

Alignment Guided Mutagenesis of *Renilla* Luciferase Increases Stability and Light Output

Andreas M. Loening^{*} Anna M. Wu[†]

*Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Stanford University [†]Crump Institute for Molecular Imaging, Dept. of Molecular & Medical Pharmacology, UCLA School of Medicine

Sanjiv S. Gambhir*[†]

INTRODUCTION

The optical signal generated by *Renilla* Luciferase (RLuc) allows its use as a biomolecular label as well as a reporter gene. Several projects are attempting to make use of RLuc as a label for the *in vivo* imaging of receptor targets by constructing fusions of RLuc with engineered antibodies [1] or receptor ligands [2].

Use of RLuc as a label, however, requires high stability and activity in a variety of environments, including mammalian serum. For this purpose, we have characterized mutants of RLuc with respect to serum stability and light output, and used these results to develop an 8 mutation form of RLuc (RLuc8) that has improved characteristics for use as a bioluminescent label.

Emission Spectrum of Renilla and Several Mutants

ALIGNMENT

Using PredictProtein [3, 4], RLuc was found to have high homology (34-56% similar) to a number of bacterial haloalkane dehalogenases; this may indicate a horizontal gene transfer event. An alignment generated using CLUSTAL W [5] is shown below, note that the numbering is with respect to the RLuc sequence.

METHODS

Mutagenesis

A human codon optimized version of rluc (Promega) was cloned into the pBAD expression system (Invitrogen) which adds a Myc epitope and a 6xHis tag to the C-terminus of the construct. As part of this cloning, a pelB leader sequence was added to the N-terminus of RLuc in order to direct expression into the bacterial periplasm. The C124A mutation was then introduced using a site-directed mutagenesis kit (Stratagene). All additional mutations were done on top of the C124A mutation.

Protein Production/Purification

All proteins were produced in *E. coli* LMG 194 cells grown at 32° C. Cultures were allowed to come to an OD₆₀₀ of 0.7, and arabinose was added to a final concentration of 0.2%. 12-14 hours later, cells were harvested and the periplasm extracted by osmotic shock [8]. The Histagged protein was then purified by nickel affinity chromatography (Ni-NTA Superflow, Qiagen), with the elution buffer consisting of 300 mM NaCl, 20 mM HEPES, 250 mM Imidazole, pH 8. After determination of protein concentration, human serum albumin was added to 1% as a carrier protein, and the samples were stored at 4°C.

350 400 450 500 550 600 650 wavelength (nm)

	Specific Activity	Serum $\tau_{1/2}$ (hrs)		Wavelength (nm)	
Mutation	(RLU/pg)	mouse rat		peak mean	
Native	41	0.7	0.5	482 497	
C124A	54±3	7.1 ± 0.4	$6.6 {\pm} 0.5$	482 498	
F33R/I34M/C124A	5	0.3	0.3	481 497	
E44G/C124A	38	2.6	3.3	486 502	
A54G/A55G/C124A	4	2.4	3.0	476 492	
A54P/A55T/C124A	7	119	129	470 483	
A54P/C124A	2	14	13	468 482	
A55T/C124A	80	30	29	486 504	
F116L/C124A	9	11	9.4	486 502	
C124A/S130A	66	18	14	482 498	
C124A/K136R	$124{\pm}18$	12	11	482 498	
C124A/A143M	85	30	29	480 497	
C124A/F180A	1	1.6	1.6	488 504	
C124A/M185V	148	5.7	3.7	485 500	
C124A/M191L	48	6.5	5.1	480 496	
C124A/E195S/P196D	5	1.0	0.7	482 498	
C124A/F199M	25	6.7	6.0	480 495	
C124A/L203R	17	2.7	2.2	484 501	
C124A/G229E	1	1.9	1.8	473 490	
C124A/Q235A	46	3.3	3.6	473 489	
C124A/M253L	88	15	10	471 488	
C124A/S257G	42	1.3	1.4	477 493	
C124A/F261L/F262L	0	N/A		N/A	
C124A/F262L	2	5.8	6.4	478 495	
C124A/S287L	168	28	20	478 496	
C124A/M295I	49	5.0	4.9	480 497	
C124A/K300A	31	3.5	3.9	481 497	

The 7 mutations that had the most favorable increases in specific activity and/or stability, along with not leading to significant shifts in the emission spectra, were combined along with the C124A mutation into a single protein (RLuc8) The 8 mutations present in RLuc8 are A55T, C124A, S130A, K136R, A143M, M185V, M253L, and S287L. Note that during the cloning of RLuc8, the Myc epitope was removed from the construct. In order to facilitate a valid comparison, a C124A mutant construct was also created without the Myc epitope.

From the aligned sequences, candidate mutations were chosen at positions where RLuc clearly diverged from the consensus. This strategy was predicated upon the hypothesis that, following a horizontal gene transfer, mutations would be allowed to accumulate in the RLuc sequence that are neutral in the context of *Renilla* cytoplasm but could be deleterious in the more varied environments that a bacterial enzyme encounters.

Previous work in the literature [6] has shown that a Cys124Ala mutation (Cys152Ala in [6]) stabilizes RLuc, and that Cys73 (Cys101 in [6]) is required for activity. In light of the alignment data, Cys73 can be seen to be absolutely conserved across the enzymes, while C124 differs from the

Testing

Protein concentration measurements were made using the Bradford assay with human serum albumin as the standard. Luciferase activity was measured by adding 1 μ l of sample (diluted as necessary) to 100 μ l room temperature 100 mM sodium phosphate buffer (pH 7), adding 0.5 μ g coelenterazine, and reading for 10 seconds in a Turner 20/20 luminometer. Serum stability measurements were done by mixing 0.5 μ l dilute luciferase with either 20 μ l mouse serum or 50 μ l rat serum, incubating at 37°C, and removing aliquots for activity testing. Serum half-lives were determined by least-squares fitting of mono-exponentials to the activity curves. Emission spectra at ambient temperature were measured using a Triax 320 (Jobin Yvon Horiba), which incorporates an optical grating device with a liquid N₂ cooled CCD detector.

	Specific Activity	Serum $\tau_{1/2}$ (hrs)		Wavelength (nm)	
Mutation	(RLU/pg)	mouse	rat	peak	mean
$\overline{C124A \Delta Myc}$	58±2	4.0	4.5	481	499
RLuc8	$200{\pm}8$	197	108	487	503

CONCLUSION

The combination of 8 favorable mutations generated a mutant *Renilla* luciferase (RLuc8) that exhibited a greater than 150-fold stability improvement in murine serum when compared to RLuc (<1 hr versus >100 hr). In addition to being more stable, RLuc8 also exhibited at least a 4-fold improvement in light output, along with a 5 nm emission spectrum red shift with respect to the native luciferase. This optimized *Renilla* luciferase represents a significant improvement that will allow its use for the labeling of biomolecules and following these constructs *in vivo*.

bacteria consensus. Based on the known required residues for haloalkane dehalogenases, Asp120, Glu144, and His285 are likely critical for RLuc activity as well.

HOMOLOGY MODEL

A homology model of RLuc was constructed so that the location of mutational candidates could be identified. This model was built using SWISS-MODEL (v3.5) [7] and crystal structures of the haloalkane dehalogenase LinB from *Sphingomonas paucimobilis* (PDB files 1iz8, 1k63, 1k6e, 1iz7, and 1mj5). In the model below, the N-terminus is blue and the Cterminus is red. Based on data from the dehalogenases, the active site of RLuc is most likely at the intersection of the red, orange, and yellow helices.

RESULTS

References

[1] Venisnik KM, et al. *Mol Imaging*, 3:P282, 2004
[2] Loening AM, et al. *Mol Imaging*, 2:132P, 2003
[3] Rost B, et al. *Nucl Acids Res*, 31:3300–3304, 2003
[4] Sander C, et al. *Proteins*, 9:56–68, 1991
[5] Thompson JD, et al. *Nucl Acids Res*, 22:4673–4680, 1994
[6] Liu J, et al. *Gene*, 237:153–159, 1999
[7] Schwede T, et al. *Nucl Acids Res*, 31:3381–3385, 2003
[8] Neu HC, et al. *J Biol Chem*, 240:3685–3692, 1965

Acknowledgments: This work was supported in part by a Department of Defense NDSEG Fellowship (AML) and NIH 5 R01 CA082214-06 (SSG). The authors would like to thank Brad Rice and Olivier Coquoz of Xenogen Corporation for help with the spectra measurements, along with Mark Breidenbach and the Brunger lab for help with the sequence alignment and homology modeling.

Hours