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ABSTRACT

Future climate change is expected to increase the frequency and severity of natural disasters, posing new challenges
for emergency management. For some disasters, a crucial component of rapid response efforts is the accurate as-
sessment of building damage. To tackle this challenge, we use satellite imagery to develop a learning process that
automates the building localization and damage classification. As the first step of building segmentation, we perform
comprehensive experiments by modifying several state-of-the-art deep learning models. We also propose a new pro-
cedure to effectively classify building damage. In a number of test scenarios from different disasters, our approach
can match or even outperform existing methods in both segmentation and classification tasks. Such promising re-
sults suggest that this approach could have broad-ranging applications in disaster response, vulnerability analysis,
and insurance markets.
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1. Introduction

Natural disasters such as hurricanes, wildfires, flooding or landslides have become more frequent and severe due
to the effects of climate change[1]. One consequence of such disasters is that built structures can be dramatically
damaged after such events[2—4]. Allocating resources and reconstructing buildings is typical disaster responses
that require fast and accurate assessment of affected areas. Traditional response strategies rely on building sensors
detecting vibrations [5, 6] and in-field surveys[4], which are either prohibitively expensive to deploy at large scales
or overly time-consuming for processing accurate information. However, with the increased availability of satellite
imagery, the task of understanding building damage can be performed in a remote and automated fashion using
state-of-the-art computer vision approaches[2, 7-9].

In this paper, we automate the process using satellite imagery to identify the locations of damaged buildings as
well as to classify the damage severeness. We show that modern deep learning models can perform well, even
for disasters that are newly introduced to our model. In the context of building segmentation in disaster relief and
humanitarian assistance, prior work commonly focuses on a single type of disaster[10, 11] or on using customized
models with a limited transferable ability to scale up[12, 13]. In contrast, our approach makes use of high reso-
lution images at a relatively large scale, incorporating various disasters and standard deep learning architectures
(Section 2.1) to streamline the building segmentation process. We carefully design and calibrate the loss function
so that our model yields high performance on precision and recall of the building segmentation (Section 3.1). Af-
ter segmenting out the buildings, we jointly classify the building damage using components of our segmentation
model joined with another deep neural network (Section 2.2). We find our classification module can achieve, and
in cases exceed, state-of-the-art performance. For example, our method has an F1 score (defined in Section 5) of
0.63 on average cases; our model outperforms models in existing studies by almost three fold. We finally apply our
model on a new, out-of-sample disaster (Section 3.2) and show that it can detect building damage accurately with
the F1 score of 0.54 that exceeds the performance of the baseline by two times[2]. These results demonstrate that
automated building assessment via satellite image is a promising approach that can be adopted in many applica-
tions post-disaster, such as assisting emergency managers in allocating resources or improving the insurance claim
process.

2. Methodology

We decouple our approach into two main tasks: image segmentation and damage classification. To predict an accu-
rate building mask, we evaluate three deep learning models with four popular encoders. After identifying building
locations, we propose a new learning pipeline to accurately classify the damage of buildings.
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Figure 1. Building localization tasks

Dataset and Setup. We use xBD[2], a newly released open-source dataset that was collected for the building seg-
mentation and damage classification tasks. The dataset consists of 5598 images with 1024 x 1024 x 3 (red, green,
and blue channels) resolution spanning across 11 natural disasters, including hurricanes, wildfires, floods, earth-
quakes, and tsunamis (Tierl items in Table 1 in [2])'. To obtain the ground truth segmentation masks, we use a
script[14] to extract the labeled polygons from files and convert them into gray-scale images. We split the dataset
of images and labels into training, validation, and testing (holdout) sets at a 80/10/10% ratio. For the classification
tasks, we carefully extract buildings according to the labeled polygons in post-disaster images and align them with
categorical labels scaled from O to 3 as suggested in [2], which yielded 162787 images. Given the post-disaster
images, we follow the same 80/10/10% split ratio of training, validation, and testing sets. In our training, the Adam
optimizer[15, 16] with weight decay of 0.0005, learning rate of 0.0002, B; of 0.9, and B, of 0.999 is used in both
segmentation and classification models.

2.1. Building Segmentation

To successfully segment buildings, our first challenge is to identify an appropriate model to use in the context of
building localization in disasters. Previous work proposed specialized neural networks[10, 12] to detect infras-
tructure in specific types of disasters. Intuitively, different disasters may have substantially different landscape
attributes because of their unique context (e.g., hurricane Harvey in Huston, Texas versus wildfires in Santa Rosa,
California). We therefore seek a unified architecture that can perform well across various disaster types and contexts.

We tackle these questions by exploring a number of deep architectures that perform well in image classification and
segmentation. We compare three deep model architectures: Unet[17], FPN[18], and PAN[19], all of which to our
best knowledge perform well in image segmentation in many applications[10, 20, 21]. To make a fair comparison,
we search across four state-of-the-art encoding models (resnet50[22], vggl16_bn[23], se_resnext50_32x4d[24, 25],
and densenet121[26]) because these models are widely adopted in the context of classification problems. As shown
in Figure 1, we see the images have varied building densities in different locations. To allow the model to zoom into
local areas, we randomly crop the raw images down to 512 x 512 x 3. To alleviate the impact of imbalanced pixel
distribution (i.e., much fewer positive pixels indicating buildings are located in the images compared with those
pixels indicating non-buildings), we evaluate several loss functions (in section 2.1.1) and pick the best one in terms
of F1 score. We found that the combo loss performs best among all the options.

2.1.1. Segmentation loss functions

Given that the ground truth building mask Y is Bernoulli distributed such that P(Y = 1) = pand P(Y =0) = 1 — p,
we have the predicted mask P(Y = 1) = p and P(Y =0) = 1 — p, where p and p are the true and predicted probability
that a pixel indicates a part of a building. We align p with p by minimizing the following loss functions.

Weighted CrossEntropy Loss (WCE). The CrossEntropy loss is defined as {cg = —plog p— (1 — p)log(1 — p).
Because the imbalance pixel distributions of building vs. non-building. We use the weighted CrossEntropy loss,

!'The xBD has 22,068 images in total. We use a subset which are well annotated by domain experts.



that is lywcg = —(y1plog p+ (1 — p)log(1 — p)), where ¥ and y; are positive numbers. In our training, we set
1 = 0.8 and 9 = 0.2 because positive probability indicating buildings is more important in segmentation.

Focal Loss (Focal)[27]. Focal loss is expressed as {pocq = —(t(1 — p)¥plogp+ (1 — o) p¥(1 — p)log(1 — p)),
where « and 7y are hyperparameters. Focal loss generalizes the WCE because when y = 0, it is equivalent to WCE
when a certain prescribed o.. We use & = 0.5 and ¥ = 2 during the training.

Dice Loss[28]. In the case of binary classification of masks, the dice loss can be described as 1 — ;_’i’;ii, where
€ =1 is the hyperparameter.

. . . o pp+E
Tversky Loss[29]. Tversky loss, a variant of Dice loss[28], is {7yerky = 1 — PR+ (1—BIp (=)’ where

B = 0.8 is the weighting hyperparameter and € = 0.05 ensures the loss stability in our experiments.
Combinations Loss (Combo). We also evaluate the loss combination of Dice and Focal, i.e., £compo = U1€Dice +
W lrocar, Where [ and L are positive hyper-parameters. We test multiple combinations and find gy = 1, g, = 10
yields the best performance.

2.1.2. Data augmentation and prepossessing

We apply random rotation up to 45 degrees and horizontal flips on both input images and label masks. We also add
small Gaussian noise with 0 mean and 0.01 standard deviation on each pixel. Random brightness contrast and blur
are incorporated with 0.5 probability. We also use the encoders pre-trained on ImageNet[30] as the initial point. We
present the detail results in Table 1 in section 3.

2.2. Damage Classification

To classify the extent of damage of the buildings, we design a novel training pipeline. Specifically, we crop out
the buildings in post-disaster images and resize them to 128 x 128 x 3 since many standard neural networks accept
these input dimensions. The cropping region depends on whether the predicted mask contains a building or not. (We
crop the image even through only few pixels represent buildings). We also use the cropped images according to the
ground-truth mask to feed the model. With these down-sized input images, we leverage both the Unet’s encoder
that learned the weights from the segmentation task and the ResNet18 that is pre-trained on ImageNet[30] to jointly
extracting image features. After concatenating the features yielded from two networks, we append a fully-connected
layer with the softmax operation to output a one-hot encoded vector where each element represents the probability
of an ordinal class. Figure 2a shows our approach of classifying the building damage.

3. Experimental Results
3.1. Localization and Classification

We evaluate segmentation models through several metrics such as precision, recall, F1 score, and Intersection over
Union (IoU). The F1 score is the harmonic mean of precision and recall. The results of building localization are
presented in Table 1 using Combo loss because it outperforms other loss functions.
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(a) Schematic of localizing and classifying damage of the buildings. We pick (b) Embedded view of the images. Although our goal is predicting building
Unet to segment buildings after comparison. We use the encoder to yield an masks, we discover that the outputs from encoder of the Unet implicitly sepa-
image embedding concatenated with the embedding generated by resnetl8. rate the different landscape semantics of images. In the two dimensional pro-
After passing through the linear layer, we get the 4-dimensional vector repre- jection the upper-left has urban images, the lower-left has coastal images, and
senting 4 damage categories. the lower-right has rural images.

Figure 2. Panel (a) describes the training pipeline of the building segmentation and damage classification task. Panel (b) display the image embedding
generated by the learned encoder from segmentation task.

In general, Unet performs better than FPN and PAN because it can yield a 20% performance gain (e.g.,
Unet+vggl6_bn and PAN+densnet121 in F1 score). Although different encoder structures yield comparable results

under the same network architecture, we find that the encoder of vggl16_bn with batch normalization performs best



in the context of building segmentation in terms of F1 score. In addition, the Unet combined with the vggl6_bn
encoder achieves the state-of-the-art performance in terms of IoU scores both in background and building detection.
An additional benchmark model, such as DeepLab(v3)[31], is also used in our building segmentation since it is
widely adopted in other context. But the DeepLab(v3) performs worse than the Unet plus vgg16_bn encoder.

Using the model that performed best from Table 1, we present visual examples to demonstrate the effectiveness of
the model qualitatively in Figure 3. We notice that for some regularly shaped buildings, our approach appears to
identify the building with a high degree accuracy. Even when the land cover in the background is soil or forest, the
building prediction descriptively aligns with the real observations. However, in cases where there is high building
density across the whole image, the prediction has a higher, but still small, false positive rate.

We use the encoder in the learned Unet from the segmentation task to perform the feature extraction because it
encapsulates the image information in a compressed vector. We apply average pooling at the output layer of the
encoder to convert a tensor into batched vectors. We also use spectral normalization[32] on linear layers because
such an operation regularizes the model weights and yields robust results. We consider F1 score as the primary
metric because it is a widely-adopted metric for the imbalanced data. The classification results are presented in the
Table 2, which decouples the metrics down to damage categories. To further understand the effects of the encoder
of the Unet, we plot out the raw images on top of the first two main components of the sampled embeddings in
Figure 2b. It reveals that different land covers can be semantically segmented out separately.
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Figure 3. Display the predicted and ground-truth building masks

As shown in Table 2, our approach has averaged 0.63 F1 score which outperforms the baseline F1 score of 0.265 in
[2]. The “No Damage” class has high score because there are ample examples of buildings that have been labeled as
non-damaged. The minor and major damage have low recall because of the imbalanced data distribution. We also
uncovered small discrepancies between those two classes by visually inspecting the images.

3.2. Generalizing new disasters

Ultimately, we are interested in utilizing the deep learning model to provide high-resolution identification of
building damage after a future disaster. To this end, we evaluate the generalization capabilities of the model where
we attempt to make predictions on data for which the model has not been explicitly trained.

In this experiment, we held out the data of the disaster Hurricane Harvey, and then test building damage in this
disaster. The classification results are presented in the following Table 3. We find that the results are lowering-
performing compared to the results where we uniformly sample all disasters (Table 2). When Hurricane Harvey
is held-out, the overall F1 score, for instance, is 15% lower than that score obtained in the uniform sampling
scenario that includes Hurricane Harvey. Yet, such result is expected as the pixel distribution from sample images



Table 1. Building localization performances on test set. Each setting has three runs yielding the mean statistics.

Model Precision Recall Flscore IoU (background) IoU (buildings)
Spacenet[2] X X X 0.97 0.66
DeepLab(v3)[31] 0.794 0.767 0.780 0.92 0.62
FPN + vggl6_bn 0.818 0.761 0.788 091 0.61
FPN + resnet50 0.785 0.724 0.753 0.89 0.55
FPN + se_resnext50_32x4d 0.809 0.742 0.774 0.89 0.57
FPN + densenet121 0.791 0.756 0.773 0.90 0.60
PAN + vggl6_bn 0.754 0.658 0.703 0.81 0.52
PAN + resnet50 0.675 0.690 0.682 0.80 0.50
PAN + se_resnext50_32x4d 0.713 0.672 0.691 0.81 0.49
PAN + densenet121 0.689 0.651 0.669 0.79 0.5
Unet + vggl6_bn’ 0.851 0.832 0.841 0.97 0.68
Unet + resnet50 0.783 0.795 0.789 0.89 0.65
Unet + se_resnext50_32x4d 0.779 0.858 0.816 0.91 0.64
Unet + densenet121 0.785 0.836 0.809 0.92 0.66

"The best performed model in our building segmentation task in terms of F1.

are different between different places. This could make the image embedding features less predictive when we
encounter the shifted distribution of pixels. However the F1 score of 0.54 still outperforms the baseline[2].

Table 2. Classifying building damage Table 3. Classifying damage in hurricane Harvey (Hold-out)
Categories Precision  Recall F1 Score Categories (Harvey) Precision Recall F1 Score
No Damage 0.89 0.87 0.88 No Damage 0.8 0.72 0.76
Minor Damage 0.64 0.51 0.57 Minor Damage 0.57 0.48 0.52
Major Damage 0.71 0.43 0.53 Major Damage 0.62 0.35 0.45
Destroyed 0.59 0.52 0.55 Destroyed 0.48 0.39 0.43
Average 0.71 0.58 0.63 Average 0.62 0.48 0.54

4. Conclusion and Discussion

In the aftermath of a natural disaster, comprehensive data on building damage is difficult to obtain, with such a
problem compounded by the severity, extent, and unique characteristics of the event. To address this, we made use
of increasingly available images to achieve an accurate assessment of building damage via deep learning. Addi-
tionally, our approach can be easily automated and scaled up in a cost-effective way (e.g., without a labor-intensive
survey). We find our best experimental result can achieve the state-of-the-art performance[2] shown in Table 1
with a classification outcome having an F1 score of 0.63, almost a three-fold improvement compared to previous
studies. Such results are a promising step forward in remote sensing and building detection.

Within the general task of infrastructure mapping, we believe several potential directions could be valuable for the
future work. First, with more data and a few additional training techniques such as adversarial learning, classifica-
tion results can be improved. Second, transfer learning from other datasets, such as spacenet[33], to the building
assessment task is potentially a more effective way to create models when learning to associate ground-level fea-
tures and other observations with satellite imagery. Lastly, being able to generalize the damage classification in new
disasters remains a topic to be explored more thoroughly in future research.

5. Appendix

We use the true positive (TP), false positive (FP), true negative (TN), and false negative (FN) to characterize the
following metrics specifically.

TP TP
precision = ——— (D) recall = ———— 2)
TP+FP TP+FN
precision * recall TP
Fj score = (14 82 3 JoU = — "~ 4
P (1+F7) © T TPYFPYFN X

B2precision + recall
when 8 =1 itis F1 score.
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