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1 Introduction

The motivation of our work is to implement simple sta-
tistical tools to detect the average treatment effects on
grouped users. Taking advantages of a large number of
users, companies, such as Microsoft Bing search, can roll
out experiments to test if a new feature plays an im-
portant role or not by monitoring a number of key met-
rics. Many studies call such experiments A/B tests [4].
Our work introduces two major decision approaches, i.e.
Bayes rule and Hypothesis testing, to support companies’
business analysis or product delivery decisions.

2 Problem & Methodology

Let the data point ‘sumX’ be Xi,j,k, where the first
subscription i = 0, 1 meaning that the control group is
0 and the treatment group is 1, the second subscription
j = 0, 1 meaning that the pre-experiment is 0 and
the post-experiment is 1, and the last subscription
is the data points index in the corresponding group,
specifically the k = 1, . . . , NC and l = 1, . . . , NT . We
summarize the denoted variables in Table 1.

Table 1: Collection of Variables

features pre-exper post-exper

sumX
ctrl X0,0,k X0,1,k

treat X1,0,l X1,1,l

sumY
ctrl Y0,0,k Y0,1,k

treat Y1,0,l Y1,1,l

PV
ctrl a0,0,k a0,1,k
treat a1,0,l a1,1,l

numDays
ctrl d0,0,k d0,1,k
treat d1,0,l d1,1,l

numV isits
ctrl v0,0,k v0,1,k
treat v1,0,l v1,1,l

For simplicity, we will illustrate the calculation of
‘sumX’ as an example. Denote the feature ‘sumX’ as x,
hence each observation is x(j) for j = 1 to NC +NT . Let
z1 be the binary variable indicating whether the sample
is from the control group or the treatment group, z2 be
the indicator variable to represent if the sample is from
pre-experiment or post-experiment. The feature ‘sumX’
can be expressed as

x(j) = β0 + β1z
(j)
1 + β2z

(j)
2 + β3z

(j)
1 z

(j)
2 + ε(j) (1)

where ε(j) is normal distributed as N (0, τ2), and
β0, β1, β2 and β3 are the corresponding coefficients.

To test whether there is a treatment effect or not,
we essentially want to check whether β3 is 0 or not.
For the control pre-experiment group the indicator
z1 = z2 = 0, thus E(X0,0,k) = β0. For the control
post-experiment group, the indicator z1 = 0, z2 = 1,
E(X0,1,k) = β0 + β2. Similarly, we can derive that
E(X1,0,l) = β0 + β1, E(X1,1,l) = β0 + β1 + β2 + β3. We
approximate the expected value by the corresponding
sample mean and drop the 3rd subscription k on Xi,j,k

to get the following relations

X0,0 = β0; X0,1 = β0 + β2; X1,0 = β0 + β1; (2)

X1,1 = β0 + β1 + β2 + β3 (3)

Thus we have

β3 = X1,1 −X0,1 −X1,0 +X0,0 (4)

= (X1,1 −X1,0)
︸ ︷︷ ︸

µx,1

− (X0,1 −X0,0)
︸ ︷︷ ︸

µx,0

. (5)

After we organize the data into groups, we can succinctly
denote the result of (X1,1 −X1,0) as µx,1, and (X0,1 −
X0,0) as µx,0, respectively. More extensively, we denote
the mean of the corresponding features as follows

features treatment control

sumX µx,1 µx,0

sumY µy,1 µy,0

PV µa,1 µa,0

numDays µd,1 µd,0

numVisits µv,1 µv,0

2.1 Bayes Approach

We will illustrate the calculation steps for feature ‘sumX’,
and the other features share a similar logic flow. With the
notation in [2], the pooled sample variance σ2 satisfied

the constraint that σ2

NE
=

σ2

C

NC
+

σ2

T

NT
, where 1

NE
= 1

NT
+

1
NC

. The ∆ = µx,1 − µx,0. With the notion that δ = ∆
σ
,

the Z statistic can be expressed as

Z =
δ

√

1/NE

=
∆

√

σ2/NE

∼ N (θx, 1) (6)

=⇒ µx,1 − µx,0 ∼ N (θx,
σ2

NE

) (7)

We set the standard hypothesis testing that H0 : θx =
0;H1 : θx 6= 0, whereH0 is the the null hypothesis andH1
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is the alternative. Let π0 be the probability that the null
hypothesis is true, namely P (H0) = P (θx = 0) = π0, and
α0 to be the posterior probability that null hypothesis is
true given the observed data, namely P (θx = 0|x) = α0.
We get the result that

α0 = P (H0|x) = P (θx = 0|x) (8)

=
f(x|θx = 0)π0

f(x|θx = 0)π0 + f(x|θx 6= 0)(1− π0)
(9)

=

(

1 +
1− π0

π0

m1(x)

f(x|θx = 0)

)−1

, (10)

where m1(x) is the marginal density. It also can be
considered as the posterior distribution of θx.

In our experiment, we pick π0 = 0.9, f(x|θx =
0) ∼ N (0, σ2/NE), and m1(x) ∼ N (0, V 2) where V 2 can
be calculated as total sample variance. The rational of
picking 0.9 as the prior probability is due to the belief
that in many cases the metric/feature won’t be changed
significantly from pre-experiment to post-experiment.
According to equation (10), the α0 can be calculated
numerically.

The Bayes’s rule is to minimize the expected loss
E
π(θ|x)

(
L(θ, λ)

)
, where λ is the action. Define λi to be

accepting hypothesis Hi, and the loss function is

L(θ, λi) =

{

0 if Hi is true

ζi if Hi is false
. (11)

The expected loss of taking action λ0, namely accepting
H0, is calculated

E
π(θ|x)

(
L(θ, λ0)

)
=

∫

θ

L(θ, λ0)π(θ|x)dθ (12)

=

∫

H1

ζ0π(θ|x)dθ = ζ0P (H1|x) (13)

Similarly the expected loss for acceptingH1 is ζ1P (H0|x).
Thus the rule of accepting the null hypothesis is to check
if the E

π(θ|x)
(
L(θ, λ0)

)
is minimum, i.e. equivalently,

P (H0|x) >
ζ0
ζ1
P (H1|x) =⇒ α0 >

ζ0
ζ1

α1 (14)

Where α1 is the posterior probability of an alternative
hypothesis, namely P (θx 6= 0|x) = α1. The penalty value
of ζ0 and ζ1 can be varied by specific features. For sim-
plicity we just set ζ0 = 10 and ζ1 = 1, which means
delivering an insignificant feature will be punished less
than delivering a significant feature.
Similar analysis can be applied to other features, we write
the following expressions to illustrate this idea.

µy,1 − µy,0 ∼ N (θy, σ
2
y/NE) (15)

µa,1 − µa,0 ∼ N (θa, σ
2
a/NE) (16)

µd,1 − µd,0 ∼ N (θd, σ
2
d/NE) (17)

µv,1 − µv,0 ∼ N (θv, σ
2
v/NE) (18)

Hence we can follow the aforementioned approach to get
the variance. Then we use equation (10) to get α0 and
α1 = 1− α0. Finally we reuse the predefined penalty ζ0
and ζ1 to accept (or reject) the hypotheses.

2.2 Frequentist Approach

We adopted the simple t-test for all the features. To
begin with, we tested the treatment effect of ‘sumX’ both
in the control and the treatment group. Following the
above notation, we have the following relations

(
(X1,1 −X1,0)− (X0,1 −X0,0)

)
− (µx,1 − µx,0)

√

S2
x,1/NT + S2

x,0/NC

(19)

∼ tNC+NT−2 (20)

The numerator of equation (19) shares the same format
as equation (5), and the S2

x,1 and S2
x,0 are the sample

variances of (X1,1,l − X1,0,l) and (X0,1,k − X0,0,k)
respectively. We ran the t-test and found that the
95% confidence interval is [−0.02576, 0.01133]. And the
corresponding p-value is 0.4455. In fact we make the
boxplot to show the experiment effect is close to 0 in
Figure 1. Therefore we accept the null hypothesis, i.e.
θx = 0, and there is no significant difference in feature
‘sumX’ between pre- and post-experiment.

−
5
0

0
5
0

treat ctrl

Figure 1: Comparison of experiment’s effects on the con-
trol and the treatment groups on feature ‘sumX’. The
white dot in the middle is the mean that is close to zero

The same procedures were also applied to other fea-
tures. We apply the Benjamini-Hochberg procedure

to conduct test on multiple hypotheses [1] and present the
results in the following section.

3 Experiment Results

3.1 Bayes Approach Result

Table 2 depicts the Bayes approach result. In the calcu-
lation we chose π0 = 0.9 because we believe that many
features won’t change significantly after the expreiment.
Also the marginal distribution standard deviation V was
calculated according to the majority of the group sam-
ples. Here majority means we trim-off the lower 1% and
upper 99% quantile samples treated as outliers. All fea-
tures satisfy the condition such that α0 > ζ0

ζ1
α1. Thus we

accept the null hypotheses that there are no significant
changes on those 5 features from pre- to post-experiment.
Therefore we should not deploy the new changes.
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However, if we tune the prior π0 = 0.55, which means we
still believe that there will be some change in features.
The corresponding results are more or less similar, ex-
cept we reject the null hypothesis for feature sumY, since
α0 < ζ0

ζ1
α1 according to the bolded number in Table 3.

Different prior will yield different decisions according to
our previous settings. These decisions also related to the
loss function value, namely ζ0 and ζ1 in our case. In
fact we plot out the box-plot (Figure 3 in the appendix)
for the feature sumY and find that there is a heavy tail
located in the positive part (above value 2000) for the
treatment group. This may imply that there could be a
treatment effect for feature sumY.

Table 2: Posterior probability results, π0 = 0.9

feature α0 = P (H0|x) α1 = P (H1|x)
ζ0
ζ1
α1

sumX 0.997731 0.002269 0.022686
sumY 0.972921 0.027079 0.270793
PV 0.987139 0.012861 0.128614
NumDays 0.999399 0.000601 0.006010
NumVisits 0.998853 0.001147 0.011466

Table 3: Posterior probability results, π0 = 0.55

feature α0 = P (H0|x) α1 = P (H1|x)
ζ0
ζ1
α1

sumX 0.983533 0.016467 0.164673
sumY 0.82991∗ 0.17009 1.70091∗

sumPV 0.912458 0.087542 0.875417
NumDays 0.995591 0.004409 0.044087
NumVisits 0.991618 0.008382 0.083820

3.2 Frequentist Approach Result

Table 4 shows the results of standard t-test for the 5
features. Because of the high p-value, we cannot reject
any hypothesis. We also use the Benjamini-Hochberg
procedure to decide whether to accept or reject these
multiple hypotheses. After sorting the p-values of the
associated hypotheses, we present Table 5, where θ is
the mean of difference between the treatment group and
the control group of the experiment. For example, θx =
E(µx,1 − µx,0). In this experiment, given α = 0.05, we
find the maximum index k such that

p(k) ≤
kα

m · c(m)
(21)

where m = 5 is the total number of hypotheses, and
c(m) = 1 due to the independent or positive regression
dependent assumption. It turns out that all hypotheses
are accepted, and the false discovery rate (FDR) is less
than or equal to α = 0.05.

Additionally, we would like to investigate the vari-
ance reduction technique, namely the Control Variate,
to help improve the hypotheses testing [3]. Here we
analyze the feature ‘sumX’ as an example. Following the
previous notation, let X1,0,l and X1,1,l be the ‘sumX’

Table 4: Regular t-test results

feature p-value 95% CI

sumX 0.4455351 (-0.02576341, 0.01132676)
sumY 0.7381790 (-0.15781821, 0.11183053)
PV 0.7131157 (-0.11338964, 0.07756754)
numDays 0.6868866 (-0.00551990, 0.00837815)
numVisits 0.9683994 (-0.01954911, 0.02035569)

Table 5: Ordered hypotheses by p-value

feature index H0 p-value

sumX H(1) θx = 0 0.4455351
numDays H(2) θd = 0 0.6868866
PV H(3) θa = 0 0.7131157
sumY H(4) θy = 0 0.7381790
numVisits H(5) θv = 0 0.9683994

metric before the experiment and after the experiment.
Let new sample U1,l and U0,k be

U1,l = X1,1,l −X1,0,l (22)

U0,k = X0,1,k −X0,0,k (23)

Now we introduce the new samples V1,l and V0,k such
that

V1,l = U1,l − b(X1,0,l − E(X1,0,l)) (24)

V0,k = U0,k − b(X0,0,k − E(X0,0,k)) (25)

since we assume that the treatment effect for the treat-
ment sample U1,l has some correlation with the pre-
experiment sample X1,0,l. Similarly we assume there is
correlation between U0,l and X0,0,l as well. To express
this in the variable notation, we drop the subscription
l, k. The effect U1 − U0 is closely related to V 1 − V 0 as

E(V 1 − V 0) = (26)

E

(

U1 − b(X1,0 − E(X1,0))− U0 − b(X0,0 − E(X0,0))
)

(27)

= E(U1 − U0) = E

(

(X1,1 −X1,0)− (X0,1 −X0,0)
)

(28)

Notice that we can simulate b by leveraging the following
equation

b =
Cov(Ui, Xi,0)

Var (Xi,0)
, (29)

where the b calculated from the treatment group when
i = 1, and b obtained from the control group when i = 0.
b can be different for the treatment and the control group.
But in our implementation, we assume the correlation
effects are similar. Hence we use Monte Carlo method
to approximate the b value and use it consistently. By
utilizing this attribute, we use the following test statistic:

Z =
V 1 − V 0

√

Var(V 1) + Var(V 0)
∼ N (0, 1) (30)
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In practice, the Var(V 0) and Var(V 1) are replaced by
the sample variance. Thus the normal approximation is
adopted to check the null hypothesis. We apply the same
logic to other features and display the 95% confidence in-
terval for both the non-control variate and control vari-
ate cases in Figure 2. The control variate approach has
lower variance and yields narrower confidence intervals
than the non-control variance case.

−0.1

0.0

0.1

sumX sumY PV numDays numVisits
Features

9
5

 %
 C

I 

Type

CV

Non−CV

Figure 2: 95% CI of null hypotheses for multiple features
in both Non-Control variate and Control variate cases

Again from the result in Table 6, we can not reject any
null hypothesis because the 95% confidence interval cov-
ers 0.

Table 6: Control variate test result

feature p-value 95% CI

sumX 0.4454621 (-0.020337646 0.005895250)
sumY 0.7382217 (-0.118260478 0.072305642)
PV 0.7124793 (-0.085504124 0.049582867)
numDays 0.6867551 (-0.003483039 0.006341825)
numVisits 0.9691224 (-0.013719994 0.014508427)

4 Conclusion & Discussion

We examine the experiment (treatment) effects of Bing
search users based on typical features, e.g. total clicks
(sumX), total browsing time (sumY), etc., through
two approaches: Bayes rule and frequentist rule. Each
approach has its own advantages and disadvantages.
The Bayes approach compares both the posterior
probability of null hypothesis, i.e. α0, and the posterior
probability of alternative hypothesis, i.e. α1, given
the associated loss ζ0 and ζ1. It attempts to minimize
the expected loss for all the possible actions, in this
case accept or reject the hypothesis. In our setting of
the 0-constant loss function, the decision rule doesn’t
only depend on α0, but also on α1, ζ1 and ζ2. The
subtlety argument is that when we calculate the pos-
terior probability, the certain parameters have to be
considered as known. In our implementation, the prior
π0 and the marginal density variance V 2 are treated as
given. When we calculate the posterior probabilities
for corresponding hypotheses, the decision could be

varied by the different loss functions, which can be re-
lated to how people perceive the penalty of each decision.

The frequentist rule carries the attribute of easy-
calculation. Essentially it computes the α0 and the
associated p-value. The reason supports this approach
is based on Law of Large Number and Central Limit

Theorem. It doesn’t necessarily take into account
the loss function. But it provides a very generic
framework to test hypotheses. The concept of false
discovery rate has been adopted to make the decision
on multiple hypotheses much quicker by incorporating
the Benjamini-Hochberg procedure. We also use the
control variate technique to improve the variance of
the test statistics, which yields a narrower confidence
interval than the approach of the regular frequentist test.

More extensively, if the sample size is small, we
prefer the Bayes rule approach to support our decisions.
If the sample size is large, for instance, having over tens
of thousands samples, then we adopt the hypothesis test-
ing approach. There is an alternative way to detect the
treatment effect as well, which is running a simple linear
regression to check whether the coefficient, particularly
β3 in our case, equals to 0. The zero coefficient means
no treatment effect. Then we can run the hypothesis
testing for H0 : β3 = 0 to either accept or reject the null
hypothesis. We will explore this approach in the future.
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5 Appendix

5.1 Plots

We attach more plots to compare the treatment effect
with the details.
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5.2 Code

if (!require(data.table)) install.packages(’data.table’)

library(data.table)

library(ggplot2)

pwd = "../.." # set your working dir

# setwd("File location")

setwd(pwd)

load(paste(pwd,"data.RData", sep=""))

# dataset:

# each row is a record of a user’s Bing usage before or after the experiment

# group is treatment assignment. 1: treatment, 0: control. Randomization is on userID

# IsPreExperiment indicates whether the page view is in AA period or AB period

rounding_err = 0.0000001

data_control_preEx = with(userLevel, userLevel[( Group > 0 - rounding_err & Group < 0 + rounding_err ) &

(IsPreExperiment > 1 - rounding_err & IsPreExperiment < 1 + rounding_err ) , ]) # data(0, 0, n)

data_control_postEx = with(userLevel, userLevel[( Group > 0 - rounding_err & Group < 0 + rounding_err ) &

(IsPreExperiment > 0 - rounding_err & IsPreExperiment < 0 + rounding_err ) , ]) # data(0, 1, n)

data_treat_preEx = with(userLevel, userLevel[( Group > 1 - rounding_err & Group < 1 + rounding_err ) &

(IsPreExperiment > 1 - rounding_err & IsPreExperiment < 1 + rounding_err ) , ]) # data(1, 0, n)

data_treat_postEx = with(userLevel, userLevel[( Group > 1 - rounding_err & Group < 1 + rounding_err ) &

(IsPreExperiment > 0 - rounding_err & IsPreExperiment < 1 + rounding_err ) , ]) # data(1, 1, n)

feature_sumX_ctrl_pre = data_control_preEx$sumX

feature_sumX_ctrl_post = data_control_postEx$sumX

feature_sumX_treat_pre = data_treat_preEx$sumX

feature_sumX_treat_post = data_treat_postEx$sumX

#’ @description

calculateAlpha = function( treat, ctrl, pi_0, V, desc=NULL ){

#’ @since

#’

# fig = vioplot( treat, ctrl, names = c("treat", "ctrl"), col = "blue") #+ title(xlab=desc, cex.lab=1.3)

sigma_C_sq = var(treat)

N_C = length(treat)
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sigma_T_sq = var(ctrl)

N_T = length(ctrl)

N_E = 1/(1/N_C + 1/N_T )

sigma_sq = (sigma_C_sq / N_C + sigma_T_sq / N_T) * N_E

X_1 = treat

X_0 = ctrl

m_X_over_f_X = sigma_sq/(V*sqrt(N_E)) * exp(-((mean(X_1) - mean(X_0) )^2) * (1/2) * ( 1/(V^2) - 1/(sigma_sq/N_E) ) )

alpha_0 = (1 + (1-pi_0)/pi_0 * m_X_over_f_X)^(-1)

alpha_1 = 1 - alpha_0

#’ @note

#’ PNT = Probability of Null hypothesis is True

#’ PNF = Probability of Null hypothesis is False

return(list(PNT=alpha_0, PNF=alpha_1 ))

}

#’ @description This function takes out the lower and upper

#’ quantile to extract the middle distribution mass

trim_outlier = function(x, q_low, q_up) {

new_x = x[ x < quantile(x, q_up)]

new_x = new_x[new_x > quantile(x, q_low)]

return(new_x)

}

# V_x = sd(c(feature_sumX_treat_post - feature_sumX_treat_pre, feature_sumX_ctrl_post- feature_sumX_ctrl_pre))

pi_0 = 0.55 # 1 - p, a prior belief

V_x_slim = sd(trim_outlier(feature_sumX_ctrl_post-feature_sumX_ctrl_pre, 0.01, 0.99 ))

res_X = calculateAlpha(treat = (feature_sumX_treat_post - feature_sumX_treat_pre),

ctrl = (feature_sumX_ctrl_post - feature_sumX_ctrl_pre ),

pi_0 = pi_0 ,

# V=sd(feature_sumX_ctrl_post- feature_sumX_ctrl_pre),

V=V_x_slim,

desc = "sumX" )

# V_y = sd(c( data_treat_postEx$sumY - data_treat_preEx$sumY , data_control_postEx$sumY - data_control_preEx$sumY ))

V_y_slim = sd(trim_outlier(data_control_postEx$sumY - data_control_preEx$sumY, 0.01, 0.99 ))
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res_Y = calculateAlpha(treat = (data_treat_postEx$sumY - data_treat_preEx$sumY),

ctrl = (data_control_postEx$sumY - data_control_preEx$sumY),

pi_0 = pi_0,

# V= sd(data_control_postEx$sumY - data_control_preEx$sumY),

V=V_y_slim,

desc = "sumY")

V_pv = sd(c(data_treat_postEx$PV - data_treat_preEx$PV , data_control_postEx$PV - data_control_preEx$PV ))

V_pv_slim = sd(trim_outlier(data_control_postEx$PV - data_control_preEx$PV, 0.01, 0.99 ))

res_PV = calculateAlpha(treat = (data_treat_postEx$PV - data_treat_preEx$PV ),

ctrl = (data_control_postEx$PV - data_control_preEx$PV),

pi_0 = pi_0,

# V=sd(data_control_postEx$PV - data_control_preEx$PV),

V=V_pv_slim,

desc = "PV")

# V_numDays = sd(c(data_treat_postEx$numDays - data_treat_preEx$numDays , data_control_postEx$numDays - data_control_preEx$numDays ))

V_numDays_slim = sd(trim_outlier(data_control_postEx$numDays - data_control_preEx$numDays, 0.01, 0.99 ))

res_numDays = calculateAlpha(treat = (data_treat_postEx$numDays - data_treat_preEx$numDays ) ,

ctrl = (data_control_postEx$numDays - data_control_preEx$numDays),

pi_0 = pi_0 ,

# V= sd(data_control_postEx$numDays - data_control_preEx$numDays) ,

V = V_numDays_slim,

desc = "numDays")

# V_numVisit = sd(c(data_treat_postEx$numVisits - data_treat_preEx$numVisits , data_control_postEx$numVisits - data_control_preEx$numVisits ))

V_numVisit_slim = sd(trim_outlier(data_control_postEx$numVisits - data_control_preEx$numVisits, 0.01, 0.99 ))

res_numVisit = calculateAlpha(treat = (data_treat_postEx$numVisits - data_treat_preEx$numVisits ) ,

ctrl = (data_control_postEx$numDays - data_control_preEx$numDays ) ,

pi_0 = pi_0,

# V= sd(data_control_postEx$numVisits - data_control_preEx$numVisits) ,

V= V_numVisit_slim,

desc = "numVisits")

#’ @description displaying k-th decimal
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formatted = function(x, k){

return(format(round(x, k), nsmall=k))

}

print("========== Bayes =============")

print(paste( "X: alpha_0 =", formatted(res_X$PNT, 6), "alpha_1 =", formatted( res_X$PNF, 6 )) )

print(paste( "Y: alpha_0 =", formatted(res_Y$PNT, 6), "alpha_1 =", formatted(res_Y$PNF, 6) ))

print(paste( "PV: alpha_0 =", formatted(res_PV$PNT, 6), "alpha_1 =", formatted(res_PV$PNF, 6)))

print(paste( "NumDays: alpha_0 =", formatted(res_numDays$PNT, 6), "alpha_1 =", formatted(res_numDays$PNF,6)))

print(paste( "NumVisits: alpha_0 =", formatted(res_numVisit$PNT, 6), "alpha_1 =", formatted(res_numVisit$PNF,6 )))

zeta_0 = 10 # K_0 panelty for H_0 is false

zeta_1 = 1 # K_1 panelty for H_1 is false (\mu \neq 0 is false )

#’ @description feature collection

feature_col = rbind(res_X, res_Y, res_PV, res_numDays, res_numVisit)

for ( i in 1:(dim(feature_col)[1]) ){

cat_sign = " = "

decision = ""

res = feature_col[i, ]

if (res$PNT > ( (zeta_0/zeta_1)* res$PNF) ){

cat_sign = " > "

decision = " accept H_0"

}else if ( res$PNT < ((zeta_0/zeta_1)*res$PNF) ) {

cat_sign = " < "

decision = " reject H_0"

}

print(paste( formatted(res$PNT, 6), cat_sign, formatted( (zeta_0/zeta_1)*res$PNF, 6 ), ",", decision , sep="" ))

}

#’ @end of the Bayes Rule

#’ ====================================

#’ @description Frequentist Approach

#’ ====================================

feat_name = c("sumX", "sumY", "PV", "numDays", "numVisits")

res_col = NULL

for (i in 1:length(feat_name)) {

X = (data_treat_postEx[[feat_name[i]]] - data_treat_preEx[[feat_name[i]]]) - ( data_control_postEx[[feat_name[i]]] - data_control_preEx[[feat_name[i]
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res = t.test(X, mu=0)

tmp = data.frame( f_name = feat_name[i], p_val = res$p.value, conf_int_low = res$conf.int[1], conf_int_up = res$conf.int[2], estimate = mean(X) )

if (is.null(res_col)){

res_col = tmp

}else {

res_col = rbind(res_col, tmp)

}

}

print("========== Freqentist =============")

print(res_col)

#’ @note start Benjamini-Hochberg procedure

print("========== Benjamini ===========")

ordered_pVal_DF = res_col[order(res_col$p_val),]

alph_multi = 0.05

for (j in length(feat_name):1){

if (ordered_pVal_DF[j,2] > (j*alph_multi/length(feat_name) ) ){

print( paste("accept H_(", j, ");", sep = "" ) )

}else if (ordered_pVal_DF[j,2] <= (j*alph_multi/length(feat_name) ) ) {

print( paste(" reject H_(",j,");" , sep = "" ))

print( paste("reject all rest H(k), where k < ", j, ";", sep="" ))

break

}

}

print("========= Control Variate ============")

res_cv_col = NULL

for (i in 1:5){

n_pre = length(data_control_preEx[[feat_name[i]]])

n_post = length(data_control_postEx[[feat_name[i]]])

N = min(n_pre, n_post)

u_1 = data_treat_postEx[[feat_name[i]]] - data_treat_preEx[[feat_name[i]]]

u_0 = data_control_postEx[[feat_name[i]]] - data_control_preEx[[feat_name[i]]]

b1_sim = NULL

b0_sim = NULL

for (t in 1:10){
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trimmed_u_1 = sample(u_1, size = N/5)

trimmed_x_1 = sample(data_treat_preEx[[feat_name[i]]], N/5)

b1_temp = cov(trimmed_u_1, trimmed_x_1 )/ var(trimmed_x_1)

b1_sim = c(b1_sim, b1_temp )

trimmed_u_0 = sample(u_0, size = N/3)

trimmed_x_0 = sample(data_control_preEx[[feat_name[i]]], N/3)

b0_temp = cov(trimmed_u_0, trimmed_x_0 )/ var(trimmed_x_0)

b0_sim = c(b0_sim, b0_temp )

}

# b1 = mean(b1_sim)

b0 = mean(b0_sim)

# b0 = b1

b1 = b0

# b

v_1 = u_1 - b1*data_treat_preEx[[feat_name[i]]]

v_0 = u_0 - b0*data_control_preEx[[feat_name[i]]]

V = v_1-v_0

# var(v1)/length(v_1) + var(v_0)/length(v_0)

res_cv = t.test(V, mu=0) # result of control variate

cv1_sd = sd(V)/sqrt(2*length(V))

cv1_mu = mean(V)

tmp_cv = data.frame( f_name = feat_name[i],

p_val = res_cv$p.value,

conf_int_low = cv1_mu - qnorm(0.975)*cv1_sd ,

conf_int_up = cv1_mu + qnorm(0.975)*cv1_sd , estimate=cv1_mu)

if (is.null(res_cv_col)){

res_cv_col = tmp_cv

}else {

res_cv_col = rbind(res_cv_col, tmp_cv)

}

}

print(res_cv_col)

res_cv_col$Type = rep("CV", 5)

res_col$Type = rep("Non-CV", 5)

# res_col$estimate = rep(0, 5)
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combine_res = rbind(res_col, res_cv_col)

# combine_res$estimate = rep(0 , 10) # expected value are 0

dodge <- position_dodge(width=0.55)

fig2 = ggplot(data=combine_res, aes(f_name, estimate, colour=Type )) +

geom_crossbar(aes(ymin = conf_int_low, ymax = conf_int_up), width=0.53, position = dodge ) +

ylab("95 % CI ") + xlab("Features") +

theme_bw() +

theme(axis.text.y=element_text(size=16),

axis.text.x=element_text(size=14),

strip.text.x =element_text(size=16),

axis.title.y = element_text(size=16),

axis.title.x = element_text(size=16))

print(fig2)
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