2020.

F. O. Campos, Y. Shiferaw, A. J. Prassl, P. M. Boyle, E. J. Vigmond, and G. Plank. Stochastic spontaneous calcium release events trigger premature ventricular
complexes by overcoming electrotonic load. Cardiovascular Research, 107(1):175–183, 2015.

W. W. L. Chen, M. M. Skriganov, et al. Explicit constructions in the classical mean squares problem in irregularities of point distribution. Journal fur die Reine
und Angewandte Mathematik, 545:67–96, 2002.

W. Y. Chen, A. Barp, F.-X. Briol, J. Gorham, M. Girolami, L. Mackey, and C. Oates. Stein point Markov chain Monte Carlo. In International Conference on
Machine Learning, pages 1011–1021. PMLR, 2019.

Y. Chen, M. Welling, and A. Smola. Super-samples from kernel herding. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
UAI’10, page 109–116, Arlington, Virginia, USA, 2010. AUAI Press. ISBN 9780974903965.

K. Chwialkowski, H. Strathmann, and A. Gretton. A kernel test of goodness of fit. In Proceedings of the 33rd International Conference on Machine Learning, 2016.

M. A. Colman. Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling between re-entrant and focal excitation. PLoS Computational
Biology, 15(8), 2019.

C. Domingo-Enrich, R. Dwivedi, and L. Mackey. Compress then test: Powerful kernel testing in near-linear time. In Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research. PMLR, 25–27 Apr 2023.

R. Dwivedi and L. Mackey. Generalized kernel thinning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/pdf?id=IfNu7Dr-3fQ.

R. Dwivedi and L. Mackey. Kernel thinning. Journal of Machine Learning Research, 25(152):1–77, 2024.

R. Dwivedi, O. N. Feldheim, O. Gurel-Gurevich, and A. Ramdas. The power of online thinning in reducing discrepancy. Probability Theory and Related Fields, 174
(1):103–131, 2019.

D. Garreau, W. Jitkrittum, and M. Kanagawa. Large sample analysis of the median heuristic. arXiv preprint arXiv:1707.07269, 2017.

M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

B. C. Goodwin. Oscillatory behavior in enzymatic control process. Advances in Enzyme Regulation, 3:318–356, 1965.

J. Gorham and L. Mackey. Measuring sample quality with kernels. In Proceedings of the 34th International Conference on Machine Learning, 2017.

Mackey (MSR) Advances in Distribution Compression July 15, 2024 38 / 29

https://openreview.net/pdf?id=IfNu7Dr-3fQ

References II

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773, 2012.

H. Haario, E. Saksman, and J. Tamminen. Adaptive proposal distribution for random walk Metropolis algorithm. Computational Statistics, 14(3):375–395, 1999.

N. Harvey and S. Samadi. Near-optimal herding. In Conference on Learning Theory, pages 1165–1182, 2014.

R. Hinch, J. Greenstein, A. Tanskanen, L. Xu, and R. Winslow. A simplified local control model of calcium-induced calcium release in cardiac ventricular
myocytes. Biophysical journal, 87(6):3723–3736, 2004.

S. Joshi, R. V. Kommaraji, J. M. Phillips, and S. Venkatasubramanian. Comparing distributions and shapes using the kernel distance. In Proceedings of the
twenty-seventh annual symposium on Computational geometry, pages 47–56, 2011.

Z. Karnin and E. Liberty. Discrepancy, coresets, and sketches in machine learning. In Conference on Learning Theory, pages 1975–1993. PMLR, 2019.

S. Lacoste-Julien, F. Lindsten, and F. Bach. Sequential kernel herding: Frank-Wolfe optimization for particle filtering. In Artificial Intelligence and Statistics,
pages 544–552. PMLR, 2015.

Q. Liu, J. D. Lee, and M. I. Jordan. A kernelized Stein discrepancy for goodness-of-fit tests and model evaluation. In Proceedings of the 33rd International
Conference on Machine Learning, 2016.

A. J. Lotka. Elements of physical biology. Williams & Wilkins, 1925.

S. Mak and V. R. Joseph. Support points. The Annals of Statistics, 46(6A):2562–2592, 2018.

S. A. Niederer, J. Lumens, and N. A. Trayanova. Computational models in cardiology. Nature Reviews Cardiology, 16(2):100–111, 2019.

S. A. Niederer, M. S. Sacks, M. Girolami, and K. Willcox. Scaling digital twins from the artisanal to the industrial. Nature Computational Science, 1(5):313–320,
2021.

E. Novak and H. Wozniakowski. Tractability of multivariate problems, volume ii: Standard information for functionals, european math. Soc. Publ. House, Zürich,
3, 2010.

C. J. Oates, M. Girolami, and N. Chopin. Control functionals for Monte Carlo integration. Journal of the Royal Statistical Society, Series B, 79(3):695–718, 2017.

B. Paige, D. Sejdinovic, and F. Wood. Super-sampling with a reservoir. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
pages 567–576, 2016.

J. M. Phillips. ε-samples for kernels. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1622–1632. SIAM, 2013.

Mackey (MSR) Advances in Distribution Compression July 15, 2024 39 / 29

References III

J. M. Phillips and W. M. Tai. Improved coresets for kernel density estimates. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2718–2727. SIAM, 2018.

J. M. Phillips and W. M. Tai. Near-optimal coresets of kernel density estimates. Discrete & Computational Geometry, 63(4):867–887, 2020.

M. Riabiz, W. Chen, J. Cockayne, P. Swietach, S. A. Niederer, L. Mackey, and C. Oates. Optimal thinning of MCMC output. To appear: Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 2021.

G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

A. Shetty, R. Dwivedi, and L. Mackey. Distribution compression in near-linear time. In International Conference on Learning Representations, 2022. URL
https://openreview.net/pdf?id=lzupY5zjaU9.

W. M. Tai. New nearly-optimal coreset for kernel density estimation. arXiv preprint arXiv:2007.08031, 2020.

I. Tolstikhin, B. K. Sriperumbudur, and K. Muandet. Minimax estimation of kernel mean embeddings. The Journal of Machine Learning Research, 18(1):
3002–3048, 2017.

V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. 1926.

Mackey (MSR) Advances in Distribution Compression July 15, 2024 40 / 29

https://openreview.net/pdf?id=lzupY5zjaU9

KT-SPLIT

𝒮in

𝒮1,1 𝒮1,2

𝒮2,1 𝒮2,2 𝒮2,3 𝒮2,4

𝒮3,1 𝒮3,2 𝒮3,3 𝒮3,4 𝒮3,5 𝒮3,6 𝒮3,7 𝒮3,8

𝒮m,1 𝒮m,2 𝒮m,5𝒮m,3 𝒮m,4 𝒮m,6 𝒮m,7 𝒮m,2m𝒮m,8

kt-split partitions the input Sin recursively, first dividing the input sequence in half,
then halving those halves into quarters, and so on

Runs online: after i input points processed have output coresets of size i
2m

Mackey (MSR) Advances in Distribution Compression July 15, 2024 41 / 29

KT-SPLIT
Input 

 (points)n

 (points)
n
2

Output 
 (points)

n
2m

After Kernel Halving roundsm

Kernel Halving

 (points)
n
4

Kernel Halving

<latexit sha1_base64="dM2tpuvUYF3a17jCjaY7CCNIIg4=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEClISFXVZdOOyon1AG8tkOmmHTh7MTIQagr/ixoUibv0Pd/6NkzYLrR4YOJxzL/fMcSPOpLKsL6MwN7+wuFRcLq2srq1vmJtbTRnGgtAGCXko2i6WlLOANhRTnLYjQbHvctpyR5eZ37qnQrIwuFXjiDo+HgTMYwQrLfXMna6P1ZBgntykd0nFPkT2Qdozy1bVmgD9JXZOypCj3jM/u/2QxD4NFOFYyo5tRcpJsFCMcJqWurGkESYjPKAdTQPsU+kkk/Qp2tdKH3mh0C9QaKL+3EiwL+XYd/VkllXOepn4n9eJlXfuJCyIYkUDMj3kxRypEGVVoD4TlCg+1gQTwXRWRIZYYKJ0YSVdgj375b+keVS1T6vH1yfl2kVeRxF2YQ8qYMMZ1OAK6tAAAg/wBC/wajwaz8ab8T4dLRj5zjb8gvHxDQ8YlFE=</latexit>

S(1,1)

<latexit sha1_base64="IzjRe/pKMhG0lDpZnAr+uYI87CU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFaTMVFGXRTcuK9oHtGPJpGkbmnmQZIQ6DP6KGxeKuPU/3Pk3ZtpZaOuBwOGce7knxw05k8qyvo3cwuLS8kp+tbC2vrG5ZW7vNGQQCULrJOCBaLlYUs58WldMcdoKBcWey2nTHV2lfvOBCskC/06NQ+p4eOCzPiNYaalr7nU8rIYE8/g2uY9LlWNkHyVds2iVrQnQPLEzUoQMta751ekFJPKorwjHUrZtK1ROjIVihNOk0IkkDTEZ4QFta+pjj0onnqRP0KFWeqgfCP18hSbq740Ye1KOPVdPplnlrJeK/3ntSPUvnJj5YaSoT6aH+hFHKkBpFajHBCWKjzXBRDCdFZEhFpgoXVhBl2DPfnmeNCpl+6x8cnNarF5mdeRhHw6gBDacQxWuoQZ1IPAIz/AKb8aT8WK8Gx/T0ZyR7ezCHxifPxChlFI=</latexit>

S(2,1)

<latexit sha1_base64="3Lu/QOS+4D9PDX/fWpjFkMdWhok=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCBSkzKuqy6MZlRfuAdiyZNNOGJpkhyQh1GPwVNy4Ucet/uPNvzLSz0OqBwOGce7knx48YVdpxvqzC3PzC4lJxubSyura+YW9uNVUYS0waOGShbPtIEUYFaWiqGWlHkiDuM9LyR5eZ37onUtFQ3OpxRDyOBoIGFCNtpJ690+VIDzFiyU16l1T4IXQP0p5ddqrOBPAvcXNSBjnqPfuz2w9xzInQmCGlOq4TaS9BUlPMSFrqxopECI/QgHQMFYgT5SWT9CncN0ofBqE0T2g4UX9uJIgrNea+mcyyqlkvE//zOrEOzr2EiijWRODpoSBmUIcwqwL2qSRYs7EhCEtqskI8RBJhbQormRLc2S//Jc2jqntaPb4+Kdcu8jqKYBfsgQpwwRmogStQBw2AwQN4Ai/g1Xq0nq036306WrDynW3wC9bHN2s0lI0=</latexit>

S(m,1)

<latexit sha1_base64="f2RiQ3d0Z6heUOlpz815K7Ji2Lk=">AAACAnicbVC7TsMwFHV4lvIKMCEWiwqJqUoAAWMFC2MR9CG1UeS4TmvVdiLbQaqiiIVfYWEAIVa+go2/wUkzQMuRLB2fc6/uvSeIGVXacb6thcWl5ZXVylp1fWNza9ve2W2rKJGYtHDEItkNkCKMCtLSVDPSjSVBPGCkE4yvc7/zQKSikbjXk5h4HA0FDSlG2ki+vd/nSI8wYuld5qfFR/KUiizz7ZpTdwrAeeKWpAZKNH37qz+IcMKJ0JghpXquE2svRVJTzEhW7SeKxAiP0ZD0DBWIE+WlxQkZPDLKAIaRNE9oWKi/O1LElZrwwFTmO6pZLxf/83qJDi89c1CcaCLwdFCYMKgjmOcBB1QSrNnEEIQlNbtCPEISYW1Sq5oQ3NmT50n7pO6e109vz2qNqzKOCjgAh+AYuOACNMANaIIWwOARPINX8GY9WS/Wu/UxLV2wyp498AfW5w+b3pg5</latexit>Sin

Each output coreset S(m,ℓ) is the result of repeated kernel halving

On each halving round, remaining points are paired, and one point from each pair
is selected using a new Hilbert space generalization of the self-balancing walk of
Alweiss, Liu, and Sawhney [2020]

Selection rule ensures that Pnkrt −Qkrt remains small with high probability
Mackey (MSR) Advances in Distribution Compression July 15, 2024 42 / 29

Kernel Halving with a Self-Balancing Hilbert Walk
Algorithm: Self-balancing Hilbert Walk [Dwivedi and Mackey, 2024]

Input: sequence of functions (fi)
n/2
i=1 in Hilbert space H, threshold sequence (ai)

n/2
i=1

ψ0 ← 0 ∈ H
for i = 1, 2, . . . , n/2 do

αi ← ⟨ψi−1, fi⟩H // Compute Hilbert space inner product
if |αi| > ai:

ψi ← ψi−1 − fi · αi/ai // We choose ai to avoid this case with high probability
else:

ηi ← 1 with probability 1
2 (1− αi/ai) and ηi ← −1 otherwise

ψi ← ψi−1 + ηifi
end

return ψn/2, sum of signed input functions // ψn/2 =
∑n/2

i=1 ηifi with high probability

1 Kernel Halving: If fi = krt(x2i−1, ·)− krt(x2i, ·), half of input points Sout given sign 1

⇒ 1
nψn/2 = Pnkrt −Qkrt with Q = 2

n

∑
x∈Sout

δx

2 Balance: If H = krt RKHS, Pnkrt(x)−Qkrt(x) is O(
√

log(n)/n) sub-Gaussian, ∀x
In contrast, i.i.d. signs ηi give Pnkrt(x)−Qkrt(x) = Ω(1/

√
n)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 43 / 29

Why the Square-root Kernel krt?

Theorem (L∞ coresets for (krt,Pn) are MMD coresets for (k,Pn) [Dwivedi and Mackey, 2024])

For any scalars R, a, b ≥ 0 with a+ b = 1, we have

MMDk(Pn,Q) ≤ vdR
d
2 · ∥Pnkrt−Qkrt∥∞ + 2τkrt(aR) + 2∥k∥ 1

2
∞ ·max{τPn(bR), τQ(bR)}

for vd ≜ πd/4/Γ(d/2 + 1)1/2.

L∞ error: ∥Pnkrt−Qkrt∥∞ ≜ supx∈Rd |Pnkrt(x)−Qkrt(x)|
Tail decay of (Pn,Q,krt): τPn(R) ≜ Pn(∥X∥2 ≥ R)

Effective radius: Want τkrt(aR), τPn(bR), τQ(bR) = O(1√
n
)

R = O(1) for compact support, R = O(log(n)) for sub-exponential decay
When (Pn,Q,krt) are compactly supported, MMDk(Pn,Q) = O(∥Pnkrt−Qkrt∥∞)

Mackey (MSR) Advances in Distribution Compression July 15, 2024 44 / 29

L∞ Coresets from Kernel Halving

Theorem (L∞ guarantees for kernel halving [Dwivedi and Mackey, 2024])

With high probability,

1 Kernel halving yields a 2-thinned L∞ coreset Q(1)
KH satisying

∥Pnkrt −Q(1)
KHkrt∥∞ ≤ ∥krt∥∞ · 2nMkrt(Pn)

2 Repeated kernel halving yields a 2m-thinned L∞ coreset Q(m)
KH satisfying

∥Pnkrt−Q(m)
KHkrt∥∞ ≤ ∥krt∥∞ · 2

m

n
Mkrt(Pn)

Mkrt(Pn) = O(
√
log n) for compactly supported (P,krt) and O(log n) in general

With m = 1
2
log2(n) rounds, yields

√
n points with O(n− 1

2 log(n)) L∞ error

An equal-sized i.i.d. sample has Ω(n−
1
4) L∞ error

Near-optimal: any procedure outputting
√
n points must suffer Ω(n− 1

2) L∞ error
for some Pn [Phillips and Tai, 2020, Thm. 3.1]

Mackey (MSR) Advances in Distribution Compression July 15, 2024 45 / 29

MMD Coresets from Kernel Thinning

Theorem (MMD guarantee for kernel thinning [Dwivedi and Mackey, 2024])

Kernel thinning returns a coreset QKT with
√
n points satisfying, with high probability,

MMDk(Pn,QKT)=


O(

√
logn
n

) for compact support (P,krt) (e.g., B-spline k)

O((logn)
d+2
4

√
log logn√

n
) for sub-Gaussian (P,krt) (e.g., Gaussian k)

O((logn)
d+1
2

√
log logn√

n
) for sub-exponential (P,krt) (e.g.,Matérn k)

An equal-sized i.i.d. sample has Ω(n− 1
4) MMD

Sub-exponential guarantees resemble the classical O((logn)
d−1
2√

n
) quasi-Monte Carlo

error rates for uniform P on [0, 1]d but apply to more general distributions on Rd

See the paper for non-asymptotic bounds with explicit constants and n
2m

points

Mackey (MSR) Advances in Distribution Compression July 15, 2024 46 / 29

Related Work on L∞ Coresets

L∞ coresets for Pn: o(n
− 1

4) L∞ error,
√
n points

Series of breakthroughs due to [Joshi, Kommaraji, Phillips, and Venkatasubramanian, 2011, Phillips,

2013, Phillips and Tai, 2018, 2020, Tai, 2020]

Best known L∞ guarantees (for coreset of size
√
n)

Phillips and Tai [2020]: O(
√
dn− 1

2

√
log n) error, Ω(n4) time, Ω(n2) space

Tai [2020] (Gaussian k): O(2dn− 1
2

√
log(d log n)) error, Ω(max(d5d, n4)) time

Both are offline and require rebalancing after approximate halving steps

This work: O(
√
dn− 1

2 log n) error, O(n2) time, O(nd) space, online, exact halving
Sub-Gaussian (krt,P): O(

√
dn−

1
2
√
log n log log n) error

Compact support (krt,P): O(
√
dn−

1
2
√
log n) error

Mackey (MSR) Advances in Distribution Compression July 15, 2024 47 / 29

Distribution Compression in Near-linear Time [Shetty, Dwivedi, and Mackey, 2022]

Error guarantees rely on unbiased halving (E[PHalvek | Sin] = Pink)
Achieved for any halving algorithm by symmetrization: return either the outputted
half or its complement with equal probability

Mackey (MSR) Advances in Distribution Compression July 15, 2024 48 / 29

	Motivation
	Problem Setup
	Kernel Thinning
	Stein Thinning
	Discussion
	References
	Appendix

