Deep Learning in Asset Pricing

Luyang Chen T8 Markus Pelger ¥ Jason Zhu 15

TInstitute for Computational & Mathematical Engineering, Stanford University
*Department of Management Science & Engineering, Stanford University
§ Advanced Financial Technologies Laboratory, Stanford

May 28, 2019

May 28, 2019 Deep Learning in Asset Pricing



Introduction

Hype: Machine Learning in Finance

O waIT, T can USE

CLASSIFICATTON To PREDICT

STOCK RICES. T AM GoInG
Q 10 GeT R1e g

2018

T AM NOT SURE TF TH1s mopeL

IS LERRNING SomETHING OR IF
TTS A MONKEY THeowInG DAkTe.

Portfolio Management

Algorithmic Trading
Fraud Detection
e Etc ...

May 28, 2019 Deep Learning in Asset Pr 2 /55




Introduction

Motivation: Asset Pricing

The Challenge of Asset Pricing

e One of the most important questions in finance is:
Why are asset prices different for different assets?

e No-Arbitrage Pricing Theory:
Stochastic discount factor (SDF) explains differences in
risk and asset prices.

e Fundamental Question:
What is the SDF?
e Challenges:

e SDF should depend on all available economic information

e Functional form of SDF is unknown and likely conplex

e SDF needs to capture time-variation in economic conditions
e Risk premium in stock returns has a low signal-to-noise ratio
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Introduction

This paper

Goals of this paper:

General non-linear asset pricing model and optimal portfolio design

= Deep-neural networks applied to all U.S. equity data and large
sets of macroeconomic and firm-specific information.

Why is it important?

@ Stochastic discount factor (SDF) generates tradeable portfolio
with highest risk-adjusted return
(Sharpe-ratio=expected excess return/standard deviation)
® Arbitrage opportunities
e Find underpriced assets and earn “alpha”
©® Risk management

e Understand which information and how it drives the SDF
e Manage risk exposure of financial assets
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Introduction

Contribution of this paper

e This Paper: Estimate the SDF with deep neural networks

e Crucial innovation: Include no-arbitrage condition in the neural
network algorithm and combine four neural networks in a novel way

e Key elements of estimator:

@ Non-linearity: Feed-forward network captures non-linearities

® Time-variation: Recurrent (LSTM) network finds a small set of
economic state processes

© Pricing all assets: Generative adversarial network identifies the
states and portfolios with most unexplained pricing information

@ Dimension reduction: Regularization through no-arbitrage
condition

@ Signal-to-noise ratio: No-arbitrage conditions improve the risk
premium signal

= General model that includes all existing models as a special case
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Introduction

Contribution of this paper

Empirical Contributions

e Empirically outperforms all benchmark models.
e Optimal portfolio has out-of-sample annual Sharpe ratio of 2.6.
e Non-linearities and interaction between firm information matters.

e Most relevant firm characteristics are price trends, profitability, and
capital structure variables.
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Introduction

Literature (Partial List)

e Deep-learning for predicting asset prices

e Feng, Polson and Xu (2019)

Gu, Kelly and Xiu (2018)

Feng, Polson and Xu (2018)

Messmer (2017)

Predicting future asset returns with feed forward network
Gu, Kelly and Xiu (2019)

Heaton, Polson and Witte (2017)

Fitting asset returns with an autoencoder

‘U’..‘U’...

e Linear or kernel methods for asset pricing of large data sets

o Lettau and Pelger (2018): Risk-premium PCA

e Feng, Giglio and Xu (2017): Risk-premium lasso

o Freyberger, Neuhierl and Weber (2017): Group lasso
o Kelly, Pruitt and Su (2018): Instrumented PCA
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Model and Estimation

No-Arbitrage Pricing Theory

e A stochastic discount factor! is a stochastic process {M,},
such that for any asset i/ with payoff x; ;11 at time t + 1, the
price of that asset at time t is

Pit = E¢[Mey1xi e11]-

e Let Rf,,; = Ri+y1 — Rr. Fundamental no-arbitrage
condition:
Ee[Mer1R7 1] = 0.

e |t implies infinitely many unconditional moments:
E[M:11RF ¢ 1ie] = 0

for any Fi-measurable variable /; ;.

!Examples of SDF are included in the appendix [39]-[40].
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Model and Estimation

e Without loss of generality, SDF is the projection on the return

space?

N
Mea=1— Z WieREeys.
i=1
= The optimal portfolio F;11 = Z,N:l witRE i has the highest
conditional Sharpe ratio.

e The portfolio weights w; ; are a general function of
macro-economic information /; and firm-specific characteristics
I,',ti

W,"t = W(It, I,'7t).
= Need non-linear estimator with many explanatory variables!
= We use neural networks to estimate w; ;.

2See e.g. Back [2010]. The SDF is an affine transformation of the tangency
portfolio.
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Model and Estimation

Equivalent Factor Model Representation

e No-arbitrage condition is equivalent to

cove(RPyy1s Feq1)
Ee[R711] = var;(FH_l) “Ee[Feia]

= 5i,tEt[Ft+1]

with factor F; =1 — M;.

= Without loss of generality we have a factor representation

tr1 = BeFer1 + €ry1.
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Model and Estimation

Estimation

e Estimate SDF portfolio weights w(-) to minimize the
no-arbitrage moment conditions.

e For a set of conditioning variables IA,-,t = &I, li¢), the
corresponding loss function is

2

2

. 1 Ti || 1 .
L(w|g, I, /i,t) = N 7’ T Z Mt+1R,$t+1g(lt, Ii,t)
i=1 " teT;
e How can we choose the conditioning variables IA,-,t as general
functions of the macroeconomic and firm-specific information?

= Generative Adversarial Network (GAN)3 chooses g!

3A brief introduction of GAN by Goodfellow et al. [2014] is included in the
appendix [41].
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Model and Estimation

Generative Adversarial Network (GAN)

Formulate GMM as Zero-Sum Game

e Two networks play a zero-sum game:
@ SDF Network (w) creates the SDF M, ;. A
® Conditional Network (g) generates conditioning variables /; ;.
e Alternatively update the two networks?:

@ For a given set of conditioning variables Zt SDF network is
updated to minimize the loss.

® For a given estimation of the SDF, Conditional Network
finds Jj ; with the largest loss (most mis-pricing).

e Intuition: find the economic states and assets with the most
pricing information.

“Model calibration details are included in the appendix [46] and [47].
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Model and Estimation

Neural Network Building Blocks

SDF Network and Conditional Network are independent, but share
a similar structure.

e Feedforward network* captures non-linearities.

e Recurrent network with LSTM cells® transforms all
macroeconomic time-series into a low dimensional vector of
stationary state variables.

- Time-series data is often non-stationary.

- Business cycles can affect pricing.
- Redundant information.

“The definition of feedforward network is included in the appendix [42].

®The definition of LSTM cells is included in the appendix [44] and [45].
May 28, 2019 Deep Learning in Asset Pricing
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Model and Estimation

Model Architecture

SDF Network:

Update parameters to minimize loss

Whe 1)

Construct

SDF

Iy, 1y Iy, Mqiq
P fooeees |
! Feed g (hf' 1) ! Loss L Ite{at}ve
| Forward Calculation Optimizer
1 Network : with GAN
1

e
Rt+1

[}
I Conditional Network:

I'Update parameters to maximize loss
e e e e e e e e e e e e e == =

Figure: Model Architecture
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Simulation Results

Simulation Results - Setup

® Excess returns follow a no-arbitrage model with SDF factor F

e
Rii1 = BitFri1 + €11

The SDF factor follows F, "% N(ur,02) with 02 = 0.1 and SRr = 1.

The idiosyncratic component «; NS N(0,02) with 02 = 1.
e N =500 and T = 600. Training/validation/test split is 250,100,250.

® One characteristic and one macroeconomic state process:

Bie = CY . b(hy), he = sin(m % t/24) + €.

It

1 if h>0
b(h) = { -1 otherwise.

We observe only the macroeconomic time-series Z; = umt + he. All
innovations are independent and normally distributed: C,.(ﬁlt) L N(0,1)

and e/ "X N(0,0.25).

®More simulation results are included in the appendix [48]-[50].
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Simulation Results

Simulation Results - Observed Macroeconomic Variable

Observed Macroeconomic Variable
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Simulation Results
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Simulation Results

Simulation Results - Evaluation

Table: Performance of Different SDF Models

Sharpe Ratio EV Cross-sectional R?
Model Train  Valid Test ‘ Train  Valid Test ‘ Train  Valid Test
Population  0.89 0.92 0.86 0.18 0.18 0.17 0.19 0.20 0.15
GAN 0.79 0.77 0.64 0.18 0.18 0.17 0.19 0.20 0.15
FFN 0.05 -0.05 0.06 0.02 0.01 0.02 0.01 0.01 0.02
LS 0.12 -0.05 0.10 0.16 0.16 0.15 0.15 0.18 0.14
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Empirical Results

Empirical Results - Data

e 50 years of monthly observations: 01/1967 - 12/2016.

e Monthly stock returns for all U.S. securities from CRSP
(around 31,000 stocks)
Use only stocks with with all firm characteristics
(around 10,000 stocks)

e 46 firm-specific characteristics for each stock and every month
(usual suspects) = /; ;
normalized to cross-sectional quantiles

e 178 macroeconomic variables
(124 from FRED, 46 cross-sectional median time-series for
characteristics, 8 from Goyal-Welch) = /;

e T-bill rates from Kenneth-French website

e Training/validation/test split is 20y/5y/25y
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Empirical Results

Empirical Results - Benchmark Models

@ LS & EN - Linear factor models:
The optimal portfolio weights wy = 1,0 is linear in
characteristics. We minimize loss function

o 2 1
RKT1 - RKTRKGH M6l + =62,
|+ Mol + 5201013

Rt+1 SA Rg, 1 are K portfolios weighted by characteristics /;.

@® FFN - Deep learning return forecasting (Gu et al. [2018]):

e Predict conditional expected returns E;[R; ++1]
e Empirical loss function for prediction

1 N T
W Z Z it+1 — /ta Il t))2

i=1 t=1
e Use only simple feedforward network for forecasting
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Empirical Results

Empirical Results - Evaluation

Objects of Interest:
e The SDF factor F;
e The risk loadings 3’
e The unexplained residual
& =(In— /Bt—l(ﬁllﬁt—l)_lﬂ;r_l)/?f
Performance Measure:

i _ S op— _EIF
Sharpe ratio of SDF factor: SR N

T N, N
(% PN Zi:t1(€i,t+1)2>
1 T 1 N.
(2L 4 2R 0)?)

e Explained variation: EV =1 —

e cross-sectional mean R?:
lZ"HL(iZ Tg't+1>2
N 2ui=1 T\ T; 2-teT; €,
xs-R2:1—1 ] s
N >oim1 - (?, Zte T; Ri,t+1>
"We estimate loadings by fitting a feedforward network to predict R;F:.
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Empirical Results

Empirical Results - Cross Section of Individual Stock Returns

Table: Performance of Different SDF Models

SR EV Cross-Sectional R2
Model  Train  Valid Test ‘ Train  Valid Test ‘ Train  Valid Test

LS 1.80 0.58 0.42 0.09 0.03 0.03 0.15 0.00 0.14
EN 1.37 1.15 0.50 0.12 0.05 0.04 0.17 0.02 0.19
FFEN 0.45 0.42 0.44 0.11 0.04 0.04 0.14  -0.00 0.15

GAN 2.68 1.43 0.75 0.20 0.09 0.08 0.12 0.01 0.23
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Empirical Results

Empirical Results - Cross Section of Individual Stock Returns

Table: SDF Factor Portfolio Performance®

SR Max Loss Max Drawdown

Model  Train  Valid Test ‘Train Valid Test ‘Train Valid  Test

FF-3 0.27  -0.09 0.19 -2.45 -2.85 -4.31 7 10 10
FF-5 0.48 0.40 0.22 -2.62 -2.33 -4.90 4 3 7
LS 1.80 0.58 0.42 -1.96 -1.87 -4.99 1 3 4
EN 1.37 1.15 0.50 -2.22  -1.81 -6.18 1 3 5
FFN 0.45 0.42 0.44 -3.30 -4.61 -3.37 6 3 5
GAN 2.68 1.43 0.75 0.38 -0.28 -5.76 ‘ 0 1 5

8Turnover as a measure of transaction costs is included in the appendix [51].
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Empirical Results

Performance of Models with Different Macroeconomic
Variables

Test Validation Training

GAN (hidden state)
UNC

GAN (no macro)
FFN (no macro)
EN (no macro)

LS (no macro)
GAN (all macro)
FFN (all macro)
EN (all macro)

LS (all macro)

0.0 0.2 04 0.6 0.0 05 1.0
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Empirical Results

Empirical Results - SDF Factors and Market Factor
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Figure: Correlation between SDF Factors for Different Models

= GAN SDF factor has a small correlation with the market factor.
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Empirical Results

Empirical Results - SDF Factor and Fama-French Factors

Table: GAN-SDF Factor and Fama-French 5 Factors

‘ Mkt-RF‘ SMB ‘ HML ‘ RMW ‘ CMA ‘ intercept

Regression Coefficients 0.00 0.00 -0.04 | 0.08*** 0.04 0.76%**
(0.02) | (0.02) | (0.03) | (0.03) | (0.04) | (0.06)
Correlations -0.10 -0.09 0.01 0.17 0.05 -

= Fama-French factors do not span SDF.
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Empirical Results

Empirical Results - Size Effect

Table: Performance of Different SDF Models with Size Thresholds

SR EV Cross-Sectional R?

Model Train Valid Test ‘ Train Valid Test ‘ Train Valid Test

Size > 0.001% of total market cap

LS 1.44 0.31 0.13 0.07 0.05 0.03 0.14 0.03 0.10
EN 0.93 0.56 0.15 0.11 0.09 0.06 0.17 0.05 0.14
FFN 0.42 0.20 0.30 0.11 0.10 0.05 0.19 0.08 0.18
GAN 2.32 1.09 0.41 0.23 0.22 0.14 0.20 0.13 0.26

Size > 0.01% of total market cap

Ls 032 -011 [%006 | oos o007 [004] | 013 o005 [009
EN 037 026 0.23 009 012 007 | 017 008 |0.14
FFN 032 017 0.24 013 022 009 | 022 015 |0.26
GAN 097 054 026] | 028 034 [08] | 027 o023 [032
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Empirical Results

Empirical Results - Predictive Performance

*  decile 1

« decile2
100| o decie3d
« deciled
« decile5
75| o decile6 //’\.’
decile 7
o decies F
50 decile 9 //'/

decile 10

Cumulative Excess Return

Figure: Cumulative Excess Returns of Decile Sorted Portfolios by GAN

= Risk loadings predicts future stock returns.
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Empirical Results

Empirical Results - Predictive Performance

(5) GAN (5) FEN

(c) EN (d) LS

Figure: Projected Excess Return of Decile Sorted Portfolios
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Empirical Results

Empirical Results - Predictive Performance

Table: Time Series Pricing Errors for 8-Sorted Portfolios

Average Returns H Fama-French 3 H Fama-French 5
Whole Test Whole Test Whole Test
Decile e t a t a t a t
1 -0.12 -0.02 -0.21 -12.77 -0.13 -5.01 -0.20 -11.99 -0.12 -4.35
2 -0.00 0.05 -0.09 -8.79 -0.05 -3.22 -0.09 -8.29 -0.05 -2.68
3 0.04 0.08 -0.04 -5.18 -0.02 -1.40 -0.04 -4.87 -0.01 -1.05
4 0.07 0.09 -0.02 -2.30 -0.00 -0.35 -0.02 -2.86 -0.01 -0.54
5 0.10 0.12 0.01 2.08 0.03 2.46 0.01 1.36 0.03 2.17
6 0.11 0.12 0.02 2.75 0.03 2.85 0.01 151 0.02 2.20
7 0.14 0.15 0.05 6.61 0.05 4.39 0.04 5.16 0.04 3.41
8 0.18 0.18 0.08 9.32 0.08 5.83 0.07 8.05 0.07 4.86
9 0.22 0.21 0.11 9.16 0.11 5.71 0.11 8.58 0.11 5.39
10 0.37 0.37 0.24 10.03 0.25 6.27 0.25 10.43 0.27 6.59
10-1 0.48 039 || 0.45 18.50 0.38 10.14 || 0.46 18.13 0.39 9.96
GRS p GRS

GRS Asset Pricing Test GRS [ GRS P
39.72 0.00 11.25 0.00 37.64 0.00 10.75 0.00

= Standard factor models cannot explain cross-sectional returns.
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Empirical Results

Empirical Results - Performance on Portfolios

Table: Explained Variation and Pricing Errors for Short-Term Reversal
Sorted Portfolios®

ST_REV EN FFN GAN H EN FFN GAN
Decile Explained Variation H Alpha
1 0.84 0.74 0.77 -0.18 -0.21 -0.13
2 0.86 0.81 0.82 0.00 -0.05 0.00
3 0.80 0.82 0.84 0.13 0.04 0.06
4 0.69 0.80 0.82 0.16 0.03 0.03
5 0.58 0.68 0.71 0.13 -0.03 -0.04
6 0.43 0.66 0.75 0.22 0.05 0.01
7 0.23 0.64 0.77 0.20 0.03 -0.02
8 -0.07 0.49 0.67 0.23 0.03 -0.05
9 -0.25 0.29 0.58 0.30 0.09 -0.01
10 -0.24 -0.04 0.35 0.47 0.38 0.18
Explained Variation H Cross-Sectional R?

0.45 0.79 0.94

P

0.43 0.58 0.70

®Results for Momentum sorted portfolios are included in the appendix [52].
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Empirical Results

Empirical Results - Performance on Portfolios

Table: Explained Variation and Pricing Errors for Size Sorted Portfolios'?

Cross-Sectional R?
0.96 0.95 0.97

Explained Variation
0.83 0.78 0.86

LME EN FFN GAN || EN  FFN  GAN

Decile Explained Variation || Alpha
1 0.80 0.75 0.79 0.09 -0.00 0.10
2 0.89 0.89 0.90 -0.11 -0.09 -0.06
3 0.91 0.80 0.91 -0.07 0.02 -0.02
4 0.90 0.77 0.91 -0.05 0.04 -0.01
5 0.90 0.78 0.91 0.01 0.10 0.04
6 0.88 0.80 0.91 0.03 0.09 0.02
7 0.84 0.81 0.89 0.04 0.05 -0.01
8 0.84 0.85 0.88 0.06 0.03 -0.02
9 0.77 0.81 0.82 0.06 -0.01 -0.04
10 0.32 0.28 0.49 -0.04 -0.15 -0.10

>

10Results for Book-to-Market Ratio sorted portfolios are included in the
appendix [53].
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Empirical Results

Empirical Results - Performance on Portfolios

Table: Explained Variation and Pricing Errors for Decile Sorted Portfolios

Explained Variation ‘ Cross-Sectional R?
Charact. EN FFN GAN ‘ EN FFN GAN
ST_REV 0.43 0.58 0.70 0.45 0.79 0.94
Suv 0.42 0.75 0.83 0.64 0.97 0.99
ri2_2 0.26 0.27 0.54 0.66 0.71 0.93
NOA 0.58 0.69 0.78 0.94 0.96 0.95
SGA2S 0.52 0.63 0.73 0.93 0.95 0.96
LME 0.83 0.78 0.86 0.96 0.95 0.97
RNA 0.50 0.48 0.69 0.93 0.87 0.96
CF2p 046 047 066 | 090 089 0.9
BEME 0.70 0.75 0.82 0.97 0.94 0.98
Variance 0.48 0.27 0.61 0.74 0.72 0.89
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Empirical Results

Empirical Results - Characteristic Importance

Figure: Characteristic Importance!! by GAN

1 Qur sensitivity analysis is similar to Sirignano et al. [2016]. See the
appendix [54].
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Empirical Results

Macro_0

Macro_1

Macro_2

Macro_3

1970 1980 1990 2000 2010
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Empirical Results

Empirical Results - SDF Weights

0.04 0.04
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LME D2P
(a) Size (b) Dividend Yield

Figure: Weight as a Function of Size and Dividend Yield

= Size and dividend yield have close to linear effect!
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Empirical Results

Empirical Results - SDF Weights
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Short-Term Reversal

Figure: Weight as a Function of Multiple Variables

= Complex interaction between multiple variables!
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Conclusion

e Linear models perform well because when considering
characteristics in isolation, the models are approximately linear.

e Non-linearities matter for the interaction.
e Most relevant variables are price trends and liquidity.
e Macroeconomic data has a low dimensional factor structure.

e Pricing all individual stocks leads to better pricing models on
portfolios.

e SDF structure stable over time.

e Mean-variance efficient portfolio implied by pricing kernel
highly profitable in a risk-adjusted sense.
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Appendix - Deep Learning in Asset Pricing
SDF Example - CAPM

In CAPM, there is only one factor RM:¢ = RM — Rf. Find the SDF
M;.1, which has the form of My 1 = a+ bRﬂf With no-arbitrage
condition E;[M; 1R, 1] = 0, we have

a_ EJRM)
b E(RM]

Notice that the SDF is negatively correlated with the market factor.

May 28, 2019 Deep Learning in Asset Pricing 39 /55



Appendix - Deep Learning in Asset Pricing

SDF Example - Geometric Brownian Motion

Assume the stock price follows geometric Brownian Motion

5t = pdt + odW;
St
Find the pricing kernel ¢, which has the form of
9T _ ot + bW,
Tt

e For risk-free rate r,

Et[ﬂt"_dt(l + rdt)] =1 = a=-r
Tt

e For stock return pdt + odW;,

E, [”;*‘“(1 + pdt + o—dwt)} =1 = b=(r—p)/o
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Appendix - Deep Learning in Asset Pricing

Generative Adversarial Network by Goodfellow et al. [2014]

=) Diseriminator Network [ | Predicted Labels |
Dd"”e""m‘ i

I -y N i

Figure: GAN Structure by Goodfellow et al. [2014]

@ The generator takes random numbers and returns an image.

® This generated image is fed into the discriminator alongside a
stream of images taken from the actual data set.

® The discriminator takes in both real and fake images and
returns probabilities, with 1 representing a prediction of
authenticity and 0 representing fake.
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Appendix - Deep Learning in Asset Pricing

Feedforward Network

Input layer: x(®) Hidden layer:x™  Hidden layer:x®  Hidden layer:x®  Output layer: wi;

£

Figure: Feedforward Network with 3 Hidden Layers

x() =ReLU(WUI=DTxU=1) =)y
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Appendix - Deep Learning in Asset Pricing

Feedforward Network with Dropout

Input layer: x(®) Hidden layer:x(") Hidden layer:x(® Hidden layer:x®  Output layer: w;

Macroeconomic
Input: h

Firm specific
characteristics: Ip;

Figure: Feedforward Network with 3 Hidden Layers and Dropout
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Appendix - Deep Learning in Asset Pricing
Long-Short-Term-Memory Cell (LSTM)

he

Ct-1 ) ) ‘.
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Figure: Long-Short-Term-Memory Cell (LSTM)
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Appendix - Deep Learning in Asset Pricing
LSTM Cell Structure

At each step, a new memory cell & is created with current input x;
and previous hidden state h;_1

Et = tanh(W,SC)ht_l + W)SC)Xt + W(gc))

The input and forget gate control the memory cell, while the output
gate controls the amount of information stored in the hidden state:

input, :a(W,Si)ht,l + W% + Wéi))
forget, =a(W\ " he_1 + W x, + wl™)
out; za(Wlso)ht_l + Wﬁo)xt + Wéo)).
The final memory cell and hidden state are given by
¢t =forget, o ¢;—1 + input, o &
hy =out; o tanh(c;).
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Appendix - Deep Learning in Asset Pricing

Hyper-Parameter Search

Table: Selection of Hyperparameters for GAN

Notation ‘ Hyperparameters Candidates ‘ Optimal

HL Number of layers in SDF Network 2,30r4 2
HU Number of hidden units in SDF Network 64 64
SMvV Number of hidden states in SDF Network 4o0r8 4
csMv Number of hidden states in Conditional Network 16 or 32 32
CHL Number of layers in Conditional Network Oor1l 0
CHU Number of hidden units in Conditional Network 4,8, 16 or 32 8

LR Initial learning rate 0.001, 0.0005, 0.0002 or 0.0001 0.001

DR Dropout 0.95 0.95

For each combination of hyperparameters (384 models) we fit the GAN model.
We select the five best combinations of hyperparameters on the validation data
set.

For each of the five combinations we fit 9 models with the same
hyperparameters but different initialization.

We select the ensemble model with the best performance on the validation data
set.

© ® 00
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Other Implementation Details

® For training deep neural networks, the vanilla stochastic gradient descend
method has proven to be not an efficient method. A better approach is to
use optimization methods that introduce an adaptive learning rate (e.g.
Adam).

® Regularization is crucial and prevents the model from over-fitting on the
training sample. Although I/l regularization might also be used in
training other neural networks, Dropout is preferable and generally results
in better performances.

e We use ensemble averaging to create a group of models that provide a
significantly more robust estimation. Let's denote WY to be the optimal
portfolio weights given by the j* model. The ensemble model is a
weighted average of the outputs from models with the same architecture
but different startingg valu(j_)s for the optimization and gives more robust

. oA 1
estimates: & = 5>, @Y.
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Simulation Setup

e Excess returns follow a no-arbitrage model with SDF factor F
th+1 = BitFey1 +€ity1

The SDF factor follows F, "< N(pE,02) with 02 = 0.1 and
SR =1.
The risk loadings 3

. i.i.d.

Bit = Ci(,:;) : Ci(i) with Ci{?? Ci(i) R N(O0,1).
The idiosyncratic component €; ¢ Hg N(0,02) with 02 = 1.
e N =500 and T = 600. Training/validation/test split is

250,100,250.
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Simulation Results

Loadings 3 with 2 characteristics

(a) Population Mo

™

(c) FFN
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Simulation Results

Table: Performance of Different SDF Models

Sharpe Ratio EV Cross-sectional R?
Model Train  Valid Test ‘ Train  Valid Test ‘ Train  Valid Test
Population 0.96 1.09 0.94 0.16 0.15 0.17 0.17 0.15 0.17
GAN 0.98 1.11 0.94 0.12 0.11 0.13 0.10 0.09 0.07
FFN 0.94 1.04 0.89 0.05 0.04 0.05 -0.30 -0.09 -0.33
LS 0.07 -0.10 0.01 0.00 0.00 0.00 0.00 0.01 0.01
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Turnover

Table: Turnover by Models

Long Position Short Position

Model Train Valid Test | Train Valid Test

LS 025 022 024 | 064 055 0.61
EN 03 035 035|083 083 0.84
FFN 069 063 0.65]| 138 129 1.27

GAN 047 040 040 1.05 1.04 1.02

Turnover for positions with positive and negative weighs for the SDF factor
portfolio.
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Performance on Portfolios

Table: Explained Variation and Pricing Errors for Momentum Sorted

Cross-Sectional R?
0.66 0.71 0.93

Explained Variation
0.26 0.27 0.54

Portfolios

rl2. 2 EN FFN GAN || EN  FFN  GAN

Decile Explained Variation H Alpha
1 0.04 -0.06 0.33 0.37 0.39 0.11
2 0.12 0.10 0.52 0.25 0.18 -0.01
3 0.19 0.25 0.66 0.14 0.05 -0.06
4 0.28 0.34 0.73 0.15 0.08 -0.02
5 0.37 0.46 0.80 0.19 0.09 0.02
6 0.45 0.58 0.78 0.02 -0.03 -0.09
7 0.62 0.69 0.68 0.01 0.01 -0.05
8 0.58 0.71 0.64 -0.03 -0.04 -0.09
9 0.55 0.70 0.58 0.08 0.04 -0.03
10 0.51 0.53 0.53 0.24 0.29 0.19

b
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Performance on Portfolios

Table: Explained Variation and Pricing Errors for Book-to-Market Ratio
Sorted Portfolios

Cross-Sectional R?
0.97 0.94 0.98

Explained Variation
0.70 0.75 0.82

BEME EN FFN GAN H EN FFN GAN

Decile Explained Variation H Alpha
1 0.38 0.66 0.70 0.03 -0.12 -0.08
2 0.48 0.73 0.78 0.10 -0.05 -0.04
3 0.71 0.84 0.86 0.07 -0.03 -0.01
4 0.76 0.88 0.89 0.00 -0.07 -0.07
5 0.82 0.87 0.88 0.05 0.02 0.01
6 0.77 0.82 0.88 0.06 0.04 0.02
7 0.81 0.81 0.87 0.03 0.08 0.03
8 0.71 0.59 0.78 0.03 0.12 0.06
9 0.80 0.72 0.80 -0.02 0.11 0.07
10 0.68 0.73 0.79 -0.05 -0.00 0.00

b
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Economic Significance of Variables

e we define the sensitivity of a particular variable as the average
absolute derivative of the weight w with respect to this
variable:

N T
Sensitivity(x;) = %Z Z ‘8‘”(8/:/“))7
i=1 t=1 ]

where C a normalization constant.

e A sensitivity of value z for a given variable means that the
weight w will approximately change (in magnitude) by zA for
a small change of A in this variable.
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