Survival Analysis: Weeks 2-3

Lu Tian and Richard Olshen
Stanford University
Kaplan-Meier (KM) Estimator

- Nonparametric estimation of the survival function
 \[S(t) = \text{pr}(T > t) \]

- The nonparametric estimation is more robust and does not depend on any parametric assumption.
If there is no censoring

- $S(t)$ can be consistently estimated by

$$
\hat{S}(t) = n^{-1} \sum_{i=1}^{n} I(T_i > t).
$$

- \hat{S} is a discrete distribution with mass probability of n^{-1} at observed times T_1, \cdots, T_n

- $\hat{S}(t)$ is the nonparametric maximum likelihood estimator (NPMLE) for $S(t)$.
CDF as NPMLE

- Assuming that $F(\cdot)$ is discrete with mass probability at $T_1 < T_2 < \cdots < T_n$, where $\{T_1, T_2, \cdots\}$ are observed times.
- Let $f_1 = \Pr(T = T_1), f_2 = \Pr(T = T_2), \cdots$.
- Objective: estimate f_1, f_2, \cdots.
- Method: maximize $\prod_{i=1}^{n} f_i$ subject to $\sum_{i=1}^{n} f_i = 1$.
- Solution: $\hat{f}_1 = \hat{f}_2 = \cdots = \hat{f}_n = n^{-1}$.
Data and Assumptions

- **Data:** $\{(U_i, \delta_i), i = 1, \cdots, n\}$ where $U_i = \min(T_i, C_i)$ and $\delta_i = I(T_i \leq C_i)$.

- **Assumptions:**
 1. T_1, \cdots, T_n i.i.d. $\sim F(\cdot) = 1 - S(\cdot)$
 2. C_1, \cdots, C_n i.i.d. $\sim G(\cdot)$
 3. $T_i \perp C_i, i = 1, \cdots, n$. Noninformative censoring!
If there is censoring

- Assuming that $F(\cdot)$ is discrete with mass probability at $v_1 < v_2 < \cdots$, where \{\{v_1, v_2, \cdots\} are observed times.
- Let $f_1 = \Pr(T = v_1), f_2 = \Pr(T = v_2), \cdots$.
- Objective: estimate f_1, f_2, \cdots.
- Obs: $2, 2, 3^+, 5, 5^+, 7, 9, 16, 16, 18^+$, where $^+$ means censored
- $v_1 = 2; v_2 = 3, v_3 = 5, v_4 = 7, v_5 = 9, v_6 = 16, v_7 = 18, v_8 = 18^+$
- The likelihood function in terms of (f_1, f_2, \cdots):
 \[
 L(F) = f_1^2(f_3 + f_4 + f_5 + f_6 + f_7 + f_8) f_3(f_4 + f_5 + f_6 + f_7 + f_8) f_4 f_5 f_6 f_8,
 \]
 where $f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8 = 1$
Reparametrization tricks

• The discrete hazard function: \(h_1 = \text{pr}(T = v_1) \) and
 \[h_j = \text{pr}(T = v_j | T > v_{j-1}), j > 2 \]

• For \(t \in [v_j, v_{j+1}) \)

 \[S(t) = \text{pr}(T > t) = \text{pr}(T > v_j) = \prod_{i=1}^{j} (1 - h_i). \]

• For \(t = v_j \)

 \[f_j = f(t) = \text{pr}(T = t) = h_j \prod_{i=1}^{j-1} (1 - h_i). \]
Reparametrization tricks

- The likelihood function in terms of \((h_1, h_2, \cdots)\):

\[
L(F) = h_1^2 \times \{(1 - h_1)(1 - h_2)\} \times \{(1 - h_1)(1 - h_2)h_3\} \\
\times \{(1 - h_1)(1 - h_2)(1 - h_3)\} \times \{(1 - h_1)(1 - h_2)(1 - h_3)h_4\} \\
\times \{(1 - h_1)(1 - h_2)(1 - h_3)(1 - h_4)h_5\} \\
\times \{(1 - h_1)(1 - h_2)(1 - h_3)(1 - h_4)(1 - h_5)h_6\}^2 \\
\times \{(1 - h_1)(1 - h_2)(1 - h_3)(1 - h_4)(1 - h_5)(1 - h_6)(1 - h_7)\}
\]

\[
= h_1^2(1 - h_1)^8 \times (1 - h_2)^8 \times h_3(1 - h_3)^6 \\
h_4(1 - h_4)^4 \times h_5(1 - h_5)^3 \times h_6^2(1 - h_6) \times (1 - h_7)
\]
KM estimation

- The likelihood function

\[L(F) = \prod_j h_j^{d_j} (1 - h_j)^{Y(v_j) - d_j} \]

where

\[d_j = \sum_{i=1}^n \delta_i I(U_i = v_j) = \# \text{failures at } v_j \]

\[Y(v_j) = \sum_{i=1}^n I(U_i \geq v_j) = \# \text{“at risk” at } v_j. \]
\[
\hat{h}_j = d_j / Y(v_j)
\]

\[
\hat{S}(t) = \begin{cases}
1 & t < v_1 \\
\prod_{i=1}^{j} (1 - \hat{h}_i) & v_j \leq t < v_{j+1}
\end{cases}
\]

which is the Kaplan-Meier Estimator.
Example

<table>
<thead>
<tr>
<th>v_j</th>
<th>$Y(v_j)$</th>
<th>d_j</th>
<th>\hat{h}_j</th>
<th>$\hat{S}(v_j) = \prod_{i=1}^{j} (1 - \hat{h}_i) = \hat{P}(T > v_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2/10</td>
<td>.8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
<td>1/7</td>
<td>.69 ($= .8 \times \frac{6}{7}$)</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1/5</td>
<td>.55 ($= .69 \times \frac{4}{5}$)</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1</td>
<td>1/4</td>
<td>.41 ($= .55 \times \frac{3}{4}$)</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>2</td>
<td>2/3</td>
<td>.14 ($= .41 \times \frac{1}{3}$)</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.14</td>
</tr>
</tbody>
</table>
Suppose that \(v_g \) denotes the largest \(v_j \) for which \(Y(v_j) > 0 \).

1. If \(d_g = Y(v_j) \), then \(\hat{S}(t) = 0 \) for \(t \geq v_g \).
2. If \(d_g < Y(v_j) \), then \(\hat{S}(t) > 0 \) but not defined for \(t > v_g \). (Not identifiable beyond \(v_g \)).

The survival distribution may not be estimable with right-censored data. Implicit extrapolation is sometimes used.

The KM estimator can also be used to estimate the survival function for the censoring distribution.
KM estimation

- KM estimator is a special MLE

\[1 - \hat{S}(t) = \text{argmax}_F L(F) \]

where \(F \) is the CDF for all discrete random variables (nonparametric MLE).
Self-Consistency

- No censoring: \(\hat{S}(t) = n^{-1} \sum_{i=1}^{n} I(T_i > t) \)

- Right censoring: \(\hat{S}(t) = n^{-1} \sum_{i=1}^{n} E(I(T_i > t)|U_i, \delta_i) \)
 1. \(E(I(T_i > t)|U_i, \delta_i = 1) = I(U_i > t) \)
 2. \(E(I(T_i > t)|U_i, \delta_i = 0) = S(t)/S(U_i)I(t \geq U_i) + I(U_i > t) \)

- Self-consistency iteration:
 \[
 \hat{S}_{new}(t) = n^{-1} \sum_{i=1}^{n} \left\{ I(U_i > t) + (1 - \delta_i) \frac{\hat{S}_{old}(t)}{\hat{S}_{old}(U_i)} I(U_i \leq t) \right\}
 \]

- The solution is still the KM estimator.
Redistribution of Mass

<table>
<thead>
<tr>
<th>Step 1</th>
<th>2</th>
<th>2</th>
<th>3⁺</th>
<th>5</th>
<th>5⁺</th>
<th>7</th>
<th>9</th>
<th>16</th>
<th>16</th>
<th>18⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
<td></td>
<td>1/70</td>
<td>1/70</td>
<td>1/70</td>
<td>1/70</td>
<td>1/70</td>
<td>1/70</td>
<td>1/70</td>
<td>1/70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/5(8/70)</td>
<td>1/5(8/70)</td>
<td>1/5(8/70)</td>
<td>1/5(8/70)</td>
<td>1/5(8/70)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2/10</td>
<td>0</td>
<td>8/70</td>
<td>0</td>
<td>24/175</td>
<td>24/175</td>
<td>48/175</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td></td>
<td>Assume this is somewhere > 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nelson-Aalen Estimator

- How to estimate the cumulative hazard function?

\[\hat{H}(t) = \sum_{i=1}^{j} \hat{h}_i \text{ for } v_j \leq t < v_{j+1} \]

- \(H(t) = -\log\{S(t)\} \)

\[-\log\{\hat{S}(t)\} = \sum_{i=1}^{j} \{-\log(1 - \hat{h}_i)\} \approx \sum_{i=1}^{j} \hat{h}_i = \hat{H}(t) \]

for \(v_j \leq t < v_{j+1} \).
Asymptotical properties of KM estimator

- As \(n \to \infty \), \(\hat{S}(t) \to S(t) \) in probability.
- As \(n \to \infty \), \(n^{1/2}\{\hat{S}(t) - S(t)\} \) converges to \(N(0, \sigma^2(t)) \) in distribution.
Asymptotical properties of KM estimator

- How to estimate the variance of $\hat{S}(t)$

- \hat{h}_i is an estimated probability.

- The variance of \hat{h}_i can be approximated by

 \[
 \frac{\hat{h}_i(1 - \hat{h}_i)}{Y(v_i)} = \frac{d_i(Y(v_i) - d_i)}{Y(v_i)^3}
 \]

- \hat{h}_i and \hat{h}_j are asymptotically independent (why?).
Asymptotical variance of KM estimator

For $v_j \leq t < v_{j+1}$: $\text{Var} \left(\ln \hat{S}(t) \right) \approx \sum_{i=1}^{j} \text{Var} \left(\ln(1 - \hat{h}_i) \right)$

δ-method

$= \sum_{i=1}^{j} \text{Var} \left(\hat{h}_i \right) \cdot \frac{1}{(1 - \hat{h}_i)^2}$

$= \sum_{i=1}^{j} \frac{d_i}{Y(v_i)(Y(v_i) - d_i)}$.
Asymptotical variance of KM estimator

Using the δ-method

$$\text{Var} \left(\hat{S}(t) \right) \approx \text{Var} \left(\ln \hat{S}(t) \right) \left(e^{\ln \hat{S}(t)} \right)^2$$

$$= \hat{S}(t)^2 \text{Var} \left(\ln \hat{S}(t) \right)$$

$$\approx \hat{S}(t)^2 \sum_{i=1}^{j} \frac{d_i}{Y(v_i)(Y(v_i) - d_i)} \quad (v_j \leq t < v_{j+1})$$

$$= \hat{\sigma}^2(t)$$

Greenwood's formula
The by-product of the Greenwood’s formula is the variance estimator for Nelson-Aalen Estimator:

$$\text{var}(\hat{H}(t)) = \sum_{i=1}^{j} \frac{d_{i}}{Y(v_{i})(Y(v_{i}) - d_{i})}, \quad v_{j} \leq t < v_{j+1}$$
Confidence Interval

- $\hat{S}(t) \pm 1.96\hat{\sigma}(t)$, drawbacks?

- By δ-method
 \[
 \text{var}(\log(- \log(\hat{S}(t)))) = \frac{\hat{\sigma}^2(t)}{(\log(\hat{S}(t)))^2 \hat{S}(t)^2}
 \]

- The confidence interval for $\hat{S}(t)$
 \[
 \left[\exp\{-e^{\log(- \log(\hat{S}(t))) - \frac{1.96\hat{\sigma}(t)}{\log(\hat{S}(t))\hat{S}(t)}}\}, \exp\{-e^{\log(- \log(\hat{S}(t))) + \frac{1.96\hat{\sigma}(t)}{\log(\hat{S}(t))\hat{S}(t)}}\} \right]
 \]
Median survival time

- How to estimate the median survival time

- Solving $\hat{S}(\hat{t}_M) = 1/2$, not always solvable!

- How to construct the CI for the median survival time?

 Suppose that

 1. $\text{pr}(\hat{S}_L(t) < S(t)) = \text{pr}(\hat{S}_U(t) > S(t)) = 0.975$.
 2. $\hat{S}_L(\hat{t}_{ML}) = 0.5$
 3. $\hat{S}_U(\hat{t}_{MU}) = 0.5$
 4. The confidence interval for t_M is $[\hat{t}_{ML}, \hat{t}_{MU}]$.
CI for median survival time
Median survival time

\[0.975 = \Pr(\hat{S}_L(t_M) < S(t_M)) = \Pr(\hat{S}_L(t_M) < 0.5) \]
\[= \Pr(\hat{S}_L(t_M) < \hat{S}_L(\hat{t}_{ML})) = \Pr(t_M \geq \hat{t}_{ML}) \]

\[0.975 = \Pr(\hat{S}_U(t_M) > S(t_M)) = \Pr(\hat{S}_U(t_M) > 0.5) \]
\[= \Pr(\hat{S}_U(t_M) > \hat{S}_U(\hat{t}_{MU})) = \Pr(t_M \leq \hat{t}_{MU}) \]
Restricted mean survival time

- The area under the survival curve is a nice summary for the curve.
- The AUC $\mu = \int_0^\tau S(t)dt$:
 $$
 \mu = tS(t)\bigg|_0^\tau + \int_0^\tau tf(t)dt
 = \tau S(\tau) + \int_0^\tau tf(t)dt
 = \int_0^\infty \min(t, \tau)f(t)dt = E\{\min(t, \tau)\}
 $$
- μ can be estimated as
 $$
 \int_0^\tau \hat{S}(t)dt.
 $$
Restricted mean survival time

- The restricted mean survival time $E\{\min(T, \tau)\}$ can also be estimated as

$$\hat{\mu}_{IPW} = n^{-1} \sum_{i=1}^{n} \frac{\delta_i + (1 - \delta_i)I(U_i \geq \tau)}{\hat{S}_C(T_i \wedge \tau)} T_i \wedge \tau,$$

where $\hat{S}_C(\cdot)$ is a consistent estimator of the survival function of the censoring time C. (How?)

- Rational

$$E \left[\frac{I(C_i \geq \tau \wedge T_i)}{\hat{S}_C(T_i \wedge \tau)} T_i \wedge \tau | T_i \right] \approx (T_i \wedge \tau) \frac{P(C_i \geq \tau \wedge T_i | T_i)}{S_C(T_i \wedge \tau)} = T_i \wedge \tau$$

- This type of estimator is called the inverse probability weighting estimator
Restricted mean survival time

- \(\hat{\mu} \) and \(\hat{\mu}_{IPW} \) are equivalent!

- The variance of the estimated area under the survival curve is complicated (the derivation will be given later).

\[
\frac{1}{n} \int_0^\tau \left\{ \int_t^\tau S(u)du \right\}^2 \frac{h(t)dt}{P(U \geq t)}.
\]
Area under the KM curve
Model Checking

- Under the exponential distribution: \(\log(S(t)) = -\lambda t \)
- Plot \(t \) vs. \(\log(\hat{S}(t)) \) to visually check the expected linear pattern.
- Under the Weibull distribution
 \[
 \log(-\log(S(t))) = p \log(\lambda) + p \log(t)
 \]
- Plot \(\log(t) \) vs. \(\log(-\log(\hat{S}(t))) \) to visually check the expected linear pattern.
Model Checking

\[\log(-\log(S(t))) \]
The distribution of $\hat{S}(t)$ as a process.