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Hype: Machine Learning in Investment

Same reporter 3 
weeks later

Efficient markets: Asset returns dominated by unforecastable news

⇒ Financial return data has very low signal-to noise ratio

⇒ This paper: Including financial constraints (no-arbitrage) in learning
algorithm significantly improves signal
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Motivation: Asset Pricing

The Challenge of Asset Pricing

One of the most important questions in finance:

Why are asset prices different for different assets?

No-Arbitrage Pricing Theory: Stochastic discount factor SDF
(also called pricing kernel or equivalent martingale measure)
explains differences in risk and asset prices

Fundamental question: What is the SDF?

Challenges:

SDF should depend on all available economic information:
Very large set of variables
Functional form of SDF unknown and likely complex
SDF needs to capture time-variation in economic conditions
Risk premium in stock returns has a low signal-to-noise ratio
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This paper

Goals of this paper:

General non-linear asset pricing model and optimal portfolio design

⇒ Deep-neural networks applied to all U.S. equity data and large sets
of macroeconomic and firm-specific information.

Why is it important?

1 Stochastic discount factor (SDF) generates tradeable portfolio with
highest risk-adjusted return
(Sharpe-ratio=expected excess return/standard deviation)

2 Arbitrage opportunities

Find underpriced assets and earn “alpha”

3 Risk management

Understand which information and how it drives the SDF
Manage risk exposure of financial assets
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Contribution of this paper

Contribution

This Paper: Estimate the SDF with deep neural networks

Crucial innovation: Include no-arbitrage condition in the neural
network algorithm and combine four neural networks in a novel way

Key elements of estimator:

1 Non-linearity: Feed-forward network captures non-linearities
2 Time-variation: Recurrent (LSTM) network finds a small set of

economic state processes
3 Pricing all assets: Generative adversarial network identifies the

states and portfolios with most unexplained pricing information
4 Dimension reduction: Regularization through no-arbitrage

condition
5 Signal-to-noise ratio: No-arbitrage conditions increase the

signal to noise-ratio

⇒ General model that includes all existing models as a special case
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Contribution of this paper

Empirical Contributions

Empirically outperforms all benchmark models.

Optimal portfolio has out-of-sample annual Sharpe ratio of 2.1.

Non-linearities and interaction between firm information matters.

Most relevant firm characteristics are price trends, profitability, and
capital structure variables.
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Literature (Partial List)

Deep-learning for predicting asset prices

Feng, Polson and Xu (2019)
Gu, Kelly and Xiu (2018)
Feng, Polson and Xu (2018)
Messmer (2017)

⇒ Predicting future asset returns with feed forward network
Gu, Kelly and Xiu (2019)
Heaton, Polson and Witte (2017)

⇒ Fitting asset returns with an autoencoder

Linear or kernel methods for asset pricing of large data sets

Lettau and Pelger (2018): Risk-premium PCA
Feng, Giglio and Xu (2017): Risk-premium lasso
Freyberger, Neuhierl and Weber (2017): Group lasso
Kelly, Pruitt and Su (2018): Instrumented PCA
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The Model

No-arbitrage pricing

Re
i,t+1 = excess return (return minus risk-free rate) at time t + 1 for

asset i = 1, ...,N

Fundamental no-arbitrage condition:
for all t = 1, ...,T and i = 1, ...,N

Et [Mt+1R
e
i,t+1] = 0

Et [.] expected value conditioned on information set at time t
Mt+1 stochastic discount factor SDF at time t + 1.

Conditional moments imply infinitely many unconditional moments

E[Mt+1R
e
t+1,i It ] = 0

for any Ft-measurable variable It
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The Model

No-arbitrage pricing

Without loss of generality SDF is projection on the return space

Mt+1 = 1−
N∑
i=1

wi,tR
e
i,t+1

⇒ Optimal portfolio
∑N

i=1 wi,tR
e
i,t+1 has highest conditional

Sharpe-ratio

Portfolio weights wi,t are a general function of macro-economic
information It and firm-specific characteristics Ii,t :

wi,t = w(It , Ii,t),

⇒ Need non-linear estimator with many explanatory variables!

⇒ Use a feed forward network to estimate wi,t



Introduction Model Estimation Empirical Results Simulation Conclusion

The Model

Equivalent factor model representation

No-arbitrage condition is equivalent to

Et [R
e
i ,t+1] =

covt(R
e
i ,t+1,Ft+1)

vart(Ft+1)
· Et [Ft+1]

= βi ,tEt [Ft+1]

with factor Ft = 1−Mt .

⇒ Without loss of generality we have a factor representation

Re
t+1 = βtFt+1 + εt+1.
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The Model

Objects of Interest

We use different approaches to estimate:

The SDF factor Ft

The risk loadings βt

The unexplained residual êt = (IN − βt−1(β>t−1βt−1)−1β>t−1)Re
t

Asset Pricing Performance Measure

Sharpe ratio of SDF factor: SR = Ê[Ft ]√
V̂ar(Ft)

Explained variation: EV = 1− ( 1
T

∑T
t=1

1
Nt

∑Nt
i=1(ε̂i,t+1)2)

( 1
T

∑T
t=1

1
Nt

∑Nt
i=1(Re

i,t+1)2)

cross-sectional mean R2: XS-R2 = 1−
1
N

∑N
i=1

Ti
T

(
1
Ti

∑
t∈Ti

ε̂i,t+1

)2

1
N

∑N
i=1

Ti
T

(
1
Ti

∑
t∈Ti

R̂i,t+1

)2
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Loss Function

Objective Function for Estimation

Estimate SDF portfolio weights w(.) to minimize the no-arbitrage
moment conditions

For a set of conditioning variables Ît the loss function is

L(Ît) =
1

N

N∑
i=1

Ti

T

( 1

Ti

Ti∑
t=1

Mt+1R
e
i,t+1 Ît

)2

.

Allows unbalanced panel.

How can we choose the conditioning variables Ît = f (It , Ii,t) as
general functions of the macroeconomic and firm-specific
information?

⇒ Generative Adversarial Network (GAN) chooses Ît !
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Generative Adversarial Network (GAN)

Determining Moment Conditions

Two networks play zero-sum game:

1 one network creates the SDF Mt+1

2 other network creates the conditioning variables Ît

Iteratively update the two networks:

1 for a given Ît the SDF network minimizes the loss
2 for a given SDF the conditional networks finds Ît with the

largest loss (most mispricing)

⇒ Intuition: find the economic states and assets with the most pricing
information
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Recurrent Neural Network (RNN)

Transforming Macroeconomic Time-Series

Problems with economic time-series data

Time-series data is often non-stationary ⇒ transformation
necessary
Business cycles can affect pricing ⇒ assuming Markovian
structure of the pricing kernel not sufficient
Redundant information ⇒ large number of predictors prove to
negatively impact model performance

Solution: Recurrent Neural Network (RNN) with Long-Short-Term
Memory (LSTM) cells

Transform all macroeconomic time-series into a low dimensional
vector of stationary state variables



Introduction Model Estimation Empirical Results Simulation Conclusion

Neural Networks

Model Architecture
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Data

Data

50 years of monthly observations: 01/1967 - 12/2016.

Monthly stock returns for all U.S. securities from CRSP
(around 31,000 stocks)
Use only stocks with with all firm characteristics
(around 10,000 stocks)

46 firm-specific characteristics for each stock and every month
(usual suspects) ⇒ Ii,t
normalized to cross-sectional quantiles

178 macroeconomic variables
(124 from FRED, 46 cross-sectional median time-series for
characteristics, 8 from Goyal-Welch) ⇒ It

T-bill rates from Kenneth-French website

Training/validation/test split is 20y/5y/25y
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Benchmark models

Benchmark models

1 LS & EN - Linear factor models:
The optimal portfolio weights wt = Itθ is linear in characteristics. We
minimize loss function

1

2

∥∥∥ 1

T
R̃K>1− 1

T
R̃K>R̃Kθ

∥∥∥2

2
+ λ1‖θ‖1 +

1

2
λ2‖θ‖2

2.

R̃K
t+1 = I>t Re

t+1 are K portfolios weighted by characteristics It .

2 FFN - Deep learning return forecasting (Gu et al. (2018)):

Predict conditional expected returns Et [Ri,t+1]
Empirical loss function for prediction

1

NT

N∑
i=1

T∑
t=1

(Ri,t+1 − g(It , Ii,t))2

Use only simple feedforward network for forecasting



Introduction Model Estimation Empirical Results Simulation Conclusion

Results - Cross Section of Individual Stock Returns

Table: Performance of Different SDF Models

SR EV Cross-Sectional R2

Model Train Valid Test Train Valid Test Train Valid Test

LS 1.35 0.80 0.45 0.09 0.04 0.03 0.03 0.04 0.02

EN 1.01 0.95 0.47 0.15 0.07 0.06 0.04 0.07 0.04

FFN 0.30 0.28 0.36 0.16 0.07 0.06 0.01 0.05 0.05

GAN 3.26 0.97 0.60 0.21 0.10 0.08 0.01 0.05 0.05
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Results - Cross Section of Individual Stock Returns

Table: SDF Factor Portfolio Performance

SR Max Loss Max Drawdown

Model Train Valid Test Train Valid Test Train Valid Test

FF-3 0.27 -0.09 0.19 -2.45 -2.85 -4.31 7 10 10

FF-5 0.48 0.40 0.22 -2.62 -2.33 -4.90 4 3 7

LS 1.35 0.80 0.45 -1.82 -1.50 -3.67 2 2 7

EN 1.01 0.95 0.47 -3.22 -2.21 -5.99 2 3 6

FFN 0.30 0.28 0.36 -3.88 -4.93 -4.07 7 4 5

GAN 3.26 0.97 0.60 -0.09 -1.01 -4.48 1 2 3
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Results - Cross Section of Individual Stock Returns

Figure: Cumulated Normalized SDF Portfolio
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Results - Size Effect

Figure: GAN SDF Weight ω and Size (LME)
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⇒ SDF portfolio is not predominantly investing in small stocks.
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Results - Sharpe Ratio for Forecasting Approach

Table: Sharpe Ratio of Long-Short Portfolios with FFN

Quantile SR (Train) SR (Valid) SR (Test)

(i) Equally-Weighted
1% 1.08 0.75 0.65
5% 1.26 1.15 0.70

10% 1.11 1.22 0.65
25% 1.03 1.20 0.56
50% 0.96 1.16 0.54

(ii) Value-Weighted
1% 0.77 0.55 0.41
5% 0.79 0.77 0.39

10% 0.59 0.46 0.32
25% 0.46 0.09 0.19
50% 0.42 0.23 0.18

⇒ Long-short portfolio is based on extreme quantiles.
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Results - Predictive Performance

Figure: Cumulative Excess Return of Decile Sorted Portfolios by GAN
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⇒ Risk loading predicts future stock returns.
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Results - Decile Sorted Portfolios

Table: Explained Variation and Pricing Errors for Short-Term Reversal
Sorted Portfolios

ST REV Explained Variation (EV) Cross-Sectional R2

Decile Elastic Net FFN GAN Elastic Net FFN GAN

1 0.91 0.92 0.91 0.96 0.96 0.96
2 0.95 0.96 0.95 0.89 0.94 0.96
3 0.94 0.96 0.95 0.94 0.95 0.96
4 0.93 0.93 0.93 0.96 0.95 0.94
5 0.91 0.92 0.91 1.00 0.99 0.96
6 0.85 0.88 0.92 0.96 0.99 0.99
7 0.69 0.78 0.88 0.84 0.93 1.00
8 0.48 0.61 0.81 0.63 0.80 0.99
9 0.19 0.32 0.64 0.25 0.43 0.91

10 -0.03 -0.11 0.29 -0.05 -0.47 0.68

Overall 0.70 0.72 0.81 0.87 0.89 0.95

Explained variation and pricing errors for decile-sorted portfolios based on Short-Term Reversal (ST REV).
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Results - Decile Sorted Portfolios

Table: Explained Variation and Pricing Errors for Momentum Sorted
Portfolios

r12 2 Explained Variation (EV) Cross-Sectional R2

Decile Elastic Net FFN GAN Elastic Net FFN GAN

1 0.22 0.25 0.48 0.29 0.30 0.71
2 0.49 0.52 0.72 0.73 0.82 0.98
3 0.68 0.73 0.86 0.90 0.97 1.00
4 0.81 0.85 0.91 0.95 1.00 0.99
5 0.89 0.90 0.92 1.00 1.00 0.98
6 0.92 0.90 0.89 1.00 0.99 0.98
7 0.91 0.89 0.86 0.99 0.99 0.98
8 0.88 0.88 0.84 0.98 0.99 0.99
9 0.84 0.85 0.82 0.99 1.00 1.00

10 0.80 0.79 0.77 1.00 0.99 0.99

Overall 0.61 0.63 0.73 0.86 0.87 0.95

Explained variation and pricing errors for decile-sorted portfolios based on Momentum (r12 2).
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Results - ST REV and r12 2 Double Sorted Portfolios

ST REV r12 2 Explained Variation (EV) Cross-Sectional R2

Elastic Net FFN GAN Elastic Net FFN GAN

1 1 0.58 0.70 0.77 0.74 0.88 0.92
1 2 0.85 0.86 0.88 0.99 1.00 1.00
1 3 0.90 0.91 0.89 0.95 0.95 0.97
1 4 0.85 0.89 0.87 0.95 0.98 1.00
1 5 0.80 0.86 0.83 0.93 0.99 1.00
2 1 0.48 0.54 0.68 0.84 0.91 0.98
2 2 0.79 0.81 0.87 1.00 0.99 0.97
2 3 0.87 0.86 0.83 0.97 0.93 0.93
2 4 0.80 0.83 0.77 0.93 0.94 0.95
2 5 0.79 0.82 0.80 0.90 0.96 0.98
3 1 0.24 0.26 0.53 0.45 0.54 0.92
3 2 0.60 0.69 0.82 0.92 1.00 0.95
3 3 0.81 0.83 0.82 0.98 0.99 0.95
3 4 0.86 0.85 0.76 1.00 0.99 0.96
3 5 0.78 0.77 0.73 1.00 1.00 0.98
4 1 -0.13 -0.22 0.21 -0.55 -0.61 0.66
4 2 0.20 0.41 0.69 0.45 0.89 0.95
4 3 0.54 0.71 0.82 0.79 0.99 0.97
4 4 0.72 0.80 0.80 0.90 0.99 0.99
4 5 0.68 0.67 0.71 0.93 0.95 1.00
5 1 -0.51 -0.81 -0.17 -4.71 -15.39 0.97
5 2 -0.17 -0.06 0.36 -0.45 -0.16 0.88
5 3 0.18 0.38 0.63 0.34 0.59 0.91
5 4 0.35 0.44 0.57 0.73 0.86 0.99
5 5 0.43 0.44 0.56 0.73 0.75 0.89

Overall 0.49 0.52 0.65 0.83 0.88 0.96
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Results - SDF Factors for Different Models

Figure: Correlation between SDF Factors for Different Models
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Results - SDF Factor and Fama-French Factors

Table: GAN-SDF Factor and Fama-French 5 Factors

Mkt-RF SMB HML RMW CMA intercept

Regression Coefficients 0.07*** 0.01 0.03 0.13*** -0.01 0.38***
(0.01) (0.02) (0.02) (0.02) (0.03) (0.04)

Correlation 0.14 -0.11 0.23 0.31 0.04 -

Out-of-sample correlation and regression of GAN SDF factor on the Fama-French 5 factors. The regression intercept
is the monthly time-series pricing error of the SDF portfolio for the Fama-French model. Standard errors are in
parenthesis.
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Results - Characteristic Importance by GAN
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Results - Macroeconomic Hidden State Processes



Introduction Model Estimation Empirical Results Simulation Conclusion

Results - SDF Weights

Relationship between Weights and Characteristics
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Figure: Weight as a function of Size (LME) and Book-to-Market Ratio
(BEME)

⇒ Size and value have close to linear effect
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Results - SDF Weights

Relationship between Weights and Characteristics
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Figure: Weight as a function of Short-Term Reversal (ST REV)

⇒ non-linear effect
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Results - SDF Weights

Relationship between Weights and Characteristics
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Figure: Weight as a function of Size (LME) and Book-to-Market Ratio
(BEME)

⇒ Size and value have non-linear interaction!
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Results - SDF Weights

Relationship between Weights and Characteristics
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Figure: Weight as a function of Size (LME), Book-to-Market Ratio
(BEME) and Short-Term Reversal (ST REV).

⇒ Complex interaction between multiple variables!
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Simulation Setup

Motivation

We illustrate with simulations that

the no-arbitrage condition in GAN is necessary to find the
SDF in a low-signal to noise setup

the flexible form of GAN is necessary to correctly capture the
interactions between characteristics

the LSTM-RNN is necessary to correctly incorporate
macroeconomic dynamics in the pricing kernel
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Simulation Setup

Setup

Excess returns follow a no-arbitrage model with SDF factor F

Re
i,t+1 = βi,tFt+1 + εi,t+1.

The SDF factor follows Ft
i.i.d.∼ N (µF , σ

2
F ).

The idiosyncratic component εi,t
i.i.d.∼ N (0, σ2

e ).

N = 500 and T = 600. Define
training/validation/test=250,100,250.

The SDF factor has σ2
F = 0.1 and SRF = 1. The idiosyncratic noise

variance σ2
e = 1.
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Simulation Setup

Setup

We consider two different formulations for the risk loadings

1 Two characteristics:

βi,t = C
(1)
i,t · C

(2)
i,t with C

(1)
i,t ,C

(2)
i,t

i.i.d.∼ N (0, 1).

2 One characteristic and one macroeconomic state process:

βi,t = C
(1)
i,t · b(ht), ht = sin(π ∗ t/24) + εht .

b(h) =

{
1 if h > 0
−1 otherwise.

We observe only the macroeconomic time-series Zt = µMt + ht . All
innovations are independent and normally distributed:

C
(1)
i,t

i.i.d.∼ N (0, 1) and εht
i.i.d.∼ N (0, 0.25).
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Simulation Results - Setup I

Loadings β with 2 characteristics

(a) Population Model (b) GAN

(c) FFN (d) LS
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Simulation Results - Setup I

Table: Performance of Different SDF Models

Sharpe Ratio EV Cross-sectional R2

Model Train Valid Test Train Valid Test Train Valid Test

Population 0.96 1.09 0.94 0.16 0.15 0.17 0.17 0.15 0.17

GAN 0.98 1.11 0.94 0.12 0.11 0.13 0.10 0.09 0.07

FFN 0.94 1.04 0.89 0.05 0.04 0.05 -0.30 -0.09 -0.33

LS 0.07 -0.10 0.01 0.00 0.00 0.00 0.00 0.01 0.01
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Simulation Results - Setup II

Observed Macroeconomic Variable

First order difference of Macroeconomic Variable



Introduction Model Estimation Empirical Results Simulation Conclusion

Simulation Results - Setup II

True hidden Macroeconomic State

Fitted Macroeconomic State by LSTM
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Simulation Results - Setup II

Table: Performance of Different SDF Models

Sharpe Ratio EV Cross-sectional R2

Model Train Valid Test Train Valid Test Train Valid Test

Population 0.89 0.92 0.86 0.18 0.18 0.17 0.19 0.20 0.15

GAN 0.79 0.77 0.64 0.18 0.18 0.17 0.19 0.20 0.15

FFN 0.05 -0.05 0.06 0.02 0.01 0.02 0.01 0.01 0.02

LS 0.12 -0.05 0.10 0.16 0.16 0.15 0.15 0.18 0.14
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Conclusion

Summary

Linear models perform well because when considering
characteristics in isolation, the models are approximately
linear.

Non-linearities matter for the interaction.

Most relevant variables are price trends and liquidity.

Macroeconomic data has a low dimensional factor structure.

Pricing all individual stocks leads to better pricing models on
portfolios.

SDF structure stable over time.

Mean-variance efficient portfolio implied by pricing kernel
highly profitable in a risk-adjusted sense.
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