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� Warning: These notes may contain factual and/or typographic errors.

12.1 Summary

In this lecture, we are going to review briefly the concepts developed for tackling the problem
of optimal inference in the context of point estimation. Then, we are going to consider a
different kind of inference setting, that of hypothesis testing. We will develop the Neyman-
Pearson paradigm and show how to find optimal tests for so called “simple” problems.

12.2 Point Estimation Recap

In the first part of the course, we focused on optimal inference in the setting of point
estimation (see Figure 12.2). We formulated this problem in the framework of decision
theory and focused on finite sample criteria of optimality. We immediately discovered that
uniform optimality was seldom attainable in practice, and thus, we developed our theory of
optimality along two lines: constraining and collapsing.

To restrict ourselves to interesting subclasses of estimators, we first introduced the notion
of unbiasedness, which lead us to UMRUEs/UMVUEs. Then we considered certain symme-
try constraints in the context of location invariant decision problems—this was formalized
via the concept of equivariance, which led us to MREs. The situation is similar in hypothesis
testing: to develop a useful notion of optimality, we will need to impose constraints on tests.
These constraints arise in the form of risk bounds, unbiasedness, and equivariance.

Another way to achieve optimality was to collapse the risk function. We introduced the
notions of average risk (optimized by Bayes estimators) and worst case risk (optimized by
minimax estimators). We saw that Bayes estimators have many desirable properties and
provide tools to reason about both concepts.

We also considered a few different model families such as exponential family and location
and scale family. We came out with certain notions of optimality, optimal unbiased estimator
was easy to find for exponential family with complete sufficient statistics and for location-
scale family, we defined the best equivariant estimators.

12.3 Hypothesis Testing

We now shift our attention to the problem of hypothesis testing. As discussed above, many
of the same issues we encountered in defining and achieving optimality for point estimation
will reemerge here. However, we do encounter two entirely new objects: the null, H0, and
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Figure 12.1. Review of point estimation.

alternative, H1, hypotheses. It is this development which will lead us to introduce the notion
of risk bounds.

12.3.1 Model Setup

Hypothesis testing is just a particular type of decision problem. As usual, we assume that
the data is sampled according to X ∼ Pθ and that Pθ belongs to the model P = {Pθ : θ ∈ Ω}.
In addition to the standard setup, we divide the models in P into two disjoint subclasses
known as “hypotheses”:

H0 : θ ∈ Ω0 ⊂ Ω (null hypothesis)

H1 : θ ∈ Ω1 = Ω \ Ω0 (alternative hypothesis)

Our goal is to infer which hypothesis is correct. This can be cast as classification, so our
decision space is

D = {accept H0, reject H0} .

Example 1. You have developed a new anti-itch cream, and you suspect that it may have
grave side effects. We can test this hypothesis on a population of mice by applying anti-itch
cream to some and no cream to others. In particular, we would like to see if there is a change
in life expectancy when the cream is used. Thus, the two hypotheses are H0 : No change in
life expectancy and H1: Change in life expectancy after application of cream. Based on the
results of the experiments we can choose to accept or reject the hypothesis.

While one could imagine equipping this decision problem with a variety of loss functions,
there is a canonical loss function L(θ, d) that gives rise to the optimality goals classically
espoused in hypothesis testing. We specify this loss in matrix form in Table 12.3.1. The
columns represent the true state of nature, i.e., whether θ ∈ Ω0 or θ ∈ Ω1, while the rows
indicate the decision that was made.
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θ ∈ Ω0 θ ∈ Ω1

Reject H0 1 (Type I Error) 0 (Good)
Accept H0 0 (Good) 1 (Type II Error)

Table 12.1. Canonical loss function L(θ, d).

We have two types of error which induce a loss. A Type I error or false positive occurs
when we reject H0 when it is in fact true. Similarly a Type II error or false negative occurs
when we accept H0 when it is false. In practice, one might assign different loss values to
the two types of error, as they could have significantly different consequences. This would
lead us back towards point estimation where the target is now a binary parameter indicating
whether H0 or H1 is true. What we do below is different from this formulation. We in
fact induce a more stringent form of asymmetry between Type I and Type II errors through
the introduction of risk bounds in the next section. For now, we will forgo discussing the
advantages/disadvantages of the respective formulations.

Because our loss function is this kind of indicator function, throughout our discussion of
hypothesis testing we will allow for randomized decision procedures δφ which we specify in
terms of a test function φ(X) ∈ [0, 1] (also known as the critical function). The test
function φ indicates that δφ(X,U) rejects H0 w.p. φ(X).1 In other words,

φ(X) = P (δφ(X,U) = Reject H0 | X) .

where U is as usual a uniform random variable independent of X. The function φ(X)
completely specifies the behavior of δφ, and it will be convenient to work directly with
φ(X) in place of δφ. While we could safely ignore randomized procedures when considering
optimality under convex loss functions (due to the Rao-Blackwell theorem), we must account
for improvements due to randomization under our non-convex loss L.

In order to start reasoning about optimality in this context we are going to introduce
definition.

Definition 1. The power function of a test φ is β(θ) = Eθ[φ(X)] = Pθ (Reject H0).

Indeed we can describe our risk function wholly in terms of this power function.

Note: If θ0 ∈ Ω0, then β(θ0) = R(θ0, δφ) = Type I Error rate. For θ1 ∈ Ω1, then
β(θ1) = 1−R(θ1, δφ) = 1− Type II Error rate.

Our ideal optimality goal is to minimize β(θ0) uniformly for all θ0 ∈ Ω0 and maximize β(θ1)
uniformly for all θ1 ∈ Ω1. Unfortunately, it is typically impossible to minimize all errors
across all parameters. So what can we do? We can constrain the form of the procedure that
we are allowed to use, leading to the Neyman-Pearson paradigm of hypothesis testing.

1Recall that randomized decision procedures are functions of the data and an independent source of
randomness U ∼ Unif[0, 1].

12-3



STATS 300A Lecture 12 — November 3 Fall 2015

12.4 The Neyman-Pearson Paradigm

We are going to start by fixing a value α ∈ (0, 1). We will call it the level of significance.
We will require that our procedures satisfy the following risk bound:

sup
θ0∈Ω0

Eθ0φ(X) = sup
θ0∈Ω0

β(θ0) ≤ α.

The quantity supθ0∈Ω0
β(θ0) is called the size of the test. If the size of the test φ is bounded

by α, φ is called a level α test. The level of the test represents the tolerance we have for
falsely rejecting the null hypothesis. Essentially, instead of trying to minimize the Type I
error, the Neyman-Pearson paradigm simply bounds it and focuses on minimizing the Type
II error. Our new optimality goal can be summarized as follows.

Optimality Goal: Find a level α test that maximizes the power β(θ1) = Eθ1 [φ(X)] for
each θ1 ∈ Ω1. Such a test is called uniformly most powerful (UMP).

We still need to maximize power uniformly for all alternatives θ1, so what have we gained
by working under this risk bound? It turns out that in special cases, UMP (i.e., optimal)
tests, formulated in this way, exist. The intuition is as follows. A test is determined by the
region of the sample space for which it rejects the null hypothesis (the rejection region). The
differences in data generated from θ ∈ Ω0 versus data generated from θ ∈ Ω1 determine the
“shape” of effective versus ineffective rejection regions. If it turns out that a certain shape
is optimal for all pairs θ0 ∈ Ω0 and θ1 ∈ Ω1, then we will have a UMP. When UMP tests do
not exist, we will introduce additional constraints such as unbiasedness and equivariance, as
we did with point estimation.

12.5 MP for the “simple” case

Definition 2. A hypothesis H0 is called simple if |Ω0| = 1, otherwise it is called composite.
The same is true for H1.

The “simple” case in hypothesis testing is the case when both H0 and H1 are simple. In
this case, we will use the notation

H0 : X ∼ p0

H1 : X ∼ p1

where p0, p1 denote the densities of Pθ0 ,Pθ1 with respect to some common measure µ, and
we call Ep1 [φ(X)] the power of the test φ. Our goal in the simple case can be compactly
described as:

max
φ

Ep1 [φ(X)]

s.t. Ep0 [φ(X)] ≤ α.

Any maximizing test φ is called most powerful (MP). (We drop the word “uniformly” as we
are only interested in maximizing the power under a single alternative distribution.) In this
setting, it turns out that it is not too difficult to find such a test; one is given by
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Lemma 1 (Neyman-Pearson).

(i) Existence. For testing H0 : p0 vs. H1 : p1, there is a test φ(X) and a constant k such
that:

(a) Ep0φ(X) = α (size = level).

(b) φ(x) =

{
1 if p1(x)

p0(x)
> k (always reject if likelihood ratio is > k).

0 if p1(x)
p0(x)

< k (always accept if likelihood ratio is < k).

Such a test is called a likelihood ratio test (LRT).

(ii) Sufficient. If a test satisfies (a),(b) for some constant k, it is most powerful for
testing H0 : p0 vs. H1 : p1 at level α. (Hence, the LRT from part (i) is most powerful.)

(iii) Necessary. If a test φ is MP at level α then it satisfies (b) for some k, and it also
satisfies (a) unless there exists a test of size < α with power 1. (In the latter case, we
did not need to expend all of budgeted Type I error.)

This is a comprehensive lemma that essentially “solves” the hypothesis testing problem
for the simple case. Note that the lemma makes no explicit mention of how the test behaves
when p1(x)

p0(x)
= k. When p0 and p1 are continuous with respect to Lebesgue measure, this

region has measure 0 and hence is of no consequence to us. Otherwise, the behavior in this
region is usually determined by the desire to satisfy the size = level constraint of part (a),
as we will see next time when we prove the NP lemma.

Example 2. As a first example consider a situation where you observe the first symptom
X of an illness and the goal is to distinguish between two possible illnesses (different distri-
butions over X). The problem parameters are given in the following table:

X sneezing fever fainting sore throat runny nose
H0 : p0 (cold) 1/4 1/100 1/100 3/100 70/100
H1 : p1 (flu) 1/2 10/100 2/100 5/100 33/100

r(x) = p1(x)/p0(x) 2 10 2 5/3 33/70

.

We want to come up with a most powerful test for this model. According to the NP lemma,
we need to compute the likelihood ratio: r(x) = p1(x)

p0(x)
. Now, suppose that the test rejects

the cold hypothesis iff X ∈ {fever}. Is this MP for some level α? This test satisfies part (b)
of the NP lemma for k ∈ (2, 10), let’s say k = 5. The size is given by the probability that
Pp0(X = fever) = 1

100
, which implies this is a most powerful test at α = 1

100
.

The flexibility to specify the outcome of the test when r(x) = k is important. To see
this, suppose φ rejects if X ∈ {fever, fainting}. This satisfies (b) of the NP lemma for
k = 2; simply specify that φ(fainting) = 1 and φ(sneezing) = 0. The size is given by
Pp0(X ∈ {fever, fainting}) = 2

100
, so it is most powerful at α = 2

100
.

Next, we will look at a setting involving continuous density functions.
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Example 3. Let X1, . . . , Xn
i.i.d∼ N (µ, σ2), with σ known. Consider the following two

hypotheses:
H0 : µ = 0 and H1 : µ = µ1

where µ1 is known. Since this is a simple case (only two distributions), we calculate the
likelihood ratio:

r(x) =
p1(x)

p0(x)
=

∏n
i=1

1√
2πσ

exp (−(xi − µ1)2/2σ2)∏n
i=1

1√
2πσ

exp (−x2
i /2σ

2)

= exp

(
1

σ2
µ1

n∑
i=1

xi −
nµ2

1

2σ2

)
.

We observe that the likelihood ratio is only a function of the sufficient statistic (this is in
general true by the Factorization Criterion). We have the following equivalences:

r(x) > k ⇔ µ1

∑
xi

σ2
− nµ2

1

2σ2
> log k

⇔ µ1

∑
xi > k′

⇔
{∑

xi > k′′ if µ1 > 0∑
xi < k′′′ if µ1 < 0

Let us focus on the first case where µ1 > 0 (but it is important to note that the two cases
µ1 > 0 versus µ1 < 0 induce different rejection regions). We can rewrite the test in a different
form so that the left hand side of the inequality has standard normal distribution under the
null:

⇔
√
nx̄

σ
> k′′′′

Note: Here the sufficient statistic essentially determines a MP test. Also, observe that for
a given level α, the constant involved in the LRT is uniquely determined by the constraint
Ep0φ(X) = α and thus depends only on the distribution of the null hypothesis and not at
all on µ1 (provided that µ1 > 0).

Thus, we have by the NP lemma that the test: reject H0 iff
√
nx̄/σ > k(α) is MP where

we pick k′′′′′ = k(α) (where k(α) ≡ z1−α is the (1 − α) quantile of the standard normal) so
that it equals the target level. This value is uniquely determined by the size constraint:

Ep0φ(X) = α = Pµ=0

(√
nX̄

σ
> k′′′′′

)
.

Now an important observation: for any µ1 > 0 the MP test is the same, which means that
it is actually a UMP at level α for testing:

H0 : µ = 0 and H1 : µ > 0.

So we see no µ1 dependence here and it’s really nice that I can test against any µ1 > 0
at once. Similarly, we could derive a distinct UMP test for testing against H1 : µ < 0.
Unfortunately, no UMP test exists for testing

H0 : µ = 0 and H1 : µ 6= 0
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because the µ > 0 test dominates the µ < 0 test in the µ > 0 scenario and vice versa i.e.
the shape of the most powerful rejection rejection (whether we reject for x̄ > k or whether
we reject for x̄ < k) is dependent on the sign of µ1.

12-7


