

Deep Learning in Asset Pricing

Luyang Chen $\frac{1}{8}$ Markus Pelger $\frac{1}{8}$ Jason Zhu $\frac{1}{8}$

† Institute for Computational & Mathematical Engineering, Stanford University ‡Department of Management Science & Engineering, Stanford University §Advanced Financial Technologies Laboratory, Stanford

May 28, 2019

Hype: Machine Learning in Finance

- Portfolio Management
- Algorithmic Trading
- Fraud Detection
- \bullet Etc \ldots

Motivation: Asset Pricing

The Challenge of Asset Pricing

- One of the most important questions in finance is: Why are asset prices different for different assets?
- No-Arbitrage Pricing Theory: Stochastic discount factor (SDF) explains differences in risk and asset prices.
- Fundamental Question: What is the SDF?
- Challenges:
	- SDF should depend on all available economic information
	- Functional form of SDF is unknown and likely conplex
	- SDF needs to capture time-variation in economic conditions
	- Risk premium in stock returns has a low signal-to-noise ratio

This paper

Goals of this paper:

General non-linear asset pricing model and optimal portfolio design

 \Rightarrow Deep-neural networks applied to all U.S. equity data and large sets of macroeconomic and firm-specific information.

Why is it important?

- 1 Stochastic discount factor (SDF) generates tradeable portfolio with highest risk-adjusted return (Sharpe-ratio=expected excess return/standard deviation)
- **2** Arbitrage opportunities
	- Find underpriced assets and earn "alpha"
- **8** Risk management
	- Understand which information and how it drives the SDF
	- Manage risk exposure of financial assets

Contribution of this paper

- This Paper: Estimate the SDF with deep neural networks
- Crucial innovation: Include no-arbitrage condition in the neural network algorithm and combine four neural networks in a novel way
- Key elements of estimator:
	- **1** Non-linearity: Feed-forward network captures non-linearities
	- **2** Time-variation: Recurrent (LSTM) network finds a small set of economic state processes
	- **3** Pricing all assets: Generative adversarial network identifies the states and portfolios with most unexplained pricing information
	- 4 Dimension reduction: Regularization through no-arbitrage condition
	- **5** Signal-to-noise ratio: No-arbitrage conditions improve the risk premium signal
- \Rightarrow General model that includes all existing models as a special case

Contribution of this paper

Empirical Contributions

- Empirically outperforms all benchmark models.
- Optimal portfolio has out-of-sample annual Sharpe ratio of 2.6.
- Non-linearities and interaction between firm information matters.
- Most relevant firm characteristics are price trends, profitability, and capital structure variables.

Literature (Partial List)

- Deep-learning for predicting asset prices
	- Feng, Polson and Xu (2019)
	- Gu, Kelly and Xiu (2018)
	- Feng, Polson and Xu (2018)
	- Messmer (2017)
	- \Rightarrow Predicting future asset returns with feed forward network
		- Gu, Kelly and Xiu (2019)
		- Heaton, Polson and Witte (2017)
	- \Rightarrow Fitting asset returns with an autoencoder
- Linear or kernel methods for asset pricing of large data sets
	- Lettau and Pelger (2018): Risk-premium PCA
	- Feng, Giglio and Xu (2017): Risk-premium lasso
	- Freyberger, Neuhierl and Weber (2017): Group lasso
	- Kelly, Pruitt and Su (2018): Instrumented PCA

No-Arbitrage Pricing Theory

• A stochastic discount factor¹ is a stochastic process $\{M_t\}$, such that for any asset *i* with payoff $x_{i,t+1}$ at time $t + 1$, the price of that asset at time t is

$$
P_{i,t} = \mathbb{E}_t[M_{t+1}x_{i,t+1}].
$$

• Let $R_{i,t+1}^e = R_{i,t+1} - R_f$. Fundamental no-arbitrage condition:

$$
\mathbb{E}_t[M_{t+1}R_{i,t+1}^e]=0.
$$

• It implies infinitely many unconditional moments:

$$
\mathbb{E}[M_{t+1}R_{i,t+1}^e\hat{l}_{i,t}]=0
$$

for any \mathcal{F}_t -measurable variable $\hat{l}_{i,t}.$

¹Examples of SDF are included in the appendix [\[39\]](#page-38-0)-[\[40\]](#page-39-0).

Model

• Without loss of generality, SDF is the projection on the return space²

$$
M_{t+1} = 1 - \sum_{i=1}^{N} w_{i,t} R_{i,t+1}^{e}.
$$

- \Rightarrow The optimal portfolio $\mathit{F}_{t+1} = \sum_{i=1}^{N} w_{i,t} \mathit{R}^e_{i,t+1}$ has the highest conditional Sharpe ratio.
	- The portfolio weights $w_{i,t}$ are a general function of macro-economic information I_t and firm-specific characteristics $I_{i,t}$:

$$
w_{i,t}=w(I_t,I_{i,t}).
$$

- \Rightarrow Need non-linear estimator with many explanatory variables!
- \Rightarrow We use neural networks to estimate $w_{i,t}.$

²See e.g. [Back \[2010\]](#page-54-0). The SDF is an affine transformation of the tangency portfolio.

Equivalent Factor Model Representation

• No-arbitrage condition is equivalent to

$$
\mathbb{E}_{t}[R_{i,t+1}^{e}] = \frac{\text{cov}_{t}(R_{i,t+1}^{e}, F_{t+1})}{\text{var}_{t}(F_{t+1})} \cdot \mathbb{E}_{t}[F_{t+1}] \n= \beta_{i,t} \mathbb{E}_{t}[F_{t+1}]
$$

with factor $F_t = 1 - M_t$.

 \Rightarrow Without loss of generality we have a factor representation

$$
R_{t+1}^e = \beta_t F_{t+1} + \epsilon_{t+1}.
$$

Estimation

- Estimate SDF portfolio weights $w(\cdot)$ to minimize the no-arbitrage moment conditions.
- For a set of conditioning variables $\hat{I}_{i,t} = \hat{g}(I_t, I_{i,t})$, the corresponding loss function is

$$
L(w|\hat{g}, l_t, l_{i,t}) = \frac{1}{N} \sum_{i=1}^N \frac{T_i}{T} \left\| \frac{1}{T_i} \sum_{t \in T_i} M_{t+1} R_{i,t+1}^e \hat{g}(l_t, l_{i,t}) \right\|^2.
$$

- How can we choose the conditioning variables $\hat{I}_{i,t}$ as general functions of the macroeconomic and firm-specific information?
- \Rightarrow Generative Adversarial Network (GAN) 3 chooses $\hat{g}!$

³A brief introduction of GAN by [Goodfellow et al. \[2014\]](#page-54-1) is included in the appendix [\[41\]](#page-40-0).

Generative Adversarial Network (GAN)

Formulate GMM as Zero-Sum Game

- Two networks play a zero-sum game:
	- **1 SDF Network** (w) creates the SDF M_{t+1} .
	- $\textbf{\textcolor{red}{\bullet}}$ Conditional Network (\hat{g}) generates conditioning variables $\hat{l}_{i,t}.$
- Alternatively update the two networks^a:
	- $\bf D$ For a given set of conditioning variables $\hat{I}_{i,t}$, <code>SDF</code> network is updated to minimize the loss.
	- **2** For a given estimation of the SDF, **Conditional Network** finds $\hat{l_{i,t}}$ with the largest loss (most mis-pricing).
- Intuition: find the economic states and assets with the most pricing information.

^aModel calibration details are included in the appendix [\[46\]](#page-45-0) and [\[47\]](#page-46-0).

Neural Network Building Blocks

SDF Network and Conditional Network are independent, but share a similar structure.

- \bullet Feedforward network⁴ captures non-linearities.
- \bullet Recurrent network with LSTM cells⁵ transforms all macroeconomic time-series into a low dimensional vector of stationary state variables.
	- Time-series data is often non-stationary.
	- Business cycles can affect pricing.
	- Redundant information.

⁴The definition of feedforward network is included in the appendix [\[42\]](#page-41-0). ⁵The definition of LSTM cells is included in the appendix [\[44\]](#page-43-0) and [\[45\]](#page-44-0).

Model Architecture

Figure: Model Architecture

Simulation Results - Setup

Excess returns follow a no-arbitrage model with SDF factor F

$$
R_{i,t+1}^e = \beta_{i,t} F_{t+1} + \epsilon_{i,t+1}.
$$

- The SDF factor follows $F_t \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu_F, \sigma_F^2)$ with $\sigma_F^2 = 0.1$ and $SR_F = 1$.
- The idiosyncratic component $\epsilon_{i,t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_e^2)$ with $\sigma_e^2 = 1$.
- $N = 500$ and $T = 600$. Training/validation/test split is 250,100,250.
- One characteristic and one macroeconomic state process:

$$
\beta_{i,t} = C_{i,t}^{(1)} \cdot b(h_t), \qquad h_t = \sin(\pi * t/24) + \epsilon_t^h.
$$

$$
b(h) = \begin{cases} 1 & \text{if } h > 0 \\ -1 & \text{otherwise.} \end{cases}
$$

We observe only the macroeconomic time-series $Z_t = \mu_M t + h_t$. All innovations are independent and normally distributed: $\; C_{i,t}^{(1)} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ and $\epsilon_t^{h}\stackrel{i.i.d.}{\sim}\mathcal{N}(0,0.25)$. ⁶

 6 More simulation results are included in the appendix $[48]$ - $[50]$.

Simulation Results - Observed Macroeconomic Variable

Simulation Results - Fitted Macroeconomic State

True Hidden Macroeconomic State

Fitted Macroeconomic State by LSTM

Simulation Results - Evaluation

Table: Performance of Different SDF Models

Empirical Results - Data

- 50 years of monthly observations: 01/1967 12/2016.
- Monthly stock returns for all U.S. securities from CRSP (around 31,000 stocks) Use only stocks with with all firm characteristics (around 10,000 stocks)
- 46 firm-specific characteristics for each stock and every month (usual suspects) \Rightarrow $I_{i,t}$ normalized to cross-sectional quantiles
- 178 macroeconomic variables (124 from FRED, 46 cross-sectional median time-series for characteristics, 8 from Goyal-Welch) \Rightarrow I_t
- T-bill rates from Kenneth-French website
- Training/validation/test split is 20y/5y/25y

Empirical Results - Benchmark Models

1 LS & EN - Linear factor models: The optimal portfolio weights $w_t = I_t \theta$ is linear in characteristics. We minimize loss function

$$
\frac{1}{2} \Big\| \frac{1}{\mathcal{T}} \tilde{\mathcal{R}}^{\mathcal{K}\top} 1 - \frac{1}{\mathcal{T}} \tilde{\mathcal{R}}^{\mathcal{K}\top} \tilde{\mathcal{R}}^{\mathcal{K}} \theta \Big\|_{2}^{2} + \lambda_1 \|\theta\|_1 + \frac{1}{2} \lambda_2 \|\theta\|_2^2.
$$

 $\tilde{R}^K_{t+1} = I_t^\top R^e_{t+1}$ are K portfolios weighted by characteristics I_t .

- **2** FFN Deep learning return forecasting [\(Gu et al. \[2018\]](#page-54-2)):
	- Predict conditional expected returns $\mathbb{E}_t[R_{i,t+1}]$
	- Empirical loss function for prediction

$$
\frac{1}{NT}\sum_{i=1}^N\sum_{t=1}^T (R_{i,t+1} - g(l_t, l_{i,t}))^2
$$

• Use only simple feedforward network for forecasting

Empirical Results - Evaluation

Objects of Interest:

- The SDF factor F_t
- The risk loadings β_t ⁷
- The unexplained residual $\hat{e}_t = (I_N - \beta_{t-1}(\beta_{t-1}^\top \beta_{t-1})^{-1} \beta_{t-1}^\top) R_t^e$

Performance Measure:

- Sharpe ratio of SDF factor: $SR = \frac{\hat{\mathbb{E}}[F_t]}{\sqrt{\hat{\mathbb{E}}[F_t]}}$
- $Var(F_t)$ • Explained variation: $EV = 1 \left(\frac{1}{T}\sum_{t=1}^{T}\frac{1}{N_t}\sum_{i=1}^{N_t}(\hat{\epsilon}_{i,t+1})^2\right)$ $\left(\frac{1}{T}\sum_{t=1}^{T}\frac{1}{N_t}\sum_{i=1}^{N_t}(R_{i,t+1}^e)^2\right)$

• cross-sectional mean
$$
R^2
$$
:
\n
$$
\text{XS-}R^2 = 1 - \frac{\frac{1}{N} \sum_{i=1}^{N} \frac{T_i}{T} \left(\frac{1}{T_i} \sum_{t \in T_i} \hat{\epsilon}_{i,t+1}\right)^2}{\frac{1}{N} \sum_{i=1}^{N} \frac{T_i}{T} \left(\frac{1}{T_i} \sum_{t \in T_i} \hat{R}_{i,t+1}\right)^2}
$$

⁷We estimate loadings by fitting a feedforward network to predict R_tF_t .

Empirical Results - Cross Section of Individual Stock Returns

Table: Performance of Different SDF Models

Empirical Results - Cross Section of Individual Stock Returns

Table: SDF Factor Portfolio Performance⁸

⁸Turnover as a measure of transaction costs is included in the appendix [\[51\]](#page-50-0).

Performance of Models with Different Macroeconomic Variables

Empirical Results - SDF Factors and Market Factor

(a) Whole Time Horizon

(b) Test Period

Figure: Correlation between SDF Factors for Different Models

 \Rightarrow GAN SDF factor has a small correlation with the market factor.

Empirical Results - SDF Factor and Fama-French Factors

Table: GAN-SDF Factor and Fama-French 5 Factors

 \Rightarrow Fama-French factors do not span SDF.

Empirical Results - Size Effect

Table: Performance of Different SDF Models with Size Thresholds

Empirical Results - Predictive Performance

Figure: Cumulative Excess Returns of Decile Sorted Portfolios by GAN

 \Rightarrow Risk loadings predicts future stock returns.

Empirical Results - Predictive Performance

Figure: Projected Excess Return of Decile Sorted Portfolios
May 28, 2019 Deep Learning in Asset Pricing

[Deep Learning in Asset Pricing](#page-0-0) 29 / 55

Empirical Results - Predictive Performance

Table: Time Series Pricing Errors for β-Sorted Portfolios

 \Rightarrow Standard factor models cannot explain cross-sectional returns.

Empirical Results - Performance on Portfolios

Table: Explained Variation and Pricing Errors for Short-Term Reversal Sorted Portfolios⁹

⁹Results for Momentum sorted portfolios are included in the appendix [\[52\]](#page-51-0).

Empirical Results - Performance on Portfolios

Table: Explained Variation and Pricing Errors for Size Sorted Portfolios¹⁰

¹⁰Results for Book-to-Market Ratio sorted portfolios are included in the appendix [\[53\]](#page-52-0).

Empirical Results - Performance on Portfolios

Table: Explained Variation and Pricing Errors for Decile Sorted Portfolios

Empirical Results - Characteristic Importance

Figure: Characteristic Importance¹¹ by GAN

 11 Our sensitivity analysis is similar to [Sirignano et al. \[2016\]](#page-54-3). See the appendix [\[54\]](#page-53-0).

Empirical Results - Macroeconomic Hidden States

Empirical Results - SDF Weights

Figure: Weight as a Function of Size and Dividend Yield

 \Rightarrow Size and dividend yield have close to linear effect!

Empirical Results - SDF Weights

(a) Size and Dividend Yield

(b) Size, Dividend Yield and Short-Term Reversal

Figure: Weight as a Function of Multiple Variables

 \Rightarrow Complex interaction between multiple variables!

Conclusion

- Linear models perform well because when considering characteristics in isolation, the models are approximately linear.
- Non-linearities matter for the interaction.
- Most relevant variables are price trends and liquidity.
- Macroeconomic data has a low dimensional factor structure.
- Pricing all individual stocks leads to better pricing models on portfolios.
- SDF structure stable over time.
- Mean-variance efficient portfolio implied by pricing kernel highly profitable in a risk-adjusted sense.

Appendix - Deep Learning in Asset Pricing SDF Example - CAPM

In CAPM, there is only one factor $R^{\mathcal{M},e}=R^{\mathcal{M}}-R^f.$ Find the SDF M_{t+1} , which has the form of $M_{t+1} = a + b R_{t+1}^{M,e}$. With no-arbitrage condition $\mathbb{E}_t[\mathcal{M}_{t+1} \mathcal{R}_{t+1}^e]=0$, we have

$$
\frac{a}{b} = -\frac{\mathbb{E}_{t}[(R_{t+1}^{M,e})^{2}]}{\mathbb{E}_{t}[R_{t+1}^{M,e}]}
$$

Notice that the SDF is negatively correlated with the market factor.

[References](#page-54-4)

Appendix - Deep Learning in Asset Pricing SDF Example - Geometric Brownian Motion

Assume the stock price follows geometric Brownian Motion

$$
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
$$

Find the pricing kernel π_t , which has the form of

$$
\frac{d\pi_t}{\pi_t} = adt + bdW_t
$$

• For risk-free rate r .

$$
\mathbb{E}_t\Big[\frac{\pi_{t+dt}}{\pi_t}(1+rdt)\Big]=1\quad\Rightarrow\quad a=-r.
$$

• For stock return $\mu dt + \sigma dW_t$,

$$
\mathbb{E}_t\Big[\frac{\pi_{t+dt}}{\pi_t}(1+\mu dt+\sigma dW_t)\Big]=1\quad\Rightarrow\quad b=(r-\mu)/\sigma
$$

Appendix - Deep Learning in Asset Pricing Generative Adversarial Network by [Goodfellow et al. \[2014\]](#page-54-1)

Figure: GAN Structure by [Goodfellow et al. \[2014\]](#page-54-1)

- **1** The generator takes random numbers and returns an image.
- **2** This generated image is fed into the discriminator alongside a stream of images taken from the actual data set.
- **3** The discriminator takes in both real and fake images and returns probabilities, with 1 representing a prediction of authenticity and 0 representing fake.

Appendix - Deep Learning in Asset Pricing Feedforward Network

Figure: Feedforward Network with 3 Hidden Layers

$$
x^{(l)} = \text{ReLU}(W^{(l-1)\top}x^{(l-1)} + w_0^{(l-1)})
$$

$$
y = W^{(L)\top}x^{(L)} + w_0^{(L)}
$$

Appendix - Deep Learning in Asset Pricing Feedforward Network with Dropout

Figure: Feedforward Network with 3 Hidden Layers and Dropout

Appendix - Deep Learning in Asset Pricing Long-Short-Term-Memory Cell (LSTM)

Figure: Long-Short-Term-Memory Cell (LSTM)

Appendix - Deep Learning in Asset Pricing LSTM Cell Structure

At each step, a new memory cell \tilde{c}_t is created with current input x_t and previous hidden state h_{t-1}

$$
\tilde{c}_t = \tanh(W_h^{(c)} h_{t-1} + W_x^{(c)} x_t + w_0^{(c)}).
$$

The input and forget gate control the memory cell, while the output gate controls the amount of information stored in the hidden state:

input_t =
$$
\sigma(W_h^{(i)} h_{t-1} + W_x^{(i)} x_t + w_0^{(i)})
$$

forget_t = $\sigma(W_h^{(f)} h_{t-1} + W_x^{(f)} x_t + w_0^{(f)})$
out_t = $\sigma(W_h^{(o)} h_{t-1} + W_x^{(o)} x_t + w_0^{(o)})$.

The final memory cell and hidden state are given by

$$
c_t = \text{forget}_t \circ c_{t-1} + \text{input}_t \circ \tilde{c}_t
$$

$$
h_t = \text{out}_t \circ \text{tanh}(c_t).
$$

Appendix - Deep Learning in Asset Pricing Hyper-Parameter Search

Table: Selection of Hyperparameters for GAN

- 1 For each combination of hyperparameters (384 models) we fit the GAN model.
- 2 We select the five best combinations of hyperparameters on the validation data set.

3 For each of the five combinations we fit 9 models with the same hyperparameters but different initialization.

4 We select the ensemble model with the best performance on the validation data set.

Appendix - Deep Learning in Asset Pricing Other Implementation Details

- • For training deep neural networks, the vanilla stochastic gradient descend method has proven to be not an efficient method. A better approach is to use optimization methods that introduce an adaptive learning rate (e.g. Adam).
- Regularization is crucial and prevents the model from over-fitting on the training sample. Although l_1/l_2 regularization might also be used in training other neural networks, Dropout is preferable and generally results in better performances.
- We use ensemble averaging to create a group of models that provide a significantly more robust estimation. Let's denote $\hat{w}^{(j)}$ to be the optimal portfolio weights given by the jth model. The ensemble model is a weighted average of the outputs from models with the same architecture but different starting values for the optimization and gives more robust estimates: $\hat{\omega} = \frac{1}{9} \sum_{j=1}^{9} \hat{\omega}^{(j)}$.

Appendix - Deep Learning in Asset Pricing Simulation Setup

• Excess returns follow a no-arbitrage model with SDF factor F

$$
R_{i,t+1}^e = \beta_{i,t} F_{t+1} + \epsilon_{i,t+1}.
$$

- The SDF factor follows $F_t \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu_F, \sigma_F^2)$ with $\sigma_F^2 = 0.1$ and $SR_F = 1$.
- The risk loadings β

$$
\beta_{i,t} = C_{i,t}^{(1)} \cdot C_{i,t}^{(2)} \qquad \text{with} \qquad C_{i,t}^{(1)}, C_{i,t}^{(2)} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1).
$$

- The idiosyncratic component $\epsilon_{i,t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_e^2)$ with $\sigma_e^2 = 1$.
- $N = 500$ and $T = 600$. Training/validation/test split is 250,100,250.

Appendix - Deep Learning in Asset Pricing Simulation Results

Loadings β with 2 characteristics

Appendix - Deep Learning in Asset Pricing Simulation Results

Table: Performance of Different SDF Models

Appendix - Deep Learning in Asset Pricing **Turnover**

Table: Turnover by Models

Appendix - Deep Learning in Asset Pricing Performance on Portfolios

Table: Explained Variation and Pricing Errors for Momentum Sorted Portfolios

Appendix - Deep Learning in Asset Pricing Performance on Portfolios

Table: Explained Variation and Pricing Errors for Book-to-Market Ratio Sorted Portfolios

Appendix - Deep Learning in Asset Pricing Economic Significance of Variables

• we define the sensitivity of a particular variable as the average absolute derivative of the weight w with respect to this variable:

Sensitivity
$$
(x_j)
$$
 = $\frac{1}{C} \sum_{i=1}^{N} \sum_{t=1}^{T} \left| \frac{\partial w(l_t, l_{t,i})}{\partial x_j} \right|$,

where C a normalization constant.

• A sensitivity of value z for a given variable means that the weight w will approximately change (in magnitude) by $z\Delta$ for a small change of ∆ in this variable.

References I

Kerry Back. Asset pricing and portfolio choice theory. Oxford University Press, 2010.

- Luyang Chen, Markus Pelger, and Jason Zhu. Deep learning in asset pricing. Available at SSRN 3350138, 2019.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.
- Shihao Gu, Bryan T Kelly, and Dacheng Xiu. Empirical asset pricing via machine learning. Working Paper 25398, National Bureau of Economic Research, 2018.
- Justin Sirignano, Apaar Sadhwani, and Kay Giesecke. Deep learning for mortgage risk. Working paper, 2016.