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1. What is MABLearning?

The MABLearning package (short for Multi-Armed Bandit Learning) contains functions to streamline the model bandit
learning process for online decision making problems. The package utilizes a number of R packages but tries not to load
them all at package. The package provides a flexible class to instantiate the Bandit agent, a simulation framework, and
three popular learning algorithms. Meanwhile it also provides a simple shiny web interface to illustrate the bandit learning
outcome using different algorithms.
Install the Package
Assuming your current working directory has the source package, then install MABLearning using
install.packages("MABLearning_1.0.tar.gz",repo=NULL,type="source",dependencies=TRUE)

2. Basic Usage

MABLearning has several functions that attempt to streamline the model building and evaluation process. There are
three wrapper functions representing three popular algorithms epsilon greedy, ucb, and Thompson Sampling. The default
implementation utilized the parallel package. Thus load the dependency before calling the simulation algorithm by using
library(MABLearning)
library(parallel)

Eps-Greedy

set.seed(12345)
STEP_HORIZON = 400
case1 = epsGreedy(steps = STEP_HORIZON, eps = 0.01)
case2 = epsGreedy(steps = STEP_HORIZON, eps = 0.1)
case3 = epsGreedy(steps = STEP_HORIZON, eps = 0.4)

To render the plots, see the code in appendix

UCB

STEP_HORIZON = 400
case4 = ucb(steps = STEP_HORIZON, ucbParam = 1)
case5 = ucb(steps = STEP_HORIZON, ucbParam = 2)

To render the plots, see the code in appdendix

Thompson Sampling

library(MASS)
STEP_HORIZON = 400
case6 = thompsonSampling(steps = STEP_HORIZON )

To render the plots, see the code in appdendix
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(a) The x-axis is the simulation horizon, y-axis is the prob-
ability that the agent pick the best action (i.e. the action
associated with highest reward); The faster the algorithm
converges to 1, the better it is. In this graph, green curve
eps=0.4 converges faster than the other two at early stage.
But as time step passed 150, the red curve eps=0.1 con-
verges to higher probability value which indicates a better
performance.
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(b) The x-axis is the simulation horizon, y-axis is the sample
average reward. This figure shows the cumulative mean
rewards that an algorithm can yield. The higher and faster
a curve can reach to a certain value, the better the algorithm
it is. In this graph, the eps=0.1 algorithm yields the highest
cumulative rewards on average.
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(a) The x-axis is the simulation horizon, y-axis is the prob-
ability that the agent pick the best action (i.e. the action
associated with highest reward)
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(b) The x-axis is the simulation horizon, y-axis is the sample
average reward
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Thompson Sampling

(a) The x-axis is the simulation horizon, y-axis is the prob-
ability that the agent pick the best action (i.e. the action
associated with highest reward)
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(b) The x-axis is the simulation horizon, y-axis is the sample
average reward
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Run a Simple Shiny App Demo

MABLearning::mabWebApp()

Figure 4: The Shiny web app gives three options, such as eps, ucb, thompson sampling, to test the algorithm based the
same condition, with 10 arms 400 time-steps and 300 bandit agents simulation

All the above examples apply 300 Bandit agents and then take the average of the results (Monte Carlo method), the
simulation time horizon is 400 time steps. The default number of arms is 10, that means the agent tries to pick the best
action out of ten candidates.

3. Advanced Usage

This package also provides a flexible framework to customized the simulation with adjustable parameters. Here is an
example. We can define a customized banditSimulationCust function as
banditSimulationCust <- function(nBandits, steps, bandits){

bestActionCounts = rep(0, steps)
averageRewards = rep(0, steps)

for (i in c(1:nBandits)) {
for (t in c(1:steps)){

action = bandits[[i]]$getAction()
reward = bandits[[i]]$takeAction(action=action, rewardNoise = expression(rnorm(1, mean=0, sd=1)))
averageRewards[t] = averageRewards[t] + reward
if (action == bandits[[i]]$bestAction() ){

bestActionCounts[t] = bestActionCounts[t] + 1
}

}# end loop of steps
}# end loop of nBandits
bestActionCounts = bestActionCounts/nBandits
averageRewards = averageRewards/nBandits

return(list(bestActionCounts = bestActionCounts,
averageRewards = averageRewards ))

}

Then we can define a customized eps-greedy algorithm as follows
epsGreedyCust <- function(nBandits=100, steps=200, eps = 0.1 ){

bandits = mclapply(seq(nBandits), function(i) {
banditInst = Bandit$new(kArm=3, epsilon=eps, sampleAverage=TRUE)
banditInst$addRewardNoise(rewardNoise = expression(rnorm(1, mean = 0, sd=1)))
return(banditInst) } )

res <- banditSimulationCust(nBandits, steps, bandits)
return(res)

}

Here the Bandit class instantiate the instance with 3 arms (or actions), the initial value of 2 as an individual expected
reward for each arm, and the instance method addRewardNoise takes the general random number generator expression as
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rewardNoise (notice it can also take constant value as a deterministic case ).

Similarly we can specify the customized ucb function ucbCust as follows
ucbCust <- function(nBandits=100, steps=200, ucbParam=1) {

bandits = mclapply(seq(nBandits), function(i) {
banditInst = Bandit$new(kArm=3, epsilon=0, initial=2, UCBParam=ucbParam, sampleAverage=TRUE )
banditInst$addRewardNoise(rewardNoise = expression(rnorm(1, mean = 0, sd=1)))
return(banditInst)

})
res <- banditSimulationCust(nBandits, steps, bandits)
return(res)

}

We run the simulation of epsGreedyCust and ucbCust in 3 arms conditions with 1500 time-steps, and presenting the
following results.
library(MABLearning)
library(parallel)
library(ggplot2)
STEP_HORIZON = 1500
res1 <- epsGreedyCust(steps = STEP_HORIZON)
res2 <- ucbCust(steps = STEP_HORIZON)

resCust.df = data.frame( step = c(1:STEP_HORIZON) ,
optActPct1 = res1$bestActionCounts,
optActPct2 = res2$bestActionCounts )

fig3 <- ggplot2::ggplot(data=resCust.df, aes(x=step)) +
geom_line(aes(y=optActPct1, color = "optActPct1" )) +
geom_line(aes(y=optActPct2, color = "optActPct2" )) +
ylab("% optimal action") + ylim(0,1) + theme_bw() +
theme(legend.position = c(0.75, 0.2),

legend.background = element_rect(colour = "black") ) +
scale_color_manual(labels = c("eps", "ucb"), values = c("blue", "red") ) +
guides(color=guide_legend("alg"))

print(fig3)
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Figure 5: Customized epsilon greedy and upper confidence bound simulation
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