STATS 300A THEORY OF STATISTICS Stanford University, Fall 2015

Problem Set 7

Due: Thursday, November 19, 2015

Instructions:

- You may appeal to any result proved in class or proved in the course textbooks.
- Any request to "find" requires proof that all requested properties are satisfied.

Problem 1 (TSH 3.56). Let the variables X_i (i = 1, ..., s) be independently distributed with distribution $Poi(\lambda_i)$. For testing the hypothesis $H_0: \sum_{j=1}^s \lambda_j \leq a$ (for example, that the combined radioactivity of a number of pieces of radioactive material does not exceed a), show that there exists a UMP test, which rejects when $\sum_{j=1}^s X_j > C$.

Problem 2 (TSH 3.58).

Problem 3. A $1-\alpha$ confidence region S(X) for an estimand $g(\theta)$ is a set-valued function of the data satisfying $\mathbb{P}_{\theta}[g(\theta) \in S(X)] \geq 1-\alpha$ for all $\theta \in \Omega$. For each of the following models, (i) find a uniformly most powerful unbiased level α test of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ for θ_0 known, and (ii) find a $1-\alpha$ confidence region for the parameter θ :

- (a) $X = (X_1, ..., X_n)$ with independent coordinates $X_i \sim \mathcal{N}(t_i \theta, 1)$ for t_i known $\forall i$.
- (b) For $\theta > 0$, X is a single scalar random angle with von Mises density

$$p_{\theta}(x) = \frac{\exp(\theta \cos x)}{2\pi I_0(\theta)} \mathbb{I}(x \in [0, 2\pi))$$

where I_0 is a modified Bessel function with $I_0(0) = 1$. (This is a distribution on a circle, and is often used in the earth sciences to model the direction of wind, glaciers, water flows etc.) The following additional instructions apply to part (b):

- Simplify the form of your test as much as possible.
- You need not solve for rejection thresholds $C(\theta_0)$ explicitly.
- You should specify the equations that could be solved to determine any thresholds.
- Your confidence region may make use of any partially determined rejection thresholds $C(\theta_0)$.

Problem 4. Suppose that X is distributed according to a Cauchy location model with location parameter θ so that

$$p_{\theta}(x) = \frac{1}{\pi[1 + (x - \theta)^2]}, \quad \forall x \in \mathbb{R}.$$

For testing $H_0: \theta = 0$ against $H_1: \theta \neq 0$, derive a test ϕ with level $\alpha = 5\%$ that maximizes $\mathbb{E}_{\theta=1} \left[\phi(X)\right]$ under the constraint $\mathbb{E}_{\theta=1} \left[\phi(X)\right] = \mathbb{E}_{\theta=-1} \left[\phi(X)\right]$. Is this test uniformly most powerful unbiased?

Problem 5 (TSH 4.6 parts (i) and (ii)).