
STATS 300A Theory of Statistics
Stanford University, Fall 2015

Problem Set 4

Due: Thursday, October 22, 2015

Instructions:

• You may appeal to any result proved in class or proved in the course textbooks.

• Any request to “find” requires proof that all requested properties are satisfied.

Problem 1 (Minimum Risk Scale Equivariance). Suppose that X = (X1, . . . , Xn) comes
from a scale family with density

fτ (x) =
1

τn
f
(x1

τ
, . . . ,

xn
τ

)
for known f and unknown scale parameter τ > 0 and that

Z =

(
X1

Xn

, . . . ,
Xn−1

Xn

,
Xn

|Xn|

)
.

(a) Show that the minimum risk scale equivariant estimator of τ under the loss

γ

(
d

τ r

)
=

(d− τ r)2

τ 2r

is given by

δ∗(X) =
δ0(X)E1 [δ0(X) | Z]

E1 [δ2
0(X) | Z]

.

(b) Show that a minimum risk scale equivariant estimator of τ under the loss

γ

(
d

τ r

)
=
|d− τ r|
τ r

is given by

δ∗(X) =
δ0(X)

w∗(Z)
.

with w∗(Z) any scale median of δ0(X) under the conditional distribution of X given
Z with τ = 1. That is, w∗(z) satisfies

E1 [δ0(X)I (δ0(X) ≥ w∗(Z)) | Z] = E1 [δ0(X)I (δ0(X) ≤ w∗(Z)) | Z] .

Hint: You might find it useful to prove the claim in Exercise 3.7a in Chapter 3 of
TPE.
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In part (b) you may assume that X has a continuous probability density function f(·; θ)
with respect to Lebesgue measure.

Problem 2 (Bayes Estimation). Suppose that Θ follows a log-normal distribution with
known hyperparameters µ0 ∈ R and σ2

0 > 0 and that, given Θ = θ, (X1, . . . , Xn) is an i.i.d.
sample from Unif(0, θ).

(a) What is the posterior distribution of log(Θ)?

(b) Let δτ represent the Bayes estimator of θ under the loss

L(θ, d) =

{
0 if 1

τ
≤ θ

d
≤ τ

1 otherwise

for fixed τ > 1. Find a simple, closed-form expression for the limit of δτ as τ → 1.

Note: Part (b) concerns Bayes estimators of θ, not of log(θ), but part (a) is still
relevant.

Problem 3 (Conjugacy). A family Π = {πκ : κ ∈ K} of prior probability densities indexed
by the hyperparameter κ is said to be conjugate for a model P = {f(·|θ) : θ ∈ Ω} of
likelihoods if, for each prior πκ ∈ Π, the posterior πκ(θ|x) ∝ f(x|θ)πκ(θ) is also in Π. That
is, πκ(θ|x) = πκ′(θ) for some index κ′ ∈ K depending on κ and x. Posterior analysis is
greatly simplified when the mapping (κ, x) 7→ κ′ has a known closed form. For each model
below, find a conjugate prior family under which the posterior hyperparameter κ′ is a simple,
closed-form function of the data x and the prior hyperparameter κ:

(a) (X1, . . . , Xn)
iid∼ Gamma(α, β) with unknown shape α and rate β.

(b) (X1, . . . , Xn)
iid∼ Beta(α, β) with unknown shape parameters (α, β).

(c) The family defined by the linear observation model Yi
ind∼ N (β1 + β2xi, σ

2) for i ∈
{1, . . . , n} where xi ∈ R and σ2 > 0 are known and β1, β2 ∈ R are unknown.

Problem 4 (Posterior Quantiles). Consider a Bayesian inference setting in which the pos-
terior mean E [Θ | X = x] is finite for each x. Show that under the loss function

L(θ, a) =

{
k1|θ − a| if a ≤ θ

k2|θ − a| otherwise

with k1, k2 > 0 constant and for p an appropriate function of k1 and k2, every p-th quantile
of the posterior distribution is a Bayes estimator.
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Problem 5 (Bayesian Prediction).

(a) Let Z ∈ Rp be a random vector and Y ∈ R be a random variable. Our goal is to learn
a prediction rule f : Rp → R to best predict the value of Y given Z. We will measure
the goodness of our predictions using the risk function

E
[
(Y − f(Z))2

]
. (1)

Assuming that the joint distribution of (Z, Y ) is known, find the optimal prediction
rule f .

(b) Now, let Θ ∈ Ω be a random variable with distribution Λ, and, given Θ = θ, let
X1, . . . , Xn+1 be drawn i.i.d. from a density pθ. Let µ(θ) represent the mean under pθ.
First, find the Bayes estimate of µ(θ) under squared error loss given only the first n
observations X1, . . . , Xn. Next, find the function f of (X1, . . . , Xn) that best predicts
Xn+1 under the average risk

E
[
EΘ

[
(Xn+1 − f(X1, . . . , Xn))2

]]
.

Note the close relationship between optimal prediction and optimal estimation.
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