STATS 300A THEORY OF STATISTICS
Stanford University, Fall 2015

Problem Set 4

Due: Thursday, October 22, 2015

Instructions:
e You may appeal to any result proved in class or proved in the course textbooks.

e Any request to “find” requires proof that all requested properties are satisfied.

Problem 1 (Minimum Risk Scale Equivariance). Suppose that X = (X,...,X,,) comes
from a scale family with density
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(a) Show that the minimum risk scale equivariant estimator of 7 under the loss
d (d—77)?
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is given by

5*(X) =

(b) Show that a minimum risk scale equivariant estimator of 7 under the loss
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with w*(Z) any scale median of dyo(X) under the conditional distribution of X given
Z with 7 = 1. That is, w*(z) satisfies

is given by
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1 [00(X)I(00(X) > w*(Z)) | Z] = Eq [00(X)I (00(X) <w*(Z)) | Z].

Hint: You might find it useful to prove the claim in Exercise 3.7a in Chapter 3 of
TPE.


http://site.ebrary.com/lib/stanford/detail.action?docID=2004308

In part (b) you may assume that X has a continuous probability density function f(-;6)
with respect to Lebesgue measure.

Problem 2 (Bayes Estimation). Suppose that © follows a log-normal distribution with
known hyperparameters py € R and o2 > 0 and that, given © =0, (X1,...,X,,) is an i.i.d.
sample from Unif(0, #).

(a) What is the posterior distribution of log(©)?

(b) Let o, represent the Bayes estimator of # under the loss
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1 otherwise

L(0,d) = {

for fixed 7 > 1. Find a simple, closed-form expression for the limit of ¢, as 7 — 1.

Note: Part (b) concerns Bayes estimators of 6§, not of log(#), but part (a) is still
relevant.

Problem 3 (Conjugacy). A family IT = {7, : kK € K} of prior probability densities indexed
by the hyperparameter k is said to be conjugate for a model P = {f(:|0) : 8 € Q} of
likelihoods if, for each prior 7, € II, the posterior 7. (0|x) o< f(x|€)m.(0) is also in II. That
is, m.(0|z) = mw(0) for some index k' € K depending on x and x. Posterior analysis is
greatly simplified when the mapping (k,x) — &’ has a known closed form. For each model
below, find a conjugate prior family under which the posterior hyperparameter «’ is a simple,
closed-form function of the data x and the prior hyperparameter x:

(a) (Xq,...,Xn) S Gamma(c, 5) with unknown shape « and rate (.

(b) (Xy,...,Xy) Y Beta(q, 8) with unknown shape parameters (o, [3).
(c) The family defined by the linear observation model Y; N (B1 + Bowy,0?) for i €
{1,...,n} where ; € R and 0% > 0 are known and (31, 3> € R are unknown.

Problem 4 (Posterior Quantiles). Consider a Bayesian inference setting in which the pos-
terior mean E[© | X = z] is finite for each x. Show that under the loss function
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with kq, ks > 0 constant and for p an appropriate function of k; and ks, every p-th quantile
of the posterior distribution is a Bayes estimator.



Problem 5 (Bayesian Prediction).

(a)

Let Z € R? be a random vector and Y € R be a random variable. Our goal is to learn
a prediction rule f : RP — R to best predict the value of Y given Z. We will measure
the goodness of our predictions using the risk function

E[(Y - f(2)7]. (1)

Assuming that the joint distribution of (Z,Y") is known, find the optimal prediction
rule f.

Now, let © € Q be a random variable with distribution A, and, given © = 6, let
X1, .., Xpy1 be drawn i.i.d. from a density py. Let p(6) represent the mean under py.
First, find the Bayes estimate of p(6) under squared error loss given only the first n
observations X7, ..., X,. Next, find the function f of (Xi,...,X,) that best predicts
X,+1 under the average risk

E [Eo [(Xnt1 — f(X1,..., X0))?]] -

Note the close relationship between optimal prediction and optimal estimation.



