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Abstract

The goal of few-shot learning is to train a classifier for distinguishing images
from novel classes based on a limited amount of labeled examples. Many existing
studies on few-shot learning assume the within-domain setting, in which examples
from base and novel classes come from the same domain. A related but more
challenging problem is cross-domain few-shot learning, in which there is large
domain discrepancy between base and novel classes. In this work, we tackle
both problems by 1) fine-tuning the Prototypical Networks (ProtoNet) with a
pre-trained EfficientNet as the backbone, 2) applying multiple data augmentation
techniques, and 3) exploring various distance metrics and approximating prototypes
via Gaussian distributions. Experimental results demonstrate that our approach
achieves good performance on 5-way 5-shot learning tasks evaluated on CIFAR100
and minilmagenet.

1 Introduction

Training a neural network model usually requires a large amount of labeled data. However, collecting
labeled data in some categories or domains can be challenging. For example, it can be difficult to
collect a large number of medical image data for certain rare diseases Irvin et al. (2019). In addition,
labeling such data requires expertise and is expensive. The question arises: how can we build an
image classifier using a limited amount of labeled data?
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Figure 1: Our approach: We use transfer learning to pretrain weights from a relevant dataset as
initialization. We used minilmageNet and Omniglot best trained weights for within domain and cross
domain baseline. We use EfficentNet fy(z) for feature extraction followed by a Prototypical Network
to map a prototype per class using Gaussian approximation. The KL-distance is adopted between two
multivariate Gaussians.

This problem is described as meta-learning or few-shot learning. Most existing approaches to this
problem contain two steps: meta-training and meta-testing. In meta-training, a given dataset that has
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a base set of classes is divided into support sets and query sets. A model is fitted on the support set to
predict labels of examples in the query set. In meta-testing, a small number of training examples from
novel classes are provided by a support set, and the goal is to use both the support set in meta-testing
and the information extracted in the meta-training step to predict labels for examples contained in a
meta-testing query set, which comes from novel class-set as well.

Two main challenges are in the few-shot learning problem: within- and cross-domain. In the former
case, base and novel classes come from the same domain, but the specific types or classes in testing
don’t overlap with training examples. For example, both training and testing samples are hand-written
characters but are from different languages. In the latter scenario, there is a significant domain
shift between examples in base and novel classes. For example, natural images are given in the
meta-training time, but the meta-testing task is classifying medical images.

We tackle the few-shot learning problem by combining techniques from transfer learning, meta-
learning, Gaussian approximation, and data augmentation. Specifically, we use a EfficientNet Tan &
Le (2019) pre-trained on ImageNet Deng et al. (2009) as the backbone, and we fine-tune the model
weights to adapt to the domain of interest. The output of the EfficientNet is then passed to a linear
layer that learns a sample’s mean and variance. Such a structure can be considered as a variant of
Prototypical Network (ProtoNet) Snell et al. (2017). Each class is represented by a prototype (or
a prototype distribution), and a new image is assigned to the class whose prototype is the closest
to the image in the learned embedding space. In addition, we also study the performance gain of
applying a data augmentation technique called mixup Zhang et al. (2017), which linearly interpolates
between training examples to generate new examples with their interpolated labels. Such a mixed
augmentation can be alternatively interpreted as a form of “bootstrapping” because the limited
observed examples can yield more samples by linear interpolations. Our approach is conceptualized
in Figure 1. We test our method on both within- and cross-domain few-shot learning tasks.

Comparing with state-of-the-art experiments, we achieve good performance on a 5-way 5-shot
learning task based on CIFAR100, which gives about 63% accuracy. In general, our results are largely
comparable with those of the state-of-the-art methods on multiple datasets such as MNIST, Omniglot,
and minilmageNet. We find that mixup can help improve classification accuracy in a 10-way 5-shot
learning task on CIFAR 100. In addition, fine-tuning only major blocks, rather than all parameters,
within a pre-trained EfficientNet gives better performance.

2 Enhancing Few-shot Learning

Let a domain (X', )) be defined as the joint distribution of image space X" and label space ). Let
(z,y) note a labeled example, in which y is the label for x. In cross-domain few-shot learning, the
source domain (X5, )s) in meta-training is different from the target domain (X}, );) in meta-testing,
whereas in within-domain, the source and the target domains are the same. In meta-testing, a support
set, S = {x;,4: }2XN, is provided such that for each one of the N base classes, there are K labeled
examples. The goal is to train a classifier f that minimizes E, ) (x, y,) [¢(fo(z; S, (X5, Vs)), y)]
for a loss function ¢, where the expectation is evaluated using the query set in meta-testing.

Our approach has three main components: applying mixup for data augmentation Zhang et al. (2017),
fine-tuning a pretained EfficientNet Tan & Le (2019) for feature extraction, and using ProtoNet Snell
et al. (2017) with Gaussian approximation for metric space learning. These components are discussed
as follows.

Mixup for Data Augmentation. Data augmentation, especially in terms of more recent develop-
ments beyond flipping, cropping, and scaling, is an effective way to enhance data efficiency by both
increasing the amount and improving the diversity of data Perez & Wang (2017); Lemley et al. (2017);
Cubuk et al. (2019). In addition to standard data augmentation, we implement a technique called
mixup Zhang et al. (2017) that takes linear combinations of any two training examples and their
corresponding labels to generate new examples with labels. Specifically, a new training example
(Z,7) is generated according to & = Az; + (1 — A)z; and § = Ay; + (1 — A)y;, where (x;,v;)
and (z;,y;) are training examples, y; and y; are labels in one-hot encoding, and the distribution
of A € [0,1] is drawn from Beta(a, ) for o € (0, 00). We pick the value of o € {0.5,0.8,1,1.5}
when it yields the best performance.



Incorporating Meta-Transfer Learning. The core idea of meta-transfer learning (MTL) Sun et al.
(2019) is that networks trained on large datasets can learn to extract salient features such as blobs
and edges, which are universal across various image classes. We make use of the meta-transfer
learning by using the EfficientNet as our backbone. In the cross-domain setting, we substitute the
weights with the best pre-trained weights obtained from our own training. We also experiment various
configurations for fine-tuning the EfficientNet by freezing specific layers.

Exploring Distance Metrics. As the EfficientNet extracting the features embedding, we adopt a
linear layer v to yield mean and variance per sample, i.e. (u;, 0;) < ¥(f9(x;)). Then a prototype of
a class k is expressed as an average of its mean and variance,
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We adopt the KL distance Kullback & Leibler (1951) to measure the closeness between query samples
and prototypes because the KL has a closed form between two Gaussian distributions:
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where d is the dimension of the prototypes. We choose latent dimension d = 64 for the experiment to
align with the settings suggested in ProtoNet Snell et al. (2017). We also incorporate the euclidean
and cosine distance, as discussed in appendix A.2.

3 Experiments

3.1 Datasets

The datasets we used include MNIST LeCun et al. (1998), Omniglot Lake et al. (2015), CFIAR100
Krizhevsky et al. (2009), and minilmageNet Vinyals et al. (2016). In the context of meta-learning, we
partition each dataset such that there are no overlapping classes in the training and test sets.
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Figure 2: Sample images in a 5-way and 5-shot learning task based on CIFAR100. Rows correspond
to image categories, and columns show examples within categories.

MNIST consists of 28 x 28 grayscale (1 channel) images of handwritten digits O through 9. We
partition the digits O through 4 for training and digits 5 through 9 for testing. We also resize the
images to 32 x 32 to fit the EfficientNet.

Omniglot Lake et al. (2015) dataset is one of 1623 types of handwritten characters from 50 different
alphabets with 20 examples each. They are 28 x 28 gray-scale as well. In the training step,
preprocessing includes a random horizontal flip, a random rotation of 90 degree, a color jittering of
5% in brightness, contrast, hue, and saturation, and resizing to 32 x 32. In the testing step, we resize
images to 32 x 32.



CIFAR100 dataset has 32 x 32 x 3 RGB colored images, containing 100 classes. We partition 67
classes for training and 33 classes for testing. Within the training set we randomly select 34 classes
for the meta-train and remaining 33 classes for the meta-test (similar to the validation set in the setting
of supervised learning), which follows the data split convention in Guo et al. (2019). We provide
some examples in our training set from CIFAR100 in Figure 2.

minilmageNet is a subset (100 chosen classes) of ImageNet Deng et al. (2009) of images with 600
images per class. We use the partition of 64 classes for training, 16 for validation and 20 for testing,
which follows the training convention from Ravi & Larochelle (2016) and Satorras & Estrach (2018).
We show some examples in our training set from minilmageNet in Figure 3. The images within a
class are diverse in backgrounds and angles.

3.2 Results

We conducted experiments for few-shot learning under the within-domain setting (using CIFAR100,
Omniglot, and minilmageNet datasets) as well as the cross-domain setting (from Omniglot to MNIST).
In the cross-domain case, weights are fine-tuned to improve performance. The primary performance
metrics are test accuracies.

Pre-training: We used EfficientNet-bO with pre-trained weights on ImageNet as the backbone
architecture and cross-entropy loss to classify images. We used standard data augmentation mentioned
in Section 3.1 and mixup regularization Zhang et al. (2017) for the query set during training. For the
ImageNet data we resize and crop them down to 224 x 224 RGB images to leverage the EfficientNet.
The models were implemented in PyTorch Paszke et al. (2019).

Hyperparameters: We used the Adam Optimizer with weight decay of 10~%. The initial learning
was chosen to be 10~ for training involving CIFAR100 and ImangeNet datasets, and 5 x 10~* for
cross domain settings. In addition, the learning rate is decayed by 0.5 every 30 epochs. The batch size
was the same as the number of categories (i.e. number of ways) for all settings. All trainings were
done for at least 200 epochs. The hyperparameters were chosen to match those in state-of-the-art
studies Vinyals et al. (2016); Sun et al. (2019) for a meaningful comparison of results.

Table 1: Test accuracies of few-shot learning within domain (CIFAR100 and Om-
niglot). The distance metric used is Euclidean. We compare results of our approach on
different datasets, denoted as “dataset (Ours)” using standard and mixup data augmen-
tation techniques with the best results achieved in the literature. The accuracies are the
highest obtained amongst all episodes. The best results are in bold. (fResults are obtained
by reimplementation under the same settings.)

| Data Aug. | 5-way l-shot  5-way 5-shot  10-way 5-shot ~ 20-way 5-shot

MTL Sun et al. (2019) standard 43.6% 52.6% X X

TADAM Oreshkin et al. (2018) standard 40.1% 56.1% X X
CIFAR100 (Ours) - Euc. standard 42.3% 61.9% 48.6% 39.1%
CIFAR100 (Ours) - Euc. mixup 40.9% 60.5% 51.2% 37.9%

CIFAR100 (Ours) - KL standard 41.5% 61.0% 50.8% 38.6

Matching Net Vinyals et al. (2016) standard 98.1% 98.9% 90.3%" 98.5%
ProtoNet Snell et al. (2017) standard 97.4% 99% 92.6%" 97.2%
Omniglot (Ours) - Euc. standard 93.5% 97.8% 93.8% 93.1%
Omniglot (Ours) - Euc. mixup 91.8% 96.5% 94.3% 91.2%
Omniglot (Ours) - KL standard 94.8% 98.1% 94.5% 90.2%

Results for Within-Domain Few-Shot Learning. We compare results on three different datasets
with documented best performances in literature across various scenarios, shown in Table 1 on CIFAR
100 and Omniglot and in Table 2 on minilmageNet. Overall, our approach performed the best in
5-way 5-shot scenarios across datasets. In particular, our method with standard data augmentation is
almost 6% more accurate than TADAM Oreshkin et al. (2018).

On CIFAR100, our approach achieved the highest accuracy of 61.9% in 5-way 5-shot learning, better
than 56.1% as reported in TADAM Oreshkin et al. (2018). When the number of classes (N-way)
increases, we see the performance of our model reducing to 48.6% and 39.1% accuracy for 10-way
5-shot and 20-way 5-shot respectively. We believe that as the number of categories (or tasks) grows,
it naturally becomes more difficult for a model to classify images accurately and quickly (with limited



Table 2: Test accuracies of few-shot learning within domain. (The 5-way classification scenario
in minilmagenet)

| 1-shot  5-shot
Matching Net Vinyals et al. (2016) | 46.6%  60.0%

ProtoNet Snell et al. (2017) 49.4%  68.2%
MAML Finn et al. (2017) 487%  63.1%
TADAM Oreshkin et al. (2018) 585%  76.7%
MTL Sun et al. (2019) 60.2% 74.3%
minilmageNet (Ours) - Euc. 71.6% 87.2%
minilmageNet (Ours) - KL 72.9% 85.5%

observations). On the minilmageNet, our approach performs much better than existing studies both
on the settings of euclidean and KL distances.

Data augmentation using mixup did not decrease accuracies by more than 3%. But it improved
accuracies are on CIFAR100 in 10-way 5-shot scenario as well as on Omniglot in 10-way 5-shot
scenarios using the euclidean distance.

Results for Cross-Domain Few-Shot Learning. We studied the validity of our approach in cross
domain learning, from Omniglot to MNIST in 5-way 1-shot and 5-way 5-shot scenarios. Although
both datasets are images of handwritten objects, one is of characters and the other of digits. We find
that initializing the network with the best trained weights from Omniglot and a selective (majority) of
the blocks achieve around 10% performance improvements.

First, we obtain a baseline, shown as the MNIST baseline in Table 3, when training on digits 0-4
and testing on digits 5-9. We examine the effect of choosing different distance metrics. For 5-way
1-shot learning, cosine distance outperforms Euclidean distance marginally. We hypothesize this
is because that when used in ProtoNet, Euclidean distance is equivalent to a linear transformation
per class. Cosine distance does not have the effect, which allows it to perform better in fewer-shot
learning scenarios.

Second, we utilize the best-trained weights from Omniglot dataset in Section 3.2 to train on MNIST
dataset with different fine-tuning settings of the network blocks. The corresponding results are
presented in the following ablation study.

Ablation study: We perform an ablation study directing training on different layers selectively. In
particular, we focused on training only the final fully-connected (fc) layer, the last block (of sixteen
blocks of EfficientNet-b0), the last block and the fully-connected layer, all sixteen blocks, and all
layers ( Table 3). Retraining the later layers (fc and last block) did not yield better results than
the baseline. In fact, performances decreased. We hypothesize that this is because of the nature
of the cross domain problem that only a new classifier retrained at the last layer does not improve
performance. On the other hand, training all layers does not outperform (75.6% at its peak) retraining
a majority of the model, achieving 77.4%, which is almost 9% higher than the better baseline result
of 68.6%.

Table 3: Test accuracies of few-shot learning cross domain. Omniglot — MNIST. The experi-
ment is 5-way classification. We compare Euclidean and cosine distance metrics and show results of
different fine-tuning. The accuracies are the highest obtained amongst all episodes. The best results
are in bold.

| Distance | Fine-tune | 1-shot  5-shot

. Euc. X 483%  68.6%

MNIST Baseline | ¢ X 527%  64.23%
Euc. fc only 384%  54.9%

Euc. last block 47.6% 61.6%

Omniglot Weights Euc. last block + fc | 40.0%  56.7%
Euc. all blocks 629% 77.4%

Euc. all blocks + fc | 51.2% 75.6%




4 Conclusion

In this work, we set out to approach the problem of few-shot learning under both within- and cross-
domain settings. Our model has two major ingredients: 1) fine-tuning ProtoNets with a pre-trained
EfficientNet as the backbone and 2) applying a data augmentation technique called mixup. We test
our model on within-domain tasks based on CIFAR100, Omniglot, MNIST, and minilmageNet and on
a cross-domain task, which is transferring from Omniglot to MNIST. Our findings can be summarized
as follows: i) Our model attains state-of-the-art performance (~ 6% higher) on the 5-way 5-shot
learning task based on CIFAR100. ii) Mixup can help improve accuracy in some classification tasks
based on CIFAR100 (e.g. 10-way 5-shot setting). iii) The choice of distance metric plays a role in
different learning scenarios. iv) Finetuning only the major blocks gives better performance (~ 10%
more) than finetuning all parameters within a pre-trained EfficientNet. As for future work, it would
be fruitful to examine ways to improve performances of our method on these datasets in 10-way
5-shot and 20-way 5-shot scenarios.
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A Appendix

A.1 Related Work

Current literature for few-shot learning can largely be divided into three categories: 1) memory-based
methods that summarize information contained in training examples in external memory units, 2)
optimization-based methods that first learn baseline models and then take gradient steps to fine
tune the baseline models to fit novel categories, and 3) metric-based methods that learn embedding
functions so that images from the same novel class are close in some embedding space.

Memory-based methods (e.g Santoro et al. (2016)) typically use recurrent-based models to sequen-
tially process training images and summarize the contextual task information in an external memory
unit. Memory-based models are expressive, but they can be data-inefficient as it can be challenging
to summarize all useful information contained in the training set by a low dimensional vector.

Optimization-based methods are often regarded as “learning to learn”, as they learn general ini-
tialization such that a good classifier for a novel class can be obtained from taking a few gradient
steps from the initialization. MAML Finn et al. (2017, 2018) is a prominent example in this category.
While these methods achieve state-the-art performance and are robust to noise Finn et al. (2017), they
sometimes pose optimization challenges as these models often involve inner gradient steps.

Metric-based methods (e.g. ProtoNet Snell et al. (2017) and Matching Networks Vinyals et al.
(2016)) learn embedding functions such that examples from each class are close in the embedding
space according to some distance metric. The embedding function is usually represented by neural
networks, and the distance metric usually takes the form of Euclidean or cosine distance. These
methods are simple to train but can be limited in terms of model expressiveness.

We base our model on ProtoNet due to its simplicity and robustness. Different from Snell et al.
(2017), we use a pre-trained EfficientNet as the backbone for extracting features from images and
fine-tune its weights during the process. We also combine data augmentation techniques and different
distance metric with ProtoNet. In addition, we show the potential of cross-domain few shot learning
with our proposed adjustments.

A.2 Extending Prototypical Networks

ProtoNet uses a non-linear mapping fy: R” — R? to map an image into an embedding space, in
which a prototypical representation c;, € R? for a class k is calculated as

o= S folw, 3

S
| k| (zi,y:i) €Sk

where | S| is the set of examples labeled with class k. For a new example z, the probability of this
example belonging to class y = k is computed using the softmax function as

exp (—dist(fy(), ci))
—k|z) = : ,
poly =k | ) S exp (— dist(f5 (), cx))
where dist is a distance metric. When the Euclidean distance is used, that is

disteuciidean (fo(2), ) = || fola) — cil3- (5)

Notice there is an equivalent linear representation:

_ ~exp (w] fo(x) + br)
po(y=Fk|z) = S o (fu,j, ABET) (6)

where wy, = 2¢ and b, = —cchk. Because it optimize the prototype ci, we can ignore the
fo(x)T fo(x) in (5).
In addition to the Euclidean distance, we also consider a form of cosine distance defined as
disteosine (fo (i), fo(z;))
4 fo(wi) " fo(z)) 7
max{|[fo(z:)2 - || fo(x;)l]2, €}
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for small values of ¢ = 108 to avoid numerical issues.

The KL-divergence is a natural distance metric to use between distributions. We give a short derivation
of a general form of equation (2). Suppose there are two normal distribution: gy is N (111, 21) and go
is N'(u2, X2). We have

distkr (q1, g2) = KL(q1]|q2) = Eq, (log Z—;) ®)
1
= 3Eq [~ logdet(S2) — (= — ) 57 (2 — )

+logdet(S1) + (z — p1) 'S7 (2 — Nl)}

1 det(X9)
-l

©)

— d +Tr(E'e
dot(xy) =~ +Tr(X; %)
=Tr(I) (10)

+ (1 —p2) TS5 (- Mz)},
when the last equality holds as we replace the random variable z with the mean p; and (z — p1)(z —

p1) T with the covariance Y since it takes expectation of ¢;. For simplicity, we just consider the
diagonal covariance in our implementation.

When we take a closer look at the KL distance, i.e. distg (1& (fo(z)), N (u®), a(k))), the last

term of equation (10) can be interpreted as (p, — p®)) T (a(k)) _1(,uw — ¥ which is a form of
Mahalanobis distance De Maesschalck et al. (2000). If we only consider this part, the equation (4)
can be viewed as a Gaussian mixture model, i.e.

g — TN (®, o)
ply = klz) = S, T N (u), g®)Y’

where 7, and 7 are the prior probabilities of class k and k. It is a soft-membership classification
comparing with the hard-membership classification using the euclidean distance.

(1)

A.3 Examples from minilmagenet
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Figure 3: Sample images in a 5-way 5-shot learning task based on minilmageNet. Rows correspond
to image categories, and columns show examples within categories.
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