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The Parameterized Expectations Algorithm (PEA) is a powerful tool for solving nonlinear stochastic
dynamic models. However, it has an important shortcoming: it is not a contraction mapping technique
and thus does not guarantee a solution will be found. We suggest a simple modification that enhances
the convergence property of the algorithm. The idea is to rule out the possibility of (ex)implosive
behavior by artificially restricting the simulated series within certain bounds. As the solution is refined
along the iterations, the bounds are gradually removed. The modified PEA can systematically converge
to the stationary solution starting from the nonstochastic steady state.
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1. INTRODUCTION

The Parameterized Expectations Algorithm (PEA) is a non-
finite state space method for computing equilibria in nonlinear
stochastic dynamic models (e.g., Wright and Williams 1982;
Miranda and Helmberger 1988; Marcet 1988; den Haan and
Marcet 1990; Christiano and Fisher 2000). The method is as
follows: approximate the conditional expectation in Euler’s
equation by a parametric function of state variables and find
the parameters, which minimize the distance between the
expectation and the approximating function.

Several properties make the PEA an attractive tool for
researchers in the area of economic dynamics. First, if a
low-degree polynomial approximation delivers a sufficiently
accurate solution, the cost of the algorithm does not practi-
cally depend on the dimensionality of the state space. Second,
the PEA can be applied for analyzing not only the optimal
economies but also the economies with externalities, distor-
tions, liquidity constraints, and so on. Finally, the algorithm is
fast and simple to program. For an extensive discussion of the
method and its applications, see Marcet and Lorenzoni (1999)
and Christiano and Fisher (2000).

The main drawback of the PEA is that it is not a contraction
mapping technique and thus does not guarantee a solution will
be found. In fact, if the assumed decision rule happens to be
far from the true solution, the algorithm is likely to diverge. To
achieve convergence, one has to wisely choose initial values
for the parameters in the approximating function as well as a
procedure for updating the parameters on each iteration.

To systematically find a good initial point for iterations one
can use homotopy: “[S]tart with a version of the model which
is easy to solve, then modify these parameters slowly to go
to the desired solution.... It is often possible to find such
‘known’ solutions and to build a bridge that goes to the desired
solution” (Marcet and Lorenzoni 1999, p. 156). One can also
start from a solution that is previously computed by another
numerical method, such as the log-linear approximation (see
Christiano and Fisher 2000). It is evident, however, that the
need to search for an initial point can seriously complicate
implementing the PEA in practice.

88

This paper describes a simple modification that enhances
the convergence property of the PEA. We consider the version
of the algorithm developed by Marcet (1988) that evaluates the
expectations by using Monte Carlo simulation. Our idea is to
rule out the possibility of (ex)implosive behavior by artificially
restricting the simulated series within certain bounds. As the
solution is refined along the iterations, the bounds are gradu-
ally removed. We call this modification “moving bounds.”

Introducing the moving bounds resolves the problem of
finding a good initial guess in the sense that the modified PEA
is able to converge even if the initial guess is not very accu-
rate. In our example, the modified PEA can systematically find
the stochastic solution starting from the nonstochastic steady
state. It is also important to mention that the practical imple-
mentation of the moving bounds is simple: one only has to
automatically insert several lines in the original PEA code. In
the remainder of the paper, we formally describe the modifica-
tion of the moving bounds and provide an illustrative example.

2. THE MOVING BOUNDS

We modify the PEA described in Marcet and Lorenzoni
(1999) to include the moving bounds. Consider an economy,
which is described by a vector of n variables, z,, and a vector
of s exogenously given shocks, u,. It is assumed that the
process {z,, u,} is represented by a system

g(Et[¢(Zf+]’Zt)]’ Zts Zt—l’ut) =0, forallzs, (1)
where g: R" x R" x R” x R® — R? and ¢: R* — R™; the
vector z, includes all endogenous and exogenous variables that
are inside the expectation, and u, follows a first-order Markov
process. It is assumed that z, is uniquely determined by (1) if
the rest of the arguments is given.

© 2003 American Statistical Association
Journal of Business & Economic Statistics
January 2003, Vol. 21, No. 1

DOI 10.1198/073500102288618793



Maliar and Maliar: Parameterized Expectations Algorithm

We consider only a recursive solution such that the condi-
tional expectation can be represented by a time-invariant func-
tion ®(x,) = E,[¢(z,,,. 2,)], where x, is a finite-dimensional
subset of (z,_;,u,). If the function ®(-) cannot be derived
analytically, we approximate @(-) by a parametric function
(B, x), B € R*. The objective will be to find B* such that
(B*, x) is the best approximation to ®(x) given the func-
tional form (),

B = arlgr;,inlllﬂ(ﬁ, x) = d)]|.

This can be done by using the following iterative proce-
dure.

+ Step 1. Fix upper and lower bounds, z and z, for the pro-
cess {z,(B), u,}. For an initial iteration i =0, fix 8 = B(0) €
R?. Fix initial conditions u, and z,; draw and fix a random
series {u,}’_, from a given distribution. Replace the condi-
tional expectation in (1) with a function ¢/(f, x) and compute
the inverse of (1) with respect to the second argument to obtain

= h(‘r[/(B’ xt(B))’ Zy_ps Uy). (2)

« Step 2. For a given § € R" and given bounds z and z,
recursively calculate {z,(8), u,}_, according to

z(B)=z if z,(B) <z,

z(B)=2 if 2,(B) = Z,

2(B)=h((B, x,(B)): 21> u,)  if 2 <2,(B) <z
« Step 3. Find a G(B) that satisfies

G(B) = arg rlginll¢(z,+| (B, z.(B) =¥ (&, x. (Bl

+ Step 4. Compute the vector B(i+ 1) for the next itera-
tion,

B(i+1) =1 -wBH)+uGB>E), wme(0,1).

« Step 5. Compute z(i+ 1) and z(i+ 1) for the next
iteration,

2(i+1)=z() —A®),
Z(i+1) =z(i) +A>D),
where A(i) and A(i) are the corresponding steps.

Iterate on Steps 2-5 until 8* = G(B*) and z < z,(8*) < £ for
all .

To perform Step 3, one can run a nonlinear least
squares regression with the sample {z,(B),u,}l_,, taking
&(z,41(B), z,(B)) as a dependent variable, ¢/(-) as an explana-
tory function, and & as a parameter vector to be estimated.
We will not discuss the choice of the functional form for the
approximation, the parameter number, the simulation length,
and so on, as all of these are extensively analyzed in the pre-
vious literature (e.g., Marcet and Lorenzoni 1999). Here, we
focus only on the issue of convergence.

Thus, our modification is to artificially restrict the simulated
series, z < z,(B*) < z. If z and z are set to —oo and oo,
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respectively, the modified version is equivalent to the original
one. The role of the bounds is discussed below.

Unlike the traditional value-iterative methods, the PEA does
not have the property of global convergence. To be precise,
if the approximation (3, x) happens to be far from the true
decision rule, ®(x), then the simulated series {z,(B), u,}"_,
become highly nonstationary; as a result, the regression does
not work appropriately and the algorithm diverges. Hence,
one has to initially choose and subsequently update 8 such
that (B, x) remains sufficiently close to the true decision
rule, ®(x). The need to fulfill this requirement can compli-
cate the use of the PEA in practice; for example, one has to
search for an initial guess by using homotopy or the log-linear
approximation.

We approach the problem from a different perspective.
Specifically, rather than trying to ensure that (83, x) always
remains close to ®(x), we attempt to enhance the conver-
gence property of the PEA and, consequently, to prevent the
algorithm from failing if the approximation happens to be
far from the true decision rule. The moving-bounds method
exploits the fact that under the true decision rule, ®(x),
the process {z,,u,}"_, is stationary. The bounds artificially
induce the stationarity of possibly (ex)implosive simulated
series {z,(), u,}/_, by not allowing such series to go beyond
a fixed range [z, z]. This range is small, initially. However, it
increases at each subsequent iteration. The bounds, therefore,
play a stabilizing role at the beginning, when the approxima-
tion (B, x) is probably not accurate. As the PEA converges to
the stationary solution, the bounds gradually lose their impor-
tance and eventually become completely irrelevant.

In practice, there is no need to impose bounds on all of the
simulated series. It is sufficient to restrict only the series for
endogenous state variables, which are calculated by recursion
and thus have a natural tendency to (ex)implode. In general,
the remaining variables will be continuous functions of state
variables and thus will be restricted automatically. Also, in
some applications, there is no need to readjust (move) the
bounds on each iteration. It is possible to fix the bounds z
and Zz at the beginning so that the algorithm will eventually
converge.

We discuss a possible choice of the moving bounds param-
eters in the next section. As an initial guess, we use the
nonstochastic steady state. An advantage of this approach is
that the initial point is computed in a simple and system-
atic manner. The drawback is that the nonstochastic steady
state solution can be far from the true stochastic solution, and,
hence, the convergence can be slow. It is important to mention
that using the steady state as an initial guess is not feasible
within the original PEA framework.

3. AN EXAMPLE

To illustrate the application of the moving-bounds method,
we consider the simplest one-sector stochastic growth model,
|

l—y

max E;)» &'

ste,+k,=(1—d)k,_, +0,k
{L‘,,k,}fio =0

t—1°
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Figure 1.

where log 0, = plog,_, + €, with €, ~ N(0, o%), the initial
condition (k_,, 0,) is given, and « € (0, 1). If the utility is
logarithmic, v = 1, and there is full depreciation of capital,
d =1, the model allows for an analytic solution: ¢, = (1 —
a0)6,k* . In general, the closed-form solution to this model
is not known.

The previous paper by den Haan and Marcet (1990) solves
this model under y = 1 by using the PEA and the homotopy
approach. They start from the solution to the model under
d =1 and change d from 1 to 0 in 10 steps; they calculate
the solution for each step and employ it as the initial guess
for the next d.

We show how to solve the model by using the mod-
ified version of the PEA. The program is written in

The Realization for Consumption, Capital, and the Expectation for a Single Stochastic Simulation (exploding capital, 1,000 periods).

MATLAB and is available on both the ASA FTP data
archive, ftp://www.amstat.org/, and the authors’ websites,
http://merlin.fae.ua.es/maliarl — and  http://merlin.fae.ua.es/
marliars. Following den Haan and Marcet (1990), we approx-
imate the conditional expectation by

Elci(1—d+ab, k)]
=exp(By+ B, logh, + B,logk, ),

where 8= (8,, B, B,) is a vector of coefficients to be found.
We can calibrate 8 as

Bo=In[c"(1—d+ab k%],

Bi =0, B,=0.
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Figure 2. The Realization for Consumption, Capital, and the Expectation for a Single Stochastic Simulation (imploding capital, 1,000 periods).

However, to illustrate the convergence ability of the modified
PEA, in the supplied MATLAB program, we draw 3, and (3,
from the normal distribution, N (0, 1). The algorithm has no
difficulty in converging starting from such a random initial
condition.

The moving-bounds parameters are

k(i) = kexp(—ai),
k(i) = ky (2 —exp(—ai)),

where a > 0,i is the number of iterations performed, and
the variables with the subscript ss are the steady-state values.

Under this choice, on the first iteration (i = 0), the simu-
lated series coincide with the steady-state solution, &,(8) = ki,
for all 7. On the subsequent iterations, the lower and upper
bounds gradually move, approaching 0 and 2k, respectively.
The parameter a determines the pace at which the bounds are
moved.

To simulate the model, we fix the model’s parameters as
follows:

o 0 y d p T
033 095 1

k., 6
002 095 001 k. 1

SS
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We choose the updating PEA parameter u = 0.5. We set the
moving-bounds parameter to a = 0.007, which corresponds
approximately to having k = 0.5z, and k = 1.5k, after 100
iterations. We fix the length of simulation to 7 = 1,000 peri-
ods. The convergence criterion used is that the L? distance
between vectors 3 obtained in two subsequent iterations is less
than 1073,

By construction, the moving-bounds modification may help
the PEA to converge, although it may not affect the final
solution. Therefore, we will not provide any results regard-
ing the properties of the solution; the discussion in den Haan
and Marcet (1990, 1994) applies to the modified PEA with-
out changes. We shall just illustrate how the moving-bounds
method works in practice.

Figures 1 and 2 show two examples of the stochastic simula-
tions. The series plotted in each row are consumption, capital,
and the value of the expression inside the conditional expec-
tation, respectively. The first row, “no bounds,” corresponds
to the first iteration of the original PEA, when no restrictions
are imposed on the simulated series. The subsequent rows,
“1=0, “l=1,” and so on, are the simulated series obtained
after i iterations are performed. The last row shows the final
time series solution.

As we can see, when no restrictions are imposed, capital
series become highly nonstationary. In the first case (Fig. 1),
capital explodes quickly to almost 20 steady-state levels,
whereas in the second case (Fig. 2), capital implodes to 0 in
less than 100 periods. These graphs illustrate the problem of
the initial point in the original PEA framework. To be spe-
cific, our initial guess of the steady-state solution here proved
to be inaccurate and led to nonstationary series that may not
be used in the regression. It is not surprising, therefore, that
the original PEA might have difficulty in converging.

As follows from subsequent graphs, the poor initial guess
does not create a problem for the modified PEA. Initially, at
“i =0,” the bounds make the simulated series coincide with
the steady state. On the next iteration, “i = 1,” the possible
range for capital increases; the capital series start fluctuating
and hitting the bounds. On subsequent iterations, the solu-
tion refines and the range for capital continues to increase;
the bounds are touched less and less frequently and, even-
tually, are never in operation. At this point, the task of the
moving bounds is completed, but the iterations continue until
the required accuracy in the fixed point is achieved.

One can easily check that our simple program is capa-
ble of finding the solution under any meaningful values of
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the model’s parameters. Furthermore, the property of conver-
gence is not affected by a choice of the updating procedure;
for example, one can assume full updating by setting u = 1.
Finally, the algorithm has no difficulty in converging when
the simulation length increases to 10,000 or even to 100,000
periods.

4. CONCLUSION

This paper suggests a simple modification that enhances
the convergence capability of the PEA. Specifically, the mod-
ified PEA does not suffer from the problem of the poor initial
guess and can systematically converge starting from the non-
stochastic steady-state solution. In the example considered, the
property of convergence proved to be robust to all meaningful
changes in both the model’s and the algorithm’s parameters.
We discuss only one example; however, we find the moving-
bounds modification to be useful in several other applications.
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