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11.1 Summary

In this lecture, we will discuss the identification of minimax estimators via submodels, the
admissibility of minimax estimators, and simultaneous estimation and the James-Stein esti-
mator. This will conclude our discussion of estimation; in the future we will be focusing on
the decision problem of hypothesis testing.

11.2 Minimax Estimators and Submodels

Recall that an estimator δM is minimax if its maximum risk is minimal:

inf
δ

sup
θ∈Ω

R(θ, δ) = sup
θ
R(θ, δM)

We saw how to derive the minimax estimator using least favourable priors in Lecture 10.
In this lecture we will consider a different approach, based on the following Lemma:

Lemma 1 (TPE 5.1.15). Suppose that δ is minimax for a submodel θ ∈ Ω0 ⊂ Ω and

sup
θ∈Ω0

R(θ, δ) = sup
θ∈Ω

R(θ, δ)

Then, δ is minimax for the full model, θ ∈ Ω.

This lemma allows us to find a minimax estimator for a particular tractable submodel,
and then show that the worst-case risk for the full model is equal to that of the submodel
(that is, the worst-case risk doesn’t rise as you go to the full model). In this case, using the
Lemma, we can argue that the estimator we found is also minimax for the full model. This
was similar to how we justified minimaxity of the estimator of a Normal mean with bounded
variance last lecture.

Here’s a fairly simple example:

Example 1. Let X1, . . . , Xn be i.i.d N (µ, σ2), where both µ and σ2 are unknown. Thus,
our parameter vector, θ = (µ, σ2) and our parameter space Ω = R×R+. Our task now is to
estimate µ. Our loss function is the relative squared error loss, given by:

L((µ, σ2), d) =
(d− µ)2

σ2
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We consider this loss function to make the question of minimaxity more interesting: regular
squared error loss is unbounded for the full model, since it is proportional to the variance,
which is unbounded.

We consider the submodel where σ2 = 1. That is, Ω0 = R × {1}, and our loss function
simplifies to our usual squared error loss: L((µ, 1), d) = (d − µ)2. We saw in Example 1 of
Lecture 10 that under this loss X̄ is minimax for Ω0. Moreover,

R((µ, σ2), X̄) =
1

n
∀(µ, σ2) ∈ Ω.

Thus, the risk does not depend on σ2. Since R((µ, 1), X̄)) = R((µ, σ2), X̄)), we have
that the maximum risks are equal. (That is, supθ∈Ω0

R(θ, δ) = supθ∈Ω R(θ, δ). Therefore, it
follows from Lemma 1 that X̄ is minimax on Ω. Note that, thanks to our new loss function,
we don’t need to impose boundedness on our variance (like we did in our previous lecture)
to establish minimaxity in a meaningful way.

This example is parametric, like a lot of the examples we’ve made so far. Assuming
we know the form of the distribution for the variables, and that the variables are i.i.d.,
are both strong assumptions. Now, we consider a more ambitious example, which is in a
non-parametric setting, and hence more general.

Example 2 (TPE Example 5.1.16). Suppose X1, X2, . . . , Xn are i.i.d with common CDF F ,
with mean µ(F ) <∞, and variance σ2(F ) <∞. Our goal is to find a minimax estimate of
µ(F ) under squared error loss.

Without further restriction on F , the worst case risk is unbounded for every estimator,
so every estimator is minimax. We will impose further constraints, and restrict our family
somehow to have finite worst-case risk, to ensure that meaningful minimax estimators can
be obtained.

Constraint (a). Assume σ2(F ) ≤ B. Now, we’ve seen in the previous lecture that X̄ is
minimax for the Gaussian submodel in this case. So a natural guess for us to make is that
X̄ is minimax. We verify this by application of Lemma 1. First, we compute the supremum
risk for the full model:

R(F, X̄) =
1

n2

∑
i

E(Xi − µ(F ))2 =
σ2(F )

n
.

Since σ2(F ) ∈ [0, B] by assumption, we get:

sup
F
R(F, X̄) =

B

n

Now we saw in Lecture 10 that for the submodel F0 = N (µ, σ2) when σ2 ≤ B, X̄ is
minimax. Further, the supremum risk in this case is identical to that of the full model:

sup
F∈F0

R(F, X̄) =
B

n

Thus, using Lemma 1 we conclude that X̄ is minimax for the full model. (That is, the
non-parametric model still constrained to have σ2(F ) ≤ B.)
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Constraint (b). Assume F ∈ F where F is the set of all CDFs with support contained
in [0, 1]. Is X̄ minimax for this model? We have reason to believe that it is not, based on
the minimax estimator we derived in Lecture 9 for the Binomial submodel. And in fact, it
turns out that X̄ isn’t minimax.

To show this, first consider the submodel, F0 = {Ber(θ)}θ∈(0,1). Let Y =
∑n

i=1Xi so
that Y ∼ Bin(n, θ) and X̄ = Y/n. Recall from Lecture 9 that the minimax estimator for
µ(F ) = θ, in the Binomial case, is:

δ(X) =

√
n

1 +
√
n
X̄ +

1

2

(
1

1 +
√
n

)
which has supremum risk 1

4(1+
√
n)2

. So

sup
θ
R(θ, X̄) =

1

4n
>

1

4(1 +
√
n)2

= sup
θ
R(θ, δ)

Thus, X̄ has a higher worst-case risk than δ(X) as defined above, and hence, we have
shown that X̄ is not minimax.

Now, let’s get more ambitious, and try to see if we can find the minimax estimator under
the full model. We know that this can’t be X̄, but it’s possible that it could be δ(X). To
examine this possibility, we conjecture that δ(X) is also minimax under the full model. If
we are to establish this under the Lemma, we need to show that the supremum risk of δ(X)
under the full model is no more than 1

4(1+
√
n)2

(which is the supremum risk for the binomial

submodel).
Let us compute:

EF [δ(X)− µ(F ))2] = EF

[(( √
n

1 +
√
n

)
(X̄ − µ(F )) +

1

1 +
√
n

(
1

2
− µ(F )

))2
]

=

(
1

1 +
√
n

)2
[
nVar(X̄) +

(
1

2
− µ(F )

)2
]

=

(
1

1 +
√
n

)2 [
E(X2

1 )− µ(F )2 +
1

4
− µ(F ) + µ(F )2

]
=

(
1

1 +
√
n

)2 [
E(X2

1 ) +
1

4
− µ(F )

]
where the third step follows from the fact that Var(X1) = nVar(X̄) = E[X2

1 ] − (E[X1])2 =
E[X2

1 ]− (µ(F ))2.
By assumption X1 ∈ [0, 1], so X2

1 ≤ X1 and we can bound the risk:

EF [δ(X)− µ(F ))2] ≤
(

1

1 +
√
n

)2 [
E(X1) +

1

4
− µ(F )

]
=

1

4(1 +
√
n)2

.

So, δ(X) is minimax for the Binomial submodel, and its worst-case risk is the same for
the full model and for the Binomial submodel. Therefore, applying the Lemma, we conclude
that δ(X) is minimax. Thus, we have found a minimax estimator.
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11.3 Admissibility of minimax estimators

Let us now turn to the question of admissibility of minimax estimators. We begin by noting
that the question of admissibility is particularly important for minimax estimators. This is
because, although we found dominating estimators even when we were working with unbiased
estimators, the dominating estimators were biased, so we lost the property (unbiasedness)
that we were interested in – however, if you find an estimator that dominates a minimax
estimator, it will still be minimax!

Also, an aside: admissibility can give rise to minimaxity. If δ is admissible with constant
risk, then δ is also minimax. This is not hard to show. (Let the constant risk of δ be r.
Then, r is also the worst-case risk of δ, since the risk is constant. Now, if we assume δ is
not minimax, there exists a different estimator, say δ′, which is minimax. The worst-case
risk of δ′, say r′, would thus be < r. But since this is the worst-case risk of δ′, that would
mean that the risk of δ′ is lower than r throughout, and thus δ′ dominates δ. However, we
assumed that δ was admissible, so this is a contradiction. Thus, our assumption led to a
contradiction, and therefore δ is minimax.)

Note that minimaxity does not guarantee admissibility; it only ensures the worst case
risk is optimal. We need to check for admissibility. The following example illustrates several
standard ways of doing so.

Example 3. Let X1, X2, . . . , Xn
iid∼ N (θ, σ2) where σ2 is known, and θ is the estimand.

Then the minimax estimator is X̄ under squared error loss, and we would like to determine
whether X̄ is admissible.

Instead of answering this directly, we answer a more general question: when is aX̄ + b,
a, b ∈ R, (basically, any affine function of X̄) admissible?
Case 1: 0 < a < 1. In this case aX̄ + b is a convex combination of X̄ and b. By results we
saw in the previous lecture, it is a Bayes estimator with respect to some Gaussian prior on θ.
Further, since we are using squared error loss, which is strictly convex, this Bayes estimator
is unique. So, by Theorem 5.2.4 (which basically tells us that a unique Bayes estimator will
always be admissible), aX̄ + b is admissible.
Case 2: a = 0. In this case b is also a unique Bayes estimator with respect to a degenerate
prior distribution with unit mass at θ = b. So by Theorem 5.2.4, b is admissible.
Case 3: a = 1, b 6= 0. In this case X̄ + b is not admissible because it is dominated by X̄.
To see this, note that X̄ has the same variance as X̄ + b, but strictly smaller bias.

The next few cases use the following result. In general, the risk of aX̄ + b is:

E[(aX̄ + b− θ)]2 = E[
(
a(X̄ − θ) + b+ θ(a− 1)

)2
]

=
a2σ2

n
+ (b+ θ(a− 1))2

where, in the first step, we added and subtracted aθ inside.
Case 4: a > 1. If we apply the result for the general risk we have:

E[(aX̄ + b− θ)2] ≥ a2σ2

n
>
σ2

n
= R(θ, X̄).
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The first inequality follows because the second summand in the expression for the general
risk is always nonnegative. X̄ dominates aX̄ + b when a > 1, and so in this case aX̄ + b is
inadmissible.
Case 5: a < 0.

E[(aX̄ + b− θ)2] > (b+ θ(a− 1))2

= (a− 1)2

(
θ +

b

a− 1

)2

>

(
θ +

b

a− 1

)2

,

and this is the risk of predicting the constant −b/(a− 1). So, −b/(a− 1) dominates aX̄ + b,
and therefore, aX̄ + b is again inadmissible.

Now, we have considered every case except for the estimator X̄. It turns out that X̄.
The argument in this case is more involved, and proceeds by contradiction.
Case 6: a = 1, b = 0. Here, we use a limiting Bayes argument. Suppose X̄ is inadmissible.
Then, assuming w.l.o.g that σ2 = 1, we have:

R(θ, X̄) =
1

n

By our hypothesis, there must exist an estimator δ′ such that R(θ, δ′) ≤ 1/n for all θ and
R(θ′, δ′) < 1/n for at least one θ′ ∈ Ω. Because R(θ, δ) is continuous in θ, there must exist
ε > 0 and an interval (θ0, θ1) containing θ′ so that:

R(θ, δ′) <
1

n
− ε ∀θ ∈ (θ0, θ1). (11.1)

Let r′τ be the average risk of δ′ with respect to the prior distribution N (0, τ 2) on θ. (Note
that this is the exact same prior we used to prove that X̄ was the limit of a Bayes estimator,
and hence minimax. We did this by letting τ → ∞, and therefore letting our prior tend to
the improper prior π(θ) = 1∀ θ.) Let rτ be the average risk of a Bayes estimator δτ under
the same prior.

Note that δτ 6= δ′ because R(θ, δτ )→∞ as θ →∞ which is not consistent with R(θ, δ′) ≤
1/n for all θ ∈ R. So, rτ < r′τ , because the Bayes estimator is unique almost surely with
respect to the marginal distribution of θ. We will look at the following ratio, which is selected
to simplify our algebra later. This ratio, we will show, will become arbitrarily large, which
we will use to form a contradiction with rτ < r′τ .

Using the form of the Bayes risk rτ computed in a previous lecture (see TPE Example
5.1.14), we can write:

1
n
− r′τ

1
n
− rτ

=

1√
2πτ

∫∞
−∞

[
1
n
−R(θ, δ′)

]
exp

(
−θ2
2τ2

)
dθ

1
n
− 1

n+ 1
τ2
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Applying (11.1), we find:

1
n
− r′τ

1
n
− rτ

≥
1√
2πτ

∫ θ1
θ0
εe

−θ2

2τ2 dθ
1

n(1+nτ2)

=
n(1 + nτ 2)

τ
√

2π
ε

∫ θ1

θ0

e
−θ2

2τ2 dθ

As τ →∞, the first expression, n(1 + nτ 2)ε/(τ
√

2π)→∞ and since the integrand converges
monotonically to 1, Lebesgue’s monotone convergence theorem ensures that the integral
approaches the positive quantity θ1 − θ0. So, for sufficiently large τ , we must have

1
n
− r′τ

1
n
− rτ

> 1.

This means that r′τ < rτ . However, this is a contradiction, because rτ is the optimal
average risk (since it is the Bayes risk). So our assumption that there was a dominating
estimator was false, and in this case, aX̄ + b = X̄ is admissible.

11.4 Simultaneous estimation

Up to this point, we have considered only situations where a single real-valued parameter
is of interest. However, in practice, we often care about several parameters, and wish to
estimate them all at once. In this section we consider the admissibility of estimators of
several parameters – that is, of simultaneous estimation.

Example 4. Let X1, X2, . . . , Xp be independent with Xi ∼ N (θi, σ
2) for 1 ≤ i ≤ p. For the

sake of simplicity, say σ2 = 1. Now our goal is to estimate θ = (θ1, θ2, . . . , θp) under the loss
function:

L(θ, d) =

p∑
i=1

(di − θi)2

A natural estimator for θ is X = (X1, X2, . . . , Xp). It can be shown that X is the
UMRUE, the maximum likelihood estimator, a generalized Bayes estimator, and a minimax
estimator for θ. So, it would be natural to think that X is admissible. However, counter-
intuitively, it turns out that this is not the case when p ≥ 3.

When p ≥ 3, X is dominated by the James-Stein estimator (and that too, strictly
dominated):

δ(X) = (δ1(X), δ2(X), . . . , δp(X)) where1

δi(X) =

(
1− p− 2

||X||22

)
Xi.

1Here || · ||2 is the 2-norm so ||X||22 =
∑p

j=1 X
2
j )
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The J-S estimator makes use of the entire data vector when estimating each θi, so it is sur-
prising that this is beneficial given the assumption of independence amongst the components
of X. An example of the James-Stein estimator being used to estimate batting averages is
available at http://www-stat.stanford.edu/~ckirby/brad/other/Article1977.pdf. It
turns out that the James-Stein estimator is not itself admissible because it is dominated by
the positive part James-Stein estimator (TPE Theorem 5.5.4):

δi(X) = max

(
1− p− 2

||X||22
, 0

)
Xi

To add insult to injury, even this estimator can be shown inadmissible, although that proof
is non-constructive.

11.4.1 Motivation for the J-S estimator

To motivate the J-S estimator, we consider how it can arise in an empirical Bayes framework.
The empirical Bayes approach (which builds on principles of Bayesian estimation, but is not
strictly Bayesian) is a two-step process:

1. Introduce a prior family indexed by a hyperparameter (this is the Bayesian aspect).

2. Estimate the hyperparameter from the data (this is the empirical aspect).

So applying this procedure to the problem at hand:

1. Suppose θi
iid∼ N (0, A) then the Bayes estimator for θi is

δA,i(X) =
Xi

1 + 1
A

=

(
1− 1

A+ 1

)
Xi

2. In this step we must choose A. Marginalizing over θ, we see that X has the distribution,

Xi
iid∼ N (0, A+ 1)

(Exercise: Verify this.) We will use X and the knowledge of this marginal distribution
to find an estimate of 1

A+1
. One could, in principle, use any estimate of A, and it is

common to use a maximum likelihood estimate, but here we will used an unbiased
estimate.

It can then be shown that

E
[

1

||X||22

]
=

1

(p− 2)(A+ 1)

(Exercise: Verify this. Hint: 1
A+1
||X||22 follows a χ2

n distribution). So

1− p− 2

||X||22
must be UMVU for 1− 1

A+1
.

If we plug this estimator into our Bayes estimator we obtain the J-S estimator:

δ(Xi) =

(
1− p− 2

||X||22

)
Xi.
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11.4.2 James-Stein domination

Intuitively, the problem with the estimate X is that ||X||22 is typically much larger than
||θ||22:

E[||X||22] = E

[
p∑
i=1

X2
j

]
= p+

p∑
i=1

θ2
i = p+ ||θ||22

where p is actually σ2p = p in this case. So, we may view the J-S estimator as a method
for correcting the bias in the size of X. It achieves this by shrinking each coordinate of X
toward 0.

The uniform superiority of the J-S estimator to X can be formalised (see Keener 11.2).

Theorem 1 (Theorem 5.5.1 TPE). The James-Stein estimator δ has uniformly smaller risk
than X if p ≥ 3.

The proof, given on p. 355 of TPE, compares the risk of the J-S estimator directly to
that of X.
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