
STATS 300A: Theory of Statistics Fall 2015
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Lecturer: Lester Mackey Scribe: Jing Miao and Xiuyuan Lu

7.1 Recap

So far, we have investigated various criteria for optimal inference. We first considered uni-
formly best risk estimation but quickly realized this can’t really be done in an effective
manner. We then moved on to exploring estimators under certain constraints. The first con-
straint we considered was unbiasedness, and we followed that with equivariance, a constraint
that exploits symmetries inherent to the estimation problem being considered.

An alternative approach to optimal inference is to “collapse” the risk function rather
than impose constraints. We will ultimately consider two approaches to this, the Bayesian
approach (which we begin to cover in this lecture), and the minimax approach, which will
be addressed later.

In the previous lectures, we have been mostly focusing on estimation. Later, we will
discuss optimal inference under the context of hypothesis testing.

7.2 Risk unbiased Estimator

Recall from the last lecture the following definition.

Definition 1. An estimator δ of g(θ) is risk unbiased for a loss function L(θ, d) if for all θ
and θ′, Eθ [L(θ, δ(x))] ≤ Eθ [L(θ′, δ(x))].

Intuitively, this means that the true parameter penalizes less than any false parameter.
Now, we relate risk unbiasedness to MRE.

Theorem 7.1. (TPE.3.1.27) If δ is MRE for a location invariant decision problem, then δ
is also risk unbiased.

Proof. We want to show that Eθ [ρ(δ(X)− θ′)] ≥ Eθ [ρ(δ(X)− θ)] for all θ and θ′. By
location equivariance, we have

δ(X)− θ = δ(X − θ) = δ(U) for U ∼ f0.

In other words, we must show E0 [ρ(δ(U))] ≤ E0 [ρ(δ(U)− (θ′ − θ))] for all θ and θ′, which
is equivalent to showing that E0 [ρ(δ(U))] ≤ E0 [ρ(δ(U)− a)] for all a ∈ R. But δ(U)− a is
location equivariant if δ(U) is, which implies that δ has risk no larger than δ − a since δ is
MRE. Therefore, the inequality holds for all a ∈ R.
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7.3 Location-Scale Model

(TPE 3.3) Now we can extend our considerations of location invariance and equivariance
to a larger class with new types of symmetries. Consider the Location-Scale Model, where
X = (X1, ..., Xn) follows a joint density of the form

fθ,τ (x) =
1

τn
f

(
x1 − θ
τ

, . . . ,
xn − θ
τ

)
,

where f is known but τ > 0 and θ ∈ R are unknown. Here τ is called the scale parameter
and θ is called the location parameter. Let us first look at an example.

Example 1. Let X = (X1, . . . , Xn) where Xi
iid∼ N (θ, τ 2) model. The joint density is then

given by

fθ,τ (x) =
1

τn
(√

2π
)n exp

(
−1

2

∑
i

(
xi − θ
τ

)2
)
.

We will also write X ∼ LocScale(θ, τ) to mean that X is distributed according to some
location-scale model, with true parameters θ and τ . Note that if X ∼ LocScale(θ, τ) and
X ′i = aXi + b for all i for some a > 0, b ∈ R. Then

(X ′1, ..., X
′
n) ∼ LocScare(aθ + b, aτ) ∼ LocScale(θ′, τ ′),

where θ′ = aθ + b, τ ′ = aτ .

Definition 2. A model P = {fθ,τ : (θ, τ) ∈ Ω} is called location-scale invariant if

faθ+b,aτ (ax+ b) = fθ,τ (x)

for all a > 0, b ∈ R, and (θ, τ) ∈ Ω.

We now consider estimation in the context of a location-scale invariant model. Our goal
for today is to estimate only the location parameter θ. We treat τ as a nuisance parameter,
that is, a parameter which we do not know and are uninterested in estimating. We begin
our considerations with a number of definitions.

Definition 3. A loss L is location-scale invariant for estimating θ if

L((θ, τ), d) = L((aθ + b, aτ), ad+ b)

for all a > 0 and b ∈ R. Note that any such function must be of the form

L((θ, τ), d) = ρ

(
d− θ
τ

)
for some function ρ.

Definition 4. A decision problem is location-scale invariant for estimating θ if both the
model and the loss are location-scale invariant.
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Definition 5. An estimator δ of θ is location-scale equivariant if

δ(ax+ b) = aδ(x) + b

for all a > 0 and b ∈ R.

Theorem 7.2. Consider a location-scale invariant decision problem, and let δ∗τ be a minimum
risk location equivariant estimator of θ under the location invariant submodel with τ fixed.
If δ∗τ = δ∗ is independent of τ and location-scale equivariant, then δ∗ is a minimum risk
location-scale equivariant estimator for the location-scale model. That is, for any location-
scale equivariant estimator δ′, the risk function R satisfies

R((θ, τ), δ) ≤ R((θ, τ), δ′)

for all (θ, τ).

Before proving the theorem, we provide a few examples that show when and how it may
be applied.

Example 2. Consider the location-scale invariant decision problem where Xi
iid∼ N (θ, τ 2)

and both θ and τ are unknown. Under the loss (θ−d)2

τ2
(which we can check is location-

invariant), X is the minimum risk location equivariant estimator for the location submodel
for any fixed τ , and X is location-scale equivariant. Thus, by Theorem 2, X is a minimum
risk location-scale equivariant estimator of θ.

Example 3. Let Xi
iid∼ Unif(θ − τ, θ + τ). For any fixed τ , the estimator

X(1) +X(n)

2

is the minimum risk location equivariant estimator of θ under the loss (θ−d)2

τ2
, and the esti-

mator is also location-scale equivariant, so again by Theorem 2 this estimator is a minimum
risk location-scale equivariant estimator as well.

Example 4. Let Xi
iid∼ Exp(θ, b), where both θ and b are unknown. Under the loss (θ−d)2

b2
,

for fixed b, X(1) − b
n

is the minimum risk equivariant estimator for θ. Since this depends on
b, Theorem 2 cannot be applied.

Proof of Theorem 2. Assume that some location-scale equivariant δ′ has strictly better risk
than δ∗ at some (θ0, τ0). Then δ′ has strictly better risk at θ0 in the location submodel with
τ = τ0 fixed. This is a contradiction since δ∗τ0 is the minimum risk equivariant estimator by
hypothesis.

For a very modern usage of equivariance, see the 2013 paper “Optimal Estimation of a
Large-Dimensional Covariance Matrix Under Stein’s Loss” by Ledoit and Wolf. This paper
enforces a multivariate notion of equivariance, rotation equivariance in the setting of
covariance matrix estimation:

δ(OX) = Oδ(X)O>

where X ∈ Rp×n has i.i.d. columns X1, . . . ,Xn, O ∈ Rp×p is an arbitrary orthogonal matrix,
and δ is an estimator for the covariance matrix of X1.
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7.4 Bayes Estimators and Average Risk Optimality

So far we have explored optimality achievable by constraining the set of candidate decision
procedures. We will next explore an alternative path to optimality: finding decision proce-
dures which minimize a collapsed (scalar) summary of the risk function. Recall that every
decision problem has the following components:

• The data X.

• The model P = {Pθ : θ ∈ Ω}, which is a collection of probablity distributions on the
sample space.

• The Loss function L, where L(θ, d) measures the loss incurred by the decision d when
the true value of the parameter is θ.

• The risk function R of a decision rule δ, where R(θ, δ) = Eθ[L(θ, δ)].

To define our first notion of collapsed optimality, average risk optimality, we will need
to introduce a new component, measure Λ over the parameter space Ω (we assume that the
parameter space has a measurable structure). Intuitively, the measure Λ should be viewed
as an assignment of different importance weights to each parameter value θ ∈ Ω a priori
(that is, before the data has been observed).

Our optimality goal, given a measure Λ, is to find an estimator δΛ which minimizes the
average risk,

r(Λ, δ) =

∫
R(θ, δ)dΛ(θ).

If Λ is a probability distribution on Ω, we call Λ the prior distribution. The estimator δΛ,
if it exists, is called the Bayes estimator with respect to Λ, and the minimized average
risk r(Λ, δΛ) is called the Bayes risk. In this Bayesian setup, we may interpret Θ ∈ Ω as
a random variable with distribution Λ and Pθ as the conditional distribution of X given Θ.
Then the average risk r(Λ) may be expressed as E [L(Θ, δ(X))], where the expectation is
now taken jointly over (X,Θ). Using the tower property of conditional expectation, we may
rewrite the average risk as

r(Λ, δ) = E [L(Θ, δ(X))]

= E [E [L(Θ, δ(X))|Θ]]

= E [R(Θ, δ)] .

To find Bayes estimators, the big idea is that for average risk optimality, it suffices to
consider the conditional risk

E [L(Θ, δ(X)) | X = x]

at (almost) every value of X, where the expectation is taken with respect to the posterior
distribution of Θ | X = x.

Theorem 7.3. Suppose Θ ∼ Λ, and X|Θ = θ ∼ Pθ. If
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1. there exists δ0 an estimator of g(θ) with finite risk for all θ, and

2. there exists a value δΛ(x) that minimizes

E [L(Θ, δΛ(X))|X = x] for almost every x,

then δΛ is a Bayes estimator with respect to Λ.

The almost sure statement is with respect to the marginal (unconditional) distribution
of X, where the marginal distribution is given by

P (X ∈ A) =

∫
Pθ(X ∈ A)dΛ(θ).

Proof. Under the assumptions of the theorem, for any other estimator δ′, and for almost
every x,

E [L(Θ, δΛ(X))|X = x] ≤ E [L(Θ, δ′(X))|X = x] .

Taking expectations over X, we have

E [L(Θ, δΛ(X))] ≤ E [L(Θ, δ′(X))]

for all δ′.

Example 5. If L(θ, d) = (θ − d)2, we need to minimize E [(g(Θ)− δ(X))2|X = x], and in
this case, the Bayes estimator turns out to be δΛ(X) = E [g(Θ)|X], where the expectation is
taken with respect to the posterior distribution of Θ given X. Here, E [(g(Θ)− δ(X))2|X]
is called the posterior risk and E [g(Θ)|X] is called the posterior mean.

Example 6. Suppose that X ∼ Bin(n, θ) given Θ = θ and that Θ has prior distribution
Beta(a, b). The prior density is given by

π(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1I (0 < θ < 1)

The likelihood (model density) is given by

f(x|θ) =

(
n

x

)
θx(1− θ)(n−x)

The marginal density is given by

f(x) =

∫
f(x|θ)π(θ)dθ.

The posterior density may be calculated using Bayes rule which states that

posterior =
joint

marginal
=

prior · likelihood

marginal
.
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In our notation, the posterior density is given by the formula

π(θ|x) =
π(θ)f(x|θ)

f(x)

=
π(θ)f(x|θ)∫
π(θ′)f(x|θ′)dθ′

Note that the marginal component is simply a normalizing constant, a function of the like-
lihood and prior that does not depend on θ. Often we can avoid computing the normalizing
constant and determine the posterior directly from the form of the product of likelihood and
prior. Hence the following is a useful mnemonic:

posterior ∝ prior · likelihood.

Returning to our example,

π(θ|x) ∝
(
n

x

)
θx(1− θ)n−x Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

∝ θx+a−1(1− θ)n−x+b−1 ∼ Beta(x+ a, n− x+ b).

Hence, the Bayes estimator of θ under the squared error loss is given by

E [Θ|X = x] =
x+ a

n+ a+ b
.

This posterior mean may be expressed as

X + a

n+ a+ b
=

n

n+ a+ b

(
X

n

)
+

a+ b

n+ a+ b

(
a

a+ b

)
.

Hence, the Bayes estimate is a convex combination of the sample proportion X/n (which is
the UMVUE) and the prior mean a/(a + b). Thus, the Bayes estimate modifies the sample
estimate in light of prior information by “shrinking” the sample estimate towards the prior
mean. (This is a commonly recurring property of Bayes estimators.) In addition, as the
sample size n tends to infinity, the weight of the prior mean tends to zero, the empirical
evidence increasingly outweighs the prior information, and the posterior mean becomes less
distinguishable from the sample proportion.
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