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Abstract
We estimate a general non-linear asset pricing model and optimal portfolios with

deep neural networks applied to all U.S. equity data combined with a substantial
set of macroeconomic and firm-specific information. Our crucial innovation is the
use of the no-arbitrage condition as part of the neural network algorithm. We es-
timate the stochastic discount factor (SDF or pricing kernel) that explains all asset
prices from the conditional moment constraints implied by no-arbitrage. For this
purpose, we combine three different deep neural network structures in a novel way:
A feed-forward network to capture non-linearities, a recurrent (LSTM) network to
find a small set of economic state processes, and a generative adversarial network to
identify the portfolio strategies with the most unexplained pricing information. Our
SDF is a portfolio of all traded assets with time-varying portfolio weights which are
general functions of the observable firm-specific and macroeconomic variables. Our
model allows us to understand what are the key factors that drive asset prices, identify
mis-pricing of stocks and generate the optimal portfolio with the highest risk-adjusted
return. Empirically, our optimal portfolio strategies have a risk-adjusted return out-
of-sample (annual Sharpe-ratio 2.1) that outperforms all other benchmark models in
the literature.

Introduction

Machine Learning in Finance
In efficient markets, asset returns are dominated by unforecastable news.
Hence, financial returns exhibit a very low signal-to-noise ratio which dis-
tinguishes them from other applications of machine learning. In this paper
we include financial constraints (no-arbitrage) in the learning algorithm to
significantly improve the signal and obtain considerably better results than
with off-the-shelf machine learning algorithms.

Research questions:
1. Explain asset prices for different assets
2. Design optimal risk-adjusted portfolios
3. Find mis-priced assets to earn alpha
4. Use all available information in the market and understand which infor-

mation is relevant

This Paper
We estimate the pricing model with deep neural networks. The crucial in-
novation is to include the no-arbitrage condition in the neural network algo-
rithm and combine three neural network structures in a novel way:
1. Non-linearity: Feed-forward network captures non-linearities
2. Time-variation: Recurrent (LSTM) network finds a small set of economic

state processes
3. Pricing all assets: Generative adversarial network identifies the states and

portfolios with most unexplained pricing information
4. Dimension reduction: Regularization through no-arbitrage condition
5. Signal-to-noise ratio: No-arbitrage conditions increase the signal-to-

noise ratio
⇒General model that includes all existing models as a special case

Contribution
1. Empirically outperforms all benchmark models in terms of out-of-sample

Sharpe, explained variation and pricing errors.
2. Optimal portfolio has out-of-sample annual Sharpe-ratio of 2.1.
3. Non-linearities and interaction between firm information matters.
4. Most relevant firm characteristics are price trends, liquidity, and value.

No-Arbitrage Asset Pricing

The Stochastic Discount Factor (SDF)
The key object in No-Arbitrage Pricing Theory (APT) is the stochastic dis-
count factor (SDF, also called pricing kernel or equivalent martingale mea-
sure) which explains differences in risk and asset prices. It is defined as a
stochastic process {Mt} such that for any security with payoff xt+1 at time
t + 1, the price of that security at time t is

Pt = Et[Mt+1xt+1]

Equivalently the fundamental no-arbitrage condition can be expressed as

Et[Mt+1R
e
i,t+1] = 0

whereRei,t+1 = Ri,t+1−Rf is the excess return (return minus risk-free rate)
of asset i at time t+1. Without loss of generality the SDF is the gross return
of the SDF portfolio:

Mt+1 = 1 +

N∑
i=1

wi,tR
e
i,t+1

The SDF portfolio −
∑N
i=1wi,tR

e
i,t+1 is the mean-variance efficient portfo-

lio with the highest conditional Sharpe-ratio.

Equivalent factor model representation
The no-arbitrage condition is equivalent to a beta representation

Et[Rei,t+1] =
Covt(R

e
i,t+1, Ft+1)

V art(Ft+1)
· Et[Ft+1] = βi,tµ

F
t

with factor Ft = 1−Mt. Without loss of generality no-arbitrage is equiva-
lent to a one-factor model with time-varying loadings:

Ret+1 = βtFt+1 + εt+1

We estimate portfolio weights of the SDF factor and the risk-exposure β as
general functions of all available information at time t.

Model
Loss Function (General Method of Moments)

We estimate the weights of the SDF portfolio by minimizing the fundamen-
tal no-arbitrage moment conditions. The pricing formula is equivalent to an
infinite number of moment conditions. For any Ft-measurable variable Îi,t,
the corresponding moment condition equals

E[Mt+1R
e
i,t+1Îi,t] = 0

which implies a loss function. The empirical loss function minimizes the
sample mean pricing error (corrected for the different number of time-series
observation for each asset):

L(Î) =
1

N

N∑
i=1

|Ti|
T

( 1

|Ti|
∑
t∈Ti

Mt+1R
e
i,t+1Îi,t

)2
Model Structure
We use a “recurrent” network followed by a “feed-forward” networks to
estimate the portfolio weights of the SDF factor. We refer to this network
as the SDF Network. We construct conditioning variables via a Conditional
Network with a similar neural architecture. The Conditional Network serves
as an adversary and competes with the SDF Network to identify the assets
and portfolio strategies that are the hardest to explain.

GAN - Generative Adversarial Network

SDF Network and Conditional Network play a zero-sum game. We itera-
tively update the two networks. For a given conditional variable Ît, the SDF
Network minimizes the loss. For a given SDF, the Conditional Network
finds Ît with the largest loss (most mispricing). The intuition is to find the
economic states and assets with the most pricing information.

Recurrent Neural Network

We use recurrent neural network (RNN) with Long-Short-Term-Memory
(LSTM) cells to transform all macroeconomic time-series into a low dimen-
sional vector of stationary state variables. This is because:
1. Economic time-series data is often non-stationary. Therefore, necessary

transformation is required.
2. Asset prices depend on economic states. Therefore, simple differencing

of non-stationary data is not sufficient.
Four macro state variables (LSTM outputs) are enough to capture macro-
economic movements.
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Model Evaluation
Evaluation Metrics

We evaluate the performance of our model by calculating the Sharpe-ratio
of the SDF portfolio, the amount of unexplained variation and the pricing
errors of the model. We obtain the systematic and non-systematic return

component by projecting returns on the risk exposure β, which is estimated
by fitting a feed-forward network to predict Et[Ret+1Ft+1].

εt+1 =
(
IN − βt(β>t βt)−1β>t

)
Ret+1

We calculate the following three performance metrics:
• Sharpe ratio of SDF factor (SR)

E[F ]√
V ar(F )

•Unexplained variation (UV)

1

T

T∑
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[ 1

|Nt|
∑
i∈Nt
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• Time-weighted average pricing error (Alpha)
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Benchmark Models

We compare our GAN model with three benchmark models, including (1)
Fama-French factor investing approach (FF-3 and FF-5); (2) linear asset
pricing models using Least Squares (LS) and Lasso Regression (Lasso); and
(3) return forecasting with feed-forward network (FFN) as described in Gu
et.al. (2018).

Data

Returns and Firm Specific Characteristic Variables
We obtained monthly equity returns data for all securities on CRSP from
1967 to 2016. we constructed 46 firm-specific characteristics either de-
fined on the Kenneth French Data Library or compiled by Freyberger et.al.
(2019). All these variables are constructed from either accounting variables
from CRSP/Compustat database or past returns from CRSP.

Macroeconomic Variables
We constructed a collection of 178 macroeconomic variables, which come
from three sources. We take 124 macroeconomic predictors from the FRED-
MD database. We also take cross-sectional median time series of the 46 firm
characteristics and an additional 8 macroeconomic predictors from Welch
et.al. (2007).

Empirical Results

Performance on Individual Stocks
•Our SDF portfolio has the highest risk-adjusted payoff (Sharpe-ratio) out-

of-sample and lower risk as measure by drawdown:
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FFN
GAN
LS
Lasso

SR (monthly) Max Loss Max Drawdown

Model Train Valid Test Train Valid Test Train Valid Test

FF-3 0.27 -0.09 0.19 -2.45 -2.85 -4.31 7 10 10
FF-5 0.48 0.40 0.22 -2.62 -2.33 -4.90 4 3 7
LS 1.20 0.65 0.44 -2.19 -2.04 -4.55 1 4 4

Lasso 1.11 0.88 0.42 -2.83 -1.85 -6.56 2 3 7
FFN 0.30 0.28 0.36 -3.88 -4.93 -4.07 7 4 5

GAN 3.26 0.97 0.60 -0.09 -1.01 -4.48 1 2 3

•Our model explains the variation and expected returns of individual
stocks better than the other benchmark models.

UV Alpha (×10−4)
Model Train Valid Test Train Valid Test

LS 0.88 0.95 0.96 0.80 5.39 1.40
Lasso 0.86 0.94 0.95 0.80 5.30 1.33
FFN 0.84 0.93 0.94 0.84 5.46 1.35

GAN 0.81 0.91 0.93 0.81 5.39 1.31

• Conventional Fama-French factors do not span SDF factor.

Mkt-RF SMB HML RMW CMA intercept

coefficient 0.07 0.01 0.03 0.13 -0.01 0.38
correlation 0.14 -0.11 0.23 0.31 0.04 -

Predictive Pricing Performance

• Portfolios with higher predicted β have higher average returns. We sort
stocks into decile portfolios based on their conditional β. The first decile
portfolio is based on the smallest and the last on the largest decile.
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Model Interpretation and Structure of Weights

•We rank the 46 firm characteristics based on their sensitivity. The
most important variables are Short-Term Reversal (ST REV), Momen-
tum (r12 2) and Standard Unexplained Volume (SUV).
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•Nonlinear interactions between characteristics are important, which can-
not be captured by standard models. The plots show the non-linear rela-
tionship in the SDF portfolio weights for Short-Term Reversal (ST REV),
Momentum (r12 2) and Standard Unexplained Volume (SUV) and their
interactions.
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