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Confidence bands for survival curves under the proportional 
hazards model 

BY D. Y. LIN, T. R. FLEMING 
Department of Biostatistics, SC-32, University of Washington, Seattle, Washington 98195, 

U.S.A. 

AND L. J. WEI 

Department of Biostatistics, Harvard University, Boston, Massachusetts 02115, U.S.A. 

SUMMARY 

In this paper, we show how to construct simultaneous confidence bands for the subject- 
specific survival curve under the Cox proportional hazards model. The idea is to approxi- 
mate the distribution of the normalized cumulative hazard estimator by a zero-mean 
Gaussian process whose distribution can be easily generated through simulation. 
Numerical studies indicate that the proposed bands are appropriate for practical use. A 
liver disease example is presented. 

Some key words: Censoring; Counting process; Cox regression; Equal-precision band; Gaussian process; Hall- 
Wellner band; Martingale; Simultaneous inference. 

1. INTRODUCTION 

The Cox (1972) proportional hazards model specifies that the hazard function A(t) for 
the failure time T under Z(t) = z(t) has the following form: 

A(t; z) = -2(t)efbz(t), (114) 

where Z(.) is a p-vector of possibly time-varying covariates, g3o is a p-vector of unknown 
regression parameters, and AO(.) is an unspecified baseline hazard function. Statistical 
inference on 1Bo is usually based on the partial likelihood function (Cox, 1972, 1975) 

n f e#'Zi(Xi) 'i 
n Yj(X)ePZi(Xi4 (1.2) 

where Xi = min (T7, C), Ci is the censoring time variable, Ai = I(T7 < Ci), Y(t) = I (Xi > t), 
and I(.) is the indicator random variable of the specified event. 

One of the main goals in fitting a survival model is to predict survival experience for 
future subjects. Under model (141), we are interested in estimating the cumulative hazard 
function 

A(t; z0) = A(u; z0) du 

and survival function S(t; z0) = e-A(t;zo) for a subject with a particular set of covariate 
values z0(.). Note that z0(.) should consist only of external covariates (Kalbfleisch & 
Prentice, 1980, ? 5.3) in order for S(t; z0) to be interpretable. A commonly used estimator 
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for 
t 

AO(t)= fAo(u) du 

is 

n I(X, K, t)Ai 
A0(t)i= 1 En= Yj(X)e'Zj(xi) 

where ,B is the value of fi that maximizes (1V2) (Breslow, 1972). Correspondingly, A(t; zo) 
is estimated by 

i=1 _J 1 Yj(Xj)e'zj(xid((3 

and S(t; zo) by S(t; zo) = eA(tzo). 
For any given time point t, one may construct confidence intervals for A(t; zo) and 

S(t; zo) using the asymptotic properties of A(t; zo) and S(t; zo). In many applications, 
however, it is desirable to obtain simultaneous confidence bands for A(.; zo) or S(.; zo) so 
that a single probability statement can be made regarding the survival experience over 
the entire time span of interest. In the one-sample case, where no covariates are involved, 
such bands have been extensively studied by various authors, including Hall & Wellner 
(1980), Nair (1984) and Bie, Borgan & Liest0l (1987), and described at great length in 
the recent texts of Fleming & Harrington (1991, ? 6.3) and Andersen et al. (1993, ?? IV.1.3, 
IV.3.3). The existing one-sample bands rely on the fact that the normalized Nelson-Aalen 
estimator for the cumulative hazard function converges weakly to a zero-mean Gaussian 
martingale, which can be transformed to the standard Brownian bridge. As will be seen 
in the next section, under model (1L1), the process n2 {A(.; zo) - A(.; zO)} also converges 
weakly to a zero-mean Gaussian process. Unlike the one-sample case, however, this limit- 
ing process does not possess an independent increment structure and therefore cannot be 
transformed to the standard Brownian bridge. 

In this paper, we develop confidence bands for A(.; zo) and S(.; zo) under the Cox model 
by simulating a Gaussian process which approximates the distribution of the process 
n2 {A(.; zo) - A(.; zO)}. This approach is described in the next section. In ? 3, we assess the 
performance of the proposed bands for practical sample sizes and then apply them to the 
Mayo Clinic data on primary biliary cirrhosis patients. 

2. CONSTRUCTION OF CONFIDENCE BANDS 

Suppose that {Ti, Ci, Zj(.)} (i = 1, ... , n) are independent and identically distributed. 
Assume that Ti and Ci are independent conditional on Zi(.) and that Zi(.) is bounded. It 
is convenient to introduce the notation 

n 
S(r)(1, t) = n-1 E Yj(t)efizj(t)Zpr(t), S(r)(13, t) = E{S(r)(f, t)}, 

j=l 

Z(l,B t) = Sz-(,B,, 09 t_= (s)'(j t) 
Sf(o t) =(ff c t ) - = sl0=a t)a 

for r=0, 1 2, were, or a olumnvecto a, aO = 1 a? - n ? a' oeta h 
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Confidence bandsfor survival curves 75 

asymptotic covariance matrix of n+(JJ - f1o) is 

I{s(2)(flog t)/s(?)(fio, t) -_z(/3o, t)?2}S(0)(fl0o t)Ao(t) dt, 
0 

which as usual is assumed to be positive definite. 
Define the counting processes Ni(t) = AjI(Xi < t) and martingales 

Mt 
Mi(t) = Ni(t) - Yi(u)eioZi(u) dAo(u) (i = 1, ... , n). 

wo 

In the counting process notation, the estimator (13) becomes 

n 
(t eizo(u) dNj(u) A(t; zo) Z j nS0)(fl u) 

i=1 Jo n 

Now, let 

W(t; zo)= n'{A'(t; zo)-A(t; zo)j9 < inf {t: EYj(t)= O}. 
By the arguments given by Andersen & Gill (1982), the process W(t; zo) (O0 t < z) is 
asymptotically equivalent to 

fV~(t; z0)= n~ p~ [ t eiz(u) dM. (u) C d.() W(t; zo) n Z- 
I 

O SJI(0, ) + h'(t; z)Q Z(u) - Z(/3o, u)} dMi(u) 
i=1 L0SV0U)0 

(2.1) 

where 
,t 

h(t; zo) efi?zo(u) {zo(u) - z(j3o, u)} dAo(u). 
0 

It then follows from the martingale central limit theorem that the process W(.; zo) 
and thereby W(.; zo) converges weakly to a zero-mean Gaussian process on [0, -] with 
covariance function 

4(t S;z= ( e () dA()+ h'(t; z)Q'-h(s; z0), (2*2) 

Jo0 s 0(go , u) 

where t A s = min (t, s). Denote 4(t, t; zo) by U2(t; zO), which can be consistently estimated 
by 

(; ?z)=n I ) + h'(t; zo)Q h(t; zo), 

where 
n 

Q = n- , Ai{S2(f3, Xi)/S0(f3, XA ) -Z(, Xi)?2} 
i=l 

h(t; zO) = n' 1 I(Xi < t)Aie izo(Xi) {zo(Xi)-Z(AB, Xi)}/S(?)(fl, Xi). 
i=l 

As is evident from (22), the process W(.; z0) does not have an independent increment 
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structure asymptotically even if covariates are time-invariant; therefore, it is difficult to 
evaluate the limiting distribution analytically. 

We now show how to approximate the distribution of W(.; zo) by a zero-mean Guassian 
process, denoted by W(.; zo), whose distribution can be easily generated through simu- 
lation. This approximation is based on the facts that 

E{Mi(u)} = 0, var {Mi(u)} = E{Ni(u)} (i = 1, . . ., n). 

Specifically, we replace {Mi(u)} (i = 1, ... , n) in (24 1) with {Ni(u)Gi } (i = 1, . . . , n), where 
{Gi} (i= 1, . . . , n) are independent standard normal variables, and also replace other 
unknown quantities in (2-1) with their respective sample estimators to yield 

W(t; zo)=n2 [ n ( + h'(t; zo)0 'A, - Z(fZ, Xi)}Gi]. 

We regard {Gi} (i = 1, .. ., n) as random and {Xi, Ai, Zi(.)} (i = 1, .. ., n) as fixed in M(.; zo). 
The process W(.; zo), which consists of a sum of n independent random variables at each 
fixed time point, can be shown to converge weakly to a zero-mean Gaussian process by 
applying the Lindeberg-Feller theorem and by verifying a tightness criterion (Billingsley, 
1968, p. 128). Furthermore, 

E [W(t; zo)W(s; zo)l I{Xi, Ai, Zi(.)I] 

- 1n I(Xi < t A s)Aie2fl'zo(Xi) =n 1 E S(C) A X)2 

n 

i=l + ht(; z ) - 1n A- _,A(i40(/ x Z(i)Z X) 

h'(t; z )K2-in-' Ai (iS))i ) Z(Xi) K2 (s; zo)} 
A n ~~~I(Xi <sAif10d ? h'(s;zo) 'n'- zn- E Z~X) _ ZA 

s(o4 X) {Z(X~ - Z9 XX)} 

The first two terms on the right-hand side converge almost surely to (2 2) and the remain- 
ing two vanish due to the strong consistency of ,B and AO(.) and the fact that 
Yi(t)eAZi(t)AO(t) is the intensity function of Ni(t). Hence, W(.; zo) and W(.; zo) have the 
same limiting distribution. To approximate the distribution of W(.; zo), we simply obtain 
a large number of realizations from W(.; zo) by repeatedly generating normal random 
samples {G; ii= 1,.. ., n} while fixing the data {Xi, Ai, Zi(.)} (i= 1,.. ., n) at their 
observed values. 

The aforementioned Monte Carlo scheme is similar to the bootstrap in terms of sample 
space, convergence, etc. Specifically, the sample space for W(.; zo) is conditional on the 
data whereas that of W(.; zo) is unconditional; the distribution of W(.; zo) converges to 
the same limit as that of W(.; zo) for almost all realizations of the data {Xi, Ai, Zi(.)} (i = 
1, .. . , n). As one referee pointed out, bootstrap would be a possible alternative to the 
proposed approach. However, it is not clear how to justify that the bootstrap is valid for 
the present problem. 

For constructing confidence bands for AO(.; zo) and S(.; zo), it is fruitful to consider the 
class of transformed processes 

B(t; z0) = n2g(t; z0)[q){A(t; zo)} - {A(t; z\)}], 
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where 0 is a known function whose derivative q' is continuous and nonzero in the time 
interval [t1, t2] (0 < t1 < t2 < T), and the weight function g(.; z0) converges in probability 
to a nonnegative bounded function uniformly on [t1, t2]. By the functional delta-method 
(Andersen et al., 1993, ? 11.8), the process B(t; z0) is asymptotically equivalent to 
g(t; zO)qW{A(t; zo)}W(t; z0), whose distribution can be approximated by that of 

B(t; zo) = g(t; z0)0'{A(t; z0)}/W(t; Zo). 

Let qa be the boundary value satisfying pr {max,1 <X<21 B(Xj; zo) I > q} = o, the prob- 
ability being estimated through simulation. Then an approximate (1 - o) confidence band 
for f{A(t; z0)} on [t1, t2] is 0{A(t; z0)} + n -qj/g(t; zo). 

One may calculate the confidence bands for A(.; z0) and S(.; z0) directly by letting 0(x) = 

x and 0 (x) = e-, respectively. The resulting band for A(.; z0) may include negative values, 
and that of S(.; z0) may contain values outside [0, 1]. As indicated by Kalbfleisch & 
Prentice (1980, pp. 14-5), this problem can be avoided by choosing the log transformation 
O(x) = log x, which not only restricts the bands for A(.; zo) and S(.; z0) to meaningful 
ranges but also improves the attained coverage probabilities in small samples. This log 
transformation will be used implicitly in the sequel unless indicated otherwise. 

The choice of the weight function g(.; z0) affects the relative widths of the band at 
different time points. We shall confine our attention to two weight functions 

g1 (t; z0)= A(t; z0)/6(t; zo), g2 (t; z0) = A(t; z0)/{ 1 + a (t; z0)}. 

The resulting (1 - o) bands for S(t; z0) are 

S(t; ZO) exp{?n / qj'a(t;&(t;zt;z)1 (2-3) 

S(t; ZO)exp[?n -q2o +I 2(t;Zo)}/A(t;zo)1 (2-4) 

where ql,a and q2,a are the boundary values associated wth g1 and g2. Expression (2 3) is 
the so-called equal-precision band (Nair, 1984), whose bounds are proportional to the 
pointwise confidence limits on the log A scale since n-68(t; zo)/A(t; zo) is the standard 
error estimator for log A(t; z0). Note that (2-3) is in the same form as (1-12) of Kalbfleisch 
& Prentice (1980, p. 15), the key difference being that the standard normal critical value 
is now replaced by a larger number in order to achieve a proper simultaneous coverage 
probability. Expression (2-4) corresponds to the one-sample transformed Hall-Wellner 
band advocated by Bie et al. (1987). Based on the direct approximation for S(.; z0), the 
Hall-Wellner type band takes the form 

S(t; z0) + n- q2,S(t; ZO){1 + a2(t; z)} (2-5) 

In the absence of covariates, (2-5) is asymptotically equivalent to the original Hall-Wellner 
band, the latter reducing to the well-known Kolmogorov band for completely observed 
survival data. We shall refer to (2 4) and (2 5) as the transformed and untransformed Hall- 
Wellner bands. Because the approximations tend to be poor for t close to 0 or r, we shall 
confine all our bands between the first and last uncensored failure time points. Additional 
restrictions may be necessary for the equal-precision band. Following the recommen- 
dations of Nair (1984) and Bie et al. (1987) for the one-sample case, we shall further 
restrict the equal-precision band to the time interval [t*, t*] such that c = 1-c = 0 05 
or 041, where 

Ck = 8A(tk; z0)/{1 + 8 (t*; z0)} (k = 1, 2). 
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The confidence bands (2 3)-(2 5) can be easily incorporated into an existing statistical 
package. The FORTRAN and S codes are available from the first author. 

3. NUMERICAL RESULTS 

341. Simulation studies 
A series of simulation experiments was conducted to evaluate the confidence bands 

(2 3)-(2-5). Failure times were generated from an exponential model with a standard 
normal covariate truncated at + 5, and censoring times from uniform distributions. The 
empirical coverage probabilities were estimated from 2000 simulation samples; for each 
simulation sample, the boundary values ql,a and q2,a were calculated from 1000 realizations 
of B(.; zo). The results are summarized in Table 1. The proposed bands, especially the 
equal-precision band with 61 = 0 1 and the transformed Hall-Wellner band, maintain their 
coverage probabilities near the nominal level, even for sample size of 50 with heavy 
censoring. As one might expect, 61 = 0 1 results in better coverage probabilities than c', = 
005 in small samples. Results not shown in the table indicate that the collection of 
pointwise confidence intervals for S(.; zo) has simultaneous coverage probabilities of about 
0 6 over the time interval for which 61 = 0 1. 

Table 1. Empirical coverage probabilities of confidence bands for S(.; zo) with 0-95 
nominal confidence coefficient under the model A(t; z) = eo"' 

25% censoring 50% censoring 75% censoring 
EP HW EP HW EP HW 

n Zo (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) 

50 -1 096 0-97 0-97 0-97 0-97 0-98 0-98 0-97 0-96 0-97 0 97 0-96 
0 090 091 092 092 090 092 093 091 090 092 093 090 
1 0-92 095 095 093 092 094 094 092 091 093 094 090 

100 -1 098 098 098 098 098 098 098 098 097 098 098 097 
0 092 093 094 094 092 092 092 092 092 092 093 090 
1 095 096 096 094 094 096 096 096 095 095 095 091 

200 -1 097 097 097 097 098 098 098 098 098 098 098 098 
0 091 092 094 093 093 093 094 092 093 094 094 092 
1 094 095 095 095 095 096 096 095 095 095 096 094 

For EP bands, namely equal-precision bands, 61 = 1 - = 005 and 0 1 for columns (a) and (b) respectively. 
For HW bands, namely Hall-Wellner bands, columns (a) and (b) are the transformed and untransformed 

ones, respectively. 

3 2. Mayo primary biliary cirrhosis model 
The Mayo Clinic developed a database for the primary biliary cirrhosis patients who 

were referred to Mayo between January 1974 and May 1984. Primary biliary cirrhosis is 
a fatal chronic liver disease of unknown cause. Because this is a rare disease, the Mayo 
database has been a valuable resource to liver specialists. These data are listed in 
Appendix D of Fleming & Harrington (1991). 

The Cox regression method and comprehensive data from the Mayo patients were used 
successfully by Dickson et al. (1989) to derive a natural history model for primary biliary 
cirrhosis based on patients' age, total serum bilirubin and serum albumin concentrations, 
prothrombin time and the severity of oedema. The original model was built from 312 
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patients who participated in a clinical trial where the test treatment was found to be 
ineffective. When it was cross-validated on the independent set of 106 patients concurrently 
treated at Mayo who did not participate in the clinical trial, the model predicted survival 
accurately. Table 2 provides the variable transformations and parameter estimates for the 
final model with the 418 Mayo patients, which has been validated on data generated 
outside the Mayo Clinic (Grambsch et al., 1989). These results have been inserted into 
expression (1V3) to predict survival for individual patients. 

The Mayo model has been extremely useful not only in counselling patients and in 
understanding the course of the disease in untreated patients, but also in providing histori- 
cal control information to evaluate the efficacy of new therapeutic interventions such as 
liver transplantation. Dickson and other hepatologists have expressed great interest in 
attaching confidence bands to the survival curve estimates derived from the Mayo model 
so that proper probability statements could be made. 

Table 2. Regression parameter estimates for the final 
Mayo primary biliary cirrhosis model 

Parameter Standard 
Variable estimate error Est./SE 

Age 00394 00077 5 1508 
log (Albumin) -2 5328 0 6482 - 39074 
log (Bilirubin) 0-8707 0 0826 10 5372 
Oedema 08592 02711 3 1688 
log (Prothrombin time) 2 3797 0 7666 341043 

For illustration, Fig. 1 displays the equal-precision and Hall-Wellner bands with oc= 
0 05 for a patient with 51 years of age, 3'4 gm/dl serum albumin, 1 8 mg/pl serum bilirubin, 
10 74 seconds of prothrombin time and no oedema. The estimated risk score eflzo for this 
patient equals 5 07, which is the sample mean of the estimated risk scores for the 418 Mayo 
patients. As shown in Fig. 1(a), the choice of 61 = 0-05 results in the restriction of the 
equal-precision band to the time interval of 2 to 11 5 years. Figure l(a) also presents the 
'unrestricted' equal-precision band, which covers the interval between the first death time 
and the last observation time. The boundary values for the restricted and unrestricted 
equal-precision bands were found to be 2 879 and 3 024 based on 10 000 realizations of 
B(.; zo), indicating that the equal-precision bands are about 50% wider than the pointwise 
confidence limits, as can be seen in Fig. 1(a). The lower bound of the transformed Hall- 
Wellner band is very low for the first two years due to extremely small values of A; 
however, in Fig. 1(b) we use the lower bound at t = 2 years for t < 2 years since S(.; zo) 
is monotone. The untransformed Hall-Wellner band is slightly above the transformed one 
until year 10, and its upper bound extends above 1 for the first two years, which would 
be set to 1 in a final presentation. The boundary value for the Hall-Wellner bands was 
estimated at 1V276, which is smaller than the Brownian bridge critical value 1 358. By 
overlaying Fig. l(b) over Fig. l(a), one can observe that the Hall-Wellner bands are nar- 
rower than the equal-precision bands over the middle region of the data and wider at the 
two tails. The widths of the four confidence bands shown in the figure are reasonably 
small and fairly close to one another between the second and the tenth years. 

4. REMARKS 

As mentioned earlier, the choice of the weight function g(.; zo) affects the relative widths 
of the band at different time points. From a practical point of view, one would choose a 
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(a) 95% equal precision bands 

10 - 

0.8 

4 04 026 

00 

00 , I , I' 

0 2 4 6 8 10 12 

Failure time (years) 

(b) 95% Hall-Wellner bands 

1.0 

0.8 

0-6 

02 

0.0 

0 2 4 6 8 10 12 

Failure time (years) 

Fig. 1. Survival probability estimation for a primary biliary cirrhosis patient with 
51 years of age, 3-4 gm/dl albumin, 1-8 mg/pl bilirubin, 10-74 seconds of prothrombin 
time and no oedema. Point estimate, shown by the middle solid curve; pointwise 95% 
confidence intervals, the dashed curves. (a) 95% equal-precision band with C' = 1 - =C 

0-05, the outside solid curves; and 95% unrestricted equal-precision band, the dotted 
curves. (b) 95% transformed Hall-Wellner band, the outside solid curves; and 95% 

untransformed Hall-Wellner band, the dotted curves. 

weight function which yields the narrowest band for the part of the time interval that is 
of the most interest. In general, the Hall-Wellner bands tend to be narrower than the 
equal-precision bands over the middle region of the data and wider at the two tails. 
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Obviously, one may tighten the equal-precision band by shortening the time interval. For 
both types of bands, the log transformation is recommended. 

The basic ideas developed in this paper may also be used to construct confidence bands 
for other survival models. A related topic is the goodness-of-fit test for the distributional 
assumption of a fully parametric regression model. A natural goodness-of-fit process is 
the difference between the Aalen-Breslow type estimator and the parametric maximum 
likelihood estimator for the baseline survival function. Such a process has a somewhat 
more complicated limiting covariance structure than W(.; z0), but can be expressed as 
sums of martingale integrals so that the basic principle described in ? 2 still applies. The 
details will be presented elsewhere. 
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