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� Warning: These notes may contain factual and/or typographic errors.

9.1 Recap

Let’s take a moment to recall what we have covered so far and then give a brief preview of
what we will cover in the future. We have been studying optimal point estimation. First, we
showed that uniform optimality is typically not an attainable goal. Thus, we need to look
for other meaningful optimality criteria. One approach is to find optimal estimators from
classes of estimators possessing certain desirable properties, such as unbiasedness and equiv-
ariance. Another approach is to collapse the risk function. Examples of this approach include
Bayesian estimation (minimizing the average risk) and minimax estimation (minimizing the
worst-case risk). After the midterm, we will study these same principles in the context of
hypothesis testing. Today, we will complete our discussion of average risk optimality and
introduce the notion of minimax optimality.

Example 1. Let X1, ..., Xn ∼ N (θ, σ2), with σ2 > 0 known.
From last lecture, we know that X̄ is not a Bayes estimator for θ under squared error in

the normal location model. However, X̄ does minimize a form of average risk: it minimizes
the average risk with respect to the Lebesgue measure, that is with respect to the density
π(θ) = 1 for all θ. We call this choice of π an improper prior, since the integral

∫
π(θ)dθ =

∞ and hence π does not define a proper probability distribution. Nevertheless, we may
define a formal posterior for this improper prior with analogy to the definition of a proper
posterior distribution:

Formal Posterior ∝ Likelihood× Improper Prior.

Quite often a formal posterior is a valid probability distribution even if the prior is improper.
In the case of this normal example,

Formal Posterior ∝
n∏
i=1

exp

(
− 1

2σ2
(Xi − θ)2

)
× 1 (9.1)

∝ exp

(
nX̄

σ2
θ − n

2σ2
θ2

)
(9.2)

which is a valid normal distribution with mean X̄ and variance σ2/n. Thus, X̄ is the mean
of the formal posterior which means that it minimizes the improper average risk with respect
to the (improper) prior π, and hence X̄ is a generalized Bayes estimator. We emphasize
however that generalized Bayes estimators do not inherit many of the desirable properties
of Bayes rules.

9-1



STATS 300A Lecture 9 — October 20 Fall 2015

Our next example demonstrates an intimate connection between Bayes estimators in
location models and the Pitman estimator.

Example 2 (Location model). Suppose X1, ..., Xn are drawn i.i.d. according to a density
f(x− θ) with f known, θ unknown, and prior π(θ). The posterior is proportional to∏

i

f(xi − θ)π(θ).

Therefore, the posterior mean, which is the Bayes estimator with respect to squared loss, is,∫
θ
∏

i f(xi − θ)π(θ)dθ∫ ∏
i f(xi − θ)π(θ)dθ

.

Note that if we choose the improper prior π(θ) = 1, we get the Pitman estimator of location,
the MRE estimator under squared error! Hence, the Pitman estimator is generalized Bayes
with respect to the improper prior π(θ) = 1, under squared error.

9.2 Admissibility of Unique Bayes Estimators

Earlier in the course we discovered that best unbiased estimators are quite often inadmissible.
The story is rather different for Bayes estimators. In particular, any unique Bayes estimator
is guaranteed to be admissible:

Theorem 1 (TPE 5.2.4). A unique Bayes estimator (a.s. for all Pθ) is admissible.

Recall that an estimator is admissible if it is not uniformly dominated by some other
estimator. That is δ is inadmissible if and only if there exists δ′ such that

R(θ, δ′) ≤ R(θ, δ) for all θ ∈ Ω, and

R(θ, δ′) < R(θ, δ) for some θ ∈ Ω.

Proof. Suppose δΛ is Bayes for Λ, and for some δ′, R(θ, δ′) ≤ R(θ, δΛ) for all θ ∈ Ω. If we
take expectations with respect to θ, the inequality is preserved, and we get∫

θ∈Ω

R(θ, δ′)dΛ(θ) ≤
∫
θ∈Ω

R(θ, δΛ)dΛ(θ)

This implies that δ′ is also Bayes since δ′ has risk less than or equal to δΛ, which minimizes
the average risk, and thus δ′ = δΛ with probability 1 for all Pθ.

This theorem naturally raises the question: when is a Bayes estimator δΛ unique? The
next result provides a set of conditions under which uniqueness is guaranteed.

Theorem 2 (TPE 4.1.4). Let Q be the marginal distribution of X, that is

Q(E) =

∫
Pθ(X ∈ E) dΛ(θ).

Then, under a strictly convex loss function, δΛ is unique (a.s. for all Pθ) if
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1. r(Λ, δΛ) is finite, and

2. Whenever a property holds a.e. on Q, that property also holds a.e. on Pθ for all θ ∈ Ω.
In other words, Pθ is absolutely continuous with respect to Q for all θ, sometimes
written as Pθ � Q.

In this theorem, it is clear that we need the Bayes risk to be finite. Otherwise, any
estimator is Bayes. Given that the risk is finite, any Bayes estimator with respect to Λ is
a.s. unique under Q by the first property. Thus, the second property implies that the Bayes
estimator is also unique with respect to Pθ.

The second property holds for most of the models we will consider and holds necessarily
if Ω is open and equal to the support of Λ and Pθ(X ∈ A) is a continuous function of θ for
all measurable sets A.

9.3 Why consider Bayes estimators?

By definition, Bayes estimators are optimal with respect to the objective of minimizing
average risk. In this section, we will describe several additional reasons why Bayes estimators
are worthy of consideration.

9.3.1 All admissible estimators are limits of Bayes estimators

Under very weak conditions on a decision problem (see, e.g., Wald’s 1949 work “Statistical
Decision Functions”), every admissible estimator is either a Bayes estimator or a limit of
Bayes estimators. That is, there exists a sequence of prior distributions (Λm) such that
δΛm(x)→ δ(x) a.e. Pθ as m→∞.

A result of this flavor can be found in TPE Theorem 5.7.15. Hence, if our goal is to find
an admissible estimator (and it typically is), we can safely restrict our attention to Bayes
estimators and their limits.

9.3.2 Prior information

Another good reason to use Bayes estimators is that they allow us to incorporate relevant
prior information and experience into our estimators.

Example 3. Suppose we are given a freshly minted coin, and we want to determine the
probability that the coin will come up heads when it is flipped. Let θ denote this probability.
If I have measurements of the probability that a coin flip will come up heads for 1000 coins
from the same mint, I can incorporate this information into the prior distribution over θ.

9.3.3 Evaluating Bayes estimators under other criteria

A third reason to use Bayes estimators is that they offer a general method for generating
reasonable estimators under various optimality criteria. By their nature, Bayes estimators
are average risk optimal, but we can evaluate the quality of our Bayes estimators (just like

9-3



STATS 300A Lecture 9 — October 20 Fall 2015

any other estimator) using alternative quality criteria as well. For instance, we will see soon
that a search for minimax estimators often begins with Bayes estimators. In addition, Bayes
estimators are often admissible. In particular, a Bayes estimator is admissible whenever any
of the following conditions holds:

1. The Bayes estimator is unique.

2. The support of the prior distribution π is Ω, and either

(a) Ω is discrete, or

(b) π is a density with respect to the Lebesgue measure, and R(θ, δ) is a continuous
function of θ for all δ.

Note that some of our other techniques for finding estimators (such as the UMVUE frame-
work) frequently produced inadmissible estimators.

9.4 How to choose a prior?

A primary difficulty in Bayesian decision theory, however, lies in the choice of prior. We
summarize several popular strategies for prior choice below:

• Subjective. If prior knowledge about or experience with a model parameter is available,
we can incorporate this information into the prior choice.

• Objective. When no prior knowledge is available, we can choose a maximally non-
informative or reference prior (see the pioneering work of Jeffreys and the more modern
work of Bernardo and Berger).

• Family of priors. Often, rather than choosing a single prior, we will select a family of
priors based on experience, flexibility and convenience of the family. Various strategies
are then available for deriving an estimator from this prior family.

– Hierarchical Bayes. We can impose a hyper prior on the parameters of the prior
distribution, which averages across the prior class. Often, the choice of hyper prior
has a quantifiably smaller impact on the final Bayes estimator than the choice of
a single prior from the prior family.

– Empirical Bayes. We estimate the prior distribution based on the data.

– Robust Bayes. We look for an estimator that performs well with respect to all
priors in the prior family.

9.5 Minimax Estimators and Worst-Case Optimality

In minimax estimation, we collapse our risk function by looking at the worse-case risk.
Given X ∼ Pθ, where θ ∈ Ω, and a loss function L(θ, d), we want to find an estimator δ that
minimizes the maximum risk:

sup
θ∈Ω

R(θ, δ).
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Any such δ is called a minimax estimator.
In Bayes estimation, we essentially had a single, general-purpose way of deriving a Bayes

estimator: minimize the posterior risk. The derivation of minimax estimators is often less
prescriptive and more problem-specific. However, we will develop a few tools which, when
they apply, will identify minimax estimators.

Perhaps surprisingly, one of the most effective ways of finding minimax estimators is
to restrict our attention to Bayes estimators. To understand the connection, we will need
to introduce some additional notation. First we recall the definition of the Bayes risk (or
minimum average risk) under any prior distribution Λ,

rΛ = inf
δ
r(Λ, δ) = inf

δ

∫
θ∈Ω

R(θ, δ)dΛ(θ).

Definition 1. We say that a prior Λ is a least favorable prior if rΛ ≥ rΛ′ for any other
prior distribution Λ′. (Note that we always use the unmodified word “prior” to mean a
proper prior.)

Theorem 3 (TPE 5.1.4). Suppose δΛ is Bayes for Λ with

rΛ∈Ω = sup
θ
R(θ, δΛ)

That is, the Bayes risk of δΛ is the maximum risk of δΛ. Then,

1. δΛ is minimax

2. Λ is a least favorable prior

3. If δΛ is the unique Bayes estimator for Λ (a.s. for all Pθ), then it is the unique minimax
estimator.

Proof. If δ is any other estimator, then we have that

sup
θ∈Ω

R(θ, δ) ≥
∫
R(θ, δ)dΛ(θ) ≥

∫
R(θ, δΛ)dΛ(θ) = sup

θ∈Ω
R(θ, δΛ)

where the first step holds because the worst-case risk of δ is greater than (or equal to) the
average risk of δ, the second step holds because δΛ is Bayes (and hence has an average risk
no higher than that of δ), and the third step holds because of our assumption that the Bayes
risk of δΛ is equal to the worst-case risk. This implies that δΛ is minimax.

If δΛ is the unique Bayes estimator, then the second inequality above is strict for δ 6= δΛ,
which implies that δΛ is the unique minimax.

Let Λ′ be any other prior distribution. Then, we have that

rΛ′ = inf
δ

∫
R(θ, δ)dΛ′(θ) ≤

∫
R(θ, δΛ)dΛ′(θ) ≤ sup

θ
R(θ, δΛ) = rΛ.

The first step first and second steps are by the definition of Bayes risk, and the third step
holds because the worst-case risk of δΛ is no less than its average risk over the distribution
Λ′. Since the worst-case risk of δΛ is its Bayes risk over Λ (by our assumption), we can infer
that that Λ is a least favorable prior distribution.
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Thus, we can find a minimax estimator by finding a Bayes estimator with Bayes risk
equal to its maximum risk. The following corollary highlights an important special case of
this strategy.

Corollary 1 (TPE 5.1.5). If a Bayes estimator δΛ has constant risk (that is, R(θ, δΛ) =
R(θ′, δΛ) for all θ and θ′), then δΛ is minimax. Note that this is a sufficient but not necessary
condition.

It is often relatively easy to check whether an estimator has constant risk, and this is
typically our first line of attack for determining whether an estimator is minimax. More
generally we could find a prior support set ω such that Λ(ω) = 1 and for which R(θ, δΛ) is
maximum for all θ ∈ ω:

Corollary 2 (TPE 5.1.6). Define

ωΛ = {θ : R(θ, δΛ) = sup
θ′
R(θ′, δΛ)}

Then, a Bayes estimator δΛ is minimax if Λ(ωΛ) = 1. (TPE misstates this result as if and
only if, but the only if component is false. In other words, this condition is sufficient, but
not necessary.)

Example 4. Suppose X ∼ Binom(n, θ) for some θ ∈ (0, 1) and that we use the squared
error loss function. Is the sample proportion X

n
minimax? The risk of this estimator is

R

(
θ,
X

n

)
=
θ(1− θ)

n
.

The graph of R
(
θ, X

n

)
versus θ looks like the following:

θ

R
(
θ, X

n

)

0 1
2

1

The risk has a unique maximum at θ = 1
2
, so the worst-case risk is

sup
θ∈Ω

R

(
θ,
X

n

)
= R

(
1

2
,
X

n

)
=

1

4n
.

Unfortunately, we cannot apply Corollary 5.1.6 directly because if Λ({1
2
}) = 1, then δΛ(X) =

1
2
6= X

n
.

However, we can use the Corollary 5.1.5 to find a minimax estimator and then compare
the risk of the minimax estimator with that of X

n
. To find a minimax estimator, we will

search for a prior such that the Bayes estimator has constant risk.
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Recall the following useful fact. Under the prior distribution Beta(a, b), the Bayes esti-
mator under the squared error loss is

δa,b(X) =
X + a

n+ a+ b
.

For any a and b,

R(θ, δa,b) = Eθ

[(
X + a

n+ a+ b
− θ
)2
]

=
1

(n+ a+ b)2
Eθ
[
(X + a− (n+ a+ b)θ)2

]
=

1

(n+ a+ b)2
Eθ
[
(X − nθ − a(θ − 1)− θb)2

]
=

1

(n+ a+ b)2

(
nθ(1− θ) + (a(θ − 1) + θb)2

)
.

This is a quadratic function of θ. To eliminate the θ dependence in R(θ, δa,b), we need the
coefficients of the linear and quadratic terms to equal zero. The coefficient of θ2 is

−n+ (a+ b)2,

so we need a+ b =
√
n (since a, b > 0). The coefficient of θ is

n− 2a(a+ b) = n− 2a
√
n,

so we need a = b =
√
n

2
. With these choices of a and b, the risk of R(θ, δa,b) is constant,

which implies that Beta
(√

n
2
,
√
n

2

)
is a least favorable prior with constant risk. Then our

Bayes estimator

δ√
n
2
,
√
n
2

(X) =
X +

√
n

2

n+
√
n
,

is minimax with constant risk of
1

4(
√
n+ 1)2

.

Since the worst-case risk of X
n

is 1
4n
> 1

4(
√
n+1)2

, we can conclude that X
n

is not minimax.
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