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Parkinson's disease is a chronic, progressive brain disorder with NTU RGB+D Dataset!: Large human motion capture

degenerative effects on mobility and muscle control dataset used to pre-train model
MDS-UPDRS Dataset: Gait recordings from 54 participants

processed using Video Inference for Body Pose and

o Task: Prediction of motor impairment severity from videos of gait
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o Clinical datasets are often limited in size; we can Shape Estimation (VIBE)?2 to extract 3D skeletons

take advantage of large 3D motion capture datasets

timatic | : 5 .
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Results .

Recent advances in machine learning can

allow us to take advantage of these We find that our GaitForeMer method maintains relatively strong

datasets and translate them for clinical performance with only a fraction of the data

use e Results reported via leave-one-out cross-validation
[

e Compared methods:

This shows the power of using motion forecasting as a self-supervised pre-

Goal: learn good motion representations training task for few-shot gait impairment severity estimation

O GaitForeMer without pre-training (GaitForeMer-Scratch), Hybrid Ordinal
Focal DDNet (OF-DDNet)3, Spatial-Temporal Graph Convolutional
Network (ST-GCN)4, DeepRank>, Support Vector Machine (SVM)é

from large public dataset using the
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transfer knowledge for downstream task
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: ’ , () i Our GaitForeMer method pre-trained on a public dataset results in The purple skeletons are ground-truth and the blue ones are predictions
2 S significantly improved accuracy over training the model from scratch and

o Accurate motion forecasting verifies that the model is able to properly predict

other baselines trained on the MDS-UPDRS dataset
(3Luetal., 2021 ;4Yanetal.,2018;5 Pang et al., 2017; ¢ Weston et al., 1999)
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motion that encodes motor impairments

e Human motion forecastmg serves as an effective pre- tramlng task

zy Pre-trained Fine-tune strategy Fq Pre Rec
jk_, b(z0) || 6(2) b(z0) [ Yes Both branches then class branch  0.76  0.79  0.75 | e Pre-trained model significantly outperformed models trained from scratch
GatoreMer o . Yes Both branches 0.72 075 0.71 o Approach demonstrates utility of using motion pre-training tasks in data-
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o We propose GaitForeMer (Gait Forecasting and impairment estimation

transforMer) which forecasts motion and gait (pretext task) while estimating . We compare different training/fine-tuning strategies of our method

o Firstfine-tuning both branches then additionally fine-tuning the MDS-UPDRS
prediction branch yields best results
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