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Lecture 2 — September 24

Lecturer: Lester Mackey Scribe: Stephen Bates and Andy Tsao

2.1 Recap

Last time, we set out on a quest to develop optimal inference procedures and, along the way,
encountered an important pair of assertions: not all data is relevant, and irrelevant data
can only increase risk and hence impair performance. This led us to introduce a notion of
lossless data compression (sufficiency): T is sufficient for P with X ∼ Pθ ∈ P if X | T (X)
is independent of θ. How far can we take this idea? At what point does compression impair
performance? These are questions of optimal data reduction.

While we will develop general answers to these questions in this lecture and the next, we
can often say much more in the context of specific modeling choices. With this in mind, let’s
consider an especially important class of models known as the exponential family models.

2.2 Exponential Families

Definition 1. The model {Pθ : θ ∈ Ω} forms an s-dimensional exponential family if
each Pθ has density of the form:

p(x; θ) = exp

(
s∑
i=1

ηi(θ)Ti(x)−B(θ)

)
h(x)

• ηi(θ) ∈ R are called the natural parameters.

• Ti(x) ∈ R are its sufficient statistics, which follows from NFFC.

• B(θ) is the log-partition function because it is the logarithm of a normalization factor:

B(θ) = log

(∫
exp

(
s∑
i=1

ηi(θ)Ti(x)

)
h(x)dµ(x)

)
∈ R

• h(x) ∈ R: base measure.

Exponential families are of particular interest to us, because many common distributions
are exponential families (e.g., Normal, Binomial, and Poisson), and exponential families are
closely linked to the notion of sufficiency and the notions of optimal data reduction.

Example 1: Exponential Distribution: P = {Exp(θ) : θ > 0}
The densities takes the form

p(x; θ) = θe−θxI [x ≥ 0] = exp (−θx+ log(θ)) I[x ≥ 0]
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yielding a 1-dimensional exponential family with

• ηi(θ) = −θ

• Ti(x) = x

• B(θ) = − log(θ)

• h(x) = I[x ≥ 0].

Notice that there is an ambiguity in the choice of ηi and Ti, i.e., the negative sign could
have been attributed to either one. This is a general property of exponential families: their
parameterization is not unique.

Example 2: Beta Distribution: P = {Beta(α, β) : α, β > 0} , θ = (α, β)

The densities take the form

p(x; θ) = xα−1(1− x)β−1I[x ∈ (0, 1)]
Γ(α + β)

Γ(α)Γ(β)

= exp

(
(α− 1) log(x) + (β − 1) log(1− x) + log

(
Γ(α + β)

Γ(α)Γ(β)

))
I[x ∈ (0, 1)]

yielding a 2-dimensional exponential family with

• η1(θ) = α− 1 , η2(θ) = β − 1

• T = (T1, T2) for T1(x) = log(x) , T2(x) = log(1− x).

• B(θ) = − log
(

Γ(α+β)
Γ(α)Γ(β)

)
• h(x) = I[x ∈ (0, 1)]

Similar to the ambiguity in Example 1, here we could have written p(x; θ) as

p(x; θ) = exp

(
α log(x) + β log(1− x) + log

(
Γ(α + β)

Γ(α)Γ(β)

))
1

x(1− x)
I[x ∈ (0, 1)]

which changes the natural parameters so that the new η1(θ) = α, η2(θ) = β, and h(x) =
I[x∈(0,1)]
x(1−x)

.
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Definition 2. An exponential family is in canonical form when the density has the form

p(x; η) = exp

(
s∑
i=1

ηiTi(x)− A(η)

)
h(x)

This parameterizes the density in terms of the natural parameters η instead of θ.

For a given base measure h and collection of sufficient statistics {Ti(x)}, only some values
of η will give rise to valid, normalizable densities.

Definition 3. The set of all valid natural parameters Θ is called the natural parameter
space: for each η ∈ Θ, there exists a normalizing constant A(η) such that

∫
p(x, η) = 1.

Equivalently,

Θ =

{
η : 0 <

∫
exp

(
s∑
i=1

ηiTi(x)

)
h(x)dµ(x) <∞

}
.

Thus for any canonical exponential family, P = {Pη : η ∈ H}, we have H ⊆ Θ. We note
in passing that Θ is always a convex set.

2.2.1 Reducing the dimension

There are two cases when the superficial dimension of an s-dimensional exponential family
P = {Pη : η ∈ H} can be reduced.

Case 1: The Ti(x)’s satisfy an affine equality constraint ∀x ∈ X .

Example:
X ∼ Exp(η1, η2) , p(x; η1, η2) = exp (−η1x− η2x+ log(η1 + η2)) I[x ≥ 0]
Here, T1(x) = T2(x) = x, i.e. they’re linearly dependent. We can collapse (η1, η2) to η1 + η2

and write the l.h.s. as exp (−(η1 + η2)x+ log(η1 + η2)) I[x ≥ 0] .

Case 1 typically yields unidentifiability.

Definition 4. If P = {Pθ : θ ∈ Ω}, then θ is unidentifiable if for two parameters θ1 6= θ2,
Pθ1 = Pθ2 .

In the above example, p(x; η1 + a, η2 − a) = p(x; η1, η2), for any a < η2.

Case 2: The ηi’s satisfy an affine equality constraint for all η ∈ H.

Example:

p(x; η) ∝ exp
(
η1x+ η2x

2
)

for all (η1, η2) satisfying η1 + η2 = 1

= exp
(
η1(x− x2) + x2

)

2-3



STATS 300A Lecture 2 — September 24 Fall 2015

In either case, it is possible to transform the s-dimensional exponential family into an expo-
nential family of smaller dimension. When neither case holds, we call an exponential family
minimal:

Definition 5. A canonical exponential family P = {Pη : η ∈ H} is minimal if

•
∑s

i=1 λiTi(x) = λ0,∀x ∈ X ⇒ λi = 0,∀i ∈ {0, . . . , s} (no affine Ti equality constraints)

•
∑s

i=1 λiηi = λ0, ∀η ∈ H ⇒ λi = 0,∀i ∈ {0, . . . , s} (no affine ηi equality constraints).

We will be considering two classes of minimal exponential families.

Definition 6. Suppose P = {Pη : η ∈ H} is an s-dimensional minimal exponential family.
If H contains an open s-dimensional rectangle, then P is called full-rank. Otherwise, P is
curved. In curved exponential families, the ηi’s are related in a non-linear way.

To summarize, we’ve defined three types of exponential families. We illustrate them below
using the normal distribution N(µ, σ2), where η1 = 1

2σ2 , η2 = µ
σ2 , T1(x) = −x2, T2(x) = x:

• Non-minimal (so that the dimension can be reduced): e.g., when µ = σ2, η1 = 1
2σ2 , η2 =

1.

0
η1

(0, 1)

η2

when µ = σ2

• Minimal & Curved: e.g., µ =
√
σ2, so η1 = 1

2σ2 , η2 = 1√
σ2
, η2

2 = 2η1.

η10

when µ =
√
σ2

η2

• Minimal & Full-Rank: e.g., no extra constraint, where the natural parameter space is
(0,+∞)× R.
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η10

η2

open rectangle

All three normal examples are superficially 2-dimensional, but the exponential family di-
mension is only irreducible in the last two cases.

2.2.2 Properties of Exponential Families

Let us consider a few important properties of exponential families.

Property 1: If X1, ..., Xn
iid∼ p(x; θ) = exp

(
s∑
i=1

ηi(θ)Ti(x)−B(θ)

)
h(x), then

p(x1, ..., xn; θ) = exp

(
s∑
i=1

ηi(θ)
n∑
j=1

Ti(xj)− nB(θ)

)
n∏
j=1

h(xj).

By the Neyman-Fisher factorization criterion, (
∑
j

T1(xj), ...,
∑
j

Ts(xj)) is therefore a suffi-

cient statistic, and hence exponential family data is exceptionally compressible: we can find
an s-dimensional sufficient statistic for any sample size!

Property 2: If f is integrable and η ∈ Θ, thenG(f, η) =
∫
f(x) exp (

∑s
i=1 ηiTi(x))h(x)dµ(x)

is infinitely differentiable w.r.t. η and the derivatives can be obtained by differentiating un-
der the integral sign. (Proof: See TSH 2.7.1 based on the dominated convergence theorem.)

Example 3: Moments of T ′is
Take f(x) = 1, then

G(f, η)
∆
=

∫
exp

(
s∑
j=1

ηjTj(x)

)
h(x)dµ(x) = exp (A(η))

∂G(f, η)

∂ηi
=

∫
Ti(x) exp

(
s∑
j=1

ηjTj(x)

)
h(x)dµ(x) =

∂A(η)

∂ηi
exp (A(η))

∂A(η)

∂ηi
=

∫
Ti(x) exp

(
s∑
j=1

ηjTj(x)− A(η)

)
h(x)dµ(x) = Eη[Ti(x)].

so we can compute the means of the sufficient statistics by taking partial derivatives of the
log-partition function! We can in fact compute all of the moments of the sufficient statistics
in a similar manner. For example,

∂2A(η)

∂ηi∂ηj
= Covη(Ti(x), Tj(x)).
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2.3 Optimal Data Reduction via Minimal Sufficiency

Now, let’s return to our initial question of optimal data reduction. We begin by defining a
function of the data that cannot be reduced without sacrificing information about the model.

Definition: A sufficient statistic T is minimal if for every sufficient statistic T ′, T is a
function of T ′. Equivalently, T is minimal if for every sufficient statistic T ′, T (x) = T (y)
whenever T ′(x) = T ′(y).

A minimal sufficient statistic represents the maximal (and hence optimal) lossless com-
pression of our data. The following theorem provides a straightforward way to derive or
check for minimal sufficient statistics:

Theorem 1: Let p(x; θ) be a density of X (w.r.t. µ). A statistic T is minimal sufficient
if for every x, y ∈ X , there exists cx,y independent of θ such that p(x; θ) = cx,yp(y; θ) ⇐⇒
T (x) = T (y).

We will prove this theorem next time.
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