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1 Introduction

The context of the subsequent problems can be found at https://web.stanford.edu/class/msande311/
307project2018-4.pdf

The resource allocation problem considers the following linear programming problem:

max
x

n∑
j=1

πjxj (1)

s.t.

n∑
j=1

aijxj ≤ bi, ∀i = 1, ...,m (2)

0 ≤ xj ≤ 1, ∀j = 1, ..., n (3)

where πj is the revenue to allocate a combination of resources to bidder j, aij is the requested quantity of resource i
by bidder j, and bi is the total known available quantity of resource i. The decision variable xj can be interpreted as
how much portion of the j-th bid should be allocated.

2 Convex Parimutuel Call Auction Mechanism

[This section is mainly in response to question1]

The dual price may not be unique when solving the original problem (1)-(3). One approach to get a unique price is to
add an additional term in the objective function when solving the off-line model. We particularly analyze the model
called Convex Parimutuel Call Auction Mechanism (CPCAM) that is defined as follows

max
x,s

∑
j

πjxj + u(s) (4)

s.t.
∑
j

aijxj + si = bi, ∀i = 1, . . . ,m (5)

xj ≥ 0, ∀j = 1, . . . , n (6)
xj ≤ 1, ∀j = 1, . . . , n (7)
si ≥ 0, ∀i = 1, . . . ,m (8)

where u(s) = u(s1, . . . , sm) is increasing and strictly concave. The gradient entry ∂u
∂si

is sufficiently large for all i.

Solution:
We first write out the KKT conditions for the CPCAM problem. Denote the dual variables λ for constraints (5), dual
variables µ ≥ 0, ν ≥ 0, w ≥ 0 for constraints (6) - (8) respectively, we have the KKT conditions [see details in
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appendix 7.1] as follows

xj(πj −
∑
i

λiaij − νj) = 0, ∀j (9)

si
∂u(s)

∂si
− λisi = 0, ∀i (10)∑

j

aijxj + si − bi = 0, ∀i (11)

νj(xj − 1) = 0, ∀j (12)
xj ≥ 0, ∀j (13)
xj ≤ 1, ∀j (14)

λ is free (15)
si ≥ 0, ∀j (16)
νj ≥ 0, ∀j (17)
∇u− λ ≤ 0 (18)

π −ATλ− ν ≤ 0 (19)

Since the objective (4) is strictly concave and the feasible set (5)-(8) is convex. It automatically indicates that the KKT
conditions are sufficient to yield the optimal solution. Now we prove that the CPCAM has unique price λ (which is
also the multiplier for the equality constraints (5) ).

Theorem 1 If the CPCAM problem is feasible, it has a unique price λ.

Proof of Theorem 1: To show the uniqueness of λ, we equivalently show the CPCAM has a unique maximizer
(x∗, s∗). We demonstrate it through contradiction procedure. Define function g(x, s) = πTx + u(s) which is
known to be strictly concave. We denote two maximizer (x1, s1) and (x2, s2) which give same maximum value
g(x1, s1) = g(x2, s2). Given a scaler 0 < α < 1, we have

g(x1, s1) = αg(x1, s1) + (1− α)g(x1, s1) = αg(x1, s1) + (1− α)g(x2, s2) (20)

< g
(
αx1 + (1− α)x2, αs1 + (1− α)s2

)
(21)

This violates the assumption that g(x1, s1) holds the maximum value. Thus the CPCAM has a unique maximizer
(x∗, s∗)

The interpretation of s and u(s) can be considered as follows. si is the remaining resource i after clearing
the n bids in the market. Function u(s) captures the “future value” of these remaining resources (collected from s1 to
sm).

3 Online Model - Sequential Convex Parimutuel Mechanism

[This section is mainly in response to question2]

The disadvantage of the offline model is that it can’t tell the bidders whether their bids are accepted or not
until the market closes. This is undesirable since sometimes the bidders want to know the results to their bids
immediately so that they can modify their bids and submit again. Therefore, in practice, the market is usually
implemented in an online version. One popular model called Sequential Convex Parimutuel Mechanism (SCPM) is
defined as follows. Whenever k-th bidder submits a bid, the market maker solves the following optimization problem:

max
xk,s

πkxk + u(s) (22)

s.t. aikxk + si = bi − qk−1
i , ∀i = 1, . . . ,m (23)

0 ≤ xk ≤ 1 (24)
si ≥ 0, ∀i = 1, . . . ,m (25)

where qk−1
i =

∑k−1
j=1 aij x̄j is the resource i that is already allocated before the k-th bidder arrives.

Solution:
We express the KKT conditions for the online model as follows [see appendix 7.2 for details], given
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µ ≥ 0, ν ≥ 0, w ≥ 0.

πk −
m∑
i=1

λiaik + µk − νk = 0 (26)

∂u(s)

∂si
− λi + wi = 0, ∀i = 1, . . . ,m (27)

aikxk + si + qk−1
i = bi, ∀i = 1, . . . ,m (28)
µkxk = 0 (29)

νk(xk − 1) = 0 (30)
wisi = 0, ∀i = 1, . . . ,m (31)

In the online model, the number of variables (xk, s, λ, µk, νk,w) are 3+3m with the corresponding 3+3m equations
from KKT conditions at k-th step. Hence upto k-th bid, it solves 3k + 3km variables with 3k + 3mk equations. On
the other hand, the original offline model has 3n+ 3m variables (x, s,λ,µ,ν) from 3n+ 3m equations according to
the KKT conditions in equation (36) - (41) in appendix 7.1. In the worst case when k approaches n, if the remaining
resources are still available to be allocated, the online model may accumulatively solve 3n + 3mn variables with
3n + 3mn equations in total. However one subtlety for online model is that when qk−1

i = bi, i.e. the remaining
resource i is not enough to satisfy future requests at step k and afterwards, then xt = 0 with ait > 0 for all t ≥ k,
and corresponding si = 0. Hence we can automatically determine the variables afterwards without solving the KKT
system.

Proposition 1 The online model would be more efficient than offline model given that the market maker clear up the
resources at k-th bid, with the following condition that

k ≤ n+m

1 +m
(32)

Proof of Proposition 1: This automatically follows the aforementioned analysis. Since the total cumulative
computation task for online model upto k-th bid is 3k + 3mk, and the offline model is 3n + 3m. When
3k + 3mk ≤ 3n+ 3m, the online model is more efficient than offline model, which completes the proof.

To further understand how xk are determined through this online approach, we investigate the KKT opti-
mality conditions in a reverse manner. Specifically we precondition xk and check the corresponding variables and
parameter relationships as follows.

1. If xk = 0, we have νk = 0. The first order gradient optimality can be reduced to πk −
∑
i λiaik − µk = 0.

Since µk ≥ 0, we have πk −
∑m
i=1 λiaik ≤ 0

2. If xk = 1, we have µk = 0. It indicates πk−
∑
i λiaik+νk = 0. Since νk ≥ 0, we get πk−

∑m
i=1 λiaik ≥ 0

3. If 0 < xk < 1, then µk = 0, νk = 0. Moreover πk =
∑m
i=1 λiaik

In addition, on one hand when si > 0, we have λi = ∂u(s)
si

and wi = 0. On the other hand if si = 0, we have

bi − qk−1
i − aikxk = bi − qki = 0, and λi ≥ ∂u(s)

si
.

4 Online Model (SCPM)- Specific Utility Function

[This section is mainly in response to question3]

In this section, we implement two specific utility functions:

u1(s) =
w

m

∑
i

log si (33)

u2(s) =
w

m

∑
i

(1− e−si) (34)

where w = 1 and w = 10, m = 10. We are interested in the following subquestions: a) Does the state price λ yielded
by online SCPM converges to the true price p̄? b) Does the choice of w make a difference? c) Is there significant
difference between using functions u1 and u2?
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Solution:
To answer the first subquestion, we use the relative price gap between λ and p̄ that is ‖λ−p̄‖‖p̄‖ as a metric. Before
directly giving the answer, we propose two algorithms to calculate the SCPM. One is using KKT condition updates
and gradient decent type algorithm. The other is using existing CVX solver.

Algorithm 1 (SCPM) Using KKT updates

initialize xj = 0, λi = ∂u(b)
∂bi

= ∇u(b)i, qi = 0, ∀i = 1, . . . ,m , j = 1, . . . n when k = 0.
Thus q0 = 0,λ0 = ∇u(b)
for k = 1 to n do

if πk −∇u(b− qk)Tak < 0 then
xk = 0, λk = λk−1, qk = qk−1

else if πk −∇u(b− q)Tak > 0 then
xk = 1, λk = ∇u(b− qk−1 − ak), qk = qk−1 + ak

else
solve xk through equation πk −∇u(b− qk−1 − xkak)Tak = 0 where xk ∈ (0, 1)

λk = ∇u(b− qk−1 − xkak)
end if

end for

Algorithm 2 (SCPM) Using CVX

initialize xj = 0, λi = ∂u(b)
∂bi

= ∇u(b)i, qi = 0, ∀i = 1, . . . ,m , j = 1, . . . n when k = 0.
Thus q0 = 0,λ0 = ∇u(b)
for k = 1 to n do

if (q ≥ b) then
Break

else
Get xk, sk, λk from solving the SCPM problem in equation (22)-( 25) by CVX.

end if
qk = qk−1 + akxk

end for

The Figure 1 and Figure 2 show that the price converge to some point but not necessarily the true price. To have a
better understanding about the convergence of price, we plot out the zoom-in level price gap in Figure 2. Regarding to
the second and third subquestions, we describe the consequence of different choice of weights w and different choice
of u in the caption of Figure 2. Yet we address the main discovery here again. One observed result is that higher value
of w do give a faster convergence speed. Another observation is that different choice of utility function u won’t affect
the convergence of price too much until the market clear up the resource. Then different utility function could drive
different price behavior.

5 Sequential Linear Parimutuel Mechanism (SLPM)

[This section is mainly in response to question4]

Suppose there is a good estimate of total n bidders in the market. Then we wait for the first k bidders
arrived and solve the revealed partial linear program

(SLPM): maximizex1,...,xk

∑k
j=1 πjxj

s.t.
∑k
j=1 aikxk ≤

k
nbi, ∀ i = 1, 2, ...,m,

0 ≤ xj ≤ 1, ∀ j = 1, ..., k.

and then use the dual prices, say ȳk of the partial LP for future online decisions: xj = 1, if πj > aTj ȳ
k; and xj =

0, otherwise.

Solution:
Considering k is the look-ahead horizon, we would like to understand a) how the various k affects the dual price
convergence? b) How sensitive it is in terms of cumulative revenue when setting different k values? Figure 3 explains
the aforementioned questions. In panel(a) of figure 3, we observe that dual price converges to true price with the
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Figure 1: A general view of dual price convergence with respect to true price. It hits the maximum allocatable
resources at around step k = 1943. Panel (a) shows the KKT updates. When the market clear up the resources, we set
the current step dual price as the same as last differentiable dual price (i.e. when si > 0); Panel (b) shows the CVX
updates, when the market clear up the resource. Certain type of resource price could be high, given the situation that
πk is large. Thus the price going up after step k = 1943 also makes sense.
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Figure 2: Both KKT and CVX method yield same consequence before hitting the constraints bound (i.e. si > 0).
We note that higher value of w indeed contribute the convergence speed of the price gap to some extent. Namely
(u1, w = 10) converges faster than (u1, w = 1), and (u2, w = 10) converges faster than (u2, w = 1). We don’t see
the significant difference between the choice of utility function u until the resource constraints are binding. Then
different utility function may drive quite different marginal change of the objective value, which automatically reflects
the price, i.e. dual state price. That’s why in panel (b) of Figure 1, we have quite different price behavior for different
utility functions when constraints are binding.
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increased k. The relative gap saturates around 0.08 when the sample observed bids are more than 200. The panel(b)
of figure 3 shows the higher value of k has slower speed to accumulate the revenue. Small k leads to a “greedy” trend
to accumulate the revenue.
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Figure 3: The left panel (a) shows the dual price converges to true price with the increased k. (i.e. ‖λ−p‖‖p‖ decreases as
k increases.) The right penal (b) shows the higher value of k has slower speed to accumulate the revenue. Small k
leads to a “greedy” trend to accumulate the revenue.

6 Dynamic update using SLPM and combining SCPM & SLPM

[This section is mainly in response to question5]

Now let us dynamically update the dual prices at time point k = 50, 100, 200, 400, 800... and use the
prices to make decision for the immediate subsequent period. Compare the results of SCPM and SLPM. Be careful to
use the same data generated in Q3. After comparing SCPM and SLPM, think about combining SCPM and SLPM and
comment on how does the new algorithm perform.

Solution:
The update time of dual prices are k = 50, 100, 200, 400, 800, 1600, 3200, 6400, 10000, and notice the upper limit
is 10, 000 instead of 12, 800 because we only have 10, 000 bids. Updating dual prices dynamically, we still follow
the general idea of SLPM and solve optimization as size of problem grows. When 50 bids arrive, we solve the
first optimization, use the dual prices ȳk and aTj to make decisions for bids 51 to 100; then we have 100 bid
information and solve the optimization problem of size 100, use the updated dual prices at this point to make de-
cisions for bids 100-200. Following this logic, we constantly make decision based on what we have for the next period.

When comparing the two online methods, we already know SCPM has larger price gap than dynamic
SLPM. Figure 1 and Figure 2, we’ve seen allocation reaches resource limit at around bid k = 1943 and the ultimate
relative price gap is around 3 for SCPM. In Figure 4, we saw optimizing for first k bids and then make decisions
for the future generally give us price gap less than 0.2. As for generating revenue, we observe that SCPM is fast in
reaching resource allocation limit and thus, grows revenue a lot faster in the first 2000 bids, but after reaching the
limits, it stops growing. At the same time, dynamic SLPM constantly and steadily grows its revenue and surpasses
SCPM around iteration 9000.

A simple combination of SCPM and SLPM is the following algorithm: S-SCPM. We solve SLPM k-step horizon
upto current episode (i.e. each episode consists k bids) and then use the dual prices, say ȳk of the partial LP for
future online decisions: xj = 1, if πj > aTj ȳ

k; and xj = 0, otherwise. With different combinations of parameter w
and utility function u(s), we have four choices of S-SCPM algorithms. In Figure 5, we compare the decisions made
in the four S-SCPM and the original dynamic SLPM. All four S-SCPM make similar decisions with dynamic SLPM
and out of 9500 bids after the first 50, S-SCPMs make only 10-20 different decisions as SLPM. As a result, revenue
accumulates in a very similar way. (see Figure 6)
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Figure 4: SCPM grows revenue a lot faster in the first 2000 bids, but reaches its limit and stops accepting bids
thereafter; dynamic SLPM makes decision by optimizing chunks of information received for the next chunk of bids,
therefore is more conservative but does not miss information in the general picture.
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(b) distribution of decision discrepancies occurrences between
dynamic SLPM and w = 10, u1(s) S-SCPM
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(c) distribution of decision discrepancies occurrences between
dynamic SLPM and w = 1, u2(s) S-SCPM
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(d) distribution of decision discrepancies occurrences between
dynamic SLPM and w = 10, u2(s) S-SCPM

Figure 5: All four realizations of S-SCPM make almost the same decisions with original dynamic SLPM beyond the
first 50 bids. Tis closeness in decisions made result in the following figure (Figure 6) showing identical growth of
revenue between S-SCPM and dynamic SLPM.
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Figure 6: S-SCPM overcomes the weakness of SCPM and mimics the growing behavior for revenue of dynamic
SLPM. The growing revenue curves are very close between dynamic SLPM and S-SCPM with different choices of
utility function and w.

7 Appendix

7.1 KKT of CPCAM

Given the dual variables λ for constraints (5), dual variables µ ≥ 0, ν ≥ 0, w ≥ 0 for constraints (6) - (8) respectively

L(x, s,λ,µ,ν,w) = −
∑
j

πjxj − u(s) +

m∑
i=1

λi
(∑

j

aijxj + si − bi
)
−
∑
j

µjxj +
∑
j

νj(xj − 1)−
∑
i

wisi

(35)

Taking the derivative over x and s and setting them equal zero, we have

∂L
∂xj

= −πj +
∑
i

λiaij − µj + νj = 0, ∀j (36)

∂L
∂si

= −∂u(s)

∂si
+ λi − wi = 0, ∀i (37)∑

j

aijxj + si − bi = 0, ∀i (38)

νj(xj − 1) = 0, ∀j (39)
µjxj = 0, ∀j (40)
wisi = 0, ∀i (41)
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We simplify the expression as follows

xj(πj −
∑
i

λiaij − νj) = 0, ∀j (42)

si
∂u(s)

∂si
− λisi = 0, ∀i (43)∑

j

aijxj + si − bi = 0, ∀i (44)

νj(xj − 1) = 0, ∀j (45)
xj ≥ 0, ∀j (46)
xj ≤ 1, ∀j (47)

λ is free (48)
si ≥ 0, ∀j (49)
νj ≥ 0, ∀j (50)
∇u− λ ≤ 0 (51)

π −ATλ− ν ≤ 0 (52)

7.2 KKT of Online Model

We write out the Lagrangian as follows

L(xk, s, λ, µk, νk,w) = −πkxk − u(s) +

m∑
i=1

λi(aikxk + qk−1
i + si − bi)− µkxk + νk(xk − 1) +

m∑
i=1

wisi

(53)

∂L
∂xk

= −πk +

m∑
i=1

λiaik − µk + νk = 0 (54)

∂L
∂si

= −∂u(s)

∂si
+ λi − wi = 0, ∀i = 1, . . . ,m (55)

µkxk = 0 (56)
νk(xk − 1) = 0 (57)

wisi = 0, ∀i = 1, . . . ,m (58)

7.3 Coding details in Python

### 2018.03.17 | Solve project Q5. Solution for Q3 and Q4 involves similar functions, thus for
simplicity only code details for Q5 displayed.

# Load packages and set random seeds
from cvxpy import *
import numpy as np
import scipy
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import pairwise
import time
import numdifftools as nd
from scipy import optimize as opt
import mosek

get_ipython().run_line_magic(’matplotlib’, ’inline’)

get_ipython().run_line_magic(’load_ext’, ’autoreload’)
get_ipython().run_line_magic(’autoreload’, ’2’)

np.seterr(’ignore’)
import warnings
warnings.filterwarnings(’ignore’)
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# Use seed to generate same data for Q3, Q4, Q5
np.random.seed(11)

# Define utility functions

def utility1(s, w, m):
return w/m * sum(log(s))

def utility2(s, w, m):
return w/m * sum(1-exp(-s))

# Randomly generate data
m = 10
n = 10000 # bids
A = np.random.randint(low=0, high=2, size=(m, n));
p_true = np.random.rand(m, 1) # true price
b = np.ones((m,1))*1000

pi = p_true.T.dot(A).T + 0.2*np.random.randn(n, 1)

# Computes relative gap in prices
def relative_p_gap(dual_p, true_p):

return np.linalg.norm(np.array(dual_p) - true_p.squeeze()) / np.linalg.norm(true_p.squeeze())

def solve_one_SLPM(pi, A, b, k1,k2, m=10, n=10000):
# @param : pi_k -- constant given in objective (e.g. reward for k-th bid)
# @param : a_k -- coefficient vector that requests resources
# @param : b -- total resource budget
# @param : q -- lock down allocated resource
# @param (optional): w -- weights
# @param : m -- number of resource types
# ########## call cvx to solve #############
x = Variable(k2-k1)
s = Variable(m)
A_k = A[:, k1:k2]
b_tilde = (k2-k1)/n * b.flatten()
obj = Maximize( (pi[k1:k2].T)*(x) )
# dot product A^Tx is (A_k*(x))
constraint_1 = [(A_k*(x))[i] <= b_tilde[i] for i in range(m)]
constraint_2 = [x[j] <= 1 for j in range(k1,k2)]
constraint_3 = [x[j] >= 0 for j in range(k1,k2)]
constraints = constraint_1 + constraint_2 + constraint_3 #+ constraint_4
prob = Problem(obj, constraints)
prob.solve(solver=MOSEK)
# prob.solve(solver=ECOS)
# prob.solve(solver=SCS)
# prob.solve(solver=CVXOPT)
# print([(constraints[i].dual_value) for i in range(m)])
return x.value, obj.value, [(constraints[i].dual_value) for i in range(m)]

# Determine previous x using dual prices
def determine_x(pi_j, a_j, dual_p):

thers = sum(a_j*dual_p)
x_j = 0
if pi_j > thers:

x_j = 1
return x_j

# Look ahead for x values
def check_k_ahead(pi_T,A_T,dual_p,k2,k3):

T = k3-k2
x_vec = np.zeros(T)
for j in range(T):

x_vec[j] = determine_x(pi_T[j], A_T[:,j], dual_p)
return x_vec
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x_SLPM = []
points = [0] + [50*(2**j) for j in range(9)]
pGap = []
for i in range(len(points)-1):

x_opt, obj_opt, dual_price_opt = solve_one_SLPM(pi,A,b,k1=0,k2=points[i+1],m=10,n=10000)
if i == 0:

x_SLPM = x_SLPM + [j[0] for j in x_opt.tolist()]
end = points[i+2]
if end >= 10000:

end = 10000
x_real = check_k_ahead(pi[points[i+1]:end], A[:,points[i+1]:end],

dual_price_opt,points[i+1],end)
x_SLPM = x_SLPM + list(x_real)
#print(’\n’+ str(len(x)) + ’\n’)
pGap.append(relative_p_gap(dual_price_opt,p_true))
i += 1
if end >= 10000:

break

def solve_k_SCPM(pi, A, b, k, f_util, m=10, n=10000):
# @param : pi_k -- constant given in objective (e.g. reward for k-th bid)
# @param : a_k -- coefficient vector that requests resources
# @param : b -- total resource budget
# @param : q -- lock down allocated resource
# @param (optional): w -- weights
# @param : m -- number of resource types
# ########## call cvx to solve #############
x = Variable(k)
s = Variable(m)
b_tilde = k/n * b.flatten()

obj = Maximize((pi[0:k].T)*(x) + f_util(s) )
constraint_1 = [(A[:,0:k]*(x))[i] + s[i] == b_tilde[i] for i in range(m)]
constraint_2 = [x[j] >= 0 for j in range(0,k)]
constraint_3 = [x[j] <= 1 for j in range(0,k)]
constraint_4 = [s >= 0]
constraints = constraint_1 + constraint_2 + constraint_3 + constraint_4
prob = Problem(obj, constraints)
#prob.solve(solver=MOSEK)
#prob.solve(solver=ECOS)
prob.solve(solver=SCS)
# prob.solve(solver=CVXOPT)
return x.value, s.value, [(constraints[i].dual_value) for i in range(m)]

# S-SCPM
f1_util_w1 = lambda x : utility1(x, 1, m)
f1_util_w10 = lambda x : utility1(x, 10, m)
f2_util_w10 = lambda x: utility2(x, 10, m)
f2_util_w1 = lambda x : utility2(x, 1, m)
fList = [f1_util_w1,f1_util_w10,f2_util_w1,f2_util_w10]

def scpm(f):
x_SSCPM = []
points = [0] + [50*(2**j) for j in range(9)]
for i in range(len(points)-1):

x_k, s_vec, lambda_price = solve_k_SCPM(pi, A, b, points[i+1], f, m=10,n=10000)

if i == 0:
x_SSCPM = x_SSCPM + [j[0] for j in x_k.tolist()]

end = points[i+2]
if end >= 10000:

end = 10000
x_real = check_k_ahead(pi[points[i+1]:end], A[:,points[i+1]:end],

lambda_price,points[i+1],end)
x_SSCPM = x_SSCPM + list(x_real)
#print(’\n’+ str(len(x_SSCPM)) + ’\n’)
i += 1
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if end >= 10000:
break

return x_SSCPM

value = []
discrep = []
for i in range(4):

x_SSCPM = scpm(fList[i])
value.append(np.array(x_SSCPM) * pi.flatten())
l = []
for i in range(len(x_SLPM)):

if x_SLPM[i] != x_SSCPM[i]:
l.append(i)

discrep.append(l)

# Calculates revenue
value_SLPM=np.array(x_SLPM) * pi.flatten()

plt.figure(figsize=(9,6))
plt.plot(np.cumsum(value_SLPM)[1:1500], label="SLPM")
plt.plot(np.cumsum(value[0])[1:1500], label="S-SCPM, $w$=1, $u_1(s)$")
plt.plot(np.cumsum(value[1])[1:1500], label="S-SCPM, $w$=10, $u_1(s)$")
plt.plot(np.cumsum(value[2])[1:1500], label="S-SCPM, $w$=1, $u_2(s)$")
plt.plot(np.cumsum(value[3])[1:1500], label="S-SCPM, $w$=10, $u_2(s)$")
plt.legend(fontsize=13,loc=’upper left’)
plt.tick_params(labelsize=18)
plt.xlabel(r"$j$", fontsize=20)
plt.ylabel(r"$\sum_{j} \pi_{j}x_j $", fontsize=25)
plt.tight_layout()
plt.savefig("fig/Q5_cumulative_revenue.eps")

’’’
plt.hist(discrep[0])
plt.tick_params(labelsize=7)
plt.xlabel(’iter step’)
plt.ylabel(’frequency count’)
plt.savefig("fig/Q5_unequal_x_11.eps")

plt.hist(discrep[1])
plt.tick_params(labelsize=7)
plt.xlabel(’iter step’)
plt.ylabel(’frequency count’)
plt.savefig("fig/Q5_unequal_x_110.eps")

plt.hist(discrep[2])
plt.tick_params(labelsize=7)
plt.xlabel(’iter step’)
plt.ylabel(’frequency count’)
plt.savefig("fig/Q5_unequal_x_21.eps")

plt.hist(discrep[3])
plt.tick_params(labelsize=7)
plt.xlabel(’iter step’)
plt.ylabel(’frequency count’)
plt.savefig("fig/Q5_unequal_x_210.eps")’’’

def solve_kth_SCPM(pi_k, a_k, b, q, f_util, m=10):
# @param : pi_k -- constant given in objective (e.g. reward for k-th bid)
# @param : a_k -- coefficient vector that requests resources
# @param : b -- total resource budget
# @param : q -- lock down allocated resource
# @param (optional): w -- weights
# @param : m -- number of resource types
# ########## call cvx to solve #############
x_k = Variable()
s = Variable(m)
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obj = Maximize(pi_k*x_k + f_util(s) )
constraint_1 = [a_k*x_k + s == b-q]
constraint_2 = [x_k >= 0 ]
constraint_3 = [x_k <= 1 ]
constraint_4 = [s >= 0]
constraints = constraint_1 + constraint_2 + constraint_3 + constraint_4
prob = Problem(obj, constraints)
# prob.solve(solver=MOSEK)
prob.solve(solver=ECOS)
# prob.solve(solver=SCS)
# prob.solve(solver=CVXOPT)
return x_k.value, s.value, constraints[0].dual_value

def run_with_util(f_u):
K = 10000 # num of bids so far -- TODO change to n later
q = np.zeros((m, 1))
x_vec = np.zeros(K)
Price_mat = np.zeros((m, K))
price_gap = np.zeros(K)
for k in range(K):

if (q >= b).all():
print("use up resource")
break

else:
time_start = time.clock()
x_k, s_vec, lambda_price = solve_kth_SCPM(pi[k], A[:,k].reshape(-1, 1), b, q, f_u,

m=10)
time_end = time.clock()
#if k % 100 == 0 :

#print("{} iter, time in solving opt: {:.4}s".format(k, time_end-time_start))
#pass

if (q + A[:,k].reshape(-1, 1) <= b).all():
if x_k <= 0 :

x_vec[k] = 0
elif x_k >= 1:

x_vec[k] = 1
else :

x_vec[k] = np.round(x_k, 3)
else:

x_vec[k] = 0

q = q + A[:,k].reshape(-1, 1)*x_k
Price_mat[:,k] = np.array(lambda_price).squeeze()
price_gap[k] =

np.linalg.norm(np.array(lambda_price).squeeze()-p_true)/np.linalg.norm(p_true)

return x_vec, Price_mat, price_gap
X_u1, p_mat_u1, p_gap_u1 = run_with_util(f1_util_w1)
X_u2, p_mat_u2, p_gap_u2 = run_with_util(f1_util_w10)
X_u3, p_mat_u3, p_gap_u3 = run_with_util(f2_util_w1)
X_u4, p_mat_u4, p_gap_u4 = run_with_util(f2_util_w10)

value_SCPM = []
value_SCPM.append(np.array(X_u1) * pi.flatten())
value_SCPM.append(np.array(X_u2) * pi.flatten())
value_SCPM.append(np.array(X_u3) * pi.flatten())
value_SCPM.append(np.array(X_u4) * pi.flatten())

plt.figure(figsize=(9,6))
plt.plot(np.cumsum(value_SLPM)[1:10000], label="SLPM")
plt.plot(np.cumsum(value_SCPM[0])[1:10000], label="SCPM, $w$=1, $u_1(s)$")
plt.plot(np.cumsum(value_SCPM[1])[1:10000], label="SCPM, $w$=10, $u_1(s)$")
plt.plot(np.cumsum(value_SCPM[2])[1:10000], label="SCPM, $w$=1, $u_2(s)$")
plt.plot(np.cumsum(value_SCPM[3])[1:10000], label="SCPM, $w$=10, $u_2(s)$")
plt.legend(fontsize=13,loc=’upper left’)
plt.tick_params(labelsize=18)

13



plt.xlabel(r"$j$", fontsize=20)
plt.ylabel(r"$\sum_{j} \pi_{j}x_j $", fontsize=20)
plt.tight_layout()
plt.savefig("fig/Q5_SCPM_SLPM_compare.eps")
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