

GaitForeMer: Self-Supervised Pre-Training of Transformers via Human Motion Forecasting for Few-Shot Gait Impairment Severity Estimation Mark Endo¹, Kathleen L. Poston¹, Edith V. Sullivan¹, Li Fei-Fei¹, Kilian M. Pohl^{1,2}, and Ehsan Adeli¹

Background

- Parkinson's disease is a chronic, progressive brain disorder with degenerative effects on mobility and muscle control
- **Task:** Prediction of motor impairment severity from videos of gait examinations of PD patients
- Clinical datasets are often limited in size; we can take advantage of large 3D motion capture datasets

- Recent advances in machine learning can allow us to take advantage of these datasets and translate them for clinical use
- **Goal:** learn good motion representations from large public dataset using the pretext task of motion forecasting and transfer knowledge for downstream task of gait impairment severity prediction

GaitForeMer

- We propose **GaitForeMer** (<u>Gait Fore</u>casting and impairment estimation transfor<u>Mer</u>) which forecasts motion and gait (pretext task) while estimating impairment severity (downstream task)
- Given a sequence of t 3D skeletons $\mathbf{x}_{1:t}$, we predict the next M skeletons $\mathbf{X}_{t+1:T}$ and the motion class y (either activity or MDS-UPDRS score)
- After pre-training the model components on a public dataset, we adapt the model to estimate MDS-UPDRS scores on our clinical data

¹ Stanford University

Data

Large Public Motior **Capture Dataset**

NTU RGB+D Dataset1: Large human motion capture dataset used to pre-train model **MDS-UPDRS Dataset:** Gait recordings from 54 participants

processed using Video Inference for Body Pose and Shape Estimation (VIBE)² to extract 3D skeletons

(¹Shahroudy et al., 2016; ²Kocabas et al., 2020)

Results

- Results reported via leave-one-out cross-validation
- Compared methods:
- GaitForeMer without pre-training (GaitForeMer-Scratch), Hybrid Ordinal Focal DDNet (OF-DDNet)³, Spatial-Temporal Graph Convolutional Network (ST-GCN)⁴, DeepRank⁵, Support Vector Machine (SVM)⁶

Method	F_1	Pre	-
GaitForeMer (Ours)	0.76	0.79	(
GaitForeMer-Scratch (Ours)	0.60	0.64	(
OF-DDNet*	0.58	0.59	(
ST-GCN*	0.52	0.55	(
DeepRank*	0.56	0.53	(
SVM^*	0.44	0.49	(

* indicates statistical difference at (p < 0.05) compared with our method, measured by the Wilcoxon signed rank test

Our GaitForeMer method pre-trained on a public dataset results in significantly improved accuracy over training the model from scratch and

other baselines trained on the MDS-UPDRS dataset (³ Lu et al., 2021 ; ⁴ Yan et al., 2018; ⁵ Pang et al., 2017; ⁶ Weston et al., 1999)

Fine-tuning Setup

Pre-trained	Fine-tune strategy	F_1	Pre	Rec
Yes	Both branches then class branch	0.76	0.79	0.75
Yes	Both branches	0.72	0.75	0.71
Yes	Class branch	0.66	0.72	0.63
No		0.60	0.64	0.58

- We compare different training/fine-tuning strategies of our method
- First fine-tuning both branches then additionally fine-tuning the MDS-UPDRS prediction branch yields best results
- The relatively poor performance of only fine-tuning the class branch could be due to the data shift between the NTU RGB+D and MDS-UPDRS datasets that requires training of the motion forecasting branch

² SRI International

Кес 0.75 0.580.580.520.580.40

Our pre-trained GaitForeMer model results in best performance

- We find that our GaitForeMer method maintains relatively strong performance with only a fraction of the data
- This shows the power of using motion forecasting as a self-supervised pretraining task for few-shot gait impairment severity estimation

The purple skeletons are ground-truth and the blue ones are predictions • Accurate motion forecasting verifies that the model is able to properly predict motion that encodes motor impairments

- limited settings

Acknowledgments

This work was supported in part by NIH grants (AA010723, NS115114, P30AG066515), the Michael J Fox Foundation for Parkinson's Research, UST (a Stanford AI Lab alliance member), and the Stanford Institute for Human-Centered Artificial Intelligence (HAI) Google Cloud credits.

With 25% training data, GaitForeMer outperforms ST-GCN using 100% training data and is comparable to OF-DDNet using 100% training data

Motion Forecasting Visualization

Conclusion

• Human motion forecasting serves as an effective pre-training task • Pre-trained model significantly outperformed models trained from scratch • Approach demonstrates utility of using motion pre-training tasks in data-