Quantitative Economics 11 (2020), 1289-1323 1759-7331/20201289

A tractable framework for analyzing a class of nonstationary
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We consider a class of infinite-horizon dynamic Markov economic models in
which the parameters of utility function, production function, and transition
equations change over time. In such models, the optimal value and decision func-
tions are time-inhomogeneous: they depend not only on state but also on time.
We propose a quantitative framework, called extended function path (EFP), for
calibrating, solving, simulating, and estimating such nonstationary Markov mod-
els. The EFP framework relies on the turnpike theorem which implies that the
finite-horizon solutions asymptotically converge to the infinite-horizon solutions
if the time horizon is sufficiently large. The EFP applications include unbalanced
stochastic growth models, the entry into and exit from a monetary union, infor-
mation news, anticipated policy regime switches, deterministic seasonals, among
others. Examples of MATLAB code are provided.
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1. INTRODUCTION

Dynamic stochastic infinite-horizon models are normally built on the assumption of
a stationary (time-homogeneous) environment, namely, it is assumed that the econ-

Lilia Maliar: lmaliar@gc.cuny.edu

Serguei Maliar: smaliar@scu.edu

John B. Taylor: johntayl@stanford.edu

Inna Tsener: inna.tsenerQuib.es

Lilia Maliar and Serguei Maliar gratefully acknowledge financial support from NSF Grant SES-1559407.

© 2020 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE1360



1290 Maliar, Maliar, Taylor, and Tsener Quantitative Economics 11 (2020)

omy’s fundamentals such as preferences, technologies, and laws of motions for exoge-
nous variables do not change over time. In such models, optimal value and decision
functions are also stationary, that is, they depend only on the economy’s state but not
on time.

However, actual economies evolve over time, experiencing population growth, tech-
nological progress, trends in tastes and habits, policy regime changes, evolution of social
and political institutions, etc. Modeling time-dependent features requires the assump-
tion that the parameters of economic models systematically change over time. The re-
sulting models are generally nonstationary (time-inhomogeneous) in the sense that the
optimal value and decision functions depend on both state and time. To characterize a
solution in such models, we need to construct not just one optimal value and decision
functions but an infinitely long sequence (path) of such functions, that is, a separate set
of functions for each period of time.! Generally, this is a difficult task!

The literature distinguished a number of special cases in which nonstationary dy-
namic economic models can be reformulated as stationary ones. Labor augmenting
technological progress is a well-known example of a deterministic trend that leads to
balanced growth and stationarity in the neoclassical growth model; see King, Plosser,
and Rebelo (1988).2 Time-homogeneous Markov processes are also consistent with
stationarity, for example, Markov regime switching models (e.g., Davig and Leeper
(2007, 2009), Farmer, Waggoner, and Zha (2011), and Foerster, Rubio-Ramirez, Wag-
goner, and Zha (2016)) and stochastic volatility models (e.g., Bloom (2009), Ferndndez-
Villaverde and Rubio-Ramirez (2010), and Fernandez-Villaverde, Guerrén-Quintana,
and Schorfheide (2016)). Finally, anticipated shocks of fixed horizon and periodicity
are also consistent with stationarity, including deterministic seasonals (e.g., Barsky and
Miron (1989), Christiano and Todd (2002), Hansen and Sargent (1993, 2013)) and news
shocks (Schmitt-Grohé and Uribe (2012)).

However, many interesting nonstationary models do not admit stationary represen-
tations. In particular, deterministic trends typically lead to unbalanced growth, for ex-
ample, investment-specific technical change (see Krusell, Ohanian, Rios-Rull, and Vi-
olante (2000)); capital-augmenting technological progress (see Acemoglu (2002, 2003));
time trends in the volatility of output and labor-income shares (see Mc Connel and
Pérez-Quiros (2000), and Karabarbounis and Neiman (2014), respectively), etc. Further-
more, anticipated parameter shifts also lead to time-dependent value and decision func-
tions, for example, anticipated accessions of new members to the European Union (e.g.,
Garmel, Maliar, and Maliar (2008)), presidential elections with predictable outcomes,
credible policy announcements, anticipated legislative changes.

In the paper, we focus on these and other generically nonstationary Markov mod-
els.3 We propose a quantitative framework, called extended function path (EFP), which

1We can also think of these models as ones that contain “time” as an additional state variable.

2There are examples of balanced-growth models that do not satisfy the restrictions in King, Plosser, and
Rebelo (1988) but they are limited; see Maliar and Maliar (2004, 2011), Boppart and Krusell (2016), and
Grossman, Helpman, Oberfield, and Sampson (2017).

3A Markov model can be nonstationary (i.e., have no stationary unconditional distribution) even if all
the parameters are time-invariant, for example, the unit root and explosive processes. We do not explicitly
study these kinds of nonstationarities but focus on time-inhomogeneity of the economic environment.
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makes it possible to construct a sequence of time-varying decision and value functions
for time-inhomogeneous Markov models. The condition that lies in the basis of our con-
struction is the so-called turnpike theorem. This condition ensures that a solution to the
finite-horizon model provides an arbitrarily close approximation to the infinite-horizon
solution if the time horizon is sufficiently large.

The EFP framework has three steps. First, we assume that, in some remote period,
the economy becomes stationary and construct the usual stationary Markov solution.
Second, given the constructed terminal condition, we solve backward the Bellman or
Euler equations to construct a sequence of value and decision functions. Finally, we ver-
ify that the turnpike property holds. Although our numerical examples are limited to
problems with few state variables, we implement EFP in a way that makes it tractable in
large-scale applications. Examples of the MATLAB code are provided.

For a simple optimal growth model, we can characterize the properties of the EFP
solution analytically, including its existence, uniqueness, and time-inhomogeneous
Markov structure. Moreover, we can prove a turnpike theorem that shows uniform con-
vergence of the truncated finite-horizon economy to the corresponding infinite-horizon
economy. But for more complex models, analytical characterizations are generally in-
feasible. In the paper, we advocate a numerical approach to turnpike analysis, namely,
we check that during a given number of periods, the constructed finite-horizon numer-
ical approximation is insensitive to the specific terminal condition and terminal date
assumed. Such a “numerical” way of verifying the turnpike theorem enlarges greatly a
class of tractable nonstationary applications.

We illustrate the EFP methodology in the context of three examples.* Our first ex-
ample is a stylized neoclassical growth model with labor-augmenting technological
progress. Such a model can be converted into a stationary one by detrending and solved
by any conventional solution method, but EFP makes it possible to solve the model
without detrending. Our second example is an unbalanced growth model with capital-
augmenting technological progress which cannot be analyzed by conventional solution
methods but which can be easily solved by EFP. Our last example is a version of the new
Keynesian model that features the forward guidance puzzle, namely, future events have
anonvanishing impact on today’s economy no matter how distant these events are. This
example shows the limitations of the EFP analysis: Even though the finite-horizon solu-
tion can be constructed, it is not a valid approximation to the infinite-horizon solution
if the turnpike theorem does not hold.

The idea of approximating infinite-horizon solutions with finite-horizon solutions is
not new to the literature but was introduced and developed in several contexts. First, the
turnpike analysis dates back to Dorfman, Samuelson, and Solow (1958), Brock (1971),
and McKenzie (1976); see also Nermuth (1978) for a summary of the earlier literature
and for generalizations of Brock’s (1971) original results. In particular, there are turnpike
theorems for models with time-dependent preferences and technologies; see, for exam-
ple, Majumdar and Zilcha (1987), and Mitra and Nyarko (1991). However, the turnpike

4A working paper version of Maliar, Maliar, Taylor, and Tsener (2015) presented a collection of further ex-
amples and applications, including growth models with news shocks, regime switches, stochastic volatility,
deterministic trend in labor shares and depreciation rates, seasonal fluctuations.
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literature in economics has focused exclusively on the existence results and has never
attempted to construct time-dependent solutions in practice.® The main novelty of our
analysis is that we show how to effectively combine the turnpike analysis with numerical
techniques to analyze a challenging class of time-inhomogeneous Markov equilibrium
problems that are either not studied in the literature yet or studied under simplifying
assumptions.

Furthermore, other solution methods in the literature construct finite-horizon ap-
proximations to infinite-horizon problems by (implicitly) relying on the turnpike prop-
erty, in particular, an extended path (EP) method of Fair and Taylor (1983).5 The key
difference between EP and EFP is that the former constructs a path for variables un-
der one specific realization of shocks (by using certainty equivalence approximation),
whereas the latter constructs a path for value or decision functions (by using accurate
numerical integration methods). As a result, EFP can accurately solve those models in
which the EP’s certainty equivalence approach is insufficiently accurate. Furthermore, a
simulation of the EFP solutions is cheap, unlike the simulation of the EP solutions which
requires recomputing the optimal path under each new sequence of shocks.

Finally, there is a literature that studies a transition between two aggregate steady
states in heterogeneous-agent economies by constructing a deterministic transition
path for aggregate quantities and prices; see, for example, Conesa and Krueger (1999)
and Krueger and Ludwig (2007). The EFP analysis includes but is not equivalent to mod-
eling transition from one steady state to another; in particular, some of our applications
do not have steady states (e.g., models with deterministic trends and anticipated shocks
do not generally have steady states).

The rest of the paper is as follows. In Section 2, we show analytically the turnpike
theorem for a nonstationary growth model. In Section 3, we introduce EFP and show
how to verify the turnpike theorem numerically. In Section 4, we assess the performance
of EFP in a nonstationary test model with a balanced-growth path. In Section 5, we use
EFP for analyzing an unbalanced growth model with capital-augmenting technological
progress. In Section 6, we discuss the limitations of the EFP framework in the context of
the stylized new Keynesian model. Finally, in Section 7, we conclude.

2. VERIFYING THE TURNPIKE THEOREM ANALYTICALLY

We analyze a time-inhomogeneous stochastic growth model in which the parameters
can change over time. We show that such a model satisfies the turnpike theorem; specif-

5In the optimal control theory, the turnpike analysis was used for numerical analysis of some applica-
tions; see Anderson and Kokotovic (1987), Trélat and Zuazua (2015), as well as Zaslavski (2019) for a recent
comprehensive reference.

60ther related path-solving methods are shooting methods, for example, Lipton, Poterba, Sachs, and
Summers (1980), Atolia and Buffie (2009a, 2009b); a continuous-time analysis of Chen (1999); a parametric
path method of Judd (2002); an EP method built on Newton-style solver of Heer and Mauf3ner (2010); a
framework for analyzing time-dependent linear rational expectation models of Cagliarini and Kulish (2013);
a nonlinear predictive control method for value function iteration of Griine, Semmler, and Stieler (2015);
refinements of the EP method, for example, Adjemian and Juillard (2013), Krusell and Smith (2015), and
Ajevskis (2017).
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ically, the trajectory of the finite-horizon economy converges to that of the infinite-
horizon economy as the time horizon increases.

2.1 Growth model with time-varying parameters

We consider a stylized stochastic growth model but allow for the case when preferences,
technology, and laws of motion for exogenous variables change over time,

T
max Ej |:Z ,B’ut(c,)i| (1)

{clakt+l}tT=0 =0
st ¢ +kip1 =0 =0k + fi(ke, zp), 2)
Zi11 = @1(Zt, €141), (3)

where ¢; > 0 and &, > 0 denote consumption and capital, respectively; initial con-
dition (ko, zo) is given; u; : Ry — R, f; : R2 — Ry, and ¢, : R? — R are time-inhomo-
geneous utility function, production function, and Markov process for exogenous vari-
able z,, respectively; €;,1 is an i.i.d. random variable; B € (0, 1) is a discount factor;
6 € (0, 1] is a depreciation rate; E,[-] is an operator of expectation, conditional on a ¢-
period information set; and 7' can be either finite or infinite.

Exogenous variables In the usual time-homogeneous (stationary) model, the func-
tions u; = u, f; = f, and ¢; = ¢ are fixed, time invariant, and known to the agent at
t = 0. For example, if f(k;, z;) = Az:k¢, the agent knows 4 and «a. To construct a time-
inhomogeneous model in a parallel manner, we need to fix the sequence of u;, f;, and
¢, and assume that it is known to the agent at ¢ = 0. That is, if f;(k;, z;) = A,z/k}", we
assume that the agent knows {4, a/}72.

The time-inhomogeneous Markov framework allows us to model a variety of in-
teresting time-dependent scenarios. As an example, consider the technology level A;.
We can assume that A4; can gradually change over time (drifts) or make sudden jumps
(shifts). These changes can be either anticipated or not. In particular, we can have
(i) technological progress 4, = A(y', where 4y > 0 and v is the technology growth rate;
(i) seasonal fluctuations 4, = {4, A, A, A4, ...}, where A, A are technology levels in the
high and low seasons; (iii) news shocks about future levels of A4;; etc.

We can also consider time-dependent scenarios for the parameters of stochastic
processes. For example, consider the following process for z; in (3):

Inz, 1 =pilnz, + 041, (4)

where oy > 0, |p;| <1, and €;,1 ~ N (0, 1). The process (4) is Markov since the probability
distribution Inz, 1 ~ N(n A4; + p;Inz, 0-,2) depends only on the current state but not
on the history. However, if either the mean In 4; + p;In z; or the variance 0-,2 change over
time, then the transition probabilities of In z;; also change over time, that is, the Markov
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process is time-inhomogeneous; see Appendix A.1 of the Supplemental Material (Maliar,
Maliar, Taylor, and Tsener (2020)) for formal definitions.” We can analyze similar time-
dependent scenarios for other parameters of the model, including the time-dependent
policies.

Endogenous variables and the optimal program A feasible program is a pair of adapted
processes {c;, kt+1}tT=0 such that, given initial condition (k¢, z9) and any history A7 =
(€0, --.,€r), it reaches a given terminal condition k7 at T and satisfies ¢; > 0, k; 1 >
0, 2), and (3) for t =1,...,T. “Adapted” means that the agent does not know future
stochastic shocks €’s (although she does know the deterministic changes in u;, f;, and ¢,
for all t > 0).

A feasible program is called optimal if it gives higher expected lifetime utility (1) than
any other feasible program.

We make standard (strong) assumptions that u, and f; are twice continuously differ-
entiable, strictly increasing, strictly quasi-concave, and satisfy the Inada conditions for
all ¢. Moreover, we assume that lifetime utility (1) is bounded; see Appendix A.2 of the
Supplemental Material for a formal description of our assumptions.

The optimal program in the economy (1)—(3) can be characterized by Bellman equa-
tions,

Vike, z) = max {u;(c;) + BE([Vig1(kig1, z41)]}, 1=0,1,...,T. (5)

CtsKt41

Also, the interior optimal program satisfies the Euler equations,

u;(cl)ZBEt[u;Jrl(cl—i-l)(l_5+ft/+1(k[+lazl+l))]7 t:07 17""T' (6)

In our assumptions, we follow Majumdar and Zilcha (1987) and Mitra and Nyarko (1991),
except that we assume strict quasi-concavity of the utility and production functions that
lead to unique solutions.

2.2 Finite-horizon economy

We first consider a finite-horizon model, 7' < co. We know that finite-horizon models are
solvable by backward induction from a given terminal condition. To solve such models,
we do not need stationarity: the models’ parameters (e.g., discount factor, depreciation
rate, persistence and volatilities of shocks) can change in every period but backward
iteration still works.

THEOREM 1 (Existence and uniqueness of time-inhomogeneous Markov solution). Fix
a partial history ht = (e, ..., €1), initial condition (kg, zg), and a terminal condition
given by a Markov process Kr(kr, zr) such that the set of feasible programs is not
empty. Then, the optimal program {c;, kt+1}tT=0 exists, is unique, and is given by a time-
inhomogeneous Markov process.

“Mitra and Nyarko (1991) referred to a class of time-inhomogeneous Markov processes as semi-Markov
processes because of their similarity to Lévy’s (1954) generalization of the Markov renewal process for the
case of random arrival times; see Jansen and Manca (2006) for a review of applications of semi-Markov
processes in statistics and operation research.
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Proor. The existence of the optimal program {c, kt+1}tT=0 under our assumptions is
well known; see, for example, Theorem 3.1 of Mitra and Nyarko (1991). The uniqueness
follows by strict quasi-concavity of the utility and production functions. We are left to
check the time-inhomogeneity of the Markov process for the decision functions. We
outline the proof by using the Euler equation (6), but a parallel proof can be given via
Bellman equation (5); see Majumdar and Zilcha (1987, Theorem 1) for related analysis.
Our proof is constructive and follows by backward induction.

Given a T-period (terminal) capital function K7, we define the capital functions
Kr_4q,...,Kp in previous periods to satisfy the sequence of the Euler equations. As a
first step, we write the Euler equation for period 7' — 1,

uyp_y(cr—1) = BEr_1[up(er)(1 = 8+ fr(kr, z1))], (7)
where cr_1 and cr are related to k7 and k7.1 in periods 7 and T — 1 by

cr—1=0=8kr_1+ fr-i(kr—1, zr—1) — kr, 8)
cr =1 =08k + fr(kr, zr) — kr41. 9)

By our assumptions, zr = ¢7(zr_1,€) and k741 = K7 (kr, z1) are Markov processes.
Combining these assumptions with (7)-(9), we obtain a functional equation that defines
kT for each possible state (k7_1, zr_1), that is, we obtain an implicitly defined function
kr=Kr_1(kT_1, zr_1). By proceeding iteratively backward, we construct a sequence of
Markov time-dependent capital functions Kr_1(kr_1, z7-1), - .., Ko(ko, z9) that satisfy
(7)-) fort =0, ..., T — 1 and that match the terminal function K7 (k7, z7). The result-
ing solution is a time-inhomogeneous Markov process by construction. O

2.3 Infinite-horizon economy: Stationary case

Let us now turn to the infinite-horizon model with T = co. The literature extensively
focuses on the stationary version of (1)-(3) in which preferences, technology, and laws
of motion for exogenous variables are time homogeneous u; = u, f; = f, and ¢; = ¢ for
all ¢. This model has a stationary Markov solution in which value function V' (k;, z;) and
decision functions k, 1 = K(ky, z¢), ¢t = C(ky, z;) are time invariant and Markov func-
tions that satisfy the stationary versions of the Bellman equation (5) and Euler equation
(6), respectively, are

V(ki, 20) = max {u(c;) + BE(V (kit1, zi41)]}s (10)
K+
W (c) = BEu' (cer)(1 = 8+ f'(key1, zi41)) |- (11)

The numerical algorithms solve stationary infinite-horizon models by finding fixed
point for the value function ' and policy function K such that if we substitute them
in the right-hand side of the Bellman equation (10) and the Euler equation (11), respec-
tively, we obtain the same functions in the left-hand side of these equations.

However, this solution procedure is not applicable to a time-inhomogeneous version
of the model (1)-(3). In such a model, we have different optimal Markov functions V;, K;,
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and C; in each period, and no fixed point exists for such functions or such fixed points
are not optimal.

2.4 Infinite-horizon economy: Nonstationary case

An alternative we explore in the paper is to approximate an infinite-horizon solution
with the corresponding finite-horizon solution. Our analysis is related to the literature
on turnpike theorems.

2.4.1 Illustration of the turnpike theorem for a model with closed-form solution Let
us first illustrate the turnpike property for a version of the model (1)—(3) that admits
a closed-form solution. We specifically assume Cobb-Douglas utility and production
functions,

1-7

-1
us(c) = ﬁ and f[(k, z)= ZkaAll‘_a, (12)

where A; and z; represent labor-augmenting technological progress and stochastic
shock given, respectively, by

At = A()'y;l and lnzt+1 = pant + o€r41, (13)

where y4>1, €41 ~N(0,1), pe (—1,1), and o € (0, 00).
We consider 5 = 1, which leads to a logarithmic utility function, u;(c) =In¢, and full
depreciation of capital, § = 1. The Bellman equation (5) becomes

Vitk)) = rlgax{ln(sz?A}‘“ — k1) + BE([Visi(ken)]), t=1,...,T, (14)

t+1

where we assume V7 1(k71) =0 and hence, k71 = 0. It is well known that (14) admits
a closed-form solution,

aB

=1+oz,6

1—

a —a af(l+a @ @
ZT—lkT_lA;",lz kr_1= B( 2 ZT_2kT_2AT72, etc. (15)

kr "1+ aB(I+ap)

In Figure 1, we plot capital trajectories of the economies with finite horizons of T'= 15
and T = 25, as well as of the economy with infinite horizon T = co. We set the remaining
parameters at 8 =0.99, « =0.36, p =0.95, 0 =0.01, and y 4 = 1.01.

As we can see, if all three economies start with the same initial capital, they follow a
virtually identical path for a long time and diverge only in a close proximity to the termi-
nal date. Therefore, if we are interested in the behavior of infinite-horizon nonstation-
ary economy during some initial number of periods 7, we can accurately approximate
the infinite-horizon solution by solving the finite-horizon model. This is precisely what
turnpike theorem means.

Figure 1 also helps us understand why this convergence result is called turnpike
theorem. Turnpike (highway) is often the fastest route between two points even if it is
not the shortest one. Specifically, if one drives to some remote destination (e.g., a small
town), one typically tries to get on the turnpike as soon as possible, stays on the turnpike



Quantitative Economics 11 (2020) A framework for analyzing nonstationary models 1297

T
- ======:Horizon T=15
= = ' Horizon T=25
Horizon T=co
09 [~ i
08~
07 - 8
_ 06
s
‘S
©
O 05
F= -~
04 > ~ N
>
S N
L N
03 N
T U= LS aiaN \
02+ | \‘ \
| “ \
01 | |‘ \
1 Y \
o [ | \ | \
0 5 T 10 15 20 25
Time

FiGure 1. Finite- and infinite-horizon solutions in the growth model.

for as long as possible, and gets off the turnpike as close as possible to the final destina-
tion. In the figure, we see the same behavior for the model if we interpret the infinite-
and finite-horizon economies as an infinite turnpike and our actual finite destination,
respectively.?

2.4.2 A formal proof of the turnpike theorem for a general growth model The turn-
pike property is not limited to our example with closed-form solution but holds for the
growth model (1)-(3) under general utility and production functions. Specifically, we
can show that if the time horizon T is sufficiently large, then the finite-horizon solu-
tion (kI, ..., k;) will be within an e range of the infinite-horizon solution (k3°, ..., k3°)
during the initial 7 periods.

THEOREM 2 (Turnpike theorem). For any real number ¢ > 0, any natural number 7, and
any Markov T-period terminal condition Kr(kr, zr), there exists a threshold terminal
date T* (e, 7, K1) such that, forany T > T*(e, 7, K1), we have

k> —kl'| <& forallt<r, (16)

where k%0, = K (k°, z;) and k[, | = K,(k[, z;) are the trajectories in the infinite- and

finite-horizon economies, respectively, under given initial condition (kg, z¢) and partial
history ht = (€g, ..., €T).

8We restrict attention to the so-called early turnpike theorem which shows that the initial-period deci-
sions functions are insensitive to specific terminal conditions used. There are also medium and late turn-
pike theorems that focus respectively on the role of the initial and terminal conditions in the properties
of the solution; see McKenzie (1976) and Joshi (1997) for a discussion. We do not analyze other turnpike
theorems since they are not directly related to the proposed EFP solution framework.
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Proor. The proof is shown in Appendix A.6 of the Supplemental Material, and it relies
on three lemmas presented in Appendices A.3-A.5. First, we construct a limit program of
a finite-horizon economy with a terminal condition k7 = 0. Second, we prove the con-
vergence of the optimal program of the T-period stationary economy with an arbitrary
terminal capital stock k71 = Kr(kT, z7) to the limiting program of the finite-horizon
economy with a zero terminal condition k741 = 0. Finally, we show that the limit pro-
gram of the finite-horizon economy with zero terminal condition k7,1 = 0 is also an
optimal program for the infinite-horizon nonstationary economy (1)-(3). O

REMARK 1. The above theorem is shown for a fixed history and can be viewed as a sensi-
tivity result. But our analysis can be extended to hold for any history using “almost sure”
convergence notion; see, for example, Majumdar and Zilcha (1987) for such a general-
ization. The resulting turnpike theorem will state that for all 7 > T*(e, 7, K1), the con-
structed Markov time-inhomogeneous approximation {k .} is guaranteed to be within

t+1

a given e-accuracy range of the true solution {k77,} almost surely during the initial 7

periods for any history of shocks i = (€, €1, . . .).

The first turnpike result dates back to Dorfman, Samuelson, and Solow (1958) who
studied the efficient programs in the von Neumann model of capital accumulation.
Their analysis shows that for a long time period and for any initial and terminal con-
ditions, the optimal solution to the model would get into the phase of maximal von
Neumann growth, that is, the turnpike. However, the proof of the argument they pro-
vided was only valid in a neighborhood of the steady state. The subsequent economic
literature provided more general global turnpike theorems; see Brock (1971), McKenzie
(1976), Nermuth (1978), Majumdar and Zilcha (1987), and Mitra and Nyarko (1991).°

However, the turnpike literature in economics has focused exclusively on the exis-
tence results and has never attempted to construct time-dependent solutions in prac-
tice. The main novelty of our analysis is that we show how to effectively combine the
turnpike analysis with numerical techniques to analyze a challenging class of time-
inhomogeneous Markov models that are either not studied yet in the literature or stud-
ied under simplifying assumptions.

3. VERIFYING THE TURNPIKE THEOREM NUMERICALLY: EFP FRAMEWORK

For a simple optimal growth model, it was possible to prove the turnpike theorem an-
alytically. But such analytical proofs are infeasible for more complex and realistic mod-
els that are used for applied work. An alternative we offer is to verify the turnpike the-
orem numerically; namely, we introduce an extended function path (EFP) framework

9Additionally, the turnpike results are available in the literature that studies optimal control problems.
Anderson and Kokotovic (1987) showed that a solution to a finite-time optimal control problem can be
obtained by piecing together solutions to infinite-time problems. Trélat and Zuazua (2015) provided general
turnpike results that do not rely on any specific assumption on the dynamics of the problem. The recent
work of Zaslavski (2019) provides necessary and sufficient conditions for the turnpike property for a broad
class of discrete-time optimal control problems for continuous-time infinite-dimensional optimal control
problems.
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that makes it possible to construct time-inhomogeneous finite-horizon solutions and
to verify that such solutions converge to the infinite-horizon solutions as time horizon
increases.

3.1 Markov models with time-varying fundamentals

We analyze two broad classes of nonstationary problems, namely, the optimal con-
trol problems and the equilibrium problems. An optimal control time-inhomogeneous
Markov problem is characterized by the Bellman equation with a time-dependent value
function,

Vielxe, 2e) = Xm?);t{Rt(J’t, X1, 20) + BE[Vig1(xi41, ze41)]}, £=0,1,..., T, (17)
t+1>

where T can be either infinite or finite; z, € H? C R%, x, € Hf CR%, and y, € H] C R%
are vectors of exogenous state variables and endogenous state and control variables, re-
spectively; a return function R, : H; x Hf x H? — R is twice continuously differentiable,
strictly increasing, strictly concave, bounded, and satisfies the Inada conditions.

An equilibrium time-inhomogeneous Markov problem is characterized by a system
of time-dependent Euler and other model’s equations,

Et[Qt(xt)Zl,yl,xt-‘rlaZt-‘rlayt-‘rl)]:07 t:O91)"'aT; (18)

where O, : Hf x Hf x H} x H} | x H, | x H} | — HE c R is a vector-valued function.

In both (17) and (18), a solution satisfies a set of possibly time-dependent constraints:
Gt(xtaztaytaxt+1):07 t=0’1"~'aT7 (19)

where G, : Hf x H? x H} x H s RY is a vector-valued function that is continuously
differentiable in x;, y, x,11; the set {(x¢, x,11) : G¢(xy, z¢, Yz, X411) = 0} is convex and com-
pact. The law of motion for exogenous state variables is given by time-inhomogeneous
Markov process z;11 = Zi(z;, €;41), where Z, : Hf x Hf — HtZJrl and €; € Hf C R% is a
vector of independently and identically distributed disturbances. The set of constraints
(19) can be generalized to include inequality constraints and the corresponding Karush-
Kuhn-Tucker conditions. Some optimal control problems of type (17) can be repre-
sented in the form of equilibrium problems of type (18) and vice versa, but it is not
always the case.

3.2 Turnpike property
We assume that the studied classes of economies satisfy the turnpike property, which

we postulate by generalizing the turnpike theorem.

TURNPIKE PROPERTY. For any real number ¢ > 0, any natural number 7, and any
Markov T-period terminal condition X7 (x7, z7), there exists a threshold terminal date
T*(e, 7, X7) such thatforany T > T*(e, 7, X7), we have

x° —x!| <& forallt<r, (20)
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T T . .
where xtoil = X7°(k?, z;) and X = X:(k; , z;) are time-inhomogeneous Markov tra-
jectories of the infinite- and finite-horizon economies, respectively, under given initial

condition (xg, zg) and partial history A7 = (€g, ..., €T).

3.3 EFP framework

EFP aims to accurately approximate a sequence of time-dependent value and decision
functions during a given number of periods 7 by truncating the infinite-horizon econ-
omy. Since EFP in effect solves a finite-horizon model, it makes no difference for the
solution procedure whether the parameters are constant or change in every period of
time.

ArcoriTHM 1 (Extended function path (EFP)).

Step 1: Terminal condition. Choose T > 7 and construct time-invariant Markov de-
cision functions Xr(x, z) = X (x, 2).

Step 2: Backward iteration. Given the terminal condition X7 = X, iterate backward
on the Bellman or Euler equations to construct a path of time-inhomogeneous
Markov decision functions (X7_1, ..., Xp).

Step 3: Turnpike property. Verify that the initial = functions (Xy, ..., X;) are not sen-
sitive to the choice of time horizon X7 and terminal condition 7" by analyzing dif-
ferent Xr and 7.

Use (X, ..., X;) as an approximate solution and discard the remaining 7 — 7 func-
tions (X;41,..., XT).

What determines the accuracy of the EFP approximation? Let us denote the EFP
finite-horizon solution by (%o, ..., X;). Then, by a triangle inequality, the supnorm er-
ror bound on the EFP approximation is given by

X — %] < |x3° —x! |+ |xT —xT| forallt <, 1)

where x® = X;(x°, z,), xT = X,;(x7, z;), and 7 = X (7, z,) are the trajectories cor-
responding to the infinite- and finite-horizon solutions and the EFP approximation,
respectively. That is, the EFP approximation error has two components: one is the er-
ror [x2° — x| that results from replacing the infinite-horizon problem with the finite-
horizon problem, and the other is the error |x! — x| that arises because the finite-
horizon solution itself is approximated numerically. The former error depends on the
choice of time horizon and terminal condition, and it can be made arbitrarily small by
extending the time horizon 7, provided that the turnpike property is satisfied. The latter
error depends on the accuracy of numerical techniques used by EFP, such as interpo-
lation, integration, solvers, etc. Since EFP relies on the same techniques as do conven-
tional global solution methods, the standard convergence results apply. For example,
Smolyak grids used in our analysis can approximate smooth functions with an arbitrary
degree of precision when the approximation level increases; see Judd, Maliar, Maliar,
and Valero (2014). Below, we discuss how specific implementation of Steps 1-3 affects
the accuracy and computational expense of the EFP method.
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Step 1: Terminal condition In Step 1, we can choose any attainable Markov terminal
condition. In particular, we can assume that either the economy converges to a de-
terministic steady state of some stationary model, or that it reaches a stationary solu-
tion with time-invariant Markov value and decision functions, or that it approaches a
balanced-growth path. To solve stationary or balanced-growth models, we can use any
conventional projection, perturbation, and stochastic simulation methods; see Taylor
and Uhlig (1990) and Judd (1998) for reviews of the earlier methods; and see Maliar and
Maliar (2014) and Ferndndez-Villaverde, Guerrén-Quintana, and Schorfheide (2016) for
reviews of more recent literature. It is even possible to use a trivial (zero) terminal con-
dition by assuming that the life ends at T and by setting all variables to zero, so Step
1 is always implementable. Under the turnpike theorem, a specific terminal condition
used has just a negligible effect on the solution in the initial periods provided that the
time horizon is large enough. How large the time horizon should be for attaining some
given accuracy level does depend on the specific terminal condition used. To increase
accuracy and to economize on costs, we must construct a terminal condition that is as
close as possible to the infinite-horizon solution at 7'; in Sections 4 and 5, we explain the
construction of the terminal condition in numerical examples.

Step 2: Backward iteration Conventional projection, perturbation, and stochastic sim-
ulation methods are designed for solving stationary problems and are not directly suit-
able for analyzing nonstationary problems. However, the techniques used by these
methods can be readily employed as ingredients of EFP. In particular, to approximate
value and decision functions, we can use a variety of grids, integration rules, approxi-
mation methods, iteration schemes, etc. Furthermore, to solve for a path, we can use
any numerical procedure that can solve a system of nonlinear equations, including
Newton-style solvers, as well as Gauss-Siedel or Gauss-Jacobi iteration methods. To
make EFP tractable in large-scale models, we can use low-cost sparse, simulated, clus-
ter, and epsilon-distinguishable-set grids; nonproduct monomial and simulation based
integration methods; derivative-free solvers; see Maliar and Maliar (2014) for a survey of
these techniques.

Step 2 is equivalent to conventional backward (time) iteration on the Bellman and
Euler equations, as is done in case of life-cycle models; see, for example, Krueger and
Kubler (2004) and Hasanhodzic and Kotlikoff (2018); see Rios-Rull (1999) and Nishiyama
and Smetters (2014) for reviews of the literature on life-cycle economies.!? Time itera-
tion requires the existence of integrals in (17) and (18); see, for example, Chapter 7 in
Stachurski (2009) for a discussion of integrability. Furthermore, optimal problem (17)
must have a well-defined maximum, while the system in equilibrium problem (18) must
be invertible with respect to the next-period state variables x,. These are very mild re-
strictions that are satisfied in virtually any model studied in the related literature.

As a criterion of convergence, we can evaluate the decision functions on low-
discrepancy grids or simulated series, as is done for stationary economies; see, for ex-
ample, Maliar and Maliar (2014). The difference is that in the stationary case, we must

10Time iteration is commonly used in the context of dynamic programing methods, as well as some Euler
equation methods; for example, Coleman (1991), Mirman, Morand, and Reffett (2008), Malin, Krueger, and
Kubler (2011).
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check the convergence of just one time-invariant decision function, while in the non-
stationary case, we must check the pointwise convergence of the entire path (sequence)
of such functions.

Step 3. Turnpike property 1f we knew or could somehow guess the exact solution X7°
of the infinite-horizon model at T and use it as a terminal condition, the infinite- and
finite-horizon trajectories would coincide up to 7. However, the infinite-horizon solu-
tion is typically unknown in any period (as this is a solution we are trying to find), so
the right terminal condition is also unknown. The turnpike property solves the prob-
lem of unknown terminal condition: no matter what terminal condition X7 we use, the
finite-horizon solution (Xj, ..., X;) provides an accurate approximation to the infinite-
horizon solution (X§°, ..., X$°) during the given number of periods 7 provided that the
time horizon T is sufficiently large. However, this is only true if the turnpike property
holds, so Step 3 is a critical ingredient of the EFP analysis.

To test the turnpike property, we construct the EFP solution (Xj,..., X;) under
several different 7’s and X7’s; for each constructed solution (X, ..., X;), we simu-
late the economy’s trajectories (xg , .. .xTT) under different initial conditions (x, zy) and
different histories #7; and we evaluate the approximation errors or residuals in the
model’s equations. Provided that the approximation errors or residuals are small for all
T’s and X7’s, we conclude that the EFP solution converges to a unique limit, that is,
limro oo (X, ... X)) = (X7, ... X5).

Does our test produce types I and II errors? The former type of errors is not possi-
ble: if a model satisfies the turnpike theorem, our test will confirm that the solution is
insensitive to a specific terminal condition and time horizon used. The latter type of er-
rors is, however, possible, that is, we can erroneously conclude that turnpike theorem
holds for some models for which effectively it does not. This is because EFP relies on
the assumption that the infinite-horizon solution (xg°, ... x2°) is equivalent to the limit
of the finite-horizon solution (xg, ... x7). However, there are models in which this is not
the case, in particular, dynamic games. For example, finite-horizon prisoner’s dilemma
has a unique stage equilibrium but the infinite-horizon game has a continuous set of
equilibria (folk theorems), and a similar kind of multiplicity is observed for dynamic
models with hyperbolic consumers; see Maliar and Maliar (2016) for a discussion. Our
test cannot detect this problem: by constructing the EFP solution under different 7’s
and X7’s, we only check that the finite-horizon solution has a well-defined unique limit
M7 oo(x),...xI) = (x}, ... x%), but we have no way to check that such a limit is equiv-
alent to infinite-horizon solution (xg°, ... x3°).

3.4 An example: The EFP analysis of nonstationary growth model

We now use the EFP framework to revisit the optimal growth model studied in Section 2.
Below, we elaborate the implementation of Algorithm 1 for that specific model.

ArGcoriTHM la (Extended function path (EFP) for the growth model).

Step 1: Terminal condition. Choose some T > 7 and assume that for ¢+ > 7, the
economy becomes stationary, that is, u; = u, f; = f, and ¢; = ¢ for all t > T. Con-
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struct a stationary Markov capital function K satisfying: u'(c¢) = BE[u/(¢')(1 — 6 +
f/(k/a QD(Za 6/)))]7 Cc = (1 - 8)k + f(k7 Z) - k/r C/ = (1 - S)k/ + f(k/r (P(Z9 6/)) - k//y
k'=K(k,z)and k" = K(k', o(z, €)).

Step 2: Backward iteration. Construct a time-inhomogeneous path for capital pol-
icy functions (K, ..., Kr) that matches the terminal condition K7 = K and that
satisfies for t =0,... T — 1: u}_,(c;—1) = BE;—1[uj(c)(1 = 8 + f{(ks, @r—1(zt-1, €)))],
o1 =0=8)ki 1+ ficitki—1, ze-1) — ke, co = (L= 8k + fr(ke, @1-1(zi-1, €1)) — ki1,
k=K 1(ki—1,zi-1) and k1 = Ko (ky, 9112421, €1)).

Step 3: Turnpike property. Draw a set of initial conditions (kg, zg) and histories

h; = (e, ..., €;) and use the EFP decision functions (K, ..., K;) to simulate the
economy’s trajectories (k! , ... k). Check that the trajectories converge to a unique
limit lim7_ oo (k7 , ... kT) = (k§, ... k%) by constructing (K, ..., K7) under different
T and K.

Use (Ky, ..., K;) as an approximate solution to (17) or (18) and discard the remain-
ing T — 7 functions (K41, ..., K7).

Parameterization We consider the model (1), (2) parameterized by (13) and (12). For
all experiments, we fix @ =0.36, n =5, B =0.99, § = 0.025, and p = 0.95. The remaining
parameters are set in the benchmark case at o = 0.03, y4 = 1.01, and T = 200, but we
vary these parameters across experiments.

Step 1: Markov terminal condition In the studied example, nonstationarity comes from
the fact that the economy experiences the economic growth 4; = 4(y,. To implement
Step 1, we assume that the economic growth stops at 7 and that the economy becomes
stationary, that is, 4; = A7 = A4 for all r > T. To solve the resulting Markov stationary
model and construct K7, we use a conventional projection method based on Smolyak
grids as in Judd et al. (2014); this method is tractable in high-dimensional applications.

Step 2: Time-inhomogeneous Markov decision functions In Step 2, we apply backward
iteration: given K7, we can use the Euler equation to compute Ky_1 at T — 1; next, we
use K7_j to compute K7_;; we proceed until the entire path (K7, ..., Ky) is constructed.
In Figure 2, we illustrate the resulting sequence of time-inhomogeneous Markov capital
decision functions (a function path) produced by Algorithm 1a for the model (1)—(3) with
exogenous labor-augmenting technological progress (13).

As an example, we plot the capital functions for periods 1, 20, and 40 by setting
the productivity level equal to one z =1 (i.e., ky = Ki(ky, 1), ko1 = Kpo(kog, 1) and
k41 = K40(kag, 1)). In Step 1 of the algorithm, we construct the capital function K49 by as-
suming that the economy becomes stationary in period T = 40; in Step 2, we construct
a path of the capital functions (Kj, ..., K39) that matches the corresponding terminal
function K49. The domain for capital and the range of the constructed capital function
grow at the rate of labor-augmenting technological progress. In Appendix B of the Sup-
plemental Material, we also provide a three-dimensional plot of the capital functions;
see Figure S1.
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F1GURE 2. Function path, produced by EFP, for a growth model with technological progress.

Step 3: Numerical verification of the turnpike property Finally, in Step 3, we verify the
turnpike property, that is, we check that the initial = decision functions (Ky, ..., K;) are
not sensitive to the choice of terminal condition K7 and time horizon 7. We implement
the test by constructing 100 simulations under random initial conditions (kg, zp) and
histories it = (e, ..., €7). We consider two time horizons, 7 = 200 and T = 400, and two
different terminal conditions, one on the balanced-growth path and the other a solution
to the stationary model. The EFP solution proved to be remarkably robust and accurate
during the initial periods under all time horizons and terminal conditions considered; in
particular, the approximation errors during the first 7 = 50 periods do not exceed 1076 =
0.0001%. In Section 4, we discuss these accuracy results in detail and we compare the
EFP solution with those produced by other methods for solving time-inhomogeneous
models.

Figure 3 illustrates the turnpike theorem with the graph. For a given initial condi-
tion (kg, zg) and history of shocks i = (eq, ..., €7), it shows that the initial = decision
functions (K, ..., K;) are not sensitive to various terminal conditions (given by K,
Kr, k', k", and K3°). The EFP numerical solution in Figure 3 looks similar to the so-
lution in Figure 1, which we derived analytically. As predicted by the turnpike theorem,
the finite-horizon solution converges to the infinite-horizon solution under all terminal
conditions considered; however, the convergence is faster under terminal conditions &’
and k”, that are located relatively close to the true T-period capital of the nonstationary
economy {k%’}, than under a zero terminal condition that is located farther away from
the true solution. We observe that even though the choice of specific terminal condition
plays no role in asymptotic convergence established in the turnpike literature, it can
play a critical role in the accuracy and speed of numerical solution methods. To attain
the fastest possible convergence, we need to choose the terminal condition K% of the
finite-horizon economy to be as close as possible to the T-period capital stock of the
infinite-horizon nonstationary economy K°.
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Ficure 3. Convergence of the optimal program of T-period stationary economy.

4. EFP vERSUS EP AND NAIVE METHODS

In this section, we assess the quality of the EFP solutions in the optimal growth model
(1)-(3) with labor-augmenting technological progress and compare it to solutions pro-
duced by other methods. We focus on the growth model that is consistent with balanced
growth because in this special case, the nonstationary model can be converted into a
stationary model and can be accurately solved by using conventional solution methods;
this yields us a high-quality reference solution for comparison.

4.1 Four solution methods

We implement four alternative solution methods which we call exact, EFP, Fair and Tay-
lor, and naive ones.

(i) Exact solution method. We first convert the nonstationarity model into a station-
ary one using the property of balanced growth; we then accurately solve the stationary
model using a Smolyak projection method in line with Krueger and Kubler (2004) and
Judd et al. (2014); and we finally recover a solution to the original nonstationary model;
see Appendix D of the Supplemental Material for details. The resulting numerical solu-
tion is very accurate, namely, the unit-free maximum residuals in the model’s equations
are of order 10~ on a stochastic simulation of 10,000 observations. We loosely refer to
this numerical solution as exact, and we use it as a benchmark for comparison.

(ii) EFP solution method. EFP constructs a time-inhomogeneous Markov solution to
a nonstationary model without converting it into stationary—we follow the steps out-
lined in Algorithm 1a; see Appendix B for implementation details.

(iii) Fair and Taylor (1983) solution method. Fair and Taylor’s (1983) method also
solves a nonstationary model directly, without converting it into stationary. It constructs
a path for the model’s variables (not functions!) under one given sequence of shocks by
using the certainty equivalence approach for approximating the expectation functions.
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The implementation of Fair and Taylor’s (1983) method is described in Appendix C of the
Supplemental Material; for examples of applications of such methods, see, for example,
Chen, Imrohoroglu, and Imrohoroglu (2006), Bodenstein, Erceg, and Guerrieri (2009),
Coibion et al. (2012), Braun and Kérber (2011), and Hansen and Imrohoroglu (2016).

(iv) Naive solution method. A naive method replaces a nonstationary model with a
sequence of stationary models and solves such models one by one, independently of one
another. Similar to EFP, the naive method constructs a path of decision functions for ¢ =
0,..., T, butit differs from EFP in that it neglects the connections between the decision
functions in different time periods. A comparison of the EFP and naive solutions allows
us to appreciate the importance of anticipatory effects.

The absence of steady state and the deterministic growth path The studied growing
economy has no steady state. However, we can define an analogue of steady state for
the growing economy as a solution to an otherwise identical deterministic economy in
which the shocks are shut down. We refer to such a solution as the growth path, and we
denote it by a superscript “x”. We use the growth path as a sequence of points around
which the Smolyak grids are centered. In particular, in Figures 2 and 4, the growth path
is shown with a dashed line. In our balanced-growth model (12), the growth path can be
constructed analytically. Namely, in the detrended economy, the steady-state capital is
given by kj = Ao(ﬂ‘;%sﬁ)l/ (@1 and in the growing economy, it evolves as k} = k{v/,
fort=1,...,T; see Appendix D for details. Therefore, we know the exact terminal con-
dition (i.e., the one that coincides with the infinite-horizon solution) for our economy
with growth is k% = kgyfl“. To assess the role of the terminal condition, we also use
another terminal condition that is constructed by assuming that at 7', the economy ar-
rives to the steady state with no growth k%, | = ATH(%)U(“‘D.

To see how far T'-period steady-state terminal condition k3 ; is from the exact grow-

ing one k*} L We computed the ratio of the two terminal capital stocks,

Ko _ (yz — B+ 83)”‘““

kP, \1-B+dB

It turned out that this ratio is very different from one under the standard calibration; in
particular, with n = 1, it is 0.67, and with n = 3, it is 0.38. Thus, by assuming that the
economy arrives to the steady state at T, we can overstate the correct terminal capital
stock by several times! Using so inaccurate terminal condition requires us to consider-
ably increase the time horizon to make the EFP solutions sufficiently accurate solutions.
So, instead of the steady state, we find that it is better to use a terminal condition that
leads to a convergence to a nonvanishing growth path—we discuss how to construct
such terminal condition in Section 5.

Software and hardware For all simulations, we use the same initial condition and the
same sequence of productivity shocks for all methods considered. Our code is written
in MATLAB 2018, and we use a desktop computer with Intel(R) Core(TM) i7-2600 CPU
(3.40 GHz) with RAM 12 GB.
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F1GURE 4. Comparison of the solution methods for the test model with balanced growth.

Comparison results In the left panel of Figure 4, we plot the growing time-series solu-
tions for the four solution methods, as well as the (steady-state) growth path for capital
under one specific realization of shocks. In the right panel, we display the time-series
solutions after detrending the growth path.

As is evident from both panels, the EFP and exact solutions are visually indistin-
guishable except for a small difference at the end of time horizon—the last 10-15 peri-
ods. This difference is due to the use of different terminal conditions: in the former case,
we assume that the economy becomes stationary (i.e., stops growing) at 7, whereas in
the latter case, the growth continues forever. If we use the exact solution at 7" as a termi-
nal condition for the EFP, then the EFP solution would be indistinguishable from the ex-
act solution everywhere in the figure. However, Fair and Taylor’s (1983) and naive meth-
ods are far less accurate; they produce solutions that are systematically lower than the
exact solution everywhere in the figure; and the naive solution is the least accurate of all.

Verifying the turnpike theorem numerically We next evaluate the accuracy of EFP, Fair
and Taylor (1983), and naive solutions by implementing the turnpike test outlined in
Step 3 of Algorithm 1a; see Section 3.4. Specifically, we first simulate each of the four
solutions 100 times and we then compute the mean and maximum absolute differences
in log 10 units between the exact solution and the remaining three solutions across 100
simulations for the intervals [0, 50], [0, 100], [0, 150], [0, 175], and [0, 200]. These statis-
tics show how fast the accuracy of numerical solutions deteriorates, as we approach
the terminal period. The accuracy results are reported in Table 1, as well as the time
needed for computing and simulating the solution of length 7' 100 times (in seconds).
We observe that in most implementations, the approximation errors of EFP do not ex-
ceed 10~° = 0.0001%, while the errors produced by Fair and Taylor’s (1983) and naive
methods can be as large as 107113 ~ 7.4% and 10704 ~ 12%. We discuss these findings
below.
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TaBLE 1. Comparison of four solution methods

Fair-Taylor (1983) Naive EFP method
method, 7 =1 method =1 =200

Term.ir}al Balanced T-period Balanced T-period
condition Steady state - growth stationary growth stationary
T 200 400 200 200 200 400 200 200 400
Mean errors across ¢ periods in log;, units
t €[0,50] —1.60 —1.60 —1.36 -17.30 —6.97 -7.15 —7.23 -6.75 -7.01
t €[0,100] —1.42 —1.42 -1.19 —17.06 —6.81 —6.98 —7.03 —-6.19 —6.81
t €10, 150] —1.34 —1.35 —1.11 —6.96 —6.73 —6.91 —6.94 -5.47 —-6.73
t€[0,175] -1.32 -1.32 —1.09 —6.93 —6.71 —6.89 —6.91 -5.09 -6.70
t €[0,200] —1.30 —1.31 —1.07 —6.91 —6.69 —6.87 —6.90 —4.70 —6.68
Maximum errors across ¢ periods in log;, units
t €[0,50] -1.29 -1.29 —1.04 —6.83 —6.63 —6.81 —6.82 —6.01 —-6.42
t €10, 100] —1.18 —1.18 —0.92 —6.69 —6.42 —6.68 —6.68 —4.39 —5.99
t €10, 150] —1.14 —1.14 —0.89 —6.66 —6.39 —6.67 —6.66 —2.89 —5.98
t€[0,175] —1.14 -1.13 —0.89 —6.66 —6.40 —6.66 —6.660 -2.10 -5.98
t €[0,200] —1.14 —1.13 —0.89 —6.66 —6.37 —6.66 —6.66 —1.45 -5.92
Running time, in seconds
Solution 1.2(+3)  6.1(+3) 28.9 216.5 8.6(+2) 1.9(+3) 104.9 99.1 2259
Simulation - - 2.6 2.6 2.6 5.8 2.6 2.8 5.7
Total 1.2(+3)  6.1(+3) 315 219.2 8.6(+2) 1.9(+3) 107.6 101.9 231.6

Note: “Mean errors” and “Maximum errors” are, respectively, mean and maximum unit-free absolute difference between
the exact solution for capital and the solution delivered by a method in the column. The difference between the solutions is
computed across 100 simulations.

4.2 EFP method

In Table 1, we provide the results under three alternative implementations of EFP that
illustrate how the properties of the EFP solutions depend on the choices of the terminal
condition, K7, time horizon 7, and parameter .

The role of the terminal condition: Better terminal condition gives more accurate solu-
tions The results in Table 1 show that if we use the balanced-growth terminal condi-
tion that is equal to the infinite-horizon solution at 7', the EFP approximation is very
accurate everywhere independently of  and 7, namely, the difference between the ex-
act and EFP solutions is less than 10~° = 0.0001%. In turn, if the terminal condition is
given by a solution to a T-period stationary model, the accuracy critically depends on
the choice of r and T, and deteriorates dramatically when the economy approaches the
time horizon T, as predicted by the turnpike theorem.

To study how the approximation errors in the tail of the solution depend on the time
horizon, terminal condition, and model parameters, we also solved the model under
T = {200, 300, 400, 500} and n = {1/3, 1, 3}; these results are shown in Appendix E of the
Supplemental Material; see Figure S2. We consider two terminal conditions: one is a T-
period stationary economy and the other is a zero-capital assumption. When solving
the model for T = 200, the maximum errors produced at = = 100 are about one order
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of magnitude higher with zero terminal capital than with T-period stationary terminal
condition. As we increase T, the errors become smaller independently of the terminal
condition. For T = 300, the maximum approximation errors vary from 10~° = 0.0001%
to 107> = 0.001%. Overall, EFP provides a sufficiently accurate solution for the first 100
periods when we solve the model for T > 250.

The choice of 7: A trade-off between accuracy and cost We analyze two different values
of 7 such as 7 =1 and 7 = 200. Under 7 = 1, EFP constructs a path of function in the
same way as Fair and Taylor’s (1983) method constructs a path of variables. First, given
K7, EFPsolves for (Ky_1, ..., Kj), stores Ky, and discards the rest. Next, given K71, EFP
solves for (Kr, ..., K1), stores Ky, and discards the rest. It proceeds for 7 steps forward
until the path (K, ..., K;) is constructed.

As we see from the table, EFP method with 7 = 1 is very accurate independently of
T and a specific terminal condition used, namely, the EFP and exact solutions again
differ by less than 10~° = 0.0001%. This result illustrates the implication of the turnpike
theorem that the effect of any terminal condition on the very first element of the path
7 =1 is negligible if the time horizon T is sufficiently large.

A shortcoming of the version of EFP with 7 = 1 is its high computational expense: the
running time under 7' = 200 and 7 = 400 is about 20 and 30 minutes, respectively. The
cost is high because we need to recompute entirely a sequence of decision functions
each time when we extend the path by one period ahead. Effectively, we recompute the
EFP solution T times, and this is what makes it so costly.

The choice of T: Making EFP cheap Our turnpike theorem suggests a cheaper version
of EFP in which we construct a longer path (i.e., we use 7 > 1) but we do it just once;
the results for this version of the EFP method are provided in the last three columns of
Table 1. For = 200, the terminal condition plays a critical role in the accuracy of solu-
tions near the tail. Namely, if we use the terminal condition from the 7-period stationary
economy, and use the time horizon T = 200, then the approximation errors near the tail
reach 10714 ~ 4%,

However, the approximation errors are dramatically reduced when the time horizon
T increases, as the last column of Table 1 shows. Namely, if we construct a path of length
T =400 but use only the first 7 = 200 decision functions and discard the remaining path,
the solution for the first 7 = 200 periods is almost as accurate as that produced under
7 = 1. This is true even though the terminal condition from the T-period stationary
economy is far away from the exact terminal condition. Importantly, the construction of
alonger path is relatively inexpensive: the running time increases from about 2 minutes
to 4 minutes when we increase the time horizon from 7' =200 to T = 400, respectively.

Sensitivity analysis On the basis of the results in Table 1, we advocate a version of EFP
that constructs a sufficiently long path = > 1 by using 7' > 7. We assess the accuracy and
cost of this preferred EFP version by using » = 200 and T = 400 under several alternative
parameterizations for {7, o, v 4} such that n € {0.1; 1; 5; 10}, o € {0.01;0.03}, and y4 €
{1; 1.01; 1.05}. As a terminal condition, we use decision rules produced by the T-period
stationary economy. These sensitivity results are provided in Table 2 of Appendix E of
the Supplemental Material.
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The accuracy and cost of EFP in these experiments are similar to those reported in
Table 1 for the benchmark parameterization. The difference between the exact and EFP
solutions varies from 107 = 0.00001% to 10~% = 0.0001% and the running time varies
from 155 to 306 seconds. The exception is the model with a low degree of risk aversion
n = 0.1 for which the running time increases to 842 seconds. (We find that with a low
degree of risk aversion, the convergence of EFP is more fragile, so that we had to use a
larger degree of damping for iteration, decreasing the speed of convergence.)

4.3 Fair and Taylor’s (1983) method

As Table 1 shows, EFP dominates the EP method in both accuracy and cost. Fair and
Taylor’s (1983) method has relatively low accuracy (namely, its approximation errors
are 10~1% ~ 2.5%) because the certainty equivalence approach does not produce suffi-
ciently accurate approximation to conditional expectations under the given parameter-
ization. We find that Fair and Taylor’s (1983) method is far more accurate with a smaller
variance of shocks and/or smaller degrees of nonlinearities; for example, under n =1,
oe =0.01, y4 =1.01, and T = 200, the difference between the exact solution and Fair and
Taylor’s (1983) solutions is around 0.1% (this experiment is not reported). A comparison
of T =200 and T = 400 shows that the accuracy of Fair and Taylor’s (1983) method can-
not be improved by increasing the time horizon.

The high cost of Fair and Taylor’s (1983) method is explained by two factors. First,
7 = 1 is the only possible choice for Fair and Taylor’s (1983) method. To solve for vari-
ables of period ¢ = 0, this method assumes that productivity shocks are all zeros starting
from period ¢ = 1, so that the path for # =1, ..., T has no purpose other than helping to
approximate the variables of period ¢ = 0. In contrast, EFP can use much longer 7’s as
long as the resulting solution is sufficiently accurate, which reduces the cost.

Second, for Fair and Taylor’s (1983) method, the cost of simulating the model is high
because the solution and simulation steps are combined together: in order to produce
a new simulation, it is necessary to entirely recompute the solution under a different
sequence of shocks. In contrast, the simulation cost is low for EFP: after we construct
a path of decision functions once, we can use the constructed functions to produce as
many simulations as we need under different sequences of shocks. For example, the
time that Fair and Taylor’s (1983) method needs for computing/simulating 100 solutions
is about 30 minutes and 1 hour, respectively (recall that the corresponding times for EFP
method are 2 and 4 minutes, respectively).

4.4 Naive method: Understanding the importance of anticipatory effects

For the naive method, we report the solution only for 7T = 200 since neither time hori-
zon nor terminal condition is relevant for this method. The performance of the naive
method is poor: the difference between the exact and naive solutions can be as large
as 1079%% ~ 12%. The naive solution is so inaccurate because the naive method com-
pletely neglects anticipatory effects. In each time period ¢, this method computes a sta-
tionary solution by assuming that technology will remain at the levels 4, = 4yy', and
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A1 = AOy’A+1 forever, meanwhile the true nonstationary economy continues to grow.

Since the naive agent is “unaware” about the future permanent productivity growth,
the expectations of such an agent are systematically more pessimistic than those of the
agent who is aware of future productivity growth. It was pointed out by Cooley, LeRoy,
and Raymon (1984) that naive-style solution methods are logically inconsistent and con-
tradictory to the rational expectation paradigm: agents are unaware about a possibility
of parameter changes when they solve their optimization problems; however, they are
confronted with parameter changes in simulations. Our analysis suggests that naive so-
lutions are particularly inaccurate in growing economies.

To gain intuition into why the accuracy of the naive method is low and how the ex-
pectation about the future can affect today’s economy, we perform an additional ex-
periment. We specifically consider a version of the model (1)-(3) with the production
function f;(k, z) = z:k¥ A;, in which the technology level A4; can take two values, A =1
(low) and 4 =1.2 (high). We consider a scenario when the economy starts with A4 at
t =0, switches to A at ¢ = 250, and then switches back to 4 at t” = 550 (e.g., the UK joins
the EU in 1973 and it exits the EU in 2020. We show the technology profile in the upper
panel of Figure 5.

We parameterize the model by using 7 =900, n =1, « = 0.36, 8 =0.99, 6 = 0.025, p =
0.95, o = 0.01. To make the anticipatory effects more visible, we shut down the stochastic
shocks in simulation by setting z; = 1 for all ¢.

For a naive agent, regime switches are unexpected. The naive agent believes that the
economy will always be in a stationary solution with A4 until the first switch at ¢ = 250,
then the agent believes that the economy will always be in a stationary solution with
A until the second switch at ¢/ = 550, and finally, the agent switches back to the first
stationary solution for the rest of the simulation.

In contrast, the EFP method constructs a solution of an informed agent who solves
the utility-maximization problem at t = 0 knowing the technology profile in Figure 5. Re-
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FiGure 5. EFP versus naive solutions in the model with parameter shifts.
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markably, under the EFP solution, we observe a strong anticipatory effect: about 50 peri-
ods before the switch from 4 and A takes place, the agent starts gradually increasing her
consumption and decreasing her capital stock in order to bring some part of the bene-
fits from future technological progress to present. When a technology switch actually
occurs, it has only a minor effect on consumption. (The tendencies reverse when there
is a switch from A to A). Such consumption-smoothing anticipatory effects are entirely
absent in the naive solution. Here, unexpected technology shocks lead to large jumps in
consumption in the exact moment of technology switches. The difference in the solu-
tions is quantitatively significant under our empirically plausible parameter choice.

Note that anticipated regime changes cannot be effectively approximated by con-
ventional Markov switching models; see, for example, Sims and Zha (2006), Davig and
Leeper (2007, 2009), Farmer, Waggoner, and Zha (2011), Foerster et al. (2016), etc. In that
literature, regime changes come at random and thus, the agents anticipate the possi-
bility of regime change and not the change itself. However, there is a recent literature
on Markov chains with time-varying transition probabilities that makes it possible to
model the effect of expectation on equilibrium quantities and prices; see, for example,
Bianchi (2019) for a discussion and further references. Also, Schmitt-Grohé and Uribe
(2012) proposed a perturbation-based approach that deals with anticipated parameter
shifts of a fixed time horizon (e.g., shocks that happen each four or eight periods) in
the context of stationary Markov models. In turn, EFP can handle any combination of
unanticipated and anticipated shocks of any periodicity and duration.

5. UsING EFP TO SOLVE AN UNBALANCED GROWTH MODEL

Real business cycle literature heavily relies on the assumption of labor-augmenting
technological progress leading to balanced growth. However, there are empirically rele-
vant models in which growth is unbalanced. For example, Acemoglu (2002) argued that
technical change is not always directed to the same fixed factors of production but to
those factors of production that give the largest improvement in the efficiency of pro-
duction.!! One implication of this argument is that technical change can be directed to
either capital or labor depending on the economy’s state. Furthermore, Acemoglu (2003)
explicitly incorporated capital-augmenting technological progress into a deterministic
model of endogenous technical change by allowing for innovations in both capital and
labor. Evidence in support of capital-augmenting technical change is provided in, for
example, Klump, Mc Adam, and Willman (2007)) and Leén-Ledesma, Mc Adam, and
Wilman (2015).12

INamely, endogenous technical change is biased toward a relatively more scarce factor when the elas-
ticity of substitution is low (because this factor is relatively more expensive); however, it is biased toward a
relatively more abundant factor when the elasticity of substitution is high (because technologies using such
a factor have a larger market).

12There are other empirically relevant types of technological progress that are inconsistent with balanced
growth, for example, investment-specific technological progress considered in Krusell et al. (2000).
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Constant elasticity of substitution production function In line with this literature, we
consider the stochastic growth model (1)—(3) with a constant elasticity of substitution
(CES) production function, and we allow for both labor- and capital-augmenting types
of technological progress

Fke, €)= [a(Ag ko)’ + (1= a)(Ag, 0], (22)

where Ay ; = Ak,07f4k; Ag= Ag,(]’yill; v<1;a€(0,1); and y,4, and y4, are the rates of
capital- and labor-augmenting technological progresses, respectively. We assume that
labor is supplied inelastically and normalize it to 1, ¢, = 1 for all ¢, and we denote the
corresponding production function by f(k;) = F(k;, 1). The Euler equation for the stud-
ied model is

W (cr) = BE[u (cry)(1 = 8+ ady (ki)™
X [a(Ak’t+1k[+1)v + (1 — a)AZ,t+]](1_v)/v]. (23)

The above model is generically nonstationary; specifically, the growth rate of endoge-
nous variables changes over time in an unbalanced manner even if we assume that A4y ,
and A, ; grow at constant growth rates.

A growth path for the economy with unbalanced growth Our goal is to construct an un-
balanced growth path {kf}tT;[)l around which the sequence of EFP grids will be centered.
We shut down uncertainty by assuming that z, = 1 for all ¢. First, we construct a terminal
condition k7, ; by assuming that all variables grow at the same rates at 7 and 7 — 1. For
this model, it is convenient to target the following two growth rates:

* % / £ / k
42 +1 u (Ct+1) u'(cf)

= = d = =v,. 24
K kT ) Ty =

With this restriction, the Euler equation (23) written for 7 — 1 and T implies
71 17
1= Blyu(l— 8+ aAy (k) [e(Ap mimik?) + A=) A2 177, (@25)
1= Blyu(l — 8+ ady (ki)' (A, k})" + 1 —a)Ap, ], (26)
where vy, is determined by the budget constraint (2):

W0 =0k + [l A ayikd) + (= @) Af ] = 7ik]
L=
W[ = 8k + [a(Ag k) + (1 —a) AV )" = yik?]

27)

Therefore, we obtain a system of three equations (25)-(27) with three unknowns vy, vy,

and k7, which we solve numerically. Once the solution is known, we find k7, = viky
and kj, , = ykky, calculate ¢;; from the budget constraint (2), and recover the rest of

the growth path k%._,, ..., kjj by iterating backward on the Euler equation (23).
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Results of numerical experiments For numerical experiments, we assume 7 = 260,
n=1a=0.36,8=0.99,6=0.025, p =0.95, 0 = 0.01, v = —0.42; the last value is taken in
line with Antrds (2004) who estimated the elasticity of substitution between capital and
labor to be in a range of [0.641, 0.892] that corresponds to v € [—0.12, —0.56]. We solve
two models: the model with labor-augmenting progress parameterized by 4, o = 1.1123,
Y4, =1.0015, and Ay o = y4, =1, and the model with capital-augmenting progress pa-
rameterized by Ay o =1, y4, =0.9867, and A,y = y4, = 1. The parameters A, y4,,
A0, 74, for both models are chosen to approximately match the capital stocks at t =0
and ¢ = 154 for the growth paths of capital, so that the cumulative growth is the same for
both models over the target period given by 7 = 154. To this purpose, we first fix 4y o and
v 4, for the model with capital-augmenting technological change, and we find the values
of k¢ and k1s54. Then, we solve a system of two nonlinear equations (given by a closed-
form solution for the model with labor-augmenting technical change) to find the corre-
sponding A, o and y4,. The numerical costs of calculating solutions to the model with
labor-augmenting and capital-augmenting technical changes are about 1 and 12 min-
utes, respectively. We implement the turnpike test by verifying that the simulated tra-
jectories are insensitive to the specific time horizon and terminal conditions assumed.
Finally, we construct the unit-free residuals in the Euler equation (23), and we find that
such residuals do not exceed 10~* = 0.01% across 100 test simulations.

Figure 6 plots the time-series solutions of the models with labor- and capital-
augmenting technological progresses, as well as the corresponding growth paths.

The properties of the model with labor-augmenting technological progress are well
known. There is an exponential growth path with a constant growth rate and cyclical
fluctuations around the growth path. (In the figure, the growth path in the model with
labor-augmenting technological progress is situated slightly below the linear growth
path shown by a solid line). In contrast, the model with capital-augmenting technolog-
ical progress is not studied yet in the literature in the presence of uncertainty (to the
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F1GURE 6. Time-series solution in the model with a CES production function.
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best of our knowledge). Here, we observe a pronounced concave growth pattern indi-
cating that the rate of return to capital decreases as the economy grows. (In the figure,
the growth path in the model with capital-augmenting technological progress is situ-
ated above the linear growth path shown by a solid line.) The cyclical properties of both
models look similar (provided that growth is detrended).

6. EFP LIMITATIONS

We now discuss two limitations of the EFP framework related to the turnpike property
and the assumption of Markov structure of the model.

6.1 Turnpike theorem does not always hold

The key assumption behind the EFP analysis is the turnpike property that says that to-
day’s decisions are insensitive to events that happen in a distant future. However, not all
economic models possess this property. Below, we show a version of the new Keynesian
economy in which anticipated future changes in the interest rate have immediate and
unrealistically large effects on the current decisions, an implication which is known as
a forward guidance puzzle; see, for example, Del Negro et al. (2015), Carlstrom, Fuerst,
and Paustian (2015), McKay, Nakamura, and Steinsson (2016), Maliar and Taylor (2018).

Consider a stylized new Keynesian framework developed in Woodford (2003) that
consists of an IS equation and Phillips curve given by

xt = Efxi111 — o (re — Edlmig1] — 17'), (28)
m = BE 1] + kxy, (29)

where x,, 7, r;, and /' are the output gap, inflation, nominal interest rate, and natural
rate of interest, respectively; 8 and ¢ are the discount factor and the intertemporal elas-
ticity of substitution, respectively; « is the slope of the Phillips curve. Suppose that the
monetary policy is determined by the following rule:

”t+j=Et+j[77z+j+1]+”tn+j+€t,t+j, (30)

where €,,,; denotes a t 4 j-period shock to the interest rate announced in period
t, interpreted as a forward guidance shock; see Reifschneider and Willams (2000)
for a general discussion on monetary policy rules. By applying forward recursion to
(28) and by imposing the transversality condition lim;_,  E¢[x;;] = 0, we obtain x; =
—0 Zf.io Ei(riqj — Egjlmigjr1] — r;’ﬂ.) which together with (30) yields

o
xt:—UZEI’H,j. (31)
j=0

This result implies that today’s shock e, ; to the interest rate has the same effect as the
shock €, ;4 ; that happens j years from now. In Figure 7, we show two alternative antici-
pated future interest rate shocks that happen in period 20 (we assume 8 =0.99, k =0.11,
and o =1).
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As we see, decisions in t =0, 1, ..., 19 are dramatically affected by anticipated fu-
ture interest-rate shocks in period ¢ = 20 (such shocks can be viewed as variations in the
terminal condition for the interest rate). This example illustrates the failure of numerical
verification of the turnpike property in Step 3 of EFP. Specifically, we try out different ter-
minal conditions and different time horizons for the interest rate, and we observe they
have a nonvanishing effect on the EFP approximation. We conclude that the turnpike
property does not hold and that the EFP methodology is not suitable for analyzing this
particular version of the new Keynesian model.'

6.2 Not all models are Markov

Another essential assumption of the EFP method is that exogenous variables follow al-
though time-inhomogeneous but still Markov process. If the process for exogenous vari-
ables is not Markov, the probability distributions today depend not only on the current
state but on the entire historical path of the economy. Hence, the number of states grows
exponentially over time and the EFP method becomes intractable. The implications of
Markov and history-dependent models may differ dramatically. This fact can be seen
by using the example of a new Keynesian model with a zero lower bound on nominal
interest rates.

Consider again the IS equation (28) and Phillips curve (29), and assume that the
central bank announces that it will peg the nominal interest at zero in some periods j
and j + 1. If the peg is finite and the subsequent terminal condition is consistent with a
unique equilibrium, the entire path is uniquely determined; see, for example, Carlstrom,
Fuerst, and Paustian (2015). However, if we construct a Markov solution in which the in-
terest rate is pegged in all states, then equilibrium is indeterminate (this is equivalent to
indeterminacy under a perpetual peg; see Gali (2009)).

While the EFP method is not applicable to history-dependent models, there are com-
peting methods that can work with such models. In particular, the EP method of Fair

13Nonetheless, the version of the model with the forward guidance puzzle is a very special and degener-
ate case. Maliar and Taylor (2018) showed that under empirically relevant parameterizations of the mone-
tary policy rules, new Keynesian models satisfy the turnpike property as well, so that the EFP method can
be used.
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and Taylor (1983) does not rely on the assumption of Markov process and can be used
to construct history-dependent equilibria; however, its accuracy is limited by the cer-
tainty equivalence approach. Adjemian and Juillard (2013) proposed a stochastic ex-
tended path method that improves on certainty equivalence approach of the baseline
Fair and Taylor’s (1983) method. They constructed and analyzed a tree of all possible
future paths for exogenous state variables. Although the number of tree branches and
paths grows exponentially with the path length, the authors proposed a clever way of
reducing the cost by restricting attention to paths that have the highest probability of
occurrence. However, the implementation of this method is nontrivial, in particular, in
models with multiple state variables. Ajevskis (2017) proposed a method in which the
certainty equivalent solution a la Fair and Taylor (1983) is improved by incorporating
higher order perturbation terms. Furthermore, Krusell and Smith (2015) developed a re-
lated numerical method that combines perturbation of distributions and approximate
aggregation in line with Krusell and Smith (1998) to solve for a transition path in a multi-
region climate change model. Finally, another potentially useful method for analyzing
nonstationary applications is a nonlinear particle filter; see, for example, Fernandez-
Villaverde, Guerréon-Quintana, and Schorfheide (2016) for a discussion of this method.

7. CONCLUSION

Conventional dynamic programming and Euler-equation methods are designed to solve
stationary models by constructing time-invariant rules. In turn, path-solving methods,
including Fair and Taylor’s (1983) method, can solve nonstationary models by con-
structing a path for variables. Our analysis combines these two classes of methods by
constructing a path for rules. As long as the model satisfies the turnpike property, the
path for rules produced by EFP is an accurate approximation of time-varying value and
decision functions in the infinite-horizon nonstationary economy. For a simple opti-
mal growth model, the turnpike property can be established analytically, but for more
complex models, analytical characterizations may be infeasible. As an alternative, we
propose to verify the turnpike property numerically by analyzing the sensitivity of the
final-horizon EFP solution to terminal conditions and terminal dates. Such “numeri-
cal proofs” of turnpike theorems can extend greatly the class of tractable nonstationary
models and applications.

Our simple EFP framework has an important value-added in terms of applications
that can be analyzed quantitatively. Here are some examples: First, EFP can be ap-
plied to solve models with any type of technological progresses (capital, Hicks neutral,
investment-specific), as well as any other parameter drifts (e.g., drifts in a deprecia-
tion rate, discount factor, utility-function parameters, etc.). Second, EFP can handle any
combination of unanticipated and anticipated shocks of any periodicity and duration
in a fully nonlinear manner including seasonal adjustments. Third, EFP can be used to
analyze models in which volatility has both stochastic and deterministic components.
Finally, the EFP framework provides a novel tool for policy analysis: It allows to study
time-dependent policies, complementing the mainstream of the literature that focuses
on state-dependent policies. In the time-dependent case, a policy maker commits to
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adopt a new policy on a certain date, independently of the economy’s state (e.g., for-
ward guidance about raising the interest rate on a certain future date), whereas in the
state-dependent case, a policy maker commits to adopt a new policy when the econ-
omy reaches a certain state, independently of the date (e.g., to raise the interest rate
when certain economic conditions are met); see Maliar and Taylor (2018) for related for-
ward guidance policy experiments. Both of these cases are empirically relevant and can
be of interest in empirical analysis.
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APPENDIX A: TURNPIKE THEOREM WITH MARKOV TERMINAL CONDITION

In this section, we introduce notation, provide several relevant definitions about ran-
dom processes, and elaborate the proof of Theorem 2 (turnpike theorem) formulated
in Section 2. The turnpike literature normally assumes a zero terminal capital for the
finite-horizon economy, which is a convenient assumption for showing asymptotic con-
vergence results. However, in applications, it is more effective to choose a terminal con-
dition which is as close as possible to the infinite-horizon solution at 7'. This choice will
make the finite-horizon approximation closer to the infinite-horizon solution. (In fact, if
we guess the “exact” terminal condition on the infinite-horizon path, then the infinite-
and finite-horizon trajectories would coincide.) Hence, we show our own version of the
turnpike theorem for the growth model which holds for an arbitrary Markov terminal
condition of the type k7.1 = Kr(kT, z7), which extends the turnpike literature that fo-
cuses on a zero terminal condition k7,1 = 0.

Appendices A.1 and A.2 contain notations, definitions, and preliminaries. The proof
of Theorem 2 relies on three lemmas presented in Appendices A.3-A.5. In Appendix A.3,
we construct a limit program of a finite-horizon economy with a terminal condition
k7,1 = 0; this construction is standard in the turnpike analysis (see Majumdar and
Zilcha (1987), Mitra and Nyarko (1991), Joshi (1997)), and it is shown for the sake of
completeness. In Appendix A.4, we prove a new result about convergence of the op-
timal program of the T-period stationary economy with an arbitrary terminal capital
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stock k71 = Kr(kT, zr) to the limiting program of the finite-horizon economy with a
zero terminal condition k7,1 = 0. In Appendix A.5, we show that the limit program of
the finite-horizon economy with a zero terminal condition k7,; = 0 is also an optimal
program for the infinite-horizon nonstationary economy; in the proof, we also follow
the previous turnpike literature. Finally, in Appendix A.6, we combine the results of Ap-
pendices A.3-A.5 to establish the claim of Theorem 2. Thus, our main theoretical contri-
bution is contained in Appendix A.4.

A.1 Notation and definitions

Our exposition relies on standard measure theory notation; see, for example, Stokey,
Lucas, and Prescott (1989), Santos (1999), and Stachurski (2009). Time is discrete and
infinite, t =0, 1, .... Let ({2, F, P) be a probability space:

(@ N=T]2, is aspace of sequences € = (¢, €1...) such that ¢; € £, for all 7, where
(), is a compact metric space endowed with the Borel o-field &;. Here, (2, is the set
of all possible states of the environment at ¢ and €, € (2, is the state of the environ-
ment at .

(b) F is the o-algebra on (2 generated by cylinder sets of the form []°, 4., where
A; €&, forall  and A, = 2, for all but finitely many 7.

(c) P isthe probability measure on ({2, F).

We denote by {F;} a filtration on (2, where 7, is a sub ¢-field of 7 induced by a partial
history of environment #; = (eg, ..., €) € ]_[’TZO £, up to period ¢, that is, F; is generated
by cylinder sets of the form ]—[izo Ar,where A, €&, forallTr<tand A, =, forr > t.In
particular, we have that F is the coarse o-field {0, 2}, and that 7, = F. Furthermore, if
{) consists of either finite or countable states, € is called a discrete state process or chain,
otherwise, it is called a continuous state process. Our analysis focuses on continuous
state processes; however, it can be generalized to chains with minor modifications.

We provide some definitions that will be useful for characterizing random processes;
these definitions are standard and closely follow Stokey, Lucas, and Prescott (1989,
Chapter 8.2).

DEerINITION Al (Stochastic process). A stochastic process on ({2, 7, P) is an increasing
sequence of o-algebras 7 € F, C --- C F; a measurable space (Z, Z); and a sequence
of functions z; : 2 — Z for ¢t > 0 such that each z; is F; measurable.

Stationarity or time-homogeneity is an assumption that is commonly used in eco-
nomic literature.

DEFINITION A2 (Stationary process). A stochastic process z on ({2, F, P) is called sta-
tionary if the unconditional probability measure, given by

Pt i4n(C)=P({e € Q: [z1(e), ..., zepn(e)] € CY), (S1)

isindependent of t forall C € 2", ¢t >0,and n > 1.
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A related notion is stationary (time-homogeneous) transition probabilities. Let
us denote by P.y1, . 4n(Clzs = Z;,..., 20 = Zo) the probability of the event {e € 2 :
[z¢41(€), ..., z11n(€)] € C}, given that the event {€ € 2 :Z; = z/(e), ..., Zg = z9(€)} occurs.

DEeFINITION A3 (Stationary transition probabilities). A stochastic process z on ({2, F, P)
is said to have stationary transition probabilities if the conditional probabilities

Py, i4n(Clze =724, ..., 20 = Z0) (82)
are independentof s forall Ce 2", ec 2, t>0,and n > 1.

The assumption of stationary transition probabilities (52) implies stationarity (S1) if
the corresponding unconditional probability measures exist. However, a process can be
nonstationary even if transition probabilities are stationary; for example, a unit root pro-
cess or explosive process is nonstationary; see Stokey, Lucas, and Prescott (1989, Chap-
ter 8.2) for a related discussion.

In general, P;y1,. ;4+n(C) and P;yq . ,4+,(C|-) depend on the entire history of the
events up to ¢ (i.e., the stochastic process z; is measurable with respect to the sub o-
field 7;). However, history-dependent processes are difficult to analyze. The literature
distinguishes some special cases in which the dependence on history has relatively sim-
ple and tractable form. A well-known case is a class of Markov processes.

DerINITION A4 (Time-inhomogeneous Markov process). A stochastic process z on
(2, F, P) is (first-order) Markov if

P, tn(Clze =Z, .., 20 = 20) = Pria,. 140 (Clze = Zy), (83)

forallCez", t>0,andn>1.

The key property of a Markov process is that it is memoryless, namely, all past history
(z¢, ..., zp) isirrelevant for determining the future realizations except of the most recent
past z,. Note that the above definition does not require the Markov process to be time-
homogeneous: it allows the functions P;, i, ;,(-) to depend on time, as required by
our analysis. Finally, if transition probabilities P, 1, ;1,(C|z; =Z;) are independent of ¢
for any n > 1, then the Markov process is time-homogeneous. If, in addition, there is an
unconditional probability measure (S1), the resulting Markov process is stationary.

DEerINITION A5 (Stationary Markov process). A stochastic process z on ({2, F, P) is
called stationary Markov if the unconditional probability measure, given by

Pt+l,...,t+n(c)=P({€€Q:ZH—1(€)EC}), (54)
isindependent of t forall C € 2", ¢t >0,and n > 1.

Thus, time-homogeneous Markov process is stationary if it has time-homogeneous
unconditional probability distribution.
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A.2 Infinite-horizon economy

We consider an infinite-horizon nonstationary stochastic growth model in which pref-
erences, technology, and laws of motion for exogenous variables change over time. The
representative agent solves

o0
max Ep Z Blus(cr) (S5)

{en k1) —0
S.t. Ct+kt+1:(1_8)kt+ft(kt>zt)’ (86)
Zip1 = @01(21, €141), (87)

where ¢; > 0 and k, > 0 denote consumption and capital, respectively; initial condi-
tion (ky, zg) is given; u; : Ry — R and f; : Ri — R, and ¢, : R — R are possibly time-
dependent utility function, production functions, and law of motion for exogenous vari-
able z;, respectively; the sequence of u;, f;, and ¢; for r > 0 is known to the agent in pe-
riod t = 0; €,41 is i.i.d; B € (0, 1) is the discount factor; 6 € [0, 1] is the depreciation rate;
and E;[-] is an operator of expectation, conditional on a ¢-period information set.

We make standard assumptions about the utility and production functions that en-
sure the existence, uniqueness, and interiority of a solution. Concerning the utility func-
tion u,;, we assume that for each ¢ > 0, the following holds:

AssumpTioN 1 (Utility function). (a) u; is twice continuously differentiable on R.y;

(b) u; > 0, that is, u; is strictly increasing on R, where u; = @, (©) u/ <0, that is,
. . 2 .
u; is strictly concave on Ry, where u] = aﬂc‘;’; and (d) u; satisfies the Inada conditions

lim._, ¢ u}(c) = +o0 and lim._, o u;(c) =

Concerning the production function f;, we assume that for each ¢ > 0, the following
holds:

AssumpTION 2 (Production function). (a) f; is twice continuously differentiable on R2;

() f/(k,z) > 0forallk e Ry and z € Ry, where f| = ’;—JZ; (©) f/'(k,z) <0forallk e Ry and
z € Ry, where f] = {Zkf +; and (d) f; satisfies the Inada conditions limy_,¢ f/(k, z) = 400

andlimy_, o, f{(k,z)=0forall z e R,.

We need one more assumption. Let us define a pure capital accumulation process
{k?}f{‘ 2, by assuming ¢, = 0 for all 7 in (S6) which, for each history , = (zo, ..., z/), leads
to

1 = [k z2), (S8)
where kj'™* = k(. We impose an additional joint boundedness restriction on preferences

and technology by using the constructed process (S8):

AssumPTION 3 (Objective function). Eg[} 72, B'u(k})] < oo.
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This assumption ensures that the objective function (S5) is bounded so that its max-
imum exists. In particular, Assumption 3 holds either (i) when «; is bounded from above
for all ¢, that s, u;(c) < oo for any ¢ > 0 or (ii) when f; is bounded from above for all ¢, that
is, fi(k, z;) < oo forany k > 0 and z; € Z;. However, it also holds for economies with non-
vanishing growth and unbounded utility and production functions as long as u; (kT2

t+1

does not grow too fast so that the product g’ u,(k?ff) still declines at a sufficiently high

rate and the objective function (S5) converges to a finite limit.

DEerINITION A6 (Feasible program). A feasible program for the economy (S5)-(S7) is a
pair of adapted (z-measurable) processes {c;, k;;1}7, such that, given initial condition
ko, they satisfy ¢, > 0, k,1 > 0, and (S6) for each possible history 4., = (g, €1, .. .).

We denote by I a set of all feasible programs from given initial capital k(. We next
introduce the concept of solution to the model.

DEFINITION A7 (Optimal program). A feasible program {c{°, k77172 € 3° is called op-
timal if

Ey [Z B {ue(c®) — u,<ct>}} >0 (S9)

t=0

for every feasible process {c/, k;11}72, € I%.

Stochastic models with time-dependent fundamentals are studied in Majumdar and
Zilcha (1987), Mitra and Nyarko (1991), and Joshi (1997), among others. The existence
results for this class of models have been established in the literature for a general mea-
surable stochastic environment without imposing the restriction of Markov process (S7).
In particular, this literature shows that, under Assumptions 1-3, there exists an optimal
program {c°, k72,172, € 3% in the economy (S5)-(S7), and it is both interior and unique;
see Theorem 4.1 in Mitra and Nyarko (1991) and see Theorem 7 in Majumdar and Zilcha

(1987). The results of this literature apply to us as well.

A.3 Limit program of finite-horizon economy with a zero terminal capital

In this section, we consider a finite-horizon version of the economy (S5)-(S7) with a
given terminal condition for capital k7,1 = k. Specifically, we assume that the agent
solves

T
max [Z Bfut(c»} (S10)
{Ct>kt+1}r=() =0
s.t. (56), (57), (811)

where initial condition (k¢, z9) and terminal condition k71 = « are given. We first de-
fine feasible programs for the finite-horizon economy.
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DEerINITION A8 (Feasible programs in the finite-horizon economy). A feasible program
in the finite-horizon economy is a pair of adapted (i.e., 7;-measurable for all 7) processes
{cry kg1 }tT:O such that, given initial condition ky and any partial history A7 = (eg, ..., €T),
they reach a given terminal condition k7,1 = x at T, satisfy ¢; > 0, k,1 > 0, and (S6), (S7)
foralltr=1,...T.

In this section, we focus on a finite-horizon economy that reaches a zero terminal
condition, k7,1 = 0, at T. We denote by 37,0 g set of all finite-horizon feasible pro-
grams from given initial capital ky and any partial history A7 = (e, ..., e7) that attain
given k71 = 0 at 7. We next introduce the concept of solution for the finite-horizon

model.

DerINITION A9 (Optimal program in the finite-horizon model). A feasible finite-

; 7,0 ,7,0,T ~T,0 ; ; :
horizon program {c; ", k, [ },_, € 3-" is called optimal if

T
Eo[ZB’{ut(ctT’O) - ut(ct)}:| >0 (S12)
t=0

for every feasible process {c;, k;41}_, €3

7,0
The existence result for the finite-horizon version of the economy (510), (S11) with
a zero terminal condition is established in the literature. Namely, under Assumptions
Al1-A3, there exists an optimal program (¢, ", k;}}T_ € 370 and it is both interior and
unique. The existence of the optimal program can be shown by using either a Bellman
equation approach (see Mitra and Nyarko (1991, Theorem 3.1)) or a Euler equation ap-
proach (see Majumdar and Zilcha (1987, Theorems 1 and 2)).
We next show that under terminal condition k;’f:l = k741 =0, the optimal program
in the finite-horizon economy (S10), (S11) has a well-defined limit.
LEMMA 1. A finite-horizon optimal program {ctT’O, sziq}tho e 370

7,0 _ 7 lim 7 lim yoo ;
k7, =0 converges to a limit program {c;"™, k" }72qwhen T — oo, that is,

with a zero terminal

condition

kify= lim k5 and o™= lim ¢, fort=0,1,.... (813)

Proor. The existence of the limit program follows by three arguments (for any history):
(i) Extending time horizon from 7T to T + 1 increases T-period capital of the finite-

horizon optimal program, that is, k?ﬁ’o > k;fl. To see this, note that the model with

time horizon T has zero (terminal) capital k;’f] =0 at 7. When time horizon is ex-

T+1,0 _
T42 =0at 7T+ 1 but

> 0 at T; this follows by the Inada conditions—

tended from T to T + 1, the model has zero (terminal) capital &

T+1,0

it has strictly positive capital k7.

Assumption 1(d).
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(ii) The optimal program for the finite-horizon economy has the following property
of monotonicity with respect to the terminal condition: if {c;, K, ,}[_ and {c/, k//, }L,
are two optimal programs for the finite-horizon economy with terminal conditions
k' < k”, then the respective optimal capital choices have the same ranking in each
period, that is, k; < k/ for all + = 1,...,T. This monotonicity result follows by ei-
ther Bellman equation programming techniques (see Mitra and Nyarko (1991, Theo-
rem 3.2 and Corollary 3.3)) or Euler equation programming techniques (see Majum-
dar and Zilcha (1987, Theorem 3)) or lattice programming techniques (see Hopen-
hayn and Prescott (1992)); see also Joshi (1997, Theorem 1) for generalizations of these

results to non-convex economies. Hence, the stochastic process {szi(i szo shifts up

(weakly) in a pointwise manner when T increases to T + 1, that is, kIO S (10 for

t+1 t+1
t>0.
(iii) By construction, the capital program from the optimal program {c[TJ;?, k[Tjﬁ}tT:0

is bounded from above by the capital accumulation process {0, km‘ﬁ"‘}lT:0 defined in (S8),

t+1
that is, ktT;r(i < k7 < oo for ¢ > 0. A sequence that is bounded and monotone is known
to have a well-defined limit. O

A.4 Limit program of the T -period stationary economy

We now show that the optimal program of the T-period stationary economy, introduced
in Section 4, converges to the same limit program (S13) as the optimal program of the
finite-horizon economy (510), (S11) with a zero terminal condition. We denote by Tk
a set of all feasible finite-horizon programs that attain a terminal condition « # 0 of the
T-period stationary economy. (We assume the same initial capital (k, zp) and the same
partial history i = (eg, ..., er) as those fixed for the finite-horizon economy (S10),
(S11).)

LeMmMmA 2. The optimal program of the T-period stationary economy {c,T - ktTjr’l‘}tT=0 €

3Tox converges to a unique limit program {cj™, k'™ }%° € 3 defined in (S13) as T —
oothat is, forall t > 0,
lim _ 1 T,k lim_ g5 Tk
ktlinl = Tll_l;noo kt+1 and Ctlm = Th_l;noo Ct . (814)
Proor. The proof of the lemma follows by six arguments (for any history).

(i) Observe that, by Assumptions 1 and 2, the optimal program of the T-period sta-
tionary economy has a positive capital stock ktTjr’{ > 0 at T (since the terminal capital is
generated by the capital decision function of a stationary version of the model), while
for the optimal program {ctT 0 szfr[i}tho € 370 of the finite-horizon economy, it is zero by
definition, k7°}, =0.

(ii) The property of monotonicity with respect to terminal condition implies that if
ke S k0 then k% > k70 for all £ = 1,...,T; see our discussion in (ii) of the proof

T+1 T+1? +1 = "
to Lemma 1.
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(iii) Let us fix some 7 € {1, ..., T}. We show that up to period 7, the optimal program
(e, ktTjr'{ T_, does not give higher expected utility than (e, ktTjr(i T_» thatis,
- -
Eo| Y B {ui(c] ) —ui(e %)} | <0. (S15)
L =0 .

Toward contradiction, assume that it does, that is,

Eo| 3" B {ui(c] ) —ui(c/ )} | > 0. (S16)

Lt=0 .

Then, consider a new process {c;, k/ +1hi=0 that follows {ctT o kT’K}tT=0 e 37% up to pe-

t+1
riod 7 — 1 and that drops down at 7 to match kTT_ﬁ of the finite-horizon program

T,k 3. T,k\T ~T,0 . ;o1 r _¢.T,k 1 T,kyr—1 T T T,0 T,0
{7 kil img €377, thatis, {c, ki3 g = e ks Uler +hoyy —k iy ko) By

monotonicity (i), we have kT | — kTT;LOl >0, so that

Eo[gﬂt{”t(cﬁ) —u:(c,“)}}

= Eo[B™{ur(c] + K],y — k[5) —ui(c))}] =0, (817)

where the last inequality follows by Assumption 1(b) of strictly increasing u;.
(iv) By construction, {c;, k} ,,};_ and {ctT 0, ktTjr? 7o reach the same capital kTTJ’rO1 atr.
Let us extend the program {c;, k; ,};_, to T by assuming that it follows the process

{ctT’O, ktTJ’r(i}tT:0 from the period 7+ 1 up to 7, that is, {c], k;—‘rl}tT:T—Fl = {ctT’O, szJ;[i}tT:TH'

Then, we have

Ey [i B {u(c)) — ur(c) }} = E [g B {ue(cr) — udle/ ’0)}}

=0
ZEO[ZB[{M(C;T’K) _ut(CtT,O)}:| >0, (S18)
t=0

where the last two inequalities follow by Result (§17) and Assumption (516), respectively.
Thus, we obtain a contradiction: The constructed program {c;, k Jrl}tT:0 e 310 is feasi-
ble in the finite-horizon economy with a zero terminal condition, k7. ; =0, and it gives
strictly higher expected utility than the optimal program {ctT 0, szfr(i}zT:o € 370 in that
economy.

(v) Holding 7 fixed, we compute the limit of (§15) by letting T go to infinity:

lim £ [Z B {ui(e ™) ~ ”r(CtT’O)}}

t=0

= lim Eq [Z Bluc(c] =“)} ~Ey [Z B’ut(c?m)] <0. (S19)

t=0 t=0
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(vi) The last inequality implies that for any 7 > 1, the limit program {c}™, k™ } e
7.0

3 of the finite-horizon economy {c, ,ktTJ’r(i}tT:0 e 370 with a zero terminal con-
dition k?’o = 0 gives at least as high expected utility as the optimal limit program

{ctT - ktT;r']‘}tT=O e 3T-% of the T-period stationary economy. Since Assumptions 1 and 2

imply that the optimal program is unique, we conclude that {cli™, kllijrnl}loio € 3 defined
in (S§13) is a unique limit of the optimal program {ctT o ktT;'{}tho e 37> of the T-period

stationary economy. O

A.5 Convergence of the finite-horizon economy to the infinite-horizon economy

We now show a connection between the optimal programs of the finite-horizon and
infinite-horizon economies. Namely, we show that the finite-horizon economy (S10),
(S11) with a zero terminal condition k;’fl = 0 converges to the nonstationary infinite-
horizon economy (S5)—(S7) as T — oo provided that we fix the same initial condition k

and partial history A1 = (e, ..., e7) for both economies.

07 lim 7lim yoo ; P : 00 [,00 100
LemMma 3. The limit program {c,™, k '} }7,, is a unique optimal program {c{°, k77 172 €

I in the infinite-horizon nonstationary economy (S5)—(S7).

Proor. We prove this lemma by contradiction. We use the arguments that are similar
to those used in the proof of Lemma 2.

(i) Toward contradiction, assume that {c[™, k™ }° is not an optimal program of

the infinite-horizon economy {cf°, k77,172 € I°°. By definition of limit, there exists a

real number ¢ > 0 and a subsequence of natural numbers {7}, T, ...} € {0, 1, ...} such
that {c7°, k75,172, € I*° gives strictly higher expected utility than the limit program of

t+1J = > ;
the finite-horizon economy {ci‘m, klt‘fknl toi[)’ that is,
T, .
Ep [Z B {ue(cf®) — ut(c?m)}] >¢ forall T, e {Ty,Ts,...}. (S20)
t=0

(ii) Let us fix some T,, € {T1, T5, ...} and consider any finite 7' > T,,. Assumptions 1
and 2 imply that k7, ; > 0, while k;’fl = 0 by definition of the finite-horizon economy
with a zero terminal condition. The monotonicity of the optimal program with respect
to a terminal condition implies that if kc}°+1 > k;’fl, then k;’j’rl > kﬂ’? forallt=1,...,T;
see our discussion in (ii) of the proof of Lemma 1.

(iii) Following the arguments in (iii) of the proof of Lemma 2, we can show that up to
period T, the optimal program {c{°, k% }tTio does not give higher expected utility than

+1
T.0 ,T,0,T, .
{0 kbl that is,

Ty
Ey |:Z B {us(c) — u;(ctT’o)}:| <0 forall T,. (S21)

t=0
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(iv) Holding 7, fixed, we compute the limit of (S21) by letting T go to infinity:

fim Ey [Z () - T ’0)}}

t=0
T, _

=E |:Z Blus(cf®) — ,B’u,(c}”“):| <0 forall 7,. (S22)
t=0

However, result (522) contradicts our assumption in (520).
(v) We conclude that for any subsequence {71, T3, ...} € {0, 1, ...}, we have

Ty
Ey [Z B ui(c5°) — us(c™) }} <0 forall 7. (S23)

t=0
However, under Assumptions 1 and 2, the optimal program {c°, k77172, € I* isunique,
and hence, it must be that {c{°, k%)% coincides with {c[™, k™ }°° forall # > 0. O

A.6 Proof of the turnpike theorem

We now combine the results of Lemmas 1-3 together into a turnpike-style theorem to
show the convergence of the optimal program of the T-period stationary economy to
that of the infinite-horizon nonstationary economy. To be specific, Lemma 1 shows
that the optimal program of the finite-horizon economy with a zero terminal condi-
T’O, lejr(i}lT:O e 70 converges to the limit program {c}im, kltij:“l}‘;io. Lemma 2 shows
that the optimal program of the T-period stationary economy {ctT - szfr'I}szo also con-
verges to the same limit program {c/™, K™} . Finally, Lemma 3 shows that the limit

program of the finite-horizon economies {c/™, k'™, }°°  is optimal in the nonstationary

infinite-horizon economy. Then, it must be the case that the limit optimal program of
the T-period stationary economy {c.", ktTjr’I I, is optimal in the infinite-horizon non-
stationary economy. This argument is formalized below.

PrROOF OF THEOREM 2 (TURNPIKE THEOREM). The proof follows by definition of limit
and Lemmas 1-3. Let us fix a real number ¢ > 0 and a natural number 7 such that 1 <
T < 0o and consider a possible partial history 47 = (e, ..., €T).

(i) Lemma 1 shows that {ctT 0, ktTjr(i}tT:O e 370 converges to a limit program {ci™,

kltijrnl}fio as T — oo. Then, definition of limit implies that there exists T} (47) > 0 such

that |ktTJ’r? —klim| < £forr=0,...,7.
(ii) Lemma 2 implies that the finite-horizon problem of the T-period stationary

economy {c[T e k[Tjr’{}[T:O also converges to limit program {c}im, kllijrnl}fio as T — oo. Then,

there exists 7> (A7) > 0 such that |k1[ijr“1 - k[Tjr’I| <%forr=0,...,7.
7,0

(i) Lemma 3 implies the program {c!*°, k 3, € 370 converges to the infinite-

+1
horizon optimal program {c?°, kfil 2y as T — oo. Then, there exists T3(hr) > 0 such
that |k} — k| < & fort=0,...,.
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(iv) Then, the triangular inequality implies

T!K TK lim li
|kt+1 k| = |kt+1 — kR - kt+1 + kz+1 ki
li li &
|kt+1 ktljrn1|+’ktl~rrnl z+1|+|kt+1 kS| < §+§+§:8

for T(h7) = max{T1(hr), To(hr), T3(hT)}.

(v) Finally, consider all possible partial histories {#7} and define T*(e, T,xg) =
max(;,} T'(h7). By construction, for any 7 > T*(e, 1, x;), the result of the theorem
holds. O

REMARK Al. Our proof of the turnpike theorem addresses a technical issue that does
not arise in the literature that focuses on finite-horizon economies with a zero termi-
nal condition; see, for example, Majumdar and Zilcha (1987), Mitra and Nyarko (1991),
and Joshi (1997). Their construction relies on the fact that the optimal program of the
finite-horizon economy is always pointwise below the optimal program of the infinite-
horizon economy, that s, ktT+'I <kj;,forr=1,..., 7, anditgives strictly higher expected
utility up to T than does the infinite-horizon opt1ma1 program (because excess capital
can be consumed at terminal period 7). This argument does not directly apply to our
T-period stationary economy: our finite-horizon program can be either below or above
the infinite-horizon program depending on a specific 7-period terminal condition. Our
proof addresses this issue by constructing in Lemma 2 a separate limit program for the
T-period stationary economy.

APPENDIX B: IMPLEMENTATION OF EFP FOR GROWTH MODEL

In this section, we describe the implementation of the EFP method used to produce the
numerical results in the main text.

ArcoriTHM la ((Implementation): Extended function path (EFP) for the growth model).

The goal of EFR
EFP is aimed at approximating a solution of a nonstationary model during the
first 7 periods, that is, it finds approximating functions (Kj, ..., K;) such that K; ~

K, fort=1,...7, where K, and K, are a ¢-period true capital function and its para-
metric approximation, respectively.

Step 0. Initialization.
a. Choose time horizon T > 7 for constructing 7'-period stationary economy.

b. Construct a deterministic path {z } o for exogenous state variable {zt}lT:0 sat-
isfying Zt+1 = @;(z}, Eile;11]) for t = O .., T.

c. Construct a deterministic path {k}}]_, for endogenous state variable {k}]_,
satisfying
up(cf) = Puy(cf D=8+ fi (ky y, zf )
cf +k[+1_(1 Oki + fi(ky,zf) fort=0,...,T.
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d. Fort=0,...,T:
Construct agrid {(km.t, zm f)}m | centered at (k7, z;).
Choose integration nodes, €;;, and weights, w;,, for j=1,...,J.
Construct future shocks z;, it = 01(Zm,1, €j,1)-

e. Write a ¢t-period discretized system of the optimality conditions:
(W) wem,0) =B Yoy @ty (chy ; ML =8+ fryr(kpy 15 2p s M-
(D) cmye+ Ky = (1= 8kt + filkm,ts Zm,1)-
(i) ¢, ;, +ky =0 =0k + frralky s 2y, 5 )

(iv) k), 1 —Kz(km t>Zm,r) and km gt —Kz+1(k

m,t> m A t)
d. Assume that the model becomes stationary at 7.

Step 1: Terminal condition.
Find K7 = K71 that approximately solves the system (i)—(iv) on the grid for the
T-period stationary economy fr.1 = fr, ur.1 = Ur, o741 = ©T-

Step 2: Backward induction.

Construct the function path (EO, ...,I?T,l,l?f) that approximately solves the
system (i)—(iv) for each r =0, ..., T and that matches the given terminal function
K7 constructed in Step 1.

Step 3: Turnpike property.

Simulate the process Ky and use a subset of simulated points as initial condi-
tions (kg, zg). For each initial condition, draw a history 4, = (eg, ..., €;). Use the
decision functions (1?0, e, I?T) to simulate the economy’s trajectories (k. , ... kTT ).
Check that the trajectories converge to a unique limit limT_wo(kg yens kTT) =(k%, ...
k) by constructing (Kj, ..., Kr) under different T and K7.

The EFP solution:
Use (K, ..., K;) as an approximation to (K, ..., K;) and discard the remaining
T — 7 functions.

The EFP method is more expensive than conventional solution methods for station-
ary models because decision functions must be constructed not just once but for T peri-
ods. We implement EFP in the way that keeps its cost relatively low: First, to approximate
decision functions, we use a version of the Smolyak (sparse) grid technique. Specifically,
we use a version of the Smolyak method that combines a Smolyak grid with ordinary
polynomials for approximating functions off the grid. This method was described in
Judd, Maliar, Maliar, and Valero (2014) who found it to be sufficiently accurate in the
context of a similar growth model, namely, unit-free residuals in the model’s equations
do not exceed 0.01% on a stochastic simulation of 10,000 observations. For this version
of the Smolyak method, the polynomial coefficients are overdetermined; for example,
in a two-dimensional case, we have 13 points in a second-level Smolyak grid, and we
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have only six coefficients in second-degree ordinary polynomial. Hence, we identify the
coefficients using a least-squares regression; we use an SVD decomposition, to enhance
numerical stability; see Judd et al. (2014) for a discussion of this and other numerically
stable approximation methods. We do not construct the Smolyak grid within a hyper-
cube normalized to [—1, 1]?, as do Smolyak methods that rely on Chebyshev polynomi-
als used in, for example, Krueger and Kubler (2004), Malin, Krueger, and Kubler (2011),
and Judd et al. (2014). Instead, we construct a sequence of Smolyak grids around actual
steady state and thus, the hypercube, in which the Smolyak grid is constructed, grows
over time as shown in Figures 1 and 8.

Second, to approximate expectation functions, we use Gauss-Hermite quadrature
rule with 10 integration nodes. However, a comparison analysis in Judd et al. (2014)
shows that for models with smooth decision functions like ours, the number of inte-
gration nodes plays only a minor role in the properties of the solution; for example,
the results will be the same up to six digits of precision if, instead of ten integration
nodes, we use just two nodes or a simple linear monomial rule (a two-node Gauss—
Hermite quadrature rule is equivalent to a linear monomial integration rule for the two-
dimensional case). However, simulation-based Monte Carlo-style integration methods
produce very inaccurate approximations for integrals and are not considered in this pa-
per; see Judd et al. (2014) for discussion.

Third, to solve for the coefficients of decision functions, we use a simple derivative-
free fixed-point iteration method in line with Gauss-Jacobi iteration. Let us rewrite
the Euler equation (i) constructed in the initialization step of the algorithm by pre-
multiplying both sides by #-period capital:

i(Conj.1) :
mt—BZ ,t[ e m’t) {1=8+ fixa(Kp k7 ys 2 m”zm)}]km,,. (S24)

We use different notation, k}, , and km ;» for ¢-period capital in the left- and right-hand
side of (S24), respectively, in order to describe our fixed-point iteration method. Namely,
we substitute k,, , in the right-hand side of (524) and in the constraints (ii) and (iii) in
the initialization step to compute ¢, ; and cm i respectively, and we obtain a new set of
values of the capital function on the grid k ¢ in the left-hand side. We iterate on these
steps until convergence.

Our approximation functions K, are ordinary polynomial functions characterized
by a time-dependent vector of parameters by, that is, K = K (+; by). So, operationally, the
iteration is performed not on the grid values &, , and 7c\/mt but on the coefficients of the
approximation functions. The iteration procedure differs in Steps 1 and 2.

In Step 1, we construct a solution to T-period stationary economy. For iteration i,
we fix some initial vector of coefficients b, compute km Tl = I?(km T, Zm,1; b), find ¢,y 7

and ¢ to satisfy constraints (ii) and (iii), respectively, and find k/ from the Euler

,T+1
;on K(km,T, zZm,T; ) in order to re-estimate

m,j,T

equation (i). We run a regression of k m.T+

the coefficients b and we compute the coefficients for iteration i + 1 as a weighted aver-
age, thatis, (D = (1 — &b 4 ¢bD, where ¢ € (0, 1) is a damping parameter (typically,
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& =0.05). We use partial updating instead of full updating ¢ = 1 because fixed-point iter-
ation can be numerically unstable and using partial updating enhances numerical sta-
bility; see Maliar et al. (2011). These kinds of fixed-point iterations are used by numer-
ical methods that solve for equilibrium in conventional stationary Markov economies;
see for example, Judd, Maliar, and Maliar (2011) and Judd et al. (2014).

In Step 2, we iterate on the path for the polynomial coefficients using Gauss—Jacobi-
style iterations in line with Fair and Taylor (1983). Specifically, on iteration j, we take a
path for the coefficients vectors {bgj U b(Tj) }, compute the corresponding path for cap-
ital quantities using k;m = K, (Kot Zm, 1 b;j )), and find a path for consumption quanti-
ties ¢, and c;n, it from constraints (ii) and (iii), respectively, for t =0, ..., T. Substitute
these quantities in the right-hand side of a sequence of Euler equations for t =0, ..., T
to obtain a new path for capital quantities in the left-hand side of the Euler equa-
tion 75;”, for t=0,...,7 — 1. Run T — 1 regressions of 7{2,1 ; on polynomial functional
forms I?t(km,,, Zm,; b)) fort =0,..., T — 1 to construct a new path for the coefficients
{Eg ), e, ?;(Tj)_l}. Compute the path of the coefficients for iteration j + 1 as a weighted av-
erage, that is, b;jH) =(1- f)bgj) + §B§j), t=0,...,T —1, where ¢ € (0,1) is a damping
parameter which we again typically set at £ = 0.05. (Observe that this iteration proce-
dure changes all the coefficients on the path except of the last one b(T’) = b, which is
a given terminal condition that we computed in Step 1 from the T-period stationary
economy.)

In fact, the problem of constructing a path for function coefficients is similar to the
problem of constructing a path for variables: in both cases, we need to solve a large sys-
tem of nonlinear equations. The difference is that under EFP, the arguments of this sys-
tem are not variables but parameters of the approximating functions. Instead of Gauss—
Jacobi-style iteration on path, we can use Gauss-Siedel fixed-point iteration (shooting),
Newton-style solvers, or any other technique that can solve a system of nonlinear equa-
tions; see Lipton, Poterba, Sachs, and Summers (1980), Atolia and Buffie (2009a, 2009b),
Heer and Mauliner (2010), and Griine, Semmler, and Stieler (2015) for examples of such
techniques.

Let us now finally provide an additional illustration to the solution shown in Sec-
tion 3.4. Specifically, in Figure 2, we plot a two-dimensional sequence of capital de-
cision functions under fixed productivity level z = 1, while here we provide a three-
dimensional plot of the same decision function for adding the productivity level. We
again illustrate the capital functions for periods 1, 20, and 40 (i.e., k, = K (ky, z1), ko1 =
Koo(kao, 220), and k41 = Kag(kag, z49)) which we approximate using Smolyak (sparse)
grids. In Step 1 of the algorithm, we construct the capital function K4y by assuming
that the economy becomes stationary in period 7 = 40; and in Step 2, we construct
a path of the capital functions that (Kj, ..., K39) that matches the corresponding ter-
minal function K49. The Smolyak grids are shown by stars in the horizontal &k, x z
plane. The domain for capital (on which Smolyak grids are constructed) and the range
of the constructed capital function grow at the rate of labor-augmenting technological
progress.
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FiGure S1. Function path, produced by EFP, for a growth model with technological progress.

APPENDIX C: PATH-SOLVING METHODS FOR NONSTATIONARY MODELS

We first describe the shooting method of Lipton et al. (1980) for a nonstationary de-
terministic economy, and we then elaborate the extended path (EP) of Fair and Taylor
(1983) for a nonstationary economy with uncertainty.

Shooting methods To illustrate the class of shooting methods, let us substitute ¢; and
¢;+1 from (S6) into the Euler equation of (S5)-(S7) to obtain a second-order difference
equation,

u,((1 = 8)k; + filks, z0) — kiy1)
= BE 1, 1 ((1 = &)kig1 + figr (ko> 2ip1) — kig2) (1= 8+ f1 (kg1 2i1)) ] (825)

Initial condition (kg, zy) is given. Let us abstract from uncertainty by assuming that
z; = 1 for all ¢, choose a sufficiently large T, and fix some terminal condition k7 (typ-
ically, the literature assumes that the economy arrives in the steady state k7, = k*).!
To approximate the optimal path, we must solve numerically a system of 7 nonlinear
equations (S25) with respect to T unknowns {k1, ..., k7}. It is possible to solve the sys-
tem (525) by using a Newton-style or any other numerical solver. However, a more effi-
cient alternative could be numerical methods that exploit the recursive structure of the
system (S25) such as shooting methods (Gauss-Siedel iteration). There are two types
of shooting methods: a forward shooting and a backward shooting. A typical forward
shooting method expresses k., in terms of k; and k,.; using (S25) and constructs a
forward path (kq,..., kr,1); it iterates on k; until the path reaches a given terminal
condition k71 = k*. In turn, a typical reverse shooting method expresses k; in terms
of k,1 and k.., and constructs a backward path {kr, ..., ko}; it iterates on k7 until the

IThe turnpike theorem implies that in initial 7 periods, the optimal path is insensitive to a specific ter-
minal condition used if 7 < 7.
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path reaches a given initial condition ky. A shortcoming of shooting methods is that
they tend to produce explosive paths, in particular, forward shooting methods; see Atolia
and Buffie (2009a, 2009b) for a careful discussion and possible treatments of this prob-
lem.

Fair and Taylor (1983) method The EP method of Fair and Taylor (1983) allows us to
solve nonstationary economic models with uncertainty by approximating expectation
functions under the assumption of certainty equivalence. To see how this method works,
consider the system (S25) with uncertainty and as an example, assume that z,,; follows a
possibly nonstationary Markov process In(z,11) = p;In(z;) + ov€,11, where the sequences
(po, p1, ---) and (ay, oy, ...) are deterministically given at = 0 and ;.1 ~ N (0, 1). Again,
let us choose a sufficiently large 7" and fix some terminal condition such as k71 = k¥,
so that the turnpike argument applies. Fair and Taylor (1983) proposed to construct a
solution path to (S25) by setting all future innovations to their expected values, €} = €; =
--- = 0. This produces a path on which technology evolves as In(z,1) = p;In(z;) grad-
ually converging to z* = 1 and the model’s variables gradually converge to the steady
state. Note that only the first entry k; of the constructed path (kq, ..., k1) is meaning-
ful; the remaining entries (k,, ..., k7) are obtained under a supplementary assumption
of zero future innovations and they are only needed to accurately construct k1. Thus, &k
is stored and the rest of the sequence is discarded. By applying the same procedure to
next state (kq, z1), we produce k,, and so on until the path of desired length 7 is con-
structed.

However, certainty equivalence approximation of Fair and Taylor (1983) has its limi-
tations. It is exact for linear and linearized models, and it can be sufficiently accurate for
models that are close to linear; see Gagnon and Taylor (1990) and Love (2010). However,
it becomes highly inaccurate when either volatility and/or the degrees of nonlinearity
increase; see our accuracy evaluations in the main text.

Another novelty of the EP method relative to shooting methods is that it iterates on
the economy’s path at once using Gauss-Jacobi iteration. This type of iteration is more
stable than Gauss-Siedel and allows us to avoid explosive behavior. To be specific, it
guesses the economy’s path (kq, ..., k741), substitutes the quantitiesforr =1, ..., T+1
in the right-hand side of T' Euler equations (S25), respectively, and obtains a new path
(ko, ..., kr) in the left-hand side of (525); and it iterates on the path until the con-
vergence is achieved. Finally, Fair and Taylor (1983) proposed a simple procedure for
determining 7 that ensures that a specific terminal condition used does not affect
the quality of approximation, namely, they suggested to increase T (i.e., extend the
path) until the solution in the initial period(s) becomes insensitive to further increases
inT.

We now elaborate the description of the version of Fair and Taylor’s (1983) method
used to produce the results in the main text. We use a slightly different representation
of the optimality conditions of the model (S5)-(S7) (we assume 6 = 1 and u(c) = In(c)
for expository convenience). The Euler equation and budget constraint, respectively,
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are

1 1
—= ,BEt|:—(1 -0+ Zt+1f/(kt+1))i|,

Ct Cr+1

ki1 =0=8)ki+zf(ky).

We combine the above two conditions to get

th+1f/(kt+1)> -1
kiv1=2z:f(ks) — |:Et<z,+1f(kt+l) — ko )i|

zi 1 f(kip1) — ki
the+1f/(kt+1)) ’

~ 2o f (k) — (526)

where the path for z; , is constructed under the certainty equivalence assumption that
€,+1 = 0for all # > 0. Under the conventional AR(1) process for productivity levels, this
means that In zf+1 = plnz{ for all ¢ > 0, or equivalently sz = (z7)P, where zg = zg. To
solve for the path of variables, we use derivative-free iteration in line with Gauss—Jacobi
method as in Fair and Taylor (1983):

ArcoriTHM 2 (Extended path (EP) framework by Fair and Taylor (1983)).

The goal of EP framework of Fair and Taylor (1983)

EFP is aimed at approximating a path for variables satisfying the model’s equa-
tions during the first 7 periods, that is, it finds 750, ey 757 such that || k; — 75, | < e for
t=1,...,7, where ¢ > 0 is target accuracy, | - || is an absolute value, and k; and 75,
are the ¢-period true capital stocks and their approximation, respectively.

Step 0: Initialization.
a. Fix t =0 period state (kg, z).
b. Choose time horizon T > 7 and terminal condition ET+1.

c. Construct and fix {z{ 11 }e=0,...T such that z{ | = (z7)” for all ¢, where z§ = z.

t+1

.....

d. Guess an equilibrium path {7551)}1:17,”]/ for iteration j = 1.

e. Write a ¢-period system of the optimality conditions in the form: 7€,+1 =
fo(,]gt) S kD) —kip

3 ,whereE =ky.
Bze S (ki) 0="r0

Step 1: Solving for a path using Gauss-Jacobi method.

a. Substitute a path {Z;j Y,_1___p into the right-hand side of (S26) to find KD —

~i) 2 s
=)y Ha FRDD-R
Zif ey = FESELR T

Bz f' (ki)
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k(]+1)

p k” )1 | < tolerance level.

b. End iteration if the convergence is achieved |
Otherwise, increase j by 1 and repeat Step 1.

The EP solution:
Use the first entry k; of the constructed path k4, ..., k7 as an approximation to
the true solution & in period ¢ = 0 and discard the remaining k», ..., k1 values.

In terms of our notations, Fair and Taylor (1983) used = = 1, that is, they kept only
the first element 751 from the constructed path (751, .. 757) and disregarded the rest of
the path; then, they drew a next perlod shock z; and solved for anew path (kl, .. ET+1)
starting from ki and ending in a given k7| and stored k2, again disregarding the rest of
the path; and they advanced forward until the path of the given length 7 is constructed.
T is chosen so that its further extensions do not affect the solution in the initial period
of the path. For instance, to find a solution 751, Fair and Taylor (1983) solved the model
several timesunder T4+ 1, T +2, T + 3, ... and checked that 751 remains the same (up to
a given degree of precision).

As is typical for fixed-point-iteration style methods, Gauss—Jacobi iteration may fail
to converge. To deal with this issue, Fair and Taylor (1983) used damplng, namely, they
updated the path over iteration only by a small amount & tﬂ:” fkgfl +(1-¢ )k i
where £ € (0, 1) is a small number close to zero (e.g., 0.01).

Steps 1a and 1b of Fair and Taylor’s (1983) method are called Type I and Type Il itera-
tions and are analogous to Step 2 of the EFP method when the sequence of the decision
functions is constructed. The extension of path is called Type III iteration and gives the
name to Fair and Taylor (1983) method.

In our examples, we implement Fair and Taylor’s (1983) method using a conventional
Newton-style numerical solver instead of Gauss—Jacobi iteration; a similar implementa-
tion was used in Heer and Mauliner (2010). The cost of Fair and Taylor’s (1983) method
can depend considerably on a specific solver used and can be very high (as we need
to solve a system of equations with hundreds of unknowns numerically). In our simple
examples, a Newton-style solver was sufficiently fast and reliable. In more complicated
models, we are typically unable to derive closed-form laws of motion for the state vari-
ables, and derivative-free fixed-point iteration advocated in Fair and Taylor (1983) can
be a better alternative.

APPENDIX D: SOLVING THE TEST MODEL USING THE ASSOCIATED STATIONARY MODEL

We first convert the nonstationary model (S5)-(S7) with labor-augmenting technological
progress into a stationary model using the standard change of variables ¢; = ¢;/ A; and
= k,/ A,. This leads us to the following model:

[} ~l—n

C
max E0 B*) —— (S27)
{kz+1,Ct}t 0,..., g( I-n
st G+ yak = (1= &)k, + zk%, (S28)

Inz;py=pidnz +oveyr, €41 ~N(O,1), (S29)
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where B* = 37,1477’- We solve this stationary model by using the same version of the
Smolyak method that is used within EFP to find a solution to T-period stationary econ-
omy.

After a solution to the stationary model (S27)-(S29) is constructed, a solution for
nonstationary variables can be recovered by using an inverse transformation ¢; = ¢; 4;
and k; = EA,.

For the sake of our comparison, we also need to recover the path of nonstationary
decision functions in terms of their parameters. Let us show how this can be done un-
der polynomial approximation of decision functions. Let us assume that a capital policy
function of the stationary model is approximated by complete polynomial of degree L,
namely, k.41 =Y E >0 b,. (=1g52) HIQ;”zi_m, where b; is a polynomial coefficient,

i=0,...,L+ w + 1. Given that the stationary and nonstationary solutions are
related by k1 = kt+1/(Aoytjl), we have

L 1
t+17 t+1 rm_l—m
kiv1= Aoy, key1= Aoy, E E bm+(z—1)2(z+z)+1k;nzz
1=0 m=0

L I
=Ap) Y va "V, a2 (S30)
=0 m=0

For example, for first-degree polynomial L = 1, we construct the coefficients vector
of the nonstationary model by premultiplying the coefficient vector b = (by, b1, b7)
of the stationary model by a vector (A¢y'", Aoy, Aoy'{")T, which yields b, =
(bvoy’A“, b1 Aoy 4, bngytjl), t=0,...,T, where T is time horizon (length of simu-
lation in the solution procedure). Note that a similar relation will hold even if the growth

rate vy 4 is time variable.

APPENDIX E: SENSITIVITY RESULTS FOR THE MODEL WITH LABOR-AUGMENTING
TECHNOLOGICAL PROGRESS

In this appendix, we provide sensitivity results for the model with labor-augmenting
technological progress. Table 2 contains the results on accuracy and cost of the version
of the EFP method studied in Section 5. We use 7 =200 and 7' = 400 and consider several
alternative parameterizations for {7, oe, y4}.

Figure S2 plots a maximum unit-free absolute difference between the exact solu-
tion for capital and the solution delivered by the EFP at = 100. The difference between
the solutions is computed across 1000 simulations. We use T' = {200, 300, 400, 500}, n =
{1/3, 1, 3}, and decision rules produced by the T-period stationary economy and zero
capital assumption as terminal conditions.
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TABLE 2. Sensitivity analysis for the EFP method.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Models 6 Model 7

n 5 5 5 5 0.1 1 10
Oe 0.03 0.03 0.03 0.01 0.01 0.01 0.01
YA 1.01 1.00 1.05 1.01 1.01 1.01 1.01
Mean errors across ¢ periods in log;, units

t €10, 50] —7.01 —6.67 —7.34 —7.03 —7.03 —6.61 —17.30
t €[0,100] —6.82 —6.44 —7.25 —6.84 6.92 —6.48 —7.08
t €[0,150] —6.73 —6.33 -7.22 —6.76 —6.89 —6.43 —6.98
t €10,175] —6.70 —6.29 —7.22 —6.74 —6.87 —6.41 —6.95
t €[0,200] —6.68 —6.26 —7.21 —6.72 —6.87 —6.37 —6.93
Maximum errors across ¢ periods in log;, units

t €10, 50] —6.42 —6.31 -7.13 —6.66 —6.08 —6.24 —6.81
t €[0,100] -5.99 —6.12 —17.05 —6.54 -5.97 —6.18 —6.36
t €[0,150] -5.98 —6.04 —7.05 —6.52 -5.97 —6.18 —6.35
t€[0,175] —5.98 —6.01 —7.05 —6.52 -5.97 —6.13 —6.33
t €[0,200] -5.92 -5.99 —17.05 —6.51 —5.96 —5.88 —6.24
Running time, in seconds

Solution 2259 150.0 193.0 216.98 836.5 300.7 245.9
Simulation 5.6 5.7 5.8 5.66 5.6 5.6 5.7
Total 231.6 155.7 198.8 222.64 842.1 306.3 251.6

Note: “Mean errors” and “Maximum errors” are, respectively, mean and maximum unit-free absolute difference between
the exact solution for capital and the solution delivered by EFP under the parameterization in the column. The difference be-
tween the solutions is computed across 100 simulations. The time horizon is 7 = 400, and the terminal condition is constructed
by using the T-period stationary economy in all experiments.

1/3
9
3

—o— T-period stationary, v =
—<—T-period stationary, vy =
T-period stationary, v =
—4¢--0 terminal condition, v =
—<--0 terminal condition, v =
0 terminal condition, =

3

1
1
3

Maximum Error at 7=100

6.5 1 1 J

200 300 400 500
time horizon

FIGURE S2. Sensitivity analysis for the EFP method.
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