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Hype: Machine Learning in Finance

• Portfolio Management
• Algorithmic Trading
• Fraud Detection
• Etc ...
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Motivation: Asset Pricing

The Challenge of Asset Pricing
• One of the most important questions in finance is:
Why are asset prices different for different assets?

• No-Arbitrage Pricing Theory:
Stochastic discount factor (SDF) explains differences in
risk and asset prices.

• Fundamental Question:
What is the SDF?

• Challenges:
• SDF should depend on all available economic information
• Functional form of SDF is unknown and likely conplex
• SDF needs to capture time-variation in economic conditions
• Risk premium in stock returns has a low signal-to-noise ratio
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This paper

Goals of this paper:
General non-linear asset pricing model and optimal portfolio design
⇒ Deep-neural networks applied to all U.S. equity data and large

sets of macroeconomic and firm-specific information.

Why is it important?
1 Stochastic discount factor (SDF) generates tradeable portfolio

with highest risk-adjusted return
(Sharpe-ratio=expected excess return/standard deviation)

2 Arbitrage opportunities
• Find underpriced assets and earn “alpha”

3 Risk management
• Understand which information and how it drives the SDF
• Manage risk exposure of financial assets
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Contribution of this paper

• This Paper: Estimate the SDF with deep neural networks

• Crucial innovation: Include no-arbitrage condition in the neural
network algorithm and combine four neural networks in a novel way

• Key elements of estimator:

1 Non-linearity: Feed-forward network captures non-linearities
2 Time-variation: Recurrent (LSTM) network finds a small set of

economic state processes
3 Pricing all assets: Generative adversarial network identifies the

states and portfolios with most unexplained pricing information
4 Dimension reduction: Regularization through no-arbitrage

condition
5 Signal-to-noise ratio: No-arbitrage conditions improve the risk

premium signal

⇒ General model that includes all existing models as a special case
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Contribution of this paper

Empirical Contributions

• Empirically outperforms all benchmark models.

• Optimal portfolio has out-of-sample annual Sharpe ratio of 2.6.

• Non-linearities and interaction between firm information matters.

• Most relevant firm characteristics are price trends, profitability, and
capital structure variables.
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Literature (Partial List)

• Deep-learning for predicting asset prices

• Feng, Polson and Xu (2019)
• Gu, Kelly and Xiu (2018)
• Feng, Polson and Xu (2018)
• Messmer (2017)
⇒ Predicting future asset returns with feed forward network
• Gu, Kelly and Xiu (2019)
• Heaton, Polson and Witte (2017)
⇒ Fitting asset returns with an autoencoder

• Linear or kernel methods for asset pricing of large data sets

• Lettau and Pelger (2018): Risk-premium PCA
• Feng, Giglio and Xu (2017): Risk-premium lasso
• Freyberger, Neuhierl and Weber (2017): Group lasso
• Kelly, Pruitt and Su (2018): Instrumented PCA
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No-Arbitrage Pricing Theory

• A stochastic discount factor1 is a stochastic process {Mt},
such that for any asset i with payoff xi ,t+1 at time t + 1, the
price of that asset at time t is

Pi ,t = Et [Mt+1xi ,t+1].

• Let Re
i ,t+1 = Ri ,t+1 − Rf . Fundamental no-arbitrage

condition:
Et [Mt+1R

e
i ,t+1] = 0.

• It implies infinitely many unconditional moments:

E[Mt+1R
e
i ,t+1 Îi ,t ] = 0

for any Ft-measurable variable Îi ,t .
1Examples of SDF are included in the appendix [39]-[40].
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Model

• Without loss of generality, SDF is the projection on the return
space2

Mt+1 = 1−
N∑
i=1

wi ,tR
e
i ,t+1.

⇒ The optimal portfolio Ft+1 =
∑N

i=1 wi ,tR
e
i ,t+1 has the highest

conditional Sharpe ratio.
• The portfolio weights wi ,t are a general function of
macro-economic information It and firm-specific characteristics
Ii ,t :

wi ,t = w(It , Ii ,t).

⇒ Need non-linear estimator with many explanatory variables!
⇒ We use neural networks to estimate wi ,t .

2See e.g. Back [2010]. The SDF is an affine transformation of the tangency
portfolio.
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Equivalent Factor Model Representation

• No-arbitrage condition is equivalent to

Et [R
e
i ,t+1] =

covt(Re
i ,t+1,Ft+1)

vart(Ft+1)
· Et [Ft+1]

= βi ,tEt [Ft+1]

with factor Ft = 1−Mt .
⇒ Without loss of generality we have a factor representation

Re
t+1 = βtFt+1 + εt+1.

May 28, 2019 Deep Learning in Asset Pricing 10 / 55



Introduction
Model and Estimation

Simulation Results
Empirical Results

Estimation

• Estimate SDF portfolio weights w(·) to minimize the
no-arbitrage moment conditions.

• For a set of conditioning variables Îi ,t = ĝ(It , Ii ,t), the
corresponding loss function is

L(w |ĝ , It , Ii ,t) =
1
N

N∑
i=1

Ti

T

∥∥∥∥∥∥ 1
Ti

∑
t∈Ti

Mt+1R
e
i ,t+1ĝ(It , Ii ,t)

∥∥∥∥∥∥
2

.

• How can we choose the conditioning variables Îi ,t as general
functions of the macroeconomic and firm-specific information?

⇒ Generative Adversarial Network (GAN)3 chooses ĝ !

3A brief introduction of GAN by Goodfellow et al. [2014] is included in the
appendix [41].
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Generative Adversarial Network (GAN)

Formulate GMM as Zero-Sum Game
• Two networks play a zero-sum game:

1 SDF Network (w) creates the SDF Mt+1.
2 Conditional Network (ĝ) generates conditioning variables Îi,t .

• Alternatively update the two networksa:
1 For a given set of conditioning variables Îi,t , SDF network is

updated to minimize the loss.
2 For a given estimation of the SDF, Conditional Network

finds Îi,t with the largest loss (most mis-pricing).

• Intuition: find the economic states and assets with the most
pricing information.

aModel calibration details are included in the appendix [46] and [47].
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Neural Network Building Blocks

SDF Network and Conditional Network are independent, but share
a similar structure.
• Feedforward network4 captures non-linearities.
• Recurrent network with LSTM cells5 transforms all
macroeconomic time-series into a low dimensional vector of
stationary state variables.

- Time-series data is often non-stationary.
- Business cycles can affect pricing.
- Redundant information.

4The definition of feedforward network is included in the appendix [42].
5The definition of LSTM cells is included in the appendix [44] and [45].
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Model Architecture

Figure: Model Architecture
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Simulation Results - Setup

• Excess returns follow a no-arbitrage model with SDF factor F

Re
i,t+1 = βi,tFt+1 + εi,t+1.

• The SDF factor follows Ft
i.i.d.∼ N (µF , σ

2
F ) with σ

2
F = 0.1 and SRF = 1.

• The idiosyncratic component εi,t
i.i.d.∼ N (0, σ2e ) with σ2e = 1.

• N = 500 and T = 600. Training/validation/test split is 250,100,250.
• One characteristic and one macroeconomic state process:

βi,t = C
(1)
i,t · b(ht), ht = sin(π ∗ t/24) + εht .

b(h) =

{
1 if h > 0
−1 otherwise.

We observe only the macroeconomic time-series Zt = µMt + ht . All
innovations are independent and normally distributed: C (1)

i,t

i.i.d.∼ N (0, 1)

and εht
i.i.d.∼ N (0, 0.25). 6

6More simulation results are included in the appendix [48]-[50].
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Simulation Results - Observed Macroeconomic Variable

Observed Macroeconomic Variable

First Order Difference of Macroeconomic Variable
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Simulation Results - Fitted Macroeconomic State

True Hidden Macroeconomic State

Fitted Macroeconomic State by LSTM
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Simulation Results - Evaluation

Table: Performance of Different SDF Models

Sharpe Ratio EV Cross-sectional R2

Model Train Valid Test Train Valid Test Train Valid Test

Population 0.89 0.92 0.86 0.18 0.18 0.17 0.19 0.20 0.15
GAN 0.79 0.77 0.64 0.18 0.18 0.17 0.19 0.20 0.15
FFN 0.05 -0.05 0.06 0.02 0.01 0.02 0.01 0.01 0.02
LS 0.12 -0.05 0.10 0.16 0.16 0.15 0.15 0.18 0.14
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Empirical Results - Data

• 50 years of monthly observations: 01/1967 - 12/2016.
• Monthly stock returns for all U.S. securities from CRSP
(around 31,000 stocks)
Use only stocks with with all firm characteristics
(around 10,000 stocks)

• 46 firm-specific characteristics for each stock and every month
(usual suspects) ⇒ Ii ,t
normalized to cross-sectional quantiles

• 178 macroeconomic variables
(124 from FRED, 46 cross-sectional median time-series for
characteristics, 8 from Goyal-Welch) ⇒ It

• T-bill rates from Kenneth-French website
• Training/validation/test split is 20y/5y/25y
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Empirical Results - Benchmark Models

1 LS & EN - Linear factor models:
The optimal portfolio weights wt = Itθ is linear in
characteristics. We minimize loss function

1
2

∥∥∥ 1
T
R̃K>1− 1

T
R̃K>R̃Kθ

∥∥∥2
2

+ λ1‖θ‖1 +
1
2
λ2‖θ‖22.

R̃K
t+1 = I>t Re

t+1 are K portfolios weighted by characteristics It .
2 FFN - Deep learning return forecasting (Gu et al. [2018]):

• Predict conditional expected returns Et [Ri,t+1]
• Empirical loss function for prediction

1
NT

N∑
i=1

T∑
t=1

(Ri,t+1 − g(It , Ii,t))2

• Use only simple feedforward network for forecasting
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Empirical Results - Evaluation

Objects of Interest:
• The SDF factor Ft
• The risk loadings βt7

• The unexplained residual
êt = (IN − βt−1(β>t−1βt−1)−1β>t−1)Re

t

Performance Measure:
• Sharpe ratio of SDF factor: SR = Ê[Ft ]√

V̂ar(Ft)

• Explained variation: EV = 1−
(

1
T

∑T
t=1

1
Nt

∑Nt
i=1(ε̂i,t+1)

2
)

(
1
T

∑T
t=1

1
Nt

∑Nt
i=1(R

e
i,t+1)

2
)

• cross-sectional mean R2:

XS-R2 = 1−
1
N

∑N
i=1

Ti
T

(
1
Ti

∑
t∈Ti

ε̂i,t+1

)2
1
N

∑N
i=1

Ti
T

(
1
Ti

∑
t∈Ti

R̂i,t+1

)2
7We estimate loadings by fitting a feedforward network to predict RtFt .

May 28, 2019 Deep Learning in Asset Pricing 21 / 55



Introduction
Model and Estimation

Simulation Results
Empirical Results

Empirical Results - Cross Section of Individual Stock Returns

Table: Performance of Different SDF Models

SR EV Cross-Sectional R2

Model Train Valid Test Train Valid Test Train Valid Test

LS 1.80 0.58 0.42 0.09 0.03 0.03 0.15 0.00 0.14
EN 1.37 1.15 0.50 0.12 0.05 0.04 0.17 0.02 0.19
FFN 0.45 0.42 0.44 0.11 0.04 0.04 0.14 -0.00 0.15

GAN 2.68 1.43 0.75 0.20 0.09 0.08 0.12 0.01 0.23
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Empirical Results - Cross Section of Individual Stock Returns

Table: SDF Factor Portfolio Performance8

SR Max Loss Max Drawdown

Model Train Valid Test Train Valid Test Train Valid Test

FF-3 0.27 -0.09 0.19 -2.45 -2.85 -4.31 7 10 10
FF-5 0.48 0.40 0.22 -2.62 -2.33 -4.90 4 3 7
LS 1.80 0.58 0.42 -1.96 -1.87 -4.99 1 3 4
EN 1.37 1.15 0.50 -2.22 -1.81 -6.18 1 3 5
FFN 0.45 0.42 0.44 -3.30 -4.61 -3.37 6 3 5

GAN 2.68 1.43 0.75 0.38 -0.28 -5.76 0 1 5

8Turnover as a measure of transaction costs is included in the appendix [51].
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Performance of Models with Different Macroeconomic
Variables

0.0 0.2 0.4 0.6

GAN (hidden state)

UNC

GAN (no macro)

FFN (no macro)

EN (no macro)

LS (no macro)

GAN (all macro)

FFN (all macro)

EN (all macro)

LS (all macro)

Test

0.0 0.5 1.0 1.5

Validation

0.0 0.5 1.0 1.5 2.0 2.5

Training
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Empirical Results - SDF Factors and Market Factor
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Figure: Correlation between SDF Factors for Different Models

⇒ GAN SDF factor has a small correlation with the market factor.
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Empirical Results - SDF Factor and Fama-French Factors

Table: GAN-SDF Factor and Fama-French 5 Factors

Mkt-RF SMB HML RMW CMA intercept

Regression Coefficients 0.00 0.00 -0.04 0.08*** 0.04 0.76***
(0.02) (0.02) (0.03) (0.03) (0.04) (0.06)

Correlations -0.10 -0.09 0.01 0.17 0.05 -

⇒ Fama-French factors do not span SDF.
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Empirical Results - Size Effect

Table: Performance of Different SDF Models with Size Thresholds

SR EV Cross-Sectional R2

Model Train Valid Test Train Valid Test Train Valid Test

Size ≥ 0.001% of total market cap

LS 1.44 0.31 0.13 0.07 0.05 0.03 0.14 0.03 0.10

EN 0.93 0.56 0.15 0.11 0.09 0.06 0.17 0.05 0.14

FFN 0.42 0.20 0.30 0.11 0.10 0.05 0.19 0.08 0.18

GAN 2.32 1.09 0.41 0.23 0.22 0.14 0.20 0.13 0.26

Size ≥ 0.01% of total market cap

LS 0.32 -0.11 -0.06 0.05 0.07 0.04 0.13 0.05 0.09

EN 0.37 0.26 0.23 0.09 0.12 0.07 0.17 0.08 0.14

FFN 0.32 0.17 0.24 0.13 0.22 0.09 0.22 0.15 0.26

GAN 0.97 0.54 0.26 0.28 0.34 0.18 0.27 0.23 0.32
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Empirical Results - Predictive Performance
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Figure: Cumulative Excess Returns of Decile Sorted Portfolios by GAN

⇒ Risk loadings predicts future stock returns.
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Empirical Results - Predictive Performance
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(b) FFN
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Figure: Projected Excess Return of Decile Sorted Portfolios
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Empirical Results - Predictive Performance

Table: Time Series Pricing Errors for β-Sorted Portfolios

Average Returns Fama-French 3 Fama-French 5

Whole Test Whole Test Whole Test
Decile α t α t α t α t

1 -0.12 -0.02 -0.21 -12.77 -0.13 -5.01 -0.20 -11.99 -0.12 -4.35
2 -0.00 0.05 -0.09 -8.79 -0.05 -3.22 -0.09 -8.29 -0.05 -2.68
3 0.04 0.08 -0.04 -5.18 -0.02 -1.40 -0.04 -4.87 -0.01 -1.05
4 0.07 0.09 -0.02 -2.30 -0.00 -0.35 -0.02 -2.86 -0.01 -0.54
5 0.10 0.12 0.01 2.08 0.03 2.46 0.01 1.36 0.03 2.17
6 0.11 0.12 0.02 2.75 0.03 2.85 0.01 1.51 0.02 2.20
7 0.14 0.15 0.05 6.61 0.05 4.39 0.04 5.16 0.04 3.41
8 0.18 0.18 0.08 9.32 0.08 5.83 0.07 8.05 0.07 4.86
9 0.22 0.21 0.11 9.16 0.11 5.71 0.11 8.58 0.11 5.39
10 0.37 0.37 0.24 10.03 0.25 6.27 0.25 10.43 0.27 6.59

10-1 0.48 0.39 0.45 18.50 0.38 10.14 0.46 18.13 0.39 9.96

GRS Asset Pricing Test GRS p GRS p GRS p GRS
39.72 0.00 11.25 0.00 37.64 0.00 10.75 0.00

⇒ Standard factor models cannot explain cross-sectional returns.
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Empirical Results - Performance on Portfolios

Table: Explained Variation and Pricing Errors for Short-Term Reversal
Sorted Portfolios9

ST_REV EN FFN GAN EN FFN GAN

Decile Explained Variation Alpha

1 0.84 0.74 0.77 -0.18 -0.21 -0.13
2 0.86 0.81 0.82 0.00 -0.05 0.00
3 0.80 0.82 0.84 0.13 0.04 0.06
4 0.69 0.80 0.82 0.16 0.03 0.03
5 0.58 0.68 0.71 0.13 -0.03 -0.04
6 0.43 0.66 0.75 0.22 0.05 0.01
7 0.23 0.64 0.77 0.20 0.03 -0.02
8 -0.07 0.49 0.67 0.23 0.03 -0.05
9 -0.25 0.29 0.58 0.30 0.09 -0.01
10 -0.24 -0.04 0.35 0.47 0.38 0.18

Explained Variation Cross-Sectional R2

All 0.43 0.58 0.70 0.45 0.79 0.94

9Results for Momentum sorted portfolios are included in the appendix [52].
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Empirical Results - Performance on Portfolios

Table: Explained Variation and Pricing Errors for Size Sorted Portfolios10

LME EN FFN GAN EN FFN GAN

Decile Explained Variation Alpha

1 0.80 0.75 0.79 0.09 -0.00 0.10
2 0.89 0.89 0.90 -0.11 -0.09 -0.06
3 0.91 0.80 0.91 -0.07 0.02 -0.02
4 0.90 0.77 0.91 -0.05 0.04 -0.01
5 0.90 0.78 0.91 0.01 0.10 0.04
6 0.88 0.80 0.91 0.03 0.09 0.02
7 0.84 0.81 0.89 0.04 0.05 -0.01
8 0.84 0.85 0.88 0.06 0.03 -0.02
9 0.77 0.81 0.82 0.06 -0.01 -0.04
10 0.32 0.28 0.49 -0.04 -0.15 -0.10

Explained Variation Cross-Sectional R2

All 0.83 0.78 0.86 0.96 0.95 0.97

10Results for Book-to-Market Ratio sorted portfolios are included in the
appendix [53].
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Empirical Results - Performance on Portfolios

Table: Explained Variation and Pricing Errors for Decile Sorted Portfolios

Explained Variation Cross-Sectional R2

Charact. EN FFN GAN EN FFN GAN

ST_REV 0.43 0.58 0.70 0.45 0.79 0.94

SUV 0.42 0.75 0.83 0.64 0.97 0.99

r12_2 0.26 0.27 0.54 0.66 0.71 0.93

NOA 0.58 0.69 0.78 0.94 0.96 0.95
SGA2S 0.52 0.63 0.73 0.93 0.95 0.96
LME 0.83 0.78 0.86 0.96 0.95 0.97
RNA 0.50 0.48 0.69 0.93 0.87 0.96
. . . . . . . . . . . . . . . . . . . . .
CF2P 0.46 0.47 0.66 0.90 0.89 0.99
BEME 0.70 0.75 0.82 0.97 0.94 0.98
Variance 0.48 0.27 0.61 0.74 0.72 0.89
. . . . . . . . . . . . . . . . . . . . .
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Empirical Results - Characteristic Importance
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Figure: Characteristic Importance11 by GAN

11Our sensitivity analysis is similar to Sirignano et al. [2016]. See the
appendix [54].
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Figure: Weight as a Function of Size and Dividend Yield

⇒ Size and dividend yield have close to linear effect!
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Figure: Weight as a Function of Multiple Variables

⇒ Complex interaction between multiple variables!
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Conclusion

• Linear models perform well because when considering
characteristics in isolation, the models are approximately linear.

• Non-linearities matter for the interaction.
• Most relevant variables are price trends and liquidity.
• Macroeconomic data has a low dimensional factor structure.
• Pricing all individual stocks leads to better pricing models on
portfolios.

• SDF structure stable over time.
• Mean-variance efficient portfolio implied by pricing kernel
highly profitable in a risk-adjusted sense.
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Appendix - Deep Learning in Asset Pricing
SDF Example - CAPM

In CAPM, there is only one factor RM,e = RM − R f . Find the SDF
Mt+1, which has the form of Mt+1 = a + bRM,e

t+1 . With no-arbitrage
condition Et [Mt+1R

e
t+1] = 0, we have

a

b
= −

Et [(R
M,e
t+1 )2]

Et [R
M,e
t+1 ]

Notice that the SDF is negatively correlated with the market factor.
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Appendix - Deep Learning in Asset Pricing
SDF Example - Geometric Brownian Motion

Assume the stock price follows geometric Brownian Motion
dSt
St

= µdt + σdWt

Find the pricing kernel πt , which has the form of
dπt
πt

= adt + bdWt

• For risk-free rate r ,

Et

[πt+dt

πt
(1 + rdt)

]
= 1 ⇒ a = −r .

• For stock return µdt + σdWt ,

Et

[πt+dt

πt
(1 + µdt + σdWt)

]
= 1 ⇒ b = (r − µ)/σ
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Appendix - Deep Learning in Asset Pricing
Generative Adversarial Network by Goodfellow et al. [2014]

Figure: GAN Structure by Goodfellow et al. [2014]

1 The generator takes random numbers and returns an image.
2 This generated image is fed into the discriminator alongside a

stream of images taken from the actual data set.
3 The discriminator takes in both real and fake images and

returns probabilities, with 1 representing a prediction of
authenticity and 0 representing fake.
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Appendix - Deep Learning in Asset Pricing
Feedforward Network

Figure: Feedforward Network with 3 Hidden Layers

x (l) =ReLU(W (l−1)>x (l−1) + w
(l−1)
0 )

y =W (L)>x (L) + w
(L)
0
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Appendix - Deep Learning in Asset Pricing
Feedforward Network with Dropout

Figure: Feedforward Network with 3 Hidden Layers and Dropout
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Appendix - Deep Learning in Asset Pricing
Long-Short-Term-Memory Cell (LSTM)

Figure: Long-Short-Term-Memory Cell (LSTM)
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Appendix - Deep Learning in Asset Pricing
LSTM Cell Structure

At each step, a new memory cell c̃t is created with current input xt
and previous hidden state ht−1

c̃t = tanh(W
(c)
h ht−1 + W

(c)
x xt + w

(c)
0 ).

The input and forget gate control the memory cell, while the output
gate controls the amount of information stored in the hidden state:

inputt =σ(W
(i)
h ht−1 + W

(i)
x xt + w

(i)
0 )

forgett =σ(W
(f )
h ht−1 + W

(f )
x xt + w

(f )
0 )

outt =σ(W
(o)
h ht−1 + W

(o)
x xt + w

(o)
0 ).

The final memory cell and hidden state are given by

ct =forgett ◦ ct−1 + inputt ◦ c̃t
ht =outt ◦ tanh(ct).
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Appendix - Deep Learning in Asset Pricing
Hyper-Parameter Search

Table: Selection of Hyperparameters for GAN

Notation Hyperparameters Candidates Optimal

HL Number of layers in SDF Network 2, 3 or 4 2
HU Number of hidden units in SDF Network 64 64

SMV Number of hidden states in SDF Network 4 or 8 4
CSMV Number of hidden states in Conditional Network 16 or 32 32
CHL Number of layers in Conditional Network 0 or 1 0
CHU Number of hidden units in Conditional Network 4, 8, 16 or 32 8
LR Initial learning rate 0.001, 0.0005, 0.0002 or 0.0001 0.001
DR Dropout 0.95 0.95

1 For each combination of hyperparameters (384 models) we fit the GAN model.
2 We select the five best combinations of hyperparameters on the validation data

set.
3 For each of the five combinations we fit 9 models with the same

hyperparameters but different initialization.
4 We select the ensemble model with the best performance on the validation data

set.
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Appendix - Deep Learning in Asset Pricing
Other Implementation Details

• For training deep neural networks, the vanilla stochastic gradient descend
method has proven to be not an efficient method. A better approach is to
use optimization methods that introduce an adaptive learning rate (e.g.
Adam).

• Regularization is crucial and prevents the model from over-fitting on the
training sample. Although l1/l2 regularization might also be used in
training other neural networks, Dropout is preferable and generally results
in better performances.

• We use ensemble averaging to create a group of models that provide a
significantly more robust estimation. Let’s denote ŵ (j) to be the optimal
portfolio weights given by the j th model. The ensemble model is a
weighted average of the outputs from models with the same architecture
but different starting values for the optimization and gives more robust
estimates: ω̂ = 1

9

∑9
j=1 ω̂

(j).
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Appendix - Deep Learning in Asset Pricing
Simulation Setup

• Excess returns follow a no-arbitrage model with SDF factor F

Re
i ,t+1 = βi ,tFt+1 + εi ,t+1.

• The SDF factor follows Ft
i .i .d .∼ N (µF , σ

2
F ) with σ2F = 0.1 and

SRF = 1.
• The risk loadings β

βi ,t = C
(1)
i ,t · C

(2)
i ,t with C

(1)
i ,t ,C

(2)
i ,t

i .i .d .∼ N (0, 1).

• The idiosyncratic component εi ,t
i .i .d .∼ N (0, σ2e ) with σ2e = 1.

• N = 500 and T = 600. Training/validation/test split is
250,100,250.
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Appendix - Deep Learning in Asset Pricing
Simulation Results

Loadings β with 2 characteristics

(a) Population Model (b) GAN

(c) FFN (d) LS
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Appendix - Deep Learning in Asset Pricing
Simulation Results

Table: Performance of Different SDF Models

Sharpe Ratio EV Cross-sectional R2

Model Train Valid Test Train Valid Test Train Valid Test

Population 0.96 1.09 0.94 0.16 0.15 0.17 0.17 0.15 0.17
GAN 0.98 1.11 0.94 0.12 0.11 0.13 0.10 0.09 0.07
FFN 0.94 1.04 0.89 0.05 0.04 0.05 -0.30 -0.09 -0.33
LS 0.07 -0.10 0.01 0.00 0.00 0.00 0.00 0.01 0.01
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Appendix - Deep Learning in Asset Pricing
Turnover

Table: Turnover by Models

Long Position Short Position

Model Train Valid Test Train Valid Test

LS 0.25 0.22 0.24 0.64 0.55 0.61
EN 0.36 0.35 0.35 0.83 0.83 0.84
FFN 0.69 0.63 0.65 1.38 1.29 1.27

GAN 0.47 0.40 0.40 1.05 1.04 1.02
Turnover for positions with positive and negative weighs for the SDF factor
portfolio.
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Appendix - Deep Learning in Asset Pricing
Performance on Portfolios

Table: Explained Variation and Pricing Errors for Momentum Sorted
Portfolios

r12_2 EN FFN GAN EN FFN GAN

Decile Explained Variation Alpha

1 0.04 -0.06 0.33 0.37 0.39 0.11
2 0.12 0.10 0.52 0.25 0.18 -0.01
3 0.19 0.25 0.66 0.14 0.05 -0.06
4 0.28 0.34 0.73 0.15 0.08 -0.02
5 0.37 0.46 0.80 0.19 0.09 0.02
6 0.45 0.58 0.78 0.02 -0.03 -0.09
7 0.62 0.69 0.68 0.01 0.01 -0.05
8 0.58 0.71 0.64 -0.03 -0.04 -0.09
9 0.55 0.70 0.58 0.08 0.04 -0.03
10 0.51 0.53 0.53 0.24 0.29 0.19

Explained Variation Cross-Sectional R2

All 0.26 0.27 0.54 0.66 0.71 0.93
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Appendix - Deep Learning in Asset Pricing
Performance on Portfolios

Table: Explained Variation and Pricing Errors for Book-to-Market Ratio
Sorted Portfolios

BEME EN FFN GAN EN FFN GAN

Decile Explained Variation Alpha

1 0.38 0.66 0.70 0.03 -0.12 -0.08
2 0.48 0.73 0.78 0.10 -0.05 -0.04
3 0.71 0.84 0.86 0.07 -0.03 -0.01
4 0.76 0.88 0.89 0.00 -0.07 -0.07
5 0.82 0.87 0.88 0.05 0.02 0.01
6 0.77 0.82 0.88 0.06 0.04 0.02
7 0.81 0.81 0.87 0.03 0.08 0.03
8 0.71 0.59 0.78 0.03 0.12 0.06
9 0.80 0.72 0.80 -0.02 0.11 0.07
10 0.68 0.73 0.79 -0.05 -0.00 0.00

Explained Variation Cross-Sectional R2

All 0.70 0.75 0.82 0.97 0.94 0.98
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Appendix - Deep Learning in Asset Pricing
Economic Significance of Variables

• we define the sensitivity of a particular variable as the average
absolute derivative of the weight w with respect to this
variable:

Sensitivity(xj) =
1
C

N∑
i=1

T∑
t=1

∣∣∣∂w(It , It,i )

∂xj

∣∣∣,
where C a normalization constant.

• A sensitivity of value z for a given variable means that the
weight w will approximately change (in magnitude) by z∆ for
a small change of ∆ in this variable.
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