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Abstract The literature that conducts numerical analysis of equilibrium in models with
hyperbolic (quasi-geometric) discounting reports difficulties in achieving convergence. Sur-
prisingly, numerical methods fail to converge even in a simple, deterministic optimal growth
problem that has a well-behaved, smooth closed-form solution. We argue that the reason for
nonconvergence is that the generalized Euler equation has a continuum of smooth solutions,
each of which is characterized by a different integration constant. We propose two types of
restrictions that can rule out the multiplicity: boundary conditions and shape restrictions on
equilibrium policy functions. With these additional restrictions, the studied numerical meth-
ods deliver a unique smooth solution for both the deterministic and stochastic problems in a
wide range of the model’s parameters.

Keywords Hyperbolic discounting · Quasi-geometric discounting · Time inconsistency ·
Markov perfect equilibrium · Markov games · Turnpike theorem · Neoclassical growth
model · Endogenous gridpoints · Envelope condition
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1 Introduction

Quasi-geometric (hyperbolic) discounting is a form of time inconsistency in preferences
when the discount factor, applied between today and tomorrow, differs from the one applied
to any other date further in the future. The first studies on quasi-geometric discounting date
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back to Strotz [65], Pollak [59], and Phelps and Pollak [58], although interest to this topic
has recently been revived after the work of Laibson [34].1

Pollak [59] and Peleg and Yaari [57] observe that models with time inconsistency can
be viewed as dynamic games in which the agent in each different period is interpreted as a
different agent—self . The current self plays a dynamic game against her future selves. The
relevant solution concept in such a strategic environment is Nash equilibrium. In particular,
the mainstream of the related literature focuses on stationary Markov Nash equilibrium (see,
e.g., [24,30,34,34]) and we follow this literature in the present paper.2

The problem of solving dynamic models with quasi-geometric agents is known to be very
difficult. Sufficient conditions for existence and uniqueness in a general setting with quasi-
geometric discounting are actually not well understood. Further, sufficient conditions for a
sharp characterization ofMarkov equilibrium are known only under very strong assumptions.
Moreover, the literature that aims to solve numerically the models with quasi-geometric
discounting reports difficulties in attaining convergence. Surprisingly, nonconvergence is
documented even for a special case of the standard growth model in which a unique smooth
closed-form solution is derived analytically and is known to exist; even when the degree of
time inconsistency is very small and even if iteration starts in a close neighborhood of the
given closed-form solution; see Krusell and Smith [29] and Maliar and Maliar [39,41].

The present paper has two goals: First, we try to gain understanding into why numerical
methods iterating on a generalized Euler equation may fail to produce a smooth equilibrium;
and second, we aim to provide recommendations on how a unique smooth equilibrium can
be reliably constructed.

To investigate the reason for non-convergence of generalized Euler equation methods,
we study the implications of the envelope condition in the presence of quasi-geometric
discounting. Our analysis builds on a recently developed envelope condition framework in
Maliar and Maliar [45].3 We show that the envelope condition has a continuum of smooth
solutions, unlike the usual envelope condition that has a unique smooth solution.As a result, in
the presence of quasi-geometric discounting, the Euler equation is a differential equation that
contains both a policy function and its derivative and its solution depends on an integration
constant.We argue that the transversality condition is not sufficient to discriminate among the
multiple solutions. To ensure the uniqueness of the solution, we need to impose additional
restrictions that identify the integration constant, for example, to focus on a given steady
state or to match a specific boundary condition. The numerical methods used in the previous
literature do not impose such additional restrictions, however.

We propose two different approaches for ruling out the multiplicity of equilibria. Our
first approach is to restrict a numerical approximation to satisfy an equilibrium boundary

1 The related literature includes Laibson et al. [35], Barro [9], O’Donoghue and Rabin [55], Harris and
Laibson [24], Angeletos et al. [3], Krusell and Smith [29–31], Krusell et al. [32], Luttmer and Mariotti [37],
Maliar and Maliar [39–44], Judd [25], Sorger [61], Gong et al. [23], Chatterjee and Eyigungor [16], Balbus et
al. [6,7], Bernheim et al. [11], among others.
2 Other methods can be used in the context of models with quasi-geometric discounting. One of them
is a “recursive optimization” approach suggested in Strotz [65], and Caplin and Leahy [14]. A possible
implementation of this approach is found in the “pseudo-state space/enlarged state space” analysis of Kydland
and Prescott [33] and Feng et al. [22]. Recently, in the context of the game theoretic approach, some literature
have suggested turning the problem into a stochastic game (e.g., [24], Balbus et al. [6]). Also, in this latter
tradition, one could also attempt to apply incentive-constrained dynamic programmingmethods [60], recursive
dual approaches [49,52,56], and [17], or set-value dynamic programming methods proposed in Abreu, Pearce
and Stachetti [1] (e.g., Balbus and Wozny [6]).
3 For convergence properties of the envelope condition method (ECM) and its applications, see Maliar and
Maliar [46], and Arellano et al. [4].
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condition that a zero initial capital leads to zero consumption and zero investment. With this
additional equilibrium restriction, the studied numerical methods can pin down the appropri-
ate integration constant and can deliver a unique smooth solution for both the deterministic
and stochastic problems in a wide range of the model’s parameters. The solutions are the
same as the closed-form solutions, and the convergence is robust to modifications in the
model’s and algorithm’s parameters, whereas the convergence of unrestricted global Euler
equation method are fragile and sensitive to the number of grid points used; see Maliar and
Maliar [39,41].

Our second approach is to construct a solution obtained in limit of the solution to a finite
horizon economy. This equilibrium selection ismotivated by the analysis inMaliar andMaliar
[43] who implement the conventional value function iteration (VFI) by “hand” in an example
of the model with a known closed-form solution and show that VFI delivers the closed-form
solution as a limit of the finite horizon economy.4 This example suggests that a careful
numerical implementation of VFI must produce a unique smooth closed-form solution.5 By
a careful implementation, wemean that a functional form used to parameterize value function
must posses the same properties as is imposed when iterating by “hand”, namely, it must be
continuously differentiable, monotonically increasing and strictly concave. We implement
two value function iteration methods, conventional VFI and Carroll’s [15] endogenous grid
method (EGM), and we find that these methods deliver smooth solutions that are similar to
those produced by our restricted generalized Euler equation method under the appropriate
shape restrictions.6

The rest of the paper is organized as follows. Section 2 formulates the model, derives the
optimality conditions and defines the solution concept. Section 3 describes the implications
of envelope condition analysis for a generalized Euler equation approaches. Section 4 dis-
cusses two approaches for ruling our the multiplicity of equilibria and presents the results of
numerical experiments; and finally, Sect. 5 concludes.

2 The Model

We consider a version of the standard neoclassical growth model in which the agent’s pref-
erences are time inconsistent because of quasi-geometric discounting.

2.1 The Stochastic Environment

The stochastic environment is standard; see, e.g., Stokey and Lucas with Prescott [64], Santos
[62] and Stachurski [63]. Time is discrete, and the horizon is infinite t = 0, 1, . . . Let
(�,F, P) denote a probability space:

4 For the case of the standard geometric discounting, there is a general turnpike theorem that shows that an
optimal program of a finite horizon economy asymptotically converges to an optimal program of the corre-
sponding infinite horizon economy under very general assumptions; see Brock and Mirman [13], McKenzie
[51], Joshi [26], Majumdar and Zilcha [38], Mitra and Nyarko [54], Becker [10], and Maliar et al. [47]. Turn-
pike theorems are also known for some dynamic games (see [28] for a survey), but they are not yet established
for the economy with quasi-geometric discounting like ours.
5 In the standard geometric discounting case, there are monotone operators that converge to a limiting
stationary solution by iteration on the finite horizon dynamic program; see Coleman [18,19], Mirman et
al. [53], Datta et al. [20], and Feng et al. [22].
6 See also Barillas and Fernandez-Villaverde [8], Maliar and Maliar [45], Fella [21] and White [67] for
extensions and applications of EGM.
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a) � = �∞
t=0�t represents a space of sequences ε ≡ (ε0, ε1 . . .) with εt ∈ �t for all t .

Here, �t is a compact metric space endowed with the Borel σ—field Et . That is, �t

is the set of all possible states of the environment at t and εt ∈ �t is the state of the
environment at t .

b) F is the σ—algebra on � produced by sets of the form �∞
τ=0Aτ , where Aτ ∈ Eτ for all

τ .
c) P is the probability measure on (�,F).

{Ft } denotes a filtration on�, whereFt is a sub σ—field ofF induced by a partial history
ht = (ε0, . . . , εt ) ∈ �t

τ=0�τ up to period t , i.e.,Ft is generated by sets of the form�t
τ=0Aτ ,

where Aτ ∈ Eτ for all τ ≤ t and Aτ = �τ for τ > t . In particular, we have that F0 is the
course σ—field {0,�} and that F∞ = F . If � consists of either finite or countable states, ε
is called a discrete state process or chain; otherwise, it is called a continuous state process.

2.2 Optimization Problem

We consider a stochastic growth model ran by a planner who solves the following utility
maximization problem on each date t :

max
{cτ ,kτ+1}∞τ=t

{
u (ct ) + Et

∞∑
τ=t

βδτ+1−t u (cτ+1)

}
(1)

s.t. cτ + kτ+1 = (1 − d) kτ + zτ f (kτ ) , (2)

zτ+1 = ϕ (zτ , ετ+1) , (3)

where cτ ≥ 0 and kτ ≥ 0 denote consumption and capital, respectively; initial condition
(k0, z0) is given; u : R+ → R and f : R2+ → R+ and ϕ : R2 → R are a utility function,
production function and law ofmotion for an exogenous variable zt , respectively; εt+1 is i.i.d;
δ ∈ (0, 1) and β > 0 are the long- and short-run discount factors, respectively; d ∈ [0, 1]
is the depreciation rate; and Et [·] is an operator of expectation, conditional on a t-period
information set.

We assume that u and f are twice continuously differentiable on R+, strictly increasing,
concave and satisfy the Inada conditions. Moreover, we assume that the objective function
in (1) is bounded to ensure the existence of maximum.

The utility weights in (1) decline over time as
{
1, βδ, βδ2, . . .

}
, i.e., the utility of period

t + 1 is discounted at a rate βδ, and all subsequent utilities are discounted at a rate δ, i.e.,
the utility weights decline geometrically over time with an exception of the initial period.
This discounting is referred to as quasi-geometric. In the case of the standard geometric
discounting, the agent discounts the utility of all future periods at identical rates, i.e., the
utility weights decline geometrically over time

{
1, δ, δ2, . . .

}
.

2.3 Solution Concepts

Definition 1 (Feasible program). A feasible program for the economy (1)–(3) is a pair of
adapted (i.e., Ft measurable for all t) processes {ct , kt }∞t=0 such that given initial condition
k0 and history ht = (ε0, ε1, . . .), they satisfy ct ≥ 0, kt ≥ 0 and (2) for all t .

We denote by �∞ a set of all feasible programs from given initial capital k0 and given history
ht = (ε0, ε1, . . .).
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2.3.1 Optimal Program

We first introduce the concept of solution for the model with geometric discounting.

Definition 2 (Optimal programwith geometric discounting). A feasible program
{
c∗
t , k

∗
t

}∞
t=0∈ �∞ is called optimal if

E0

[ ∞∑
t=0

δt
{
u
(
c∗
t

)− u (ct )
}] ≥ 0 (4)

for every feasible process {ct , kt }∞t=0 ∈ �∞.

The definition of the optimal program (4) applies only to geometric discounting case β = 1.
In this case, the optimal program

{
c∗
t , k

∗
t

}∞
t=0, constructed in period t = 0, remains optimal

in all subsequent periods in the sense that the agent would not change this program in any
future period if she could do so.

However, if β 
= 1, the agent may re-decide on the optimal program as time evolves. If
β > 1 (β < 1), then the short-run discount factor between t and t + 1, βδ, is higher (lower)
than the long-run discount factor δ between any two periods t + τ and t + τ + 1 that are
further away in the future τ ≥ 1. This leads to time inconsistency in preferences, namely, the
relative utility values in any two adjacent periods change depending on whether the agent
considers a short run (i.e., next period) or long run (i.e., any periods after the next one). As a
result, a sequence

{
c∗t
τ , k∗t

τ+1

}∞
τ=t

that is optimal from the point of view of the agent at t may

not be the same as the sequence
{
c∗t ′
τ , k∗t ′

τ+1

}∞
τ=t ′

that is optimal from the point of view of

the agent at t ′ > t . Hence, an agent with time-inconsistent preferences may re-decide on the
optimal sequence later on. We assume that the agent is fully aware of her time inconsistency
and also, that she cannot commit herself to fulfilling her plans (the problemwith commitment
is equivalent to the standard geometric discounting case and is straightforward).

2.3.2 Nash Equilibrium

Peleg and Yaari [57] notice that models with time inconsistency can be viewed as dynamic
games. An agent at each different date is interpreted as a different agent—self . Effectively, a
self t decides on consumption and savings only in the current period t because consumption
and savings in future periods will be re-decided by future selves. A current (t-period) self
plays a dynamic game against her future selves. A relevant solution concept for dynamic
games is a Nash equilibrium.

Definition 3 (Nash equilibrium with quasi-geometric discounting). A feasible program{
c∗
τ , k

∗
τ

}∞
τ=t ∈ �∞ is called a Nash equilibrium (NE) if for every history ht and for every

feasible program {cτ , kτ }∞τ=t ∈ �∞, we have

u
(
c∗
t

)+ βδV ∗
t+1 ≥ u (ct ) + βδVt+1, (5)

where V ∗
t+1 ≡ E0

[∑∞
τ=t+1 δτ−t−1u

(
c∗
τ

)]
and Vt+1 ≡ E0

[∑∞
τ=t+1 δτ−t u (cτ )

]
are the

continuation values for the programs
{
c∗
τ , k

∗
τ

}∞
τ=t and {cτ , kτ }∞τ=t , respectively.

The program
{
c∗
τ , k

∗
τ

}∞
τ=t constitutes a NE by definition: if a self τ deviates to any other

feasible program {cτ , kτ }∞τ=t , she will get utility, which is not higher than the one under the
program

{
c∗
τ , k

∗
τ

}∞
τ=t , as (5) implies.
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The proposed definition leads to a large set of equilibria, including those built on history
dependent strategies, such as a trigger (stick-and-carrot) type of equilibria. In particular,
there are many equilibria that are supported by noncredible threats, e.g. a zero-consumption
punishment. A novel work of Bernheim et al. [11] provides a complete characterization of
a set of all subgame perfect Nash equilibria in a related model: the property of subgame
perfection rules out unrealistic equilibria supported by non-credible threats.

2.3.3 Markov Equilibrium

It is common in macroeconomic literature to focus on a more restrictive class of Markov
equilibria; see Kocherlakota [27] and Maskine and Tirole [50] for a discussion. The key
property of Markov equilibrium is that it is memoryless, i.e., past history is irrelevant for
determining the current choices except of the recent past. Moreover, for the infinite horizon
economy, it is normally assumed that the equilibrium is stationary, namely, the planner
chooses the next-period capital stock kt+1 according to a time-invariant policy function,
kt+1 = K (kt , zt ).

To characterize a stationary Markov Nash equilibrium in the economy with quasi-
geometric discounting (1)–(3), we denote by W (kt , zt ) the optimal value of the expected
discounted utility of the agent whose current state is kt and zt , and who from period t + 1
and on, makes her decisions according to a time-invariant policy function K . A recursive
formulation of the model (1)–(3) is

W (k, z) = max
k′
{
u
(
(1 − d) k + z f (k) − k′)+ βδE

[
V
(
k′, z′

) | z]} , (6)

where the value function of future selves V (k, z) is defined by a recursive functional equation

V (k, z) = u (1 − d) k + z f (k) − k′ + δE
{
V
(
k′, z′

) | z} , (7)

and k, z are given.

Definition 4 (Stationary Markov Nash equilibrium with quasi-geometric discounting). A
stationary Markov Nash equilibrium (SMNE) is a collection of functions W : R

2+ → R,
V : R2+ → R and K : R2+ → R+ that satisfy (6), (7).

The notion of SMNE eliminates the problem of time inconsistency. This equilibrium is time
consistent: the agent chooses decision rules that maximize her expected life-time utility
function by explicitly taking into account that her preferences change over time.

2.4 A Smooth Closed-Form Solution

As was first noticed by Krusell and Smith [29], the model (1)–(3) admits a closed-form
solution under one parameterization.7 Namely, assume u (c) = ln c, f (k) = kα , with α ∈
(0, 1) and d = 1. Also, assume that the equilibrium is interior and smooth. Then, it is easy
to verify that the optimal value and policy functions are given by

7 Maliar and Maliar [40] shows another example of the model with quasi-geometric discounting that admits
a closed-form solution under the assumption of the exponential utility function.
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V (k, z) = (1 − δ)−1
(
ln

1 − δα

1 − δα + βδα
+ δα

1 − δα
ln

βδα

1 − δα + βδα

)

+ α

1 − δα
ln k + 1

(1 − δρ) (1 − δα)
ln z, (8)

c = 1 − δα

1 − δα + βδα
zkα and k′ = βδα

1 − δα + βδα
zkα. (9)

A model with a closed-form solution is convenient for testing numerical methods for the
analysis of equilibrium.

3 Why is it so Hard to Find a Smooth Equilibrium?

The numerical analysis of equilibrium in the model with quasi-geometric discounting proved
to be problematic. Krusell and Smith [29] study a deterministic version of the model with
a closed-form solution (8) and (9), i.e., they assume z = 1. They tried to approximate this
solution numerically by using the conventional value and policy function iteration based
on a discretization of state space. Surprisingly, the conventional numerical methods fail to
converge to a known closed-form solution, namely, they either produce cycling or converge to
some different solutions with jumps. Krusell and Smith [29] explain their findings by the fact
that, in addition to the smooth, closed-form solution, there are infinitely many discontinuous
solutions in the form of step functions; see also Krusell and Smith [30,31] for a discussion.
Also, discontinuous Markov perfect equilibria are constructed in Bernheim et al. [11].

Subsequent literature that focuses on constructing smooth solutions comes upwith contra-
dictory findings. Krusell et al. [32] argue that a perturbation method delivers a unique smooth
solution; however, Judd [25] shows that perturbation methods produce multiple solutions if
the precision is increased.Maliar andMaliar [39,41] and Judd [25] report that global solution
methods such as projection or stochastic simulation methods produce a unique smooth solu-
tion. However, Maliar andMaliar [39,41] also find that when the flexibility of approximation
function increases (i.e., degree of approximating polynomial or the number of grid points),
projection methods also fail to converge. Chatterjee and Eyigungor [16] argue that even if a
smooth solution exists, an approximation of such a solution may fail to exist if a domain is
truncated. Our goal will be to reconcile these findings and in particular, to gain intuition into
why the conventional numerical methods may fail to produce a smooth equilibrium.

3.1 Generalized Euler Equation

The literature on quasi-geometric discounting typically constructs smooth solutions by using
a generalized Euler equation. We derive this equation below. If the equilibrium is interior
and if V is differentiable, such an equilibrium can be characterized by a first-order condition
(FOC) of (6), (7). The FOC with respect to k′ is

u′ (c) = βδE

[
∂V

(
k′, z′

)
∂k′

]
, (10)

where the prime on variables is used to denote their future values. The derivative of V with
respect to k′ is

∂V (k, z)

∂k
= u′ (c)

(
1 − d + z f ′ (k) − ∂K (k, z)

∂k

)
+ ∂K (k, z)

∂k
δE

[
∂V

(
k′, z′

)
∂k′

]
, (11)
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where ∂K/∂k is taken out of the expectation because it is known before the shock z′ is
realized. By substituting (10) into (11), updating and rearranging the terms, we obtain:

β
∂V

(
k′, z′

)
∂k′ = u′ (c′) (β

(
1 − d + z′ f ′ (k′))+ (1 − β)

∂K
(
k′, z′

)
∂k′

)
. (12)

With a slight abuse of terminology, we will refer to the above condition as the “envelope

condition” although it does not have the property that
∂K(k′,z′)

∂k′ cancels out, as implied by the
envelope theorems. By combining (10) and (12), we obtain a generalized Euler equation

u′ (c) = δE

{
u′ (c′) (β

(
1 − d + z′ f ′ (k′))+ (1 − β)

∂K
(
k′, z′

)
∂k′

)}
. (13)

Note that the agent’s consumption-saving decision at time t depends not only on the future

return on capital but also on the future marginal propensity to save out of capital,
∂K(k′,z′)

∂k′ .
This feature of the model plays a determinant role in the properties of the solution and is not
present in the version of the model with standard geometric discounting.

3.2 Multiplicity of Solutions to the Envelope Condition

Maliar and Maliar [39] introduce a recursion for value function iteration, called envelope
condition method (ECM), that differs from the standard backward value function iteration
(VFI); see Arellano et al. [4] and Maliar and Maliar [46] for a discussion of convergence
results of ECMand its further applications.Wenow show that theECManalysis has important
implications for the model with quasi-geometric discounting (1)–(3).

For expositional convenience, let us consider the deterministic case (i.e., we assume zt = 1
for all t), and let us restrict attention to the model with a closed-form solution, studied in
Sect. 2.4. Our goal is to construct the consumption function. By using the budget constraint
(2), we re-write the envelope condition (12) in terms of the derivative of the consumption
function c (k)

β
dV (k)

dk
= u′ (c)

(
z f ′ (k) − (1 − β)

dc (k)

dk

)
. (14)

By rearranging the terms, we obtain the following differential equation

βc

1 − β

dV (k)

dk
+ dc

dk
= α

1 − β
kα−1. (15)

We first solve the homogeneous differential equation βc
1−β

dV (k)
dk + dc

dk = 0 which gives us

c = E (k) exp

(
−βV (k)

1 − β

)
, (16)

where E (k) is an unknown function of k. Then, by substituting (16) into (15), we obtain an
equation that identifies E (k)

E ′ (k) = α

(1 − β)
kα−1 exp

(
βV (k)

1 − β

)
. (17)

By integrating E (k) and by substituting it into (16), we receive the following expression for
consumption

c = α

(1 − β)
exp

(
−βV (k)

1 − β

)∫ k

xα−1 exp

(
βV (x)

1 − β

)
dx + D exp

(
−βV (k)

1 − β

)
, (18)
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where D is a finite constant. Thus, the resulting consumption function depends on an arbitrary
constant D and is not uniquely defined, like in the standard geometric discounting case when
c can be directly expressed from β

dV (k)
dk = u′ (c) z f ′ (k). The multiplicity of solutions to

the envelope condition arises even if we insert the true closed-form solution in (18), as the
following example shows.

Example (Aquasi-geometric discountingmodel with a closed-form solution). Assumeβ 
= 1
and substitute the exact value function (8) into (18) to get

c = α

(1 − β)
exp

(
− βα

(1 − β) (1 − δα)
ln (k)

)∫ k

xα−1 exp

(
βα

(1 − β) (1 − δα)
ln (x)

)
dx

+ D exp

(
− βα

(1 − β) (1 − δα)
ln (k)

)
.

By simplifying this expression, we get

c = 1 − δα

1 − δα + βδα
kα + Dk

−βα
(1−β)(1−δα) . (19)

Comparing to the closed-form solution in (9), we can see that the consumption function has an
additional term, and it coincides with the closed-form solution only one specific integration
constant D = 0.

3.3 Generalized Euler Equation in the Integral Form

The analysis of Sect. 3.2 leads us to a different but equivalent representation of the generalized
Euler equation. Specifically, FOC (10) for the deterministicmodelwith a closed-form solution
is given by

1

c
= βδ

[
dV

(
k′)

dk′

]
. (20)

Updating equation (18), we can rewrite the envelope condition (12) in the integral form for
the next period

c′ = α

(1 − β)
exp

(
−βV

(
k′)

1 − β

)∫ k′
xα−1 exp

(
βV (x)

1 − β

)
dx+D exp

(
−βV

(
k′)

1 − β

)
. (21)

The conventional generalized Euler equation (13) is obtained by combining FOC (10) and
envelope condition (12) to eliminate the unknown derivative of value function. This is not
possible to do with our integral form of the envelope condition (21) because it contains value
function V

(
k′) and not its derivative. Therefore, we need to solve these two equations jointly

with respect to both c and V . The advantage of our representation is that we do not have the
derivative of the policy function that is present in the generalized Euler equation (13). The
fact that the system of Eqs. (20) and (21) depends on an integration constant D indicates
that our multiplicity results obtained for the envelope condition carry over to the generalized
Euler equation class of methods.

3.4 Multiplicity of Smooth Solutions is a Generic Property

Multiplicity of smooth solutions satisfying the generalized Euler equation seems to be a
generic property of this class of models. Indeed, the envelope condition (12) and similarly,
the generalized Euler equation (13) contain both a consumption function c and its derivative
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dc
dk . The solution to this differential equation depends on an integration constant. This is true
not only for our test model with a closed-form solution but also for more general versions of
the model, as well as for other similar dynamic games in which Euler equations contain both
a policy function and its derivative.

In the standard geometric discounting model, the sufficiency condition for maximization
is the transversality condition. This condition is ensured by focusing on the solution that
converges asymptotically to the steady state. However, the steady state is not well defined in
the problems with quasi-geometric discounting because it depends on an unknown derivative
dK
∂k′ . Specifically, evaluating the generalized Euler equation (13) in a possible steady state
yields

1 = δ

(
β
(
1 − d + z f ′ (k))+ (1 − β)

∂K
(
k, z
)

∂k

)
, (22)

where notations with bars denote steady-state values of the corresponding variables. Unless
∂K
(
k,z
)

∂k
is known, it is not possible to compute k from (22). In particular, if the model

admits multiple steady state satisfying (22), all such steady states will be consistent with
the transversality condition by definition. Moreover, Maliar and Maliar [43] show that any

potential steady state k ∈
[(

f ′)−1
(
1−(1−d)βδ

zβδ

)
,
(
f ′)−1

(
1−δ(1−dβ)

zβδ

)]
is consistent with the

property of saddle path stability, similarly to the steady state of the standard growth model
with geometric discounting.

4 Ruling Out the Multiplicity of Equilibria

An important practical question is: “Is it possible to discriminate amongmultiple solutions of
type (18)?”We present two approaches that can help to rule out the multiplicity of equilibria:
One is to impose some equilibrium boundary conditions on an approximate solution, and the
other is to impose the equilibrium shape restrictions such as differentiability, monotonicity
and concavity; these two approaches are described in Sects. 4.1 and 4.2, respectively.

4.1 Imposing Boundary Conditions

Consider the equilibrium boundary condition when the capital stock is zero k = 0. If the
production function is Cobb-Douglas f (k) = kα with α ∈ (0, 1), the budget constraint (2)
implies that if k = 0, than K (0, z) = 0 and C (0, z) = 0 and hence, the constant in the
envelope condition (21) must be equal to zero, i.e. D = 0.

Below, we argue that a class of global polynomial functions is convenient for imposing
such boundary conditions. Namely, assume that the capital function K (k) is parameterized
by an ordinary polynomial function K̂ (k, b), i.e.

K (k) ≈ K̂ (k; b) = b0 + b1k + b2k
2 + b3k

3 + b4k
4 + b5k

5 + . . . + bnk
n, (23)

whereb ≡ (b0, b1, . . . , bn). Then, the boundary conditionD = 0 implies K̂ (0; b) = 0which
means approximation (23) must be constructed under the additional restriction b0 = 0. As an
alternative, it is also possible to pin down the integration constant by focusing on a specific
steady state.
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4.1.1 Numerical Iteration on a Generalized Euler Equation

Weperform numerical analysis of equilibrium in themodel with quasi-geometric discounting
(1)–(3) using the Euler equation algorithmdescribed inMaliar andMaliar [39,41].We restrict

the domain of capital to the interval [kmin, kmax] =
[
0.5k

∗
, 2k

∗]
, where k

∗
is the steady-

state value of capital in the model with standard geometric discounting. We consider an
equally spaced grid of N points.

For all numerical experiments, we assume a constant relative risk aversion (CRRA) utility

function, u (c) = c1−γ −1
1−γ

, where γ > 0, and a Cobb–Douglas production function, f (k) =
kα; we fix α = 0.36 and δ = 0.95. If γ = 1 and d = 1, we obtain the model with the
closed-form solution.

In the stochastic case, we parameterize the process for productivity levels by ρ = 0.95
and σ = 0.01. We approximate the autoregressive process by a Markov chain with seven

states, Z ≡
{
0,± 5σ

3 ,± 5σ
2 ,±5σ

}
and compute the corresponding transition probabilities

π
(
z′|z), as in Tauchen [66]. Our solution algorithm is described below.

Algorithm 1. Generalized Euler-equation iteration
Given K (k, z; b), for each point (k, z), define the following recursion:

i). Compute c =
⎧⎨
⎩δ

∑
z′∈Z

⎡
⎣ β

(
1−d+z′αK (k,z)α−1

)
+(1−β)

∂K
(
K (k,z),z′)

∂K (k,z)

((1−d)K (k,z)+z′K (k,z)α−K (K (k,z),z′))γ

⎤
⎦π

(
z′|z)

⎫⎬
⎭

−1/γ

.

ii). Find k̂′ = (1 − δ) k + z f (k) − c.
iii). Find K̂ (k, z; b) that fits k̂′ on the grid (k, z).

Iterate on i)-iii) until convergence K̂ = K .

Algorithm 1 implements fixed point iteration on capital policy function. The advantage
of this algorithm is that it relies on direct calculations and does not use either maximization
or equation solving routines. The shortcoming is that the convergence of fixed point iteration
is not guaranteed; see Maliar and Maliar [46] for a discussion. To enhance the convergence
properties of the studiedmethod, we begin iteration sufficiently close to the exact solution and
we use partial updating of policy function along iterations λK̂ + (1 − λ) K , where λ = 0.01,
i.e., we update the solution by just 1% on each iteration.

4.1.2 Cycling, Nonconvergence and Multiple Solutions in the Presence of
Quasi-Geometric Discounting

Maliar and Maliar [39,41] applied Algorithm 1 to similar problems with quasi-geometric
discounting by evaluating policy functions outside the grid using cubic spline interpolation.
These papers find that iteration on quasi-geometric Euler equation (13) using Algorithm 1
delivers the closed-form solution (8), (9) when an approximating function was relatively
rigid and inflexible, but it starts cycling and deviates from the closed-form solution when a
more flexible functional form is used. This was true even if the degree of time inconsistency
is very small and even if iteration begins arbitrary closed to a known closed-form solution.
In Fig. 1, we illustrate an example of the constructed solutions depending on the number of
grid point used for the model with the closed-form solution under β = 0.5.

In the very first panel (upper-left), we use a relatively inflexible numerical approximation
with just 30 points. In this case, the approximate solution is visually indistinguishable from
the closed-form solution. When we gradually increase the number of grid points from 30
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Fig. 1 Cycling, nonconvergence and multiple solutions

to 270, we observe that the numerical method produce solutions that visibly differ from
the closed-form solution. In the bottom three panels (210, 240 and 270 grid points), the
algorithm failed to converge. Our results on multiplicity in Sect. 3 help us to shed some light
on why numerical procedures based on a generalized Euler equation may produce this type
of behavior. Namely, unrestricted cubic interpolation does not allow us to identify specific
integration constant in the solution (18) and the numerical method randomly selects one of
many possible solutions.

4.1.3 Deterministic Model with a Boundary Equilibrium Condition

We then solved a deterministic version of the model by using global polynomial approx-
imation (23) under the additional restriction b0 = 0 that implies D = 0 in the envelope
condition (18). We find that the generalized Euler equation method systematically converges
to a closed-form solution under a wide range of β, including large degrees of time inconsis-
tency such as β = 0.5 and β = 1.5. We plot the capital functions under three selected values
of β in Fig. 2.
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Fig. 2 Solution to the deterministic model
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Fig. 3 Solution to the stochastic model

The noteworthy finding in the figures is that the solutions under all three values of β

are very similar. The main difference is that an agent with β > 1 (β < 1) holds more (less)
capital than the one with β = 1, i.e., the short-run patient (impatient) agent tends to over-save
(under-save) relative to the one with β = 1. The solutions we obtain are essentially identical
to those constructed by Maliar and Maliar [39,41] using a grid-based numerical method
iterating on a generalized Euler equation. However, Maliar and Maliar [39,41] report the
problem of nonconvergence when the number of grid points increases, while we do not
observe this problem even with a very large number of grid points such as 10,000.

We run sensitivity experiments. For themodelwith a closed-formsolution.Our generalized
Euler equation method delivers a closed-form solution for such a large range of the degrees
of quasi-geometric discounting as β ∈ [0.05, 3]. We also solved the model with partial
depreciation of capital d = 0.025 and the degrees of risk aversion in the range γ ∈ [ 15 , 10],
and we find that the algorithm is systematically converging to a unique smooth solution.

4.1.4 Stochastic Model with Boundary Equilibrium Conditions

In the stochastic model, the performance of the studied method was also successful: the
algorithm was again able to converge to a closed-form solution for both small and large
values of β. We plot the asset (capital) functions for β = 0.5, β = 1 and β = 1.5 in Fig. 3.

Similar to the deterministic case, short-run patient agents save more than short-run impa-
tient agents. This is true for any level of exogenous productivity level. We do not observe
cycling when the number of grid points increases.

4.2 Imposing Shape Restrictions

In this section, we explore another strategy for ruling out the multiplicity of equilibrium,
namely, we restrict attention to the limit of the finite horizon version of the model. We
show that the finite horizon problem converges to the infinite horizon economy as T → ∞
under the parameterization that leads to a closed-form solution. This result suggests that a
smooth SMNE can be reliably constructed by using iteration on Bellman equation, provided
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that we impose appropriate restrictions on the interpolating function such as smoothness,
monotonicity, differentiability and concavity.8

4.2.1 Finite Horizon Economy

In this section, we consider a finite horizon version of the economy (1)–(3) with a terminal
period T :

max
{cτ ,kτ+1}∞τ=t

{
u (ct ) + Et

T∑
τ=t

βδτ+1−t u (cτ+1)

}
(24)

s.t. (2), (3), (25)

where initial condition (k0, z0) is given. The solution concepts developed for the infinite
horizon economy (1)–(3) apply to the finite horizon case as well. In particular, the parallel
definitions of the optimal program (4) and Nash equilibrium (5) follow by replacing the
infinite horizon ∞ with the finite horizon T . The definition of Markov equilibria for a finite
horizon economy is also similar but the property of stationarity is not imposed in the finite
horizon case. Here, the optimal value and policy are time dependent and are characterized
by backward induction. The standard value iterative method that constructs a solution by
backward induction is known as time-iteration.

Algorithm 2. Value function iteration
Set some VT+1 and compute backward {Vt ,Wt }t=T,...,0 using:
Wt (kt , zt ) = max

kt

{
u ((1 − d) kt + zt f (kt ) − kt+1) + βδEt

[
Vt+1 (kt+1, zt+1)

]}
,

Vt (kt , zt ) = u ((1 − d) kt + zt f (kt ) − kt+1) + δEt
[
Vt+1 (kt+1, zt+1)

]
.

Definition 5 (Markov perfect equilibria with quasi-geometric discounting). A Markov per-
fect equilibrium (MPE) in the finite horizon economy is a collection of functionsWt : R2+ →
R, Vt : R2+ → R and Kt : R2+ → R+, t = 0, . . . , T constructed by Algorithm 2.

In the standard geometric discounting case, it is known that the finite horizon economy (24),
(25) asymptotically converges to the infinite horizon economy (1)–(3) as T → ∞. This kind
of convergence results is referred to as turnpike theorems ; see, e.g., Brock and Mirman [13],
McKenzie [51], Majumdar and Zilcha [38], Mitra and Nyarko [54], Joshi [26], Becker [10]
and Maliar et al. [47].

There is an example suggesting that turnpike-style results can hold for some quasi-
geometric discounting problems. Namely, Maliar and Maliar ([43], Appendix A) apply
Algorithm 2 to iterate “by hand” on the Bellman equation of the finite horizon model using
Algorithm 2 and show that the limiting value and policy functions converge to the closed-
form solution (8), (9) of the infinite horizon economy. (The above result is an extension of
the analysis of Manuelli and Sargent [48] to the quasi-geometric discounting case). This
indicates that, at least for a special case of the model with the closed-form solution, the finite
horizon problem converges in the limit to the infinite horizon problem.

8 Balbus, Reffett andWozny [6,7] suggest a different value-based recursion for themodel with qusi-geometric
discounting, which under appropriate assumptions delivers a unique SMNE equilibrium using a simple suc-
cessive approximation scheme.
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4.2.2 Value Function Iteration Methods

We implement two methods that perform backward value function iteration, namely, the
conventional VFI and endogenous grid method (EGM) of Carroll [15]. Both methods guess
value function at t + 1 and use the Bellman equation to compute value function at t . FOC
(10), combined with budget constraint (2), becomes

u′ (c) = βδE
[
V1
(
(1 − δ) k + z f (k) − c, z′

)]
. (26)

Conventional VFI finds consumption c by calculating a solution to FOC (26).

Algorithm 3. Conventional VFI
Given V , for each point (k, z), define the following recursion:
i). Solve for c satisfying u′ (c) = βδE

[
V1
(
(1 − δ) k + z f (k) − c, z′

)]
.

ii). Find k′ = (1 − δ) k + z f (k) − c.
iii). Find V̂ (k, z) = u (c) + βE

[
V
(
k′, z′

)]
.

Iterate on i)-iii) until convergence V̂ = V .

Conventional VFI is expensive because Step i) requires us to numerically find a root to (26)
for each (k, z) by interpolating V1 to new values

(
k′, z′

)
and by approximating conditional

expectation —this all must be done inside an iterative cycle; see Aruoba et al. [5] for an
example of cost assessment of conventionalVFI. (Alternatively,we can find k′ bymaximizing
the right side of Bellman equation (8) directly without using FOCs, however, this is also
expensive).

Carroll [15] proposes a way to reduce the cost of conventional VFI. The EGM method
of Carroll [15] exploits the fact that it is easier to solve (26) with respect to c given

(
k′, z

)
than to solve it with respect to c given (k, z). EGM constructs a grid on

(
k′, z

)
by fixing the

future endogenous state variable k′ and by treating the current endogenous state variable k
as unknown. Since k′ is fixed, EGM computes E

[
V1
(
k′, z′

)]
up-front and thus can avoid

costly interpolation and approximation of expectation in a rootfinding procedure.

Algorithm 4. EGM of Carroll [15]
Given V , for each point

(
k′, z

)
, define the following recursion:

i). Find c = u′−1 {βδE
[
V1
(
k′, z′

)]}
.

ii). Solve for k satisfying k′ = (1 − δ) k + z f (k) − c.
iii). Find V̂ (k, z) = u (c) + βE

[
V
(
k′, z′

)]
.

Iterate on i)-iii) until convergence V̂ = V .

In Step ii) of EGM,we still need to find k numerically. However, for the studiedmodel, Carroll
[15] shows a change of variables that makes it possible to avoid finding k numerically on
each iteration (except of the very last iteration).

4.2.3 Numerical Experiments with Shape Restrictions

Why do we expect VFI and EGM to work? This is because they both use the same back-
ward iteration by “hand” as in Maliar and Maliar [43] and thus, they must lead to the same
limit provided that we impose the same restrictions on the interpolating function as those
imposed in the iteration by “hand”, namely, monotonicity, differentiability and concavity.
These restrictions are not enforced in the value iteration method of Krusell and Smith
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[29–31] based on discretization of state space and such methods produce cycling among
a large set of smooth and nonsmooth equilibria.

We run a number of numerical experiments, and we indeed observed under appropriate
shape restrictions on the approximating functions (i.e., monotonicity, differentiability and
concavity), the studied value function iterationmethods converge systematically and produce
solutions that are similar to those reported in Sect. 3 (to save on space, these experiments are
not reported).

Moreover, we find that imposing such shape restrictions on the approximating functions
enhances the convergence properties of numerical methods iterating on the generalized Euler
equation. In particular, Algorithm 1 does not encounter the problems of cycling and noncon-
vergence reported by Maliar and Maliar [39,41] when the number of grid points becomes
large. We were able to systematically construct a unique smooth solutions both in the version
of the model with the closed-form solution and more general versions of the model with a
very large number of grid point.

4.2.4 Discussion

Our turnpike analysis is limited to one particular example of the model with closed-form
solution. It is not known whether or not parallel results hold for more general version of
the model with quasi-geometric discounting (1)–(3). The construction of turnpike results for
dynamic games like this is complicated by the facts that, first, the existence and uniqueness
of SMNE in infinite horizon economy is not guaranteed and second, the uniqueness of MPE
in finite horizon economy is also not guaranteed, see Bernheim and Ray [12] and Leininger
[36] for a discussion. For a survey of the existing turnpike results for dynamic games, see
Kolokoltsov and Yang [28].

Furthermore, it is also not known whether or not the standard value and policy function
iteration will systematically converge to the infinite horizon solution in the limit even if such
limit happens to exist. For the standard geometric discountingmodel, there are value function
and Euler equation monotone operators that are known to uniformly converge to a limiting
stationary solution by simple iteration on the finite horizon dynamic program; see Coleman
[18] andMirman et al. [53] and also, seeColeman [19],Datta et al. [20], andFeng et al. [22] for
related convergence results. However, in the presence of derivatives of policy functions in the
Euler equation, the pointwise decreasing consumption (and associated pointwise increasing
investment) along turnpikes does not hold; hence, the structure of the turnpike properties
relative to Coleman’s [18] policy iteration method fails in general. This is because partial
orders, where monotonicity of operators can be preserved for solving functional equations
that involve derivative properties of the space of functions, are difficult to construct. This
is exactly the problem noted in the seminal paper by Amann [2] on using partial ordering
methods to solve differential equations, namely, the partial orders typically do not reflect
gradient properties of policy functions. In other words, monotonicity is hard to attain when
iterating on functional equations that contain both policy functions and their derivatives.

Finally, for the optimal growthmodel with the closed-form solution, the appropriate shape
restrictions are known because a closed-form solution is available. Some properties of the
solutions can be established for more general versions of the model, for example, Maliar and
Maliar [42] show monotonicity and strict concavity of the asset and consumption functions
in a related model with quasi-geometric discounting. However, in more complex models,
the shape of equilibrium functions may be hard to establish, so it might be unclear what
restrictions must be imposed on the equilibrium functions.
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5 Conclusion

The previous literature has encountered difficulties in constructing numerical solutions to an
optimal growth model with quasi-geometric discounting because numerical methods cycle
among a large set of equilibria. To reduce the set of equilibria, some papers suggested to
focus on a smooth solution satisfying the generalized Euler equation. However, our envelope
condition analysis indicates that there are multiple smooth solutions satisfying generalized
Euler equation as well. Our argument is both general and intuitive: Since a generalized Euler
equation contains both a policy functions and its derivative, the solution to the resulting
differential equation depends on an integration constant. This is the source of multiplicity of
smooth equilibria.

We propose two ways of ruling out the multiplicity of equilibrium. First, we argue that it is
possible to pin down a specific integration constant by imposing some additional restriction
on the constructed solutions such as a given boundary condition, a specific steady state or
similar. Second, we find that imposing additional shape restrictions on the interpolant such as
monotonicity, differentiability and concavity can be sufficient for making numerical methods
to systematically converge to the closed-form solution in our examples.

While our analysis is limited to amodel with quasi-geometric discounting, its implications
carry over to a variety of dynamic strategic contexts in which time inconsistency is involved,
including government policy problems, monopolistic competition, etc. It would be of interest
to explore limiting properties of finite horizon versions of such problems and to establish
general turnpike-style results on their asymptotic convergence.

Acknowledgments Lilia Maliar and Serguei Maliar acknowledge support from the Hoover Institution and
Department of Economics at Stanford University, University of Alicante, Santa Clara University and MECD
Grant ECO2012-36719. We thank the editors Edward Prescott and Kevin Reffett for many useful comments
and suggestions.

References

1. Abreu D, Pearce D, Stachetti E (1986) Optimal cartel equilibria with imperfect monitoring. J Econ Theory
39:251–269

2. Amann H (1976) Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces.
SIAM Rev 18(4):620–709

3. AngeletosM, LaibsonD, Repetto A, Tobacman J,Weinberg S (2001) The hyperbolic consumptionmodel:
calibration, simulation, and empirical evaluation. J Econ Perspect 15(3):47–68

4. Arellano C, Maliar L, Maliar S, Tsyrennikov V (2014) Envelope condition method with an application
to default risk models (Manuscript)

5. Aruoba SB, Fernández-Villaverde J, Rubio-Ramí rez J (2006) Comparing solution methods for dynamic
equilibrium economies. J Econ Dyn Control 30:2477–2508

6. Balbus Ł, Reffet K, Woźny Ł (2015) Time consistent Markov policies in dynamic economies with quasi-
hyperbolic consumers. Int J Game Theory 44(1):83–112

7. Balbus L, Reffet K, Wozny L (2012) Existence and uniqueness of time-consistent Markov policies for
quasi-hyperbolic consumers under uncertainty (Manuscript)

8. Barillas F, Fernandez-Villaverde J (2007) A generalization of the endogenous grid method. J Econ Dyn
Control 31(8):2698–2712

9. Barro R (1999) Ramsey meets Laibson in the neoclassical growth model. Q J Econ 114(4):1125–1152
10. Becker R (2012) Optimal growth with heterogeneous agents and the twisted turnpike: an example. Int J

Econ Theory 8(1):24–47
11. Bernheim D, Ray D, Yeltekin S (2015) Poverty and self-control. Econometrica (forthcoming)
12. Bernheim D, Ray D (1986) On the existence of Markov-consistent plans under production uncertainty.

Rev Econ Stud 53(5):877–882



260 Dyn Games Appl (2016) 6:243–261

13. BrockW,MirmanL (1972)Optimal economic growth and uncertainty: the discounted case. J EconTheory
4:479–513

14. Caplin A, Leahy J (2006) The recursive approach to time inconsistency. J Econ Theory 131(1):134–156
15. Carroll K (2005) Themethod of endogenous grid points for solving dynamic stochastic optimal problems.

Econ Lett 91:312–320
16. Chatterjee S, Eyigungor B (2014) ContinuousMarkov equilibriawith quasi-geometric discounting.Work-

ing Papers 14–6, Federal Reserve Bank of Philadelphia
17. Cole H, Kubler F (2012) Recursive contracts, lotteries and weakly concave pareto sets. Rev Econ Dyn

15(4):479–500
18. ColemanW (1991) Equilibrium in a production economy with an income tax. Econometrica 59(4):1091–

1104
19. Coleman W (2000) Uniqueness of an equilibrium in infinite-horizon economies subject to taxes and

externalities. J Econ Theory 95(1):71–78
20. Datta M, Mirman L, Reffett K (2002) Existence and uniqueness of equilibrium in distorted dynamic

economies with capital and labor. J Econ Theory 103(2):377–410
21. Fella G (2014) A generalized endogenous grid method for non-smooth and non-concave problems. Rev

Econ Dyn 17(2):329–344
22. Feng Z, Miao J, Peralta-Alva A, Santos M (2014) Numerical simulation of nonoptimal dynamic equilib-

rium models. Int Econ Rev 55:83–110
23. Gong L, Smith W, Zou H (2011) Asset prices and hyperbolic discounting. CEMA Working Papers 486
24. Harris C, Laibson D (2001) Dynamic choices of hyperbolic consumers. Econometrica 69(4):935–959
25. JuddK (2004)Existence, uniqueness, and computational theory for time consistent equilibria: a hyperbolic

discounting example (Manuscript)
26. Joshi S (1997) Turnpike theorems in nonconvex nonstationary environments. Int Econ Rev 38:245–248
27. Kocherlakota NR (1996) Reconsideration-proofness: a refinement for infinite horizon time inconsistency.

Games Econ Behav 15(1):33–54
28. Kolokoltsov V, YangW (2012) The turnpike theorems forMarkov games. DynGames Appl 2(3):294–312
29. Krusell P, Smith A (2000) Consumption-savings decisions with quasi-geometric discounting. CEPR

discussion paper no. 2651
30. Krusell P, Smith A (2003) Consumption-savings decisions with quasi-geometric discounting. Economet-

rica 71:365–375
31. Krusell P, Smith A (2008) Consumption-savings decisions with quasi-geometric discounting: the case

with a discrete domain (Manuscript)
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