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CHAPTER 1

Introduction

The protagonists of this dissertation are Alice and Bob. Alice wants to send a message to Bob, in
the face of seemingly insurmountable obstacles. While the full backstory of Alice and Bob and their
personal lives is beyond the scope of this dissertation, there are a few common reasons to study such
a scenario. When Alice and Bob are replaced with the more pragmatic but less evocotive “sender”
and “receiver,” there are immediate applications to communication; beyond that, this situation is
relevant to storage, cryptography, complexity theory, and pseudorandomness, among others.

In the theory of error correcting codes, one studies variations of the above scenario, and hopes to
provide Alice and Bob with the tools to succeed. In a standard set-up, Alice begins with a message
x of length k, which she maps to a codeword c = C(x) of length n; she then sends this codeword to
Bob. Unfortunately, the codeword may be corrupted en route. Bob’s job is to take this corrupted
codeword, and to determine Alice’s original message x.

We will use tools from probability theory—mostly tools from high-dimensional probability—
to study coding theory. The motivating question is: what should Alice and Bob do? On the
combinatorial side of things, how should they pick the set C of all possible codewords? We call this
set an error correcting code. On the algorithmic side of things, how can Alice efficiently encode
x into a codeword c = C(x) ∈ C? How can Bob efficiently recover the message that Alice sent?
In general, there is a trade-off between the effectiveness of their communication (as measured by
robustness to noise, efficiency of encoding/decoding, and so on), and the amount of redundancy
Alice and Bob must use.

In the settings we consider, the most successful approaches to these questions have been algebraic
in nature: for the most part, they rely on properties of polynomials over finite fields. By approaching
these problems from an analytic and probabilistic point of view, we improve the trade-off for Alice
and Bob.

We consider two variants of coding theory, list decoding and local decoding. In each of these
variants, Bob is not required to recover everything about x; but in return, he faces a more difficult
task. In list decoding, Bob need not recover Alice’s message x exactly, and instead may recover a
short list which contains x; but the number of corruptions may be very large. In local decoding,
Bob is only trying to recover a small portion of Alice’s message, say a single bit of x; but he must
manage this extremely quickly, without even looking at the entire codeword c. This dissertation
answers two long-standing open questions in list decoding, and provide a new answer to an open-
until-very-recently question in local decoding.

1.1 Overview of contributions

Before diving into the details, we outline our main contributions.

1
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1.1.1 List decoding

We focus first on list decoding. List decoding was first introduced by Elias [27] and Wozen-
craft [112] in the 1950’s, and has received a great deal of attention from both coding and complex-
ity theorists over the past few decades. In list decoding, Bob need not recover Alice’s message x
uniquely, but instead may recover a short list of possible messages which includes x. One important
reason to study list decoding is that Alice and Bob can handle much more error in this setting than
in the standard setting. We focus on the challenge of designing codes C which allow for communi-
cation even in the presence of extreme noise. Given an amount of noise, we aim to minimize the
amount of redundancy that Alice and Bob must use. We measure the redundancy of the code C
by the rate of C: if Alice wishes to send a message of length k, and actually ends up sending a
codeword of length n, the rate is defined to be the ratio k/n. Thus, for a given amount of noise,
we seek to maximize the rate of the code.

The state of the list decoding literature is very interesting. Generally speaking, we have three
ways of obtaining (guarantees about) list-decodable codes.

1. The first tool is a classical result called the Johnson bound, which is a combinatorial statement.
The Johnson bound gives guarantees about the list-decodability of a code given its distance (a
combinatorial property of the code to which we will return later). However, while the Johnson
bound is the strongest statement possible using distance alone, there are codes which beat
the guarantees of the Johnson bound.

2. A second approach comes from random codes. As we will see, a completely random subset
C ⊂ Fnq is, with high probability, optimal for the list decoding problem. In particular, the
guarantees for such a code go beyond the Johnson bound, and meet the information-theoretic
limit for this problem. This is well known and in some sense not very interesting; in coding
theory, it is often the case that a completely random code attains near-optimal combinatorial
bounds. A more interesting direction is structured ensembles of random codes. For example,
we may consider a code selected uniformly at random from a collection of “nice” codes.
Although a few pathological cases may make it impossible to say “all “nice” codes have
good list-decodability properties,” perhaps it is still possible to say “most “nice” codes have
good list-decodability properties.” This has turned out to be surprisingly difficult. A natural
starting point is random linear codes; that is, codes C which are a random linear subspace of
Fnq . This simple case—which is much less random than a general random code—is already
interesting (and nontrivial). It was asked by Elias [28] in 1991 whether random linear codes
were as list-decodable as general random codes, and to date there has been a great deal of
work on this [20, 44, 45, 49, 95]. Other possible “nice” families include certain ensembles of
Reed-Solomon codes, which are a well-studied family of codes based on polynomials over finite
fields.

3. In the past two decades, there has been a great deal of interest in explicit constructions of
list-decodable codes, especially those which admit efficient encoding and decoding algorithms.
This literature began in the late 1990’s, with the work of Guruswami and Sudan [57,101], who
showed how to efficiently list-decode Reed-Solomon codes up to the Johnson bound. Their
work sparked a search for efficiently encodable and decodable codes which are list-decodable
beyond the Johnson bound [23,48,51,62,63,78,87], and also a line of work trying to establish
whether Reed-Solomon codes themselves might do the trick [12,50,94].

One interesting feature of the landscape sketched above is that, other than general random codes,
the only optimally list-decodable codes we know about are highly structured—that is, they fall under
Category 3. We start our investigation in this dissertation in Categories 1 and 2; surprisingly, our
approach will also make some progress on Category 3.

Contributions in list decoding.

This dissertation makes the following contributions in list decoding.
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• List decodability of random linear codes. We show that random linear codes, over
constant-sized alphabets, are optimally list-decodable. This answers a question, asked by
Elias [28], which had been open for over 20 years at the time of this writing. As an added
benefit, our proof is quite simple. For large, non-constant alphabets, we can show (using a
more complex argument) that random linear codes are nearly optimally list-decodable (up to
logarithmic factors in the rate).

• List decodability of Reed-Solomon codes. We show that there do exist Reed-Solomon
codes which are list-decodable beyond the Johnson bound. This answers a question first asked
by Guruswami and Sudan over 15 years ago [56]—see [43,94,108] for explicit formulations of
this problem. To the best of our knowledge, it was not known which way this question would
go, and in fact there has been significant effort devoted to showing that such codes do not
exist [12,19,50].

• General statements about random families of codes. In fact, the earlier two bullet
points are corollaries of two very general theorems (one for small alphabets and one for large
alphabets), which provides a way to obtain (nearly) optimally list-decodable codes from any
code with good structural properties. This yields general statements which fall somewhere
between Categories 1 and 2 above. For example, it is not true that any code with good
distance is optimally list-decodable—the Johnson bound is tight in this respect—but we can
show that “most” (suitable transformations of) codes with good distance are optimally list
decodable.

• A few more applications. While random linear codes and Reed-Solomon codes are the
headline applications of the machinery mentioned above, we show how it can be used to obtain
other useful constructions. Examples include linear-time encodable, optimally list-decodable,
binary codes; optimally list-decodable variants on Reed-Muller codes; and results about the
list-decodability of randomly folded codes. Along the way, we also prove several “average-
radius” variants of the Johnson bound, which appear to be folklore but are probably worth
having written down.

1.1.2 Local decoding

In the second part of this thesis, we will consider locally decodable codes. In the local decoding
setup, again Bob’s job is again easier: he need only recover a single bit of Alice’s message. The
catch is that Alice doesn’t know before she encodes her message which bit Bob will be interested
in. Further, we insist that Bob work in sublinear time. In particular, he doesn’t have time to look
at the entire codeword c; his decoding is “local” in the sense that he needs to look at only a few
bits of the codeword. Locally decodable codes have been lurking implicitly in coding theory [89]
since the 1950’s and in theoretical computer science [5, 16, 33, 34, 36, 82, 88] since the late 1980’s,
but the first explicit definition did not appear until later [75]. The reader is referred to [114] for an
excellent survey.

The important trade-off in this setting is between the locality of the code—how many bits Bob
must look at to recover a single bit of Alice’s message—and the rate of the code. Generally speaking,
there are two parameter regimes, in which very different approaches have been considered.

1. Small locality, small rate. In the first parameter regime, the locality is very small: Bob may
look at only two or three bits. However, the rate is quite bad: Alice must send nearly 2k bits to
convey a message of length k. Approaches in this regime tend to be combinatorial [25,26,113].
At a high level, the arguments follow the same outline: show that Bob can succeed if there
are no errors, and then argue that with enough randomization his queries will, with high
probability, avoid any errors that do occur.

2. Large locality, high rate. In the second parameter regime, the rate of the code approaches
1 (so n is only very slightly larger than k), but the locality grows with n, perhaps like n0.001.
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Codes in this regime have only been found very recently. Other than the work presented in this
thesis, there are currently two families of codes known in this parameter regime, multiplicity
codes [79] and lifted codes [41]. The arguments here are quite different that those in the small-
locality regime. First, they are algebraic, rather than combinatorial. Second, they follow a
different outline: when Bob considers ω(1) bits, it is no longer enough for him to succeed in
the error-free setting. Indeed, he looks at so much of the codeword that there is no way he
can avoid errors entirely, no matter how cleverly he randomizes.

Contributions in local decoding

In this dissertation, we make the following contributions in local decoding.

• Locally decodable codes in the high-rate regime. We will give the third known family
in the large-locality, high-rate regime. Our codes will actually be locally correctible, which
is a slightly stronger notion. As mentioned above, there are only two other constructions of
such codes known. In fact, it was a conjecture of Dvir that such codes did not exist [21].
One of the main contributions of this work is that our construction is quite different from
multiplicity codes and lifted codes—in fact, our style of argument follows the probabilistic and
combinatorial arguments from the small-error, small-rate regime. Our work can be viewed as
a way to port the small-locality line of reasoning to the high-rate setting.

• Sublinear-time decoding of expander codes. The construction mentioned above is in
fact not new: we use a family of codes (called Tanner codes or expander codes) which have
been around in some form or another since the 1980’s, with roots going back to the 1960’s.
Thus, our results also give sublinear-time decoding algorithms for this well-studied family
of codes. As far as we can tell, it was not suspected that these codes might provide the
sought-after locality.

1.2 Dissertation outline

In Chapter 2, we will set up the formal notation and prove some simple lemmata1 that we’ll
need. We will also prove a couple of (standard) theorems and work out a few computations, to set
the stage for our results later. In Chapter 3 we present some results about the list-decodability of
certain ensembles of binary codes; as a corollary, we will answer a question of [28], and show that
random linear codes are (with high probability) as list-decodable as random codes. The results in
Chapter 3 are based on the paper [111]. In Chapter 4, we will extend the arguments of Chapter 3
to deal with larger alphabet sizes. This will involve a fair amount of work and is the most technical
part of the dissertation. As a corollary, we will show that there exist Reed-Solomon codes which are
nearly optimally list-decodable; this answers a question posed by Guruswami and Sudan in [56].
The results in Chapter 4 are based on the paper [96], which is joint work with Atri Rudra. Given
that the punchlines of Chapters 3 and 4 are corollaries of more general phenomena, it is natural to
ask how far you can push this technique; Chapter 5 explores this question. In Chapter 5 we state
a very general theorem about random operations of codes, and give recipes for obtaining optimally
list-decodable codes. The results in Chapter 5 are joint work with Atri Rudra. Finally, in Chapter 6
we mix it up a bit and turn our attention to locally decodable codes, and we show that expander
codes are locally decodabable in the high-rate regime. The results in Chapter 6 are based on the
paper [68], which is joint work with Brett Hemenway and Rafail Ostrovsky.

1I find “lemmata” enormously more fun to say than “lemmas.”



CHAPTER 2

Set up and Preliminaries

2.1 Basic coding theory: background and definitions

We return to Alice and Bob. Formally, Alice and Bob employ an error correcting code, which is
a subset C ⊂ Fnq , for a finite field1 Fq. The size q of the field is called the alphabet size. The elements
c ∈ C are called codewords. The codewords then have length n, which is called the block length of C.
For every message x ∈ Fkq of length k, there is an encoding function which maps x to c = C(x) ∈ C.
As we just did, we will occasionally overload notation and write C : Fkq → Fnq for a function whose

image is the set C ⊂ Fnq . The size of the code is then |C| = qk. In the Alice-and-Bob scenario above,
Alice will choose a codeword to send to Bob; if Bob can correctly identify the codeword, he will
have identified the message Alice wishes to send. The general setup is shown in Figure 2.1.

Alphabet size and error model. The alphabet size q and the way in which errors may
be introduced are important and linked parameters. In our error model, a symbol ci ∈ Fq of a
codeword c ∈ Fnq , is the smallest unit of communication that can be corrupted. Here, corrupted
means that the symbol may be changed to another element of Fq. There are many reasonable
models of corruption. For example, symbols could be changed (or not) independently at random;
or only certain error patterns could be possible. In this work, we exclusively consider the most
conservative, worst-case model. That is, up to ρn symbols may be corrupted, for some parameter
ρ ∈ [0, 1], and these corruptions may occur in any locations. When a symbol is corrupted, it can be
changed to any other symbol in Fq. We imagine that these corruptions are adversarial: someone
who knows Alice and Bob’s strategy is deliberately trying to mess them up.2 The fraction ρ of
errors that this adversary is allowed to introduce is called the error rate.

The study of error correcting codes was initiated in the seminal paper of Shannon [97]. Shannon
considered a probabilistic error model; the adversarial model that we study here was indroduced
by Hamming [66], and is often referred to as the “Hamming model.”

Distance. In the Hamming model, Alice and Bob’s success (combinatorially speaking) is de-
termined by the distance of the code:

δ(C) := min
c,c′∈C

δ(c, c′),

where δ(c, c′) is the relative Hamming distance between c and c′:

δ(c, c′) :=
1

n

n∑
i=1

1ci 6=c′i .

1While it is not in general necessary to assume that the alphabet has any sort of algebraic structure, for this
thesis it will be convenient to consider codes over finite fields.

2Again, who this bad guy is and why he’s so out to get Alice and Bob is beyond the scope of this dissertation;
suffice it to say that this worst-case model is not only nice and conservative in the communication setting, but it also
turns out to be essential for applications in complexity theory and other areas.

5
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Alice Bob

corrupted codeword w ∈ Fnq

message x ∈ Fkq

codeword C(x) ∈ Fnq

x?

Noisy channel:
adversarially corrupts ρn

symbols of c

Figure 2.1: The set-up for error correcting codes: Alice-and-Bob version.

If the distance δ(C) is larger than 2ρ, then for any w ∈ Fnq Bob may receive, there is at most one
c ∈ C so that δ(c, w) < ρ. Thus, no matter what errors are introduced, Bob can uniquely determine
which codeword c was sent. On the other hand, if the distance is smaller than 2ρ, there is always
an error pattern which will trip up Alice and Bob. Thus, in the Hamming model, the distance of
the code characterizes the acceptable (to Alice and Bob) error rates ρ. This combinatorial view of
error correcting codes is shown in Figure 2.2.

Rate. Another important quantity which measures the effectiveness of Alice and Bob’s com-
munication is the ratio of the length k of Alice’s message (the number of symbols she wants to
send) to the length n of the codeword (the number of symbols she actually sends). This quantity
R = k/n is called the rate of the code C. Since there are qk possible messages of length k, the code
C has size qk; thus, the rate is given by

R =
logq(|C|)

n
.

Note that the rate is always between 0 and 1.

Families and ensembles of codes. We consider Alice and Bob’s situation as n becomes very
large. To that end, we will consider families of codes. A family C = C1, C2, C3, . . . is a sequence of
codes, so that the length of Ci is ni, and ni ↗ ∞. We can define distance and rate for families as
we did with codes: if the rate of Ci is Ri and the distance is δi, the rate R and distance δ of C are
given by

R = lim inf
i

Ri and δ = lim inf
i

δi.

Above, we have used the same notation (C) for a family of codes as we used for a particular code;
this will be the first in a long line of notational abuses on this topic. In particular, we will henceforth
refer to a family of codes as simply a “code,” and we will refer to its rate and distance in terms of
the length n of the code. We will also invoke standard asymptotic notation (e.g., R = 1 − o(1) to
indicate that the rate approaches 1 as n tends to infinity) to describe the behavior of codes as n
becomes large. For reference, we define this notation in Section 2.5.

We also consider (families of) random codes. That is, we fix a distribution D on subsets C of
Fnq , and we imagine that C is a code drawn from D. In this case, we may be interested in, say,
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Fnq

c ∈ C

δ(C)
ρ

w ∈ Fnqz ∈ Fnq

Figure 2.2: The set-up for error correcting codes: Combinatorial version. The black dots represent
the elements of the code C, with distance δ(C). If w ∈ Fnq differs from a codeword c ∈ C in at most
ρn places, and ρ ≤ δ/2, it is possible to uniquely determine c from w. On the other hand, if z ∈ Fnq
differs from c ∈ C in more than δ/2 places, it may not be possible to determine c from z.

bounding the rate and distance with high probability. As before, we will be interested in the case
that n gets large, and we will have in mind a sequence of distributions D1,D2, . . ., so that Di is a
distribution on subsets of Fniq , for an infinite family of increasing ni. We will sometimes call such
a family of random codes an ensemble of codes.

2.1.1 The rate-distance trade-off: some basic bounds

The fundamental problem in coding theory is understanding the trade-off between distance and
rate. The larger the distance, the larger the error rate can be. The larger the rate, the more
information Alice can send to Bob. This trade-off has been studied since the beginning of time—
that is, since around 1950—beginning with the work of Hamming [66]. Since then, the literature
has grown far too much to be completely surveyed here. See [54, 84] for an introduction to coding
theory. In order to get a feel for the types of rate-distance trade-offs we can hope for, we mention
a few classical results below.

We start with the Singleton bound, which states that any code C ∈ Fnq with distance δ = δ(C)
must have rate at most

(2.1) R ≤ 1− δ + 1/n.

To see this, consider the projection of C onto the first (1−δ)n+1 coordinates of Fnq . This projection
is injective, because by definition, no two codewords agree in more than (1 − δ)n symbols. Thus,
we have |C| ≤ q(1−δ)n+1, which implies the bound.

Sphere-packing arguments can also be used to get a handle on how large (or small) a code C
with distance δ can (or must) be. Recall that we are working over an alphabet of size q, and for
z ∈ Fnq , define the (q-ary) Hamming ball of radius ρ about z, denoted Bq(z, ρ) ⊂ Fnq , by

Bq(z, ρ) =
{
x ∈ Fnq : δ(z, x) ≤ ρ

}
.

Suppose that C is a maximal code with distance δ. How big can C be? The balls Bq(c, δ/2) for
c ∈ C are all disjoint, and all contained in Fnq , so we must have 3

|Fnq | ≥
∑
c∈C
|Bq(c, δ/2)| = |C||Bq(0, δ/2)|.

3Notice that for any c, |Bq(c, δ/2)| = |Bq(0, δ/2)|, which follows from the fact that the map x 7→ x − c is an
automorphism of Fn

q which preserves Hamming distance.
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On the other hand, since C is maximal, Fnq is covered by the union of Bq(c, δ) for c ∈ C. Thus,

|Fnq | ≤

∣∣∣∣∣⋃
c∈C

Bq(c, δ)

∣∣∣∣∣ ≤∑
c∈C
|Bq(c, δ)| = |C||Bq(0, δ)|.

Putting these together, we conclude that

(2.2)
qn

|Bq(0, δ)|
≤ |C| ≤ qn

|Bq(0, δ/2)|
.

The lower bound on C is known as the Gilbert-Varshamov (GV) bound. The upper bound is called
the Hamming bound. To understand these bounds, it is helpful to get an idea of the size of the
Hamming ball Bq(0, δ). We can write

|Bq(0, δ)| =
bnδc∑
j=1

(
n

j

)
(q − 1)j ,

although perhaps that’s not very illuminating. One way to get good intuition for |Bq(0, δ)| is
through the q-ary entropy function Hq. We define

(2.3) Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

The q-ary entropy function is a generalization of the standard (binary) entropy. It is plotted in
Figure 2.3, and we will return to its behavior in much more detail below. It turns out that Hq(δ)
nicely characterizes the size of Hamming balls over Fq. Indeed, (see [84] for the computation), for
any δ ∈ (0, 1− 1/q) and for sufficiently large n,

(2.4) qn(Hq(δ)−o(1)) ≤ |Bq(0, δ)| ≤ qnHq(δ).

Combining (2.2) and the above, we see that the the rate R = logq(|C|)/n of a maximal code C of
distance δ is bounded by

(2.5) 1−Hq(δ)− o(1) ≤ R ≤ 1−Hq(δ/2).

Some useful facts about Hq(x). To understand Equation (2.5), we expand a bit on the
function Hq(δ). Shown in Figure 2.3, the function Hq(x) attains its maximum (which is 1) at
1 − 1/q. It will be useful to investigate its behavior near this point. Very near to 1 − 1/q, say at
1− 1/q − ε for ε� 1/q, the behavior of Hq(x) is roughly quadratic in ε; for slightly larger ε, it is
roughly linear. To be more precise, consider the series expansion of Hq(1− 1/q− ε) near ε = 0. We
have

(2.6) Hq(1− 1/q − ε) = 1−
(

q2

2(q − 1) log(q)

)
ε2 +Oq(ε

3),

which describes the behavior of Hq for constant q and ε → 0. On the other hand, expanding
Hq(1− 1/q − ε) near q =∞, we have

(2.7) Hq(1− 1/q − ε) = 1− 1/q − ε− H2(ε)

log2(q)
− oε(1/q) = 1− ε+Oε(1/ log(q)),

which describes the behavior of Hq for constant ε and growing q. In chapters 4 and 5, we will
be interested in situations where both ε → 0 and q → ∞ at the same time. In this case, the
asymptotics of Hq(1− 1/q − ε) can get a little hairy, but the following is true:

(2.8) Hq(1− 1/q − ε) =


1−Θ

(
qε2

log(q)

)
q = O(1/ε) (“small” q)

1−Θ(ε) q = Ω(ε−c) for some constant c > 1 (“large” q)

1− ε(1− o(1)) q = ε−ω(1) (“very large” q)
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Figure 2.3: The q-ary entropy function Hq(x).

We will informally use the labels “small q” and “large q” to refer to the parameter regimes above.
These regimes do not capture everything—we may have q = log(1/ε)/ε, for example—but they are
enough intuition for our purposes.

Let us consider the take-away from these calculations, combined with (2.5), which said that the
rate R of the largest code of distance δ obeys

1−Hq(δ)− o(1) ≤ R ≤ 1−Hq(δ/2).

The first inequality (the Gilbert-Varshamov bound) then implies that there are codes with distance
δ = 1 − 1/q − ε and rate approaching ε2 (small q) or ε (large q). On the other hand, the second
inequality (the Hamming bound) indicates that perhaps we can do better. For large q, it is known
that in fact we can. For binary codes, where q = 2, it is not known whether one can do better than
the Gilbert-Varshamov bound.

Pinning down the best possible rate-distance trade-off is still an open question, and there are
tighter bounds than those presented here. However, the bounds given above will be enough intuition
for the work in this thesis. In our work, we will study several classical ensembles of codes, whose
rates and distances are well-understood (and generally speaking match the Gilbert-Varshamov
bound), and prove new results about their capabilities. We introduce some of these families in the
next section.

2.1.2 Examples of codes

Most of the codes in this dissertation are linear codes, which are codes C so that C forms a linear
subspace over Fq. In this case, the message length k is the dimension of the subspace, and this is
called the dimension of the code; as before the rate is R = k/n. We may write a linear code C as

C =
{
xTG : x ∈ Fkq

}
,

where G ∈ Fk×nq is a matrix4 of rank k over Fq. We refer to G as a generator matrix for C. We
may also write a linear code C as

C =
{
y ∈ Fnq : Hy = 0

}
,

4In coding theory, one generally writes G as a short fat matrix and multiplies messages as row vectors on the left.
When in Rome...
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for some matrix5 H ∈ F(n−k)×n
q of rank n− k. We refer to H as a parity check matrix for C. Notice

that if G is a generator matrix for C and H is a parity-check matrix for C, then HGT = 0: H spans
the kernel of G.

In Chapters 3 and 4, we study (uniformly) random linear codes. A uniformly random linear
code C of rate R is just a uniformly random linear subspace of Fnq of dimension k = Rn. It will be
convenient to also consider the distribution on linear codes that arises from choosing a generator
matrix G uniformly at random from Fk×nq . These are slightly different distributions, because a
matrix G drawn at random may not have full rank. However, for the parameter values we are
interested in, these distributions are very similar. We will abuse language and use “uniformly
random linear code” to refer to both of these distributions. When it comes time to make precise
statements, we will be more clear about which we mean.

Linear codes have a lot of structure. If Alice has her hands on G, she may encode a message
x ∈ Fkq as xTG ∈ C reasonably efficiently. If Bob has his hands on G, he may test quickly whether
or not z ∈ Fnq is a codeword in C, and if it is, he may quickly recover the corresponding message
x. Linear codes obey a lot of useful symmetries: for example, the distance of a linear code is same
as the distance of any codeword to the all-zero codeword. We define here a few linear codes which
will be especially useful to us.

Reed-Solomon codes

The work in Chapter 4 is motivated by Reed-Solomon codes. Reed-Solomon codes [90], which
are based on polynomials over finite fields, are one of the most-studied families in coding theory.
They are prevalent in practice, showing up everywhere from storage in CD-ROMs6 to QR codes for
smartphones7 to schemes for high-thoughput screening of DNA [106]. See [110] for more discussion
of the many applications of Reed-Solomon codes.

Definition 2.1. The Reed-Solomon code of degree k − 1 and length n with evaluation points
α1, . . . , αn ∈ Fq is

RSq(k, n) =
{

(f(α1), . . . , f(αn)) ∈ Fnq : f ∈ Fq[x],deg(f) ≤ k − 1
}
.

Notice that the definition of Reed-Solomon codes implies that the alphabet size q must be large;
indeed, it must be larger than n. In particular, when we consider the family of Reed-Solomon codes
and let n go to infinity, q must also grow to infinity.

One reason that Reed-Solomon codes are so prevalent is because they have the optimal rate-
distance trade-off. To see this, we compute the rate and distance below:

Distance. The distance of RSq(k, n) is exactly (k− 1)/n. Indeed, for any two polynomials f, g
of degree at most k − 1, the number of α ∈ Fq so that f(α) = g(α) is at most k − 1, the number
of roots of f − g. Conversely, for any set of evaluation points, the distance between the codewords
corresponding to f(x) = 0 and g(x) = (x− α1)(x− α2) · · · (x− αk−1) is precisely (k − 1)/n.

Rate. The rate of RSq(k, n) is exactly k/n; this follows from the fact that the generator matrix
for RSq(k, n), given by 

1 1 1 · · · 1
α1 α2 α3 · · · αn
α2

1 α2
2 α2

3 · · · α2
n

...
...

...
...

αk1 αk2 αk3 · · · αkn


has full rank.

5The parity-check matrix is multiplied by a column vector on the right—all is right with the world.
6too old-fashioned?
7that’s better
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Thus, a Reed-Solomon code with distance δ has rate R = k/n = 1− δ + 1/n, exactly matching
the Singleton bound. It also matches the “big-q” version of the GV bound: a Reed-Solomon code
of distance δ = 1− 1/q − ε = 1− ε− o(1) has rate

R = 1− δ − o(1) = ε− o(1).

Above, we imagine that ε is a small constant, and we recall that 1/q = o(1), as q > n for Reed-
Solomon codes is not constant.

Expander codes

In Chapter 6, we will study a family of linear codes based on expander graphs. These codes,
called Tanner codes, are formed from d-regular bipartite graphs G = (U, V,E), and an inner code
C0 ⊂ Fdq . The idea of using bipartite graphs to define linear codes goes back to Gallager [32] in the
1960’s; the version we will use is due to Tanner [105] and to Sipser and Spielman [98]. In these
variants, the graph G and the inner code C0 are used to define a Tanner code C = C(G, C0) ⊂ FNdq ;
here, N = |V | = |U | is the number of vertices on each side of G. Thus, the length of C is n = Nd,
which is the number of edges in G.

A codeword c ∈ C will be interpreted as a labeling of the edges of G. For a vertex u, we will use
Γ(u) to denote the edges adjacent to u (so, Γ(u) ⊂ E has size d). We will fix an ordering on these
edges, and write Γ(u) = {Γ1(u),Γ2(u), . . . ,Γd(u)}.

Definition 2.2. Let G be a d-regular bipartite graph, and let C0 ∈ Fdq . With the notation above,
the Tanner code C = C(G, C0) is defined by

C =
{
c ∈ FNdq : ∀u ∈ U ∪ V, (cΓ1(u), cΓ2(u), . . . , cΓd(u)) ∈ C0

}
.

Above, we index the coordinates of c ∈ C by the edges of G, and use ce to denote the e-th coordinate.

A picture of this construction is shown in Figure 2.4. As suggested above, we will choose the
graph G to be an expander graph. When the underlying graph G is an expander graph, then it
turns out [98] that the code C can be encoded and decoded extremely quickly, in time linear in n.
In Chapter 6, we will give algorithms for decoding these codes in sublinear time. We will defer the
definition of expander graphs until they are needed in Chapter 6. For now, we will simply observe
some facts about the rate of C when C0 is linear, for arbitrary bipartite graphs G.

It is not immediately obvious that the Tanner code C we just defined is non-empty; why should
there be any labeling of the edges that are consistent with C0? If C0 is linear, we can answer this
questions by counting linear constraints. Indeed, if C0 is a linear code of rate R0, then it is defined by
d(1−R0) linear constraints, and by definition C is a linear code defined by 2N(d(1−R0)) (possibly
redundant) linear constraints, d(1−R0) constraints for each of the 2N vertices. In particular, the
rate of C is at least

R(C) ≥ Nd− 2N(d(1−R0))

Nd
= 2R0 − 1.

Thus, as long as R0 > 1/2, C has positive rate and we have done something nontrivial.

With a few examples of codes under our belts, we will return to the slog of definitions, and
introduce two variants of the general coding theory set-up.

2.2 List-Decodable codes

Alice and Bob will fail when the error rate exceeds half of the minimum distance of the code.
Indeed, consider the point z in Figure 2.2; if there are two codewords c, c′ ∈ C with δ(c, c′) < 2ρ,
then there is always some z ∈ Fnq with δ(c, z), δ(c′, z) < ρ. This is perhaps disappointing: what if
the error rate is bigger than 1/2? In some applications, ρ may be nearly 1. Is there anything to be
done in this case? The answer is yes: Alice and Bob can use list decoding.
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U V

u = Γ3(v)

Γ2(v)

Γ1(v)

Γ3(u) = v

Γ2(u)

Γ1(u)

These symbols
form a codeword in

C0
So do these

Figure 2.4: A codeword in an Tanner code C is a labeling of the edges of a bipartite graph G. A
labeling c is in C if at every vertex u ∈ U and v ∈ V , the labels on the edges coming out of u (and
v) form a codeword in an inner code C0.
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In list decoding, Bob is allowed to return a short list of messages x1, . . . , xL ∈ Fkq , as long as he
can guarantee that Alice’s message appears somewhere in the list. Formally, we have the following
definition.

Definition 2.3. A code C ⊂ Fnq is (ρ, L)-list decodable, if for every z ∈ Fnq ,

| {c ∈ C : δ(z, c) ≤ ρ} | ≤ L.

We refer to the largest ρ so that Definition 2.3 holds as the list-decoding radius of C for list
size L. For our purposes, we will usually hope that L is “reasonably small,” which might mean
“polynomial in a few parameters of interest.” When L is clear, we will sometimes just refer to this ρ
as the list-decoding radius of C. The Alice-and-Bob setup is shown in Figure 2.5; the combinatorial
interpretation is shown in Figure 2.6.

Alice Bob

corrupted codeword w ∈ Fnq

message x ∈ Fkq

codeword C(x) ∈ Fnq

x ∈ {x1, x2, . . . , xL} ?

Noisy channel:
adversarially corrupts ρn

symbols of c

Figure 2.5: The set-up for list-decodable codes: Alice-and-Bob version.

Fnq

c ∈ C

δ(C)

z ∈ Fnq

ρ

Figure 2.6: The set-up for list-decodable codes, from a combinatorial perspective. Even though the
is not a unique codeword c ∈ C which are within ρ of z, there are not that many. The code pictured
above is (ρ, 4)-list-decodable.

List decoding was introduced, independently, by Elias and Wozencraft [27,112] in the late 1950’s.
Since then, it has found uses throughout theoretical computer science, not only in communication,
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but also in complexity theory and pseudorandomness. For example,8 in complexity theory list
decodable codes have been used (often implicitly) in hardness amplification [103], constructing
hardcore predicates from one-way functions [36], and in average-case hardness of the permanent [17,
37]. In pseudorandomness, list-decodable codes are intimately connected to pseudorandom gadgets
like extractors [60], expanders, condensers, and so on [107]. We refer the reader to the excellent
surveys of Sudan [102] and Vadhan [108], as well as to Guruswami’s thesis [43], for the many
applications of list decodability.

To get a feel for what can and cannot be done in list decoding, we will survey some results and
do a few computations below.

2.2.1 List-decoding radius vs. rate

The motivation for list decoding is to handle extremely large error rates; how large is large?
First, it is not hard to see that ρ > 1 − 1/q is just too large. Indeed, in expectation a random
received word y ∈ Fnq will agree with a given codeword c in a 1/q-fraction of the places, and so we
expect for y to be this close to a large number of c ∈ C. The remarkable fact is that this is the only
barrier: Alice and Bob can handle any ρ < 1− 1/q. The following theorem, called the list decoding
capacity theorem, pins down the rate we can hope for for any ρ < 1− 1/q.

Theorem 2.4 (List decoding capacity theorem, [28, 116]). Fix q ≥ 2 and let ρ ∈ (1, 1/q). Then
the following are true.

(1) For any code C ⊂ Fnq which is (ρ, L)-list decodable, with rate R = 1−Hq(ρ)+γ for any γ > 0,

L ≥ qn(γ−o(1)).

(2) On the other hand, for all L ≥ 1, there is a (ρ, L)-list-decodable code with rate

R ≤ 1−Hq(ρ)− 1/L.

The proof of Theorem 2.4 is relevant for some of the results in this dissertation, so we include
it here.

Proof. For Item (1), consider picking a random received word z ∈ Fn, and fix c ∈ C. We have

P {c ∈ Bq(z, ρ)} =
|Bq(c, ρ)|

qn
≥ q−n(1−Hq(ρ)−o(1)),

using (2.4). Then, in expectation over z,

E [|Bq(z, ρ) ∩ C|] ≥ qRnq−n(1−H1(ρ)−o(1)) = qn(ε−o(1)).

In particular, there is some z so that the number of codewords within ρ of z is exponentially large
in n, the block length of C.

For Item (2), we again will use the probabilistic method. Fix R ≤ 1 − Hq(ρ) − 1/L, and let
k ≤ Rn be an integer. Choose C =

{
C(x) : x ∈ Fkq

}
⊂ Fnq , so that C(x) is chosen uniformly at

random, independently for the different x ∈ Fkq . Now, for a fixed z ∈ Fnq and a fixed set of messages

Λ ⊂ Fkq , with |Λ| = L+ 1, consider the event Ez,Λ that

C(x) ∈ Bq(z, ρ) ∀x ∈ Λ

The probability of this event is

P {Ez,Λ} =
∏
x∈Λ

P {C(x) ∈ Bq(z, ρ)} ≤
(
|Bq(z, ρ)|

qn

)L+1

≤ q−n(L+1)(1−Hq(ρ)),

8for the reader already familiar with the lingo
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where in the first equality we have used independence, and in the last inequality we have again
used (2.4). Now, by the union bound, the probability that Ez,Λ occurs for any z,Λ is

P {∃z,Λ such that Ez,Λ} ≤ qn
(

qk

L+ 1

)
q−n(L+1)(1−Hq(ρ))

≤ qnqk(L+1)q−n(L+1)(1−Hq(ρ))

≤ qn(1+(1−Hq(ρ)−1/L)(L+1)−(L+1)(1−Hq(ρ)))

= q−n/L

< 1.

In particular, there exists a code C so that none of the events Ez,Λ occur. But if this is the case,
then by definition C is (ρ, L)-list-decodable.

Let us apply our intuition (2.8) about the behavior of Hq(1 − 1/q − ε) to the conclusions of
Theorem 2.4 in the parameter regime when ρ = 1− 1/q − ε:

Corollary 2.5. Suppose that C is (1− 1/q− ε, L)-list decodable with list size L polynomial in 1/ε.
Then the rate R of C must obey

R ≤ 1−Hq(1− 1/q − ε) ≤ min

{
ε,

qε2

log(q)

}
.

Corollary 2.5 is not the tightest statement we could make (in terms of the constants), but for
this thesis we care about the asymptotic dependence of ε and q, rather than the exact values of the
constants.

The “large-ρ” parameter regime

The take-away from Theorem 2.4 and Corollary 2.5 is that list decoding effectively doubles the
correctable fraction of errors. For any (nontrivial) code over an alphabet of size q, the distance

cannot be more than 1− 1/q, and so no more than a 1
2

(
1− 1

q

)
fraction of errors can be recovered

from uniquely. However, when the decoder may output a short list, there are codes which can
tolerate a 1 − 1

q − ε fraction of errors, for any ε > 0. This fact has been crucially exploited in
numerous applications of list decoding in theoretical computer science and in particular to the
complexity theoretic applications mentioned above. There are two important features of these
applications:

1. For complexity applications, it is necessary for the fraction of correctible errors to be arbitrar-
ily close to 1− 1

q . This is less important in the communication setting (where we might hope

ρ is close to 0), but for clarity of exposition we will stick with Alice and Bob: our motivation
is captured in Figure 2.7.

2. As we saw above, the optimal rate to correct 1− 1
q − ε fraction of errors is known, given by

R∗(q, ε) := 1−Hq(1− 1/q − ε),

and bounded by Corollary 2.5. However, for complexity applications it is often enough to
design a code with rate Ω(R∗(q, ε)) with the same error correction capability.9

We study list decoding in these parameter regimes. That is, we seek to correct a 1−1/q−ε fraction

of errors, with rate Ω̃(R∗(q, ε)) which may be suboptimal by multiplicative factors. The ultimate
goal is to get the correct dependence on ε and q.

9In fact in some applications even polynomial dependence on R∗(q, ε) is sufficient.
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ρ = δ/2

Bob

Unique decoding

ρ→ δ

Bob

List decoding

Figure 2.7: Moving from unique decoding to list decoding allows Alice and Bob to nearly double
the tolerable error rate, from ρ = δ/2 to ρ = δ. To illustrate this phenomenon, we include a picture
above of how happy this makes Bob.

The proof of (2) in Theorem 2.4 implies that a random code C is optimally list-decodable with
high probability. We digress for a moment to remark on the importance that independence played in
this proof: if the encodings C(x) were not independent, for different x, then a priori the probability
of the event Ez,Λ might be much larger, and the union bound would not go through. For example,
suppose that instead of taking C to be a random code, we considered a random linear code. That
is, choose a random matrix G ∈ Fn×kq , and set C(x) = Gx. Now it is no longer the case that the
encodings {C(x) : x ∈ Λ} are independent; in fact, since Gx + Gy = G(x + y), they are not even
3-wise independent. We may modify the approach of the proof above (following [116]) to work.

Proposition 2.6 ( [116]). Let q ≥ 2 and choose ρ ∈ (0, 1− 1/q). Let C be a random linear code of
rate R ≤ 1−Hq(ρ)− 1

dlogq(L+1)e . Then with high probability C is (ρ, L)-list-decodable.

Proof. We modify the proof of Theorem 2.4, part (2), above. As before, the plan will be to bound
P {Ez,Λ} and take a union bound. Any set Λ ⊂ Fkq of L+1 messages must contain at least logq(L+1)

linearly independent vectors: this follows because any subspace of Fkq of dimension t contains at

most qt messages. Now, for any set of linearly independent messages x ∈ Fkq , the corresponding
codewords C(x) = Gx ∈ Fnq are independent random variables. Thus, we may bound

P {Ez,Λ} ≤ (P {Gx ∈ Bq(z, ρ)})dlogq(L+1)e ≤ q−n(1−Hq(ρ))dlogq(L+1)e.

The proof proceeds by taking a union bound, as before.

We note that Proposition 2.6 is exponentially worse than part (2) of Theorem 2.4, in terms of
the list sizes. Indeed, when ρ = 1 − 1/q − ε, then in order to obtain the “correct” rate (as per

Corollary 2.5), we must set L = q1/ε or q1/ε2 , which is much larger than 1/poly(ε). It is a natural
question whether or not we can do better [28]. We will return to this question in Chapters 3 and
4, where we will answer it in the affirmative.

2.2.2 List-decoding radius vs. distance, and the Johnson bound

Above, we quantified the best trade-off we can hope for between the rate R of a code and its list-
decoding radius ρ. A related question is the trade-off between the distance δ and the list-decoding
radius ρ. We have already discussed the trade-off between δ and R, summarized by (2.5) and (2.8),
and this gives us an idea about what we might hope for for the trade-off between δ and ρ.
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Intuitively, it seems like good distance should be enough to imply a large list-decoding radius.
Indeed, in Figure 2.6, it seems reasonable that if all of the points of C are very spread out, there
should be no way to capture too many of them in a ball of radius ρ. What sort of trade-off
could we hope for? Suppose that C lies on the Gilbert-Varshamov bound (the first inequality in
(2.5)) and has distance δ; thus the rate is R = 1 −Hq(δ) − o(1). Then the list-decoding capacity
theorem (Theorem 2.4) indicates that we may hope to obtain nontrivial list-decoding guarantees
with the list-decoding radius ρ approaching the distance δ of the code. This quantitative intuition
might make us hope that any code with distance 1 − 1/q − Ω(ε) should have list-decoding radius
ρ = 1− 1/q − ε. Unfortuately, this is just too good be true.10 But there is some statement we can
make along these lines, known as the Johnson Bound.

Theorem 2.7 (Johnson bound, [72]). Let C ⊂ Fnq have distance δ, and let

ρ ≤ (1− 1/q)

(
1−

√
1− qδ

q − 1

)
=: Jq(δ).

Then C is (ρ, L)-list decodable, for L = qn2δ.

When δ = 1 − 1/q − ε2, then Jq(δ) is at least 1 − 1/q − ε. Thus, in our setting, the Johnson
bound states that any code with distance 1− 1/q − ε2 has list-decoding radius ρ ≥ 1− 1/q − ε.

Average-radius, average-distance Johnson bound

There are many proofs of the Johnson bound [1, 20, 28, 29, 38, 58, 59, 72, 73, 81]. We will give a
proof here, for q = 2 and d = 1/q − ε, which will be instructive in the future. This proof is similar
to (and inspired by) the proof in [20].

Theorem 2.8 (Average-distance, average-radius Johnson bound for q = 2). Let C ⊂ Fn2 be a binary
code. Then for any Λ ⊂ Fn2 with |Λ| = L, and for any z ∈ Fn2 ,

1

L

∑
x∈Λ

δ(C(x), z) ≥ 1

2

1−
√

1− 2

L2

∑
x 6=y∈Λ

δ(C(x), C(y))

 .

Proof. Let Φ ∈ (±1)n×2k be the matrix whose columns are indexed by x ∈ Fk2 , so that Φj,x =
(−1)C(x)j . Let ϕj denote the j-th column of Φ. Then

max
z

∑
x∈Λ

1− δ(C(x), z) =
1

n

n∑
j=1

max
b∈{0,1}

∑
x∈Λ

1C(x)j=α

=
1

n

n∑
j=1

max
α∈{0,1}

∑
x∈Λ

(−1)α(−1)C(x)j + 1

2

=
1

n

n∑
j=1

L+

n∑
j=1

|〈ϕj ,1Λ〉|


=

1

2

(
L+

1

n
‖Φ1Λ‖1

)
≤ 1

2

(
L+

1√
n
‖Φ1Λ‖2

)
,

10 Indeed, a random coding argument [38, Section 4.3] shows that there are (non-linear) q-ary codes of distance
1− 1/q− ε so that one can find a Hamming ball of radius 1− 1/q−Ω(

√
ε) which contains super-polynomially many

codewords. There are similar results for linear codes [42,55].
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using Cauchy-Schwarz in the final line. The claim then follows from the definition of Φ and the
fact that the (x, y)-entry of ΦTΦ is given by n(1− 2δ(C(x), C(y))) . Indeed, from this, we have

‖Φ1Λ‖22 = 1TΛΦTΦ1Λ = n
∑
x∈Λ

∑
y∈Λ

(1− 2δ(C(x), C(y))) ,

and plugging this in above and a little bit of rearrangement gives the statement.

Theorem 2.8 is stronger than Theorem 2.7 in two important ways; to understand them, we will
derive Theorem 2.7 from Theorem 2.8. First, notice that by the definition of list-decodability, C is
list-decodable if and only if, for all sets Λ ⊂ Fkq of size L + 1, and for all z ∈ Fnq , there is at least
one x ∈ Λ so that δ(C(x), z) ≥ ρ; in other words,

max
x∈Λ

δ(C(x), z) ≥ ρ.

Because the average is always smaller than the maximum, it suffices for

1

L

∑
x∈Λ

δ(C(x), z) ≥ ρ,

which is the form that the bound in Theorem 2.8 takes. Next, we observe that if the minimum
distance δ(C) of C is large, then the averaged distance term that shows up in Theorem 2.8 is also
large: ∑

x 6=y∈Λ

δ(C(x), C(y)) ≥ L(L− 1)δ(C).

Incorporating these observations into the statement of Theorem 2.8, we obtain that a binary
code C is (ρ, L)-list-decodable for all

ρ ≤ 1

2

(
1−

√
1− 2

(
1− 1

L+ 1

)
δ

)
.

Comparing this to J2(δ) = 1
2

(
1−
√

1− 2δ
)
, we find that for large L these are basically the same

in our parameter regime: if we are shooting for ρ = 1/2 − ε, we may take δ = 1/2 − O(ε2) and
L = O(1/ε2).

We call Theorem 2.8 a average-radius, average-distance Johnson bound. It is average-radius
because it shows that the averaged list-decoding radius

max
z,Λ

1

L

∑
x∈Λ

δ(C(x), z)

is large. It is average-distance because it depends on the averaged distances

1

L(L− 1)

∑
x6=y

δ(C(x), C(y)),

rather than the minimum distance. Many proofs of the Johnson bound can actually be tweaked to
imply average-radius or average-distance Johnson bounds. This fact appears to be folklore, but the
distinction is important to us. In Chapter 4 we will give a few more average-radius, average-distance
Johnson bounds, which hold for all q.

2.2.3 List decoding of Reed-Solomon codes and beyond

Reed-Solomon codes play an important role in the history of list decoding. Like any code with
good distance, the Johnson bound implies that Reed-Solomon codes have large list-decoding radius.
More precisely, Theorem 2.7, combined with our earlier calculations about Reed-Solomon codes,
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imply that a Reed-Solomon code of rate ε2 (over Fq for q � 1/ε2) has distance about 1 − ε2 and
hence list-decoding radius ρ = 1− ε. The remarkable thing about Reed-Solomon codes is that they
can be list-decoded to this radius efficiently.

The celebrated work of Guruswami and Sudan [57, 101], in the late 1990’s, gave an efficient
list-decoding algorithm for Reed-Solomon codes which works up to the Johnson bound. This was
the first non-trivial progress in efficiently list decoding codes up to radius 1− ε, and it made a big
impact. However, as we saw from the List Decoding Capacity Theorem (Theorem 2.4), this is not
the best rate/list-decoding-radius trade-off we could hope for. Ideally, if ρ = 1− ε, we ought to be
able to find codes of rate ε.

Eventually, the “Johnson bound barrier” was broken for efficiently decodable codes [87], and
now we know of several families of codes which are efficiently list decodable all the way to the
list-decoding capacity theorem [51, 62–64, 78]. For the most part, these codes are generalizations
of Reed-Solomon codes. However, no more progress was made on Reed-Solomon codes themselves,
except for a few negative results. Indeed, it has been conjectured that Reed-Solomon codes are
not list-decodable beyond the Johnson bound [19], and so significant effort has been put in to
proving this. So far, we know that if the evaluation points contain certain algebraic structure, then
indeed Reed-Solomon codes can’t be list-decoded, even combinatorially, much beyond the Johnson
bound [12]. Further, if we pass to a related problem, called list-recovery, then the analogue of the
Johnson bound is the right answer for Reed-Solomon codes [50]. Finally, it seems likely that, no
matter what the evaluation points, list-decoding Reed-Solomon codes much beyond the Johnson
bound will be computationally difficult [19], even if it is combinatorially possible.

We will return to this question later. One of the main contributions of Chapter 4 is that there
are Reed-Solomon codes which are list-decodable well beyond the Johnson bound, and nearly to
list-decoding capacity. In fact, we will show that most Reed-Solomon codes achieve this, in the
sense that choosing the evaluation points at random is a good bet.

2.2.4 Summary

To sum up, the state of (existential) knowledge about list-decodable codes, before the work in
this thesis, is as follows.

• Random codes are list-decodable to capacity. Other random ensembles of codes, even the
simple case of random linear codes, have proved difficult to analyze.

• The Johnson bound gives us a structural condition (distance) which implies good list-decodability,
but it does not (and cannot11) go as far as the lower bound imposed by the list-decoding ca-
pacity theorem.

• We know of a few, very specific, families of codes, based on Reed-Solomon codes, which are
list-decodable to capacity. These codes also are efficiently list-decodable.

• As for Reed-Solomon codes themselves, we know that some choices of evaluation points will
obstruct list-decoding to capacity.

There are some gaps and open questions in this landscape. We will return to these later in Chap-
ters 3, 4, and 5, where we will fill some gaps and answer some questions. For now, we will consider
the basics of list-decoding covered, and move on to locally decodable codes.

2.3 Locally Decodable codes

Suppose that Bob only wants to recover a single symbol of Alice’s message x. Of course, if Bob
is equipped to recover all of x, as he has been so far, he can do this easily. However, in order to
recover all of x, Bob must at least look at the entire codeword c = C(x), and in particular the time
he will take to do this is Ω(n). In local decoding, one wonders if Bob might do better.

11That is, there are codes whose distance and list-decoding radius match the Johnson bound, see [55]
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More precisely, the setup will be as follows. Alice will encode her message as c = C(x) ∈ Fnq , as
before. As before, an adversary will corrupt a ρ-fraction of the symbols of c, to create a corrupted
codeword w ∈ Fnq . Bob will be given query access to w. Now, the adversary additionally gives Bob
an index i ∈ {1, . . . , k}. Bob’s job will be to make Q� n queries to w, and from these queries he
must produce a guess of xi. It is not hard to see that Bob’s queries must be randomized: indeed,
because the adversary will know Bob’s stratregy, if Bob were to look at a deterministic set of Q� n
queries, then the adversary could simply corrupt every single query Bob observes. Thus, we will
demand that, for all i, he succeed with high probability. The setup is shown in Figure 2.8, and a
more formal definition is given below.

Remark 1. In locally decodable codes, the number of queries is generally denote by q. Of course, in
coding theory, it is often the case that q = |Fq| is the size of the alphabet. Resolving this notational
collision is one of the greatest open problems in local decoding. Not wanting to bite of more than
we can chew with this thesis, we will punt and denote the number of queries by Q.

Definition 2.9 (Locally Decodable Codes (LDCs)). Let C : Fkq → Fnq be a code. Then C is (Q, ρ)-
locally decodable with error probability η if there is a randomized algorithm ∆, so that for any
w ∈ Fnq with δ(w, C(x)) < ρ, for each i ∈ [k],

P {∆(w, i) = xi} ≥ 1− η,

and further ∆ accesses at most Q symbols of w. Here, the probability is taken over the internal
randomness of the decoding algorithm ∆.

In this dissertation, we will also be concerned with a slightly stronger notion, called a locally
correctable code (LCC). In this setup, Bob must be able to not only find every symbol of Alice’s
message x, but also of the codeword C(x).

Definition 2.10 (Locally Correctable Codes (LCCs)). Let C ⊂ Fnq be a code. Then C is (Q, ρ)-
locally correctable with error probability η if there is a randomized algorithm, ∆, so that for any
w ∈ Fnq with δ(w, C(x)) < ρ, for each j ∈ [n],

P {∆(w, j) = wj} ≥ 1− η,

and further ∆ accesses at most Q symbols of w. Here, the probability is taken over the internal
randomness of the decoding algorithm ∆.

A locally correctable linear code gives a locally decodable code—this follows from the fact that
we may always put the generator matrix in canonical form, so that the left-most k × k block is
the identity. In this view, the message itself appears as part of the codeword, and so the ability to
recover any symbol of the codeword is enough to recover any symbol of the message.

2.3.1 Two examples: Hadamard codes and Reed-Muller codes

It is worthwhile to consider two examples of locally decodable codes. The first example is the
(q-ary) Hadamard code.

Definition 2.11 (Hadamard code). For n = qk, the Hadamard code of length n encodes messages
in x ∈ Fkq by

C(x) = (〈ai, x〉)ni=1 ∈ Fnq ,

where ai ranges over all elements of Fkq .

In other words, the Hadamard code is the linear code whose generator matrix is the k×qk matrix
whose rows include every vector in Fkq . The rate of the Hadamard code is k/qk; it approaches 0
as k → ∞. However, the Hadamard code is (2, ρ)-locally correctable for any ρ < (1 − 1/q)/2.
Algorithm 1 shows how Bob may recover C(x)a for some a ∈ Fkq , by looking at only two entries of
a corrupted codeword w.
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Alice Bob

corrupted codeword w ∈ Fnq

Q queries

message x ∈ Fkq

codeword c = C(x) ∈ Fnq

xi?

Noisy channel:
adversarially corrupts ρn

symbols of c

Figure 2.8: The set-up for locally decodable codes. For each i ∈ {1, . . . , k}, Bob must be able to
guess xi with high probability over his choice of queries. The symbols are corrupted after C(x) is
encoded, but before Bob makes his queries.

Algorithm 1: Local correction algorithm for the Hadamard code

Input: Corrupted codeword w ∈ Fnq , index a ∈ Fkq .

Choose r ∈ Fkq uniformly at random.
Choose s = a− r.
Query ws and wr.
return ws + wr

Why does Algorithm 1 work? Suppose that Bob’s two queries ws and wr are correct. Then

ws = C(x)s = 〈x, s〉 and wr = C(x)r = 〈x, r〉 ,

and so the value returned by Algorithm 1 is

ws + wr = 〈x, s+ r〉 = 〈x, r + a− r〉 = 〈x, a〉 = C(x)a.

Thus, the algorithm works whenever these two symbols are not corrupted. While the two queries are
correlated, the marginals of each are uniformly random in Fkq . The probability that a random query
is corrupted is ρ, the fraction of corrupted symbols. Thus, by the union bound, the probability
(over the choice of r) that both queries are correct is

P {ws = C(s) and wr = C(r)} ≥ 1− 2ρ.

Thus, as long as ρ is small enough, Alice and Bob can succeed. In particular, if ρ < (1−1/q)/2, then
Alice and Bob are doing better than guessing, so we declare success. If a higher success probability
is required, Alice and Bob may do several independent repetitions of Algorithm 1 and take the
majority vote; this will allow them to get arbitrarily good success probability, at the cost of more
queries.

Our second example is the Reed-Muller code.

Definition 2.12 (Reed-Muller code). The q-ary m-variate Reed-Muller code of degree d < q − 1,
denoted RMq(d,m), is a linear code C ⊂ Fnq , where n = qm. The message length is k =

(
m+d
d

)
, and
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we regard each message f ∈ Fkq as a polynomial in Fq[x1, x2, . . . , xm] of degree at most d. Then the
encoding C(f) of f is all of the evaluations of f over Fmq :

C(f) = (f(x))x∈Fmq
.

Remark 2. Later on, we will consider Reed-Muller codes in a slightly different parameter regime
(which the reader may be more familiar with), where q = 2 and d ≥ q − 1 may be larger. We’ll see
below why we want the restriction d < q − 1 for locally decodable codes.

We note that Hadamard codes are thus just the k-variate Reed-Muller code of degree 1; Reed-
Muller codes can also be seen as a multivariate version of the Reed-Solomon codes we have already
encountered.

Algorithm 2: Local correction algorithm for Reed-Muller codes

Input: Corrupted codeword w ∈ Fnq , index a ∈ Fmq .
Choose r ∈ Fmq at random.
Let L = {a+ λr : λ ∈ Fq} ⊂ Fmq be the line through a and r.
Query wb for b ∈ L \ {a}.
Find a univariate polynomial g : Fq → Fq so that

g(λ) = w(a+λr)

for the most number of λ’s.
return g(0)

Algorithm 2 gives a local correction procedure for Reed-Muller codes; it requires a bit more
explanation than Algorithm 1. First, observe that Algorithm 2 makes Q = q − 1 queries, the
number of points on a line in Fmq (except for a itself). Second, the restriction of an m-variate
polynomial of degree at most d to a line is a univariate polynomial of degree at most d. Thus, the
queries {C(f)b : b ∈ L} form a corrupted codeword of the q-ary Reed-Solomon code of degree d.
We have seen that the distance of this code is 1− d/q; any two codewords disagree in at least q− d
places. Thus, if there are no more than (q−d)/2−1 corruptions in our q−1 queries, the polynomial
g in Algorithm 2 agrees with the restriction of f to L. In fact, one may find this polynomial g
efficiently. After g has been recovered, we have

g(0) = f(a+ 0 · r) = f(a) = C(f)a.

It remains to check when it’s the case that not too many of the queries are corrupted. As with
the Hadamard code, the queries of Algorithm 2 are correlated, but the marginals are uniformly
random. Thus, we expect a ρ-fraction of the symbols indexed by L to be corrupted. By Markov’s
inequality,

P
{

more than
q − d− 2

2
queries are corrupted

}
≤ 2ρ(q − 1)

q − d− 2
,

and so the probability of success is at least

P {algorithm 2 works } ≥ 1− 2ρ

1− d+1
q−1

.

This is better than 1/q whenever

ρ ≤ 1

2

(
1− d+ 2

q

)
.

There are many ways to pick parameters for Reed-Muller codes to make this algorithm work.
For illustration, consider m = 2 and d = q/2. Then the rate of the corresponding Reed-Mulller
code is

R =

(
m+d
d

)
qm

=

(
q/2+2

2

)
q2

=
1

8
+O(1/q).
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The query complexity is
Q = q − 1 =

√
n− 1.

We can make the rate better by choosing d larger; notice that we can never choose d ≥ q − 2, or
else the tolerable error rate ρ becomes 0, and so the rate can never become larger than 1/2.

2.3.2 Two parameter regimes

These two examples live on different sides of the spectrum: Hadamard codes have rate which
tends to zero exponentially quickly, but use only two queries. Reed-Muller codes (with parameter
settings like those above) have constant rate, approaching 1/2, but query complexity about

√
n. It

is natural to ask if one can do better in either regime: if we have constant query complexity, can
we have subexponential blowup in the length of the codeword? If we have query complexity that
scales like nε, can we have rate arbitrarily close to 1? The answer to both questions—both open
until recently—is yes. We briefly survey work in this direction below.

• Constant locality. It is known [77] that one cannot improve on the rate of the Hadamard
code if we require the query complexity to be 2. However, a great surprise of the past decade is
that there are 3-query LDC’s with n slightly subexponential in k [10,11,18,22,25,26,71,113].
These codes, called matching vector codes, have a strategy similar to the strategy we pursued
for Hadamard codes. That is, these codes have what we will call a smooth local reconstruction
algorithm. By this we mean an algorithm which for any symbol xi can make a few queries so
that (a) if all the queries are correct, it will correctly find xi, and (b) while the queries may
be correlated, the marginals are (close to) uniform. Then the same argument we used in the
Hadamard case goes through: by a union bound, with high probability none of the queries
are corrupted.

• Locality nε. As with the constant-query regime, the existence of locally decodable (or cor-
rectible) codes with rate approaching 1 for any nontrivial number of queries was an open
question until recently. In the past few years, there have been two such constructions, multi-
plicity codes [79], and lifted codes [41]. In this thesis, we will give a third example [68], which
is very different in flavor.

The codes in [41, 79] are based on polynomials over finite fields, and at a high level the
arguments are similar to the Reed-Muller argument we made above. One cannot hope to
argue that with high probability none of the queries are corrupted; indeed, if there are nε

queries then with very high probability about a ρ-fraction of them are corrupted. Instead, one
can set things up so that the queries themselves form some other code, like the Reed-Muller
queries formed a Reed-Solomon code.

Is there some way to turn a smooth local reconstruction algorithm into a locally decodable code
the large-locality regime? We will return to this question in Chapter 6, where we will show how to
make such an argument work. For now, we will momentarily leave the discrete world of finite fields
and go over some of the (continuous) probabilistic tools we’ll need.

2.4 Random tools

In this section, we briefly review some probability background that we will need for our analyses.

2.4.1 Gaussian random variables

A Gaussian (or normal) random variable g ∼ N(0, σ2) with variance σ2 has a probability density
function

f(t) =
1√

2πσ2
exp(−t2/2σ2),



24

f(x) = 1√
2π
e−x

2/2

Figure 2.9: The probability density function of a standard Gaussian random variable. It looks a
bit like a Brontosaurus.

which is shown in Figure 2.9. One fact which we will use repeatedly about Gaussians is that they
are very well concentrated. More precisely, the cumulative distribution function,

P {g > t} =
1√

2πσ2

∫ ∞
u=t

exp(−u2/2σ2) du

obeys the estimate

(2.9) P {g > t} ≤ σ

t
· 1√

2π
exp(−t2/2σ2)

for all t > 0. Indeed, because on the domain u ≥ t, (u/t) ≥ 1, we have

(2.10)
1√

2πσ2

∫ ∞
u=t

exp

(
−u2

2σ2

)
du ≤ 1√

2πσ2

∫ ∞
u=t

u

t
exp

(
−u2

2σ2

)
du =

σ

t
√

2π
exp

(
−t2

2σ2

)
.

Another very nice fact about Gaussian random variables is that they are stable: linear combi-
nations of Gaussian random variables are again Gaussian.

Fact 2.13. Let g1, . . . , gn be Gaussian random variables with variances σ2
1 , . . . , σ

2
n. Then the ran-

dom variable
∑
i aigi is again a Gaussian random variable, with variance

∑
a2
iσ

2
i .

2.4.2 Suprema of Gaussian processes

Several times in this thesis, we will encounter the problem of estimating something of the form

(2.11) w(T ) := E sup
t∈T
〈g, t〉 ,

for some set T ⊂ Rn, where g = (g1, . . . , gn) ∼ N(0, I) is a Gaussian random vector (that is, each
entry gi of g is an independent standard Gaussian). The quantity w(T ) is called the (Gaussian)
mean width of T . Figure 2.10 shows why the name makes sense.

The most basic situation is when T = {σiei : i ∈ [n]} is the collection of (scaled) standard
basis vectors. In this case, E supt∈T 〈g, t〉 is just the expected value of the maximum of n Guassian
random variables with variances σ2

1 , . . . , σ
2
n. We have the following proposition.

Proposition 2.14. Let gi ∼ N(0, σ2
i ), for i = 1, . . . , n, and suppose that maxi σi ≤ σ. Then

Emax
i∈[n]
|gi| ≤ σ

√
2 ln(n) · (1 + o(1)).
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T

g ∼ N(0, I)

Figure 2.10: Gaussian mean width. The vector g ∼ N(0, I) points in a uniformly random direction,
and its length (`2 norm) is very concentrated around

√
n. Having drawn g, the vector t ∈ T which

maximizes 〈g, t〉 is the one with the largest projection onto g, and the value of 〈g, t〉 is (proportional
to) the length of that projection; as shown above, this is half of the “width” of T in the direction g.
Thus, the quantity E supt∈T 〈g, t〉 can be described as the “mean width” of T , because we average
the width of T in direction g, over all directions.

Proof. We have

Emax
i∈[n]
|gi| =

∫ ∞
u=0

P
{

max
i∈[n]
|gi| > u

}
du

≤ A+
2√
2π

∫ ∞
u=A

n exp

(
−u2

2σ2

)
du

for any A ≥ σ (which we will choose shortly). In the above inequality, we have used (2.9) (with the
fact that A ≥ σ) and the fact that for every i, P {|gi| > u} = 2P {gi > u}. We may estimate the
integral using (2.10), so

2√
2π

∫ ∞
u=A

exp

(
−u2

2σ2

)
du ≤ 2σ2

A
√

2π
exp

(
− A2

2σ2

)
.

Choosing A = σ
√

2 ln(n), we get

Emax
i∈[n]
|gi| ≤ σ

√
2 ln(n) +

σ√
π ln(n)

.

It is not hard to see that the mean width does not change when we take the convex hull of T :

(2.12) w(T ) = w(conv(T )).

For example, Proposition 2.14 implies that the mean width of the `1 ball Bn1 = {x ∈ Rn : ‖x‖1 ≤ 1}
is

w(Bn1 ) = w(conv({e1, e2, . . . , en})) = w({e1, e2, . . . , en}) = Θ
(√

ln(n)
)
.

What about other sets T? For several T , w(T ) can be computed rather precisely. For example,
w(Bn2 ) = Θ(

√
n). For others, it can be much trickier. We wave our hands about a general method,

called a chaining argument, below.
Let Xt = 〈g, t〉, so we want to understand E supt∈T Xt. A natural approach would be a union

bound: if Xt is small with probability 1−p, then supt∈T Xt is small with probability 1−Np, where
N is the size of (a suitable discretization of) T . However, in many situations, p > 1/N is not small
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S2

t3 S3

t0

Figure 2.11: First attempt at a chaining argument. The set T can be partitioned into S1 ∪S2 ∪S3.
Suppose thatXt = 〈g, t〉 for t ∈ T , and we wish to argue that supt∈T |Xt| ≤M with high probability.
A naive attempt would be to apply a union bound to the bad events that |Xt| > M for all t ∈ T .
A slightly more refined approach is as follows. Consider the bad event that |Xt0 − Xt3 | > M/4.
This is very unlikely, much more unlikely than the event that |Xt0 | > M , because Xt0 − Xt3 =
〈g, t0 − t3〉 ∼ N(0, ‖t0 − t3‖22), and ‖t0 − t3‖2 is very small. Take a union bound over all events of
this type, as well as the three events that |Xti | > 3M/4 for i = 1, 2, 3. In the favorable case that
none of these events occur, we still have Xt ≤ M/4 + 3M/4 = M for all t ∈ T , but we have saved
a little bit in the union bound. The idea of a chaining argument is to iterate this process, and
recursively subdivide the sets Si.

enough to allow for such a union bound. We mustn’t give up hope: naive union bounds are often
quite wasteful. If ‖s − t‖2 is small, then Xt and Xs are highly correlated. Treating Xt and Xs as
completely unrelated (or worse) when taking the union bound is leaving something on the table.

A first attempt to take advantage of this is illustrated in Figure 2.11. Suppose that T is
“clustered” (with respect to `2 distance) and write T = S1 ∪ S2 . . . ∪ S`. For each i, pick a
representative point ti ∈ Si. Consider events of two types. The first type of event is that Xti is
small. The second type of event, for t ∈ Si, is that |Xt − Xti | is small. Now this has made the
situation somewhat better: if ` is small, then we can handle a union bound over all events of the
first type, because there are not too many of them. On the other hand, there are lots of events of
the second type, but they happen with much higher probability because t and ti are “close.”

The idea behind a chaining argument is to iterate the first attempt described above. Having
made clusters S1, . . . , S`, we then cluster each of the clusters, and so on. We will return to this
argument in Chapter 4, where we will use it to show that Reed-Solomon codes (with random
evaluation points) are near-optimally list-decodable with high probability. To put this argument
in a little more context, we mention here that such chaining arguments are quite general, and in
the case of Gaussian processes Xt, they in fact completely capture E supt∈T Xt. More precisely,
Talagrand’s majorizing measures theorem [104] shows that there is always a chaining argument
which can estimate E supt∈T Xt, up to constant factors.

2.4.3 Getting to Gaussians

Above, we have outlined many of the wonderful properties about Gaussian random variables.
However, this thesis is about coding theory over finite fields. The reader may be wondering how
Gaussians (which are real random variables) could possibly come into the picture. There are several
tricks we can use to take advantage of the tools above, even working over finite fields. The basic
idea is illustrated in Figure 2.12. We will outline a few specific tricks that we need below.

Our main tools are based on the fact that the sum of independent random variables behaves a
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⇒
f(x) = 1√

2π
e−x

2/2

Figure 2.12: When life gives you lemons, turn them into Gaussians.

lot like Gaussians. The first version that we use is the Chernoff-Hoeffding bound, which states that
the tail behavior of the sum of independent random variables is very much like that a Gaussian
random variable.

Theorem 2.15. Let X1, . . . , Xm be m independent random variables such that for every i ∈ [m],
Xi ∈ [ai, bi], then for the random variable

S =

m∑
i=1

Xi,

and any positive v ≥ 0, we have

P {|S − E [S] | ≥ v} ≤ 2 exp

(
− 2v2∑m

i=1(bi − ai)2

)
.

A second way to introduce Gaussians is via symmetrization and comparison arguments. These

arguments simplify expressions like E
∥∥∥∑n

j=1(Xj − EXj)
∥∥∥ for independent random variables Xj

taking values in any Banach space. These arguments are standard—see [80], Lemma 6.3 and
Equation (4.8), respectively. For completeness (and concreteness), we’ll state and prove versions
when the Xi are real-valued functions of some set T , and the norm is the L∞ norm.

Lemma 2.16. Let T ⊂ Rn, and let Xi : T → R for i = 1, . . . ,m be independent random functions.

E sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

(Xj(t)− EXt(t))

∣∣∣∣∣∣ ≤ 2E sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξjXj(t)

∣∣∣∣∣∣ ,
where the ξi are independent Rademacher random variables (that is, ξi = +1 with probability 1/2
and −1 with probability 1/2).

Proof. Let C′ be an independent copy of C, and let X ′j(t) denote an independent copy of Xj(t).



28

Then,

EX sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

(Xj(t)− EXXj(t))

∣∣∣∣∣∣ = EX sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

(
Xj(t)− ECXj(t)− EX′

[
X ′j(t)− EX′X ′j(t)

])∣∣∣∣∣∣
≤ EXEX′ sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

(
Xj(t)−X ′j(t)

)∣∣∣∣∣∣
= EξEXEX′ sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξj(Xj(t)−X ′j(t))

∣∣∣∣∣∣
≤ 2EξEX sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξjXj(t)

∣∣∣∣∣∣ .
Above, we used Jensen’s inequality, independence, and the triangle inequality in the second, third,
and fourth lines, respectively.

Next, we replace the Rademacher random variables ξj with Gaussian random variables gj using
a comparison argument.

Lemma 2.17. Let T ⊂ Rn be any set, and fix Xj : T → R. Let ξ1, . . . , ξn be independent
Rademacher random variables, and let g1, . . . , gn be independent standard normal random variables.
Then

Eξ sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξjXj(t)

∣∣∣∣∣∣ ≤
√
π

2
Eg sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

gjXj(t)

∣∣∣∣∣∣ .
Proof. We have

Eg sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

gjXj(t)

∣∣∣∣∣∣ = EgEξ sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξj |gj |Xj(t)

∣∣∣∣∣∣
≥ Eξ sup

t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξjEg|gj |Xj(t)

∣∣∣∣∣∣ by Jensen’s inequality

= Eξ sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

ξj

√
2

π
Xj(t)

∣∣∣∣∣∣ .
Above, we used the fact that for a standard normal random variable gj , E|gj | =

√
2/π.

Together, Lemma 2.16 and Lemma 2.17 imply that

E sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

(Xj(t)− EXj(t))

∣∣∣∣∣∣ ≤ CE sup
t∈T

∣∣∣∣∣∣
∑
j∈[n]

gjXj(t)

∣∣∣∣∣∣ ,
for some constant C. This will allow us to use our observations above about the mean width.
Indeed, the expression on the right hand side is the Gaussian mean width of the set

{(X1(t), . . . , Xn(t)) : t ∈ T} ⊂ Rn.

When manipulating Gaussian processes of the form (2.11), the following contraction principle will
also come in handy.
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Lemma 2.18 (Corollary 3.17 in [80]). Let T ⊂ Rn be a bounded set, and let g1, . . . , gn be i.i.d.
standard normal random variables. Let ϕ : R→ R be a contraction (that is, |ϕ(x)−ϕ(y)| ≤ |x− y|
for all x, y in R) with ϕ(0) = 0. Then for all non-negative convex increasing functions F on R+,

EF

(
1

2
sup
t∈T

∣∣∣∣∣∑
i

giϕ(ti)

∣∣∣∣∣
)
≤ EF

(
2 sup
t∈T

∣∣∣∣∣
n∑
i=1

giti

∣∣∣∣∣
)
.

In the case when F is the identity and ϕ(x) = |x|, this implies that

(2.13) E sup
t∈T

∣∣∣∣∣
n∑
i=1

gi|ti|

∣∣∣∣∣ ≤ 4E sup
t∈T

∣∣∣∣∣
n∑
i=1

giti

∣∣∣∣∣ .

2.5 Overview of notation

We conclude this chapter with a brief overview of the notation. We reserve n for the block
length of a code, and k for the dimension of a (linear) code. We will use R for the rate of a code.
For x, y ∈ Fnq , δ(x, y) will denote relative Hamming distance. For an integer r, [r] will denote the
set [r] = {1, 2, . . . , r} ⊂ Z. Generally, g will denote a Gaussian random variable, and ξ will denote
a Rademacher random variable. We will use E to denote the expectation operator, and P {·} for
probabilities. For x ∈ Rn, ‖x‖p will denote the `p norm of x:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, ‖x‖∞ = max
i
|xi|.

For vectors x, y in Rn or Fnq , 〈x, y〉 will denote the inner product

〈x, y〉 =

n∑
i=1

xiyi.

We care more about the dependence on key parameters (like n and ε as n grows large and ε grows
small) than on the constant factors. To that end, we will use C or Ci to denote absolute constants,
which do not depend on any of the parameters of interest. We will use standard asymptotic notation
to hide these constants. Precisely, for functions f(x), g(x), we say f = O(g) as x → ∞ if there is
some constant C (independent of the inputs to f and g) so that f(x) ≤ Cg(x) for sufficiently large
x. Similarly, f = Ω(g) means there is a constant C so that f(x) ≥ Cg(x) for suffiently large x,
and f = Θ(g) means that both f = O(g) and f = Ω(g). The notation f = o(g) (resp. f = ω(g))
means that for all constants C and for all x0, there is some x ≥ x0 so that f(x) ≤ Cg(x) (resp.
f(x) ≥ Cg(x)). We will also occasionally use notation like f . g, f & g, and f h g to mean
f = O(g), f = Ω(g), f = Θ(g), respectively. Usually the asymptotics will be in terms of the block
size n of a code, which will tend to infinity. In the list-decoding setting, we consider asymptotics as
the error rate ρ = 1− 1/q − ε as ε→ 0 and (sometimes) q →∞. In the local-decoding setting we
will consider what happens as the rate R→ 1. We will make it clear what parameters we consider
when each case arises.



CHAPTER 3

List Decoding: small alphabets

In our discussion in Chapter 2 of list decoding, we saw that random codes were nearly optimally
list-decodable (Theorem 2.4), and wondered if the same would hold for random linear codes, not
just for random codes. In this chapter, we return to this question, in the case when q is small (that
is, constant).

More precisely, Theorem 2.4 implies that a random q-ary code of rate Ω(ε2) is list decodable up
to radius 1− 1/q− ε, with list sizes on the order of 1/ε2. When we tried to extend the argument to
random linear codes in Chapter 2, we ended up with Proposition 2.6, which was unsatisfying: the
list sizes were on the order of q1/ε2 . This was basically the best we could do until recently. However,
in 2013, Cheraghchi, Guruswami, and Velingker [20] made substantial progress. They exploited a
connection between list decodability of random linear codes and the Restricted Isometry Property,
a property of matrices which comes up in compressed sensing (an area of signal processing). Using
this connection, they showed that a random linear code of rate Ω(ε2/ log3(1/ε)) achieves the list
decoding properties above, with constant probability. In this chapter, we improve on their result to
show that in fact we may take the rate to be Ω(ε2), which is optimal for constant q (up to constant
factors), and further that the success probability is 1 − o(1), rather than constant. As an added
benefit, our proof is quite simple.

Our argument extends beyond random linear codes. We will return to the full generality of our
approach in Chapter 5, but here we will state a corollary for randomly punctured codes over small
alphabet sizes. Using this generalization, we show that randomly punctured Reed-Muller codes
have the same list decoding properties as the original codes, even when the rate is improved to a
constant.

3.1 Introduction

We recall that a random linear code C ⊂ Fnq is a random subspace of Fnq . The dimension of
C, which we will denote by k, is just the dimension of the subspace, and the rate is defined to be
R = k/n. We are interested in the trade-off between the rate R and the list-decoding radius ρ, for
polynomial list-sizes L = poly(1/ε). In particular, we would like to answer the following question:

Question: Do random linear codes have the same list-decoding radius of random codes?
More precisely, are random linear codes of rate Ω(ε2) (probably) (ρ, L)-list-decodable
for ρ = 1− 1/q − ε and L = 1/ε2?

As mentioned in the previous chapters, understanding the trade-offs in list decoding is inter-
esting not just for communication, but also for a wide array of applications in complexity theory.
List decodable codes can be used for hardness amplification of boolean functions and for construct-
ing hardcore predicates from one-way functions, and they can be used to construct randomness
extractors, expanders, and pseudorandom generators [43, 102, 108]. Beyond that, understanding
the behavior of linear codes, and in particular random linear codes, is also of interest: decoding

30
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a random linear code is related to the problem of learning with errors, a fundamental problem in
both learning theory [15,30] and cryptography [91].

For most of these applications, the parameter regime of interest in when the error rate ρ is very
large. We saw in Section 2.2.1 that the largest we can hope for ρ to be is 1− 1/q. Thus, we study
what happens when we back off just a little bit, to ρ = 1− 1/q − ε. For the work in this chapter,
the computations will work out slightly more nicely if instead we consider ρ = (1− 1/q) (1− ε), so
we’ll do that.

3.1.1 Related work

Random linear codes are a very natural class of codes, and there have been many works devoted
to their list-decodability. Recall, we have already made such an attempt in Chapter 2, Proposition
2.6. In order to set the stage, we first recall how we arrived at that result.

In Chapter 2, in the proof of Theorem 2.4, we saw a proof that general random codes are
optimally list-decodable. The basic idea was that, for a set Λ of possible messages and any received
word z, there is only a very small probability that all of the codewords corresponding to Λ are close
to z. This probability is small enough to allow for a union bound over the qn ·

(
N
L

)
choices for Λ

and z. However, as we pointed out after the proof of Theorem 2.4, this argument crucially exploits
the independence between the encodings of distinct messages. If we begin with a random linear
code, then codewords are no longer independent, and the above argument fails. We managed to
find away around this in Proposition 2.6: by considering only the linearly independent messages in
Λ, we made the argument work, but we got exponentially large list sizes of qΩ(1/ε).

This exponential dependence on ε can actually be removed for a constant fraction of errors,
by a careful analysis of the dependence between codewords corresponding to linearly dependent
messages. When ρ is constant, rather than tending to 1− 1/q, Guruswami, H̊astad, and Kopparty
[44] show that a random linear code of rate 1 − Hq(ρ) − Cρ,q/L is (ρ, L)-list decodable, where
Hq(x) = x logq(q−1)−x logq(x)−(1−x) logq(1−x) is the q-ary entropy. This matches lower bounds
of Rudra and Guruswami-Narayanan [49, 95]. However, for ρ = (1− 1/q) (1− ε), the constant Cρ,q
depends exponentially on ε, and this result quickly degrades.

When ρ = (1− 1/q) (1− ε), Proposition 2.6, originally due to [116], gave the best upper bounds
for random linear codes with rate Ω(ε2) came until recently. Closing the exponential gap in the list
sizes between random linear codes and general random codes was posed by [28]. Some progress was
made in 2002 by Guruswami, H̊astad, Sudan, and Zuckerman [45], who proved the existence of a
binary linear code with rate Ω(ε2) and list size O(1/ε2). However, this result only holds for binary
codes, and further the proof does not show that most linear codes have this property. Cheraghchi,
Guruswami, and Velingker (henceforth CGV) recently made substantial progress on closing the
gap between random linear codes and general random codes [20]. Using a connection between list
decodability of random linear codes and the Restricted Isometry Property (RIP) from compressed
sensing, they proved the following theorem.

Theorem 3.1. (Theorem 12 in [20]) Let q be a prime power, and let ε, γ > 0 be constant parameters.
Then for all large enough integers n, a random linear code C ⊆ Fnq of rate R, for some

R ≥ C ε2

log(1/γ) log3(q/ε) log(q)

is ((1− 1/q) (1− ε) , O(1/ε2))-list decodable with probability at least 1− γ.

It is known that the rate cannot exceed O(ε2); this follows from the list decoding capacity
theorem, Theorem 2.4, and we stated it in Corollary 2.5. Further, the recent lower bounds of
Guruswami and Vadhan [61] and Blinovsky [13, 14] show that the list size L must be at least
Ωq(1/ε

2). Thus, Theorem 3.1 has nearly optimal dependence on ε, leaving a polylogarithmic gap.

3.1.2 Contributions of Chapter 3

The extra logarithmic factors in the result of CGV stem from the difficulty in proving that the
RIP is likely to hold for randomly subsampled Fourier matrices. Removing these logarithmic factors
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is considered to be a difficult problem. In this work, we show that while the RIP is a sufficient
condition for list decoding, it may not be necessary. We formulate a different sufficient condition for
list decodability: while the RIP is about controlling the `2 norm of Φx, for a matrix Φ and a sparse
vector x with ‖x‖2 = 1, our sufficient condition amounts to controlling the `1 norm of Φx with the
same conditions on x. Next, we show, using (easy) techniques from high dimensional probability,
that this condition does hold with overwhelming probability for random linear codes, with no extra
logarithmic dependence on ε. The punchline, and our main result, is the following theorem.

Theorem 3.2. Let q be a prime power, and fix ε > 0. Then for all large enough integers n, a
random linear code C ⊆ Fnq of rate R, for

R ≥ C ε2

log(q)

is ((1− 1/q) (1− ε) , O(1/ε2))-list decodable with probability at least 1−o(1). Above, C is an absolute
constant.

There are three differences between Theorem 3.1 and Theorem 3.2. First, the dependence on
ε in Theorem 3.2 is optimal. Second, the dependence on q is also improved by several log factors,
although it is still not quite correct—we will return to this in Chapter 4. Finally, the success
probability in Theorem 3.2 is 1− o(1), compared to a constant success probability in Theorem 3.1.
As an additional benefit, the proof on Theorem 3.2 is relatively short, while the proof of the RIP
result in [20] is quite difficult.

After proving Theorem 3.2, we then generalize our approach to apply to not-necessarily-uniform
ensembles of linear codes. We formulate a more general version of Theorem 3.2, and give examples
of codes to which it applies. Our main example is linear codes C of rate Ω(ε2) whose generator
matrix is chosen by randomly sampling the columns of a generator matrix of a linear code C0 of
nonconstant rate. Ignoring details about repeating columns, C can be viewed as randomly punctured
version of C0. Random linear codes fit into this framework when C0 is taken to be RMq(1, k), the
q-ary Reed-Muller code of degree one and dimension k. We extend this in a natural way by taking
C0 = RM(r,m) to be any (binary) Reed-Muller code.1 It has recently been shown [40, 76] that
RM(r,m) is list-decodable up to 1/2 − ε, with exponential but nontrivial list sizes. However,
RM(r,m) is not a “good” code, in the sense that it does not have constant rate. In the same
spirit as our main result, we show that when RM(r,m) is punctured down to rate O(ε2), with high
probability the resulting code is list decodable up to radius 1/2− ε with asymptotically no loss in
list size.

3.1.3 Overview of the approach

The CGV proof of Theorem 3.1 proceeds in three steps. The first step is to prove an average-
distance Johnson bound, a la Theorem 2.8. The second step is a translation of the coding theory
setting to a setting suitable for the RIP: a code C is encoded as a matrix Φ whose columns correspond
to codewords of C. This encoding has the property that if Φ had the RIP with good parameters,
then C is list decodable with similarly good parameters. Finally, the last and most technical step
is proving that the matrix Φ does indeed have the Restricted Isometry Property with the desired
parameters.

In this work, we use the second step from the CGV analysis (the encoding from codes to
matrices), but we bypass the other steps. While both the average case Johnson bound and the
improved RIP analysis for Fourier matrices are clearly of independent interest, our analysis will be
much simpler, and obtains the correct dependence on ε.

1We saw Reed-Muller codes (Definition 2.12) earlier in the context of locally decodable codes. The parameter
settings we are interested in for list-decoding are a little different—we will return to these later—but the definition
is the same.
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3.1.4 Chapter organization

In Section 3.2, we fix some notation and recall some definitions, and also introduce the simplex
encoding map from the second step of the CGV analysis. In Section 3.3, we state our sufficient
condition and show that it implies list decoding, which is straightforward. We take a detour in
Section 3.3.1 to note that the sufficiency of our condition in fact implies the sufficiency of the
Restricted Isometry Property directly, providing an alternative proof of Theorem 11 in [20]. In
Section 3.4 we prove that our sufficient condition holds, and conclude Theorem 3.2. Finally, in
Section 3.5, we discuss the generality of our result, and show that it applies to other ensembles of
linear codes.

3.2 A few more definitions

First, we recall some of the notation we’ll need. Throughout, we will be interested in linear,
q-ary, codes C with length n and size |C| = N . We use the notation [q] = {0, . . . , q − 1}, and for
a prime power q, Fq denotes the finite field with q elements. When notationally convenient, we
identify [q] with Fq; for our purposes, this identification may be arbitrary. We let ω = e2πi/q denote
the primitive qth root of unity, and we use ΣL ⊂ {0, 1}N to denote the space of L-sparse binary
vectors. For two vectors x, y ∈ [q]n, the relative Hamming distance between them is

δ(x, y) =
1

n
|{i : xi 6= yi}| .

Throughout, Ci denotes numerical constants.
We recall Definition 2.3 of list-decodability: a code is list-decodable if any possible received

word z does not have too many codewords close to it. For convenience, we repeat the definition
here.

Definition 3.3. A code C ⊆ Fnq is (ρ, L)-list decodable if for all z ∈ Fnq ,

|{c ∈ C : δ(c, w) ≤ ρ}| ≤ L.

A code is linear if the set C of codewords is of the form C = {xG | x ∈ Fkq}, for a k×n generator
matrix G. We say that C is a random linear code of rate R if the image of the generator matrix G
is a random subspace of dimension k = Rn.

Below, it will be convenient to work with generator matrices G chosen uniformly at random
from Fk×nq , rather than with random linear subspaces of dimension k. These are not the same, as
there is a small but positive probability that G chosen this way will not have full rank. However,
we observe that

(3.1) P {rank(G) < k} =

k−1∏
r=0

(
1− qr−n

)
= 1− o(1).

Now suppose that C is a random linear code of rate R = k/n, and C′ is a code with a random k×n
generator matrix G. Let E be the event that C is (ρ, L)-list decodable for some ρ and L, and let
E′ be the corresponding event for C′. By symmetry, we have

P {E} = P {E′ | rank(G) = k}
≥ P {E′ ∧ rank(G) = k}
≥ 1− P

{
E′
}
− P {rank(G) < k}

= P {E′} − o(1),

where we have used (3.1) in the final line. Thus, to prove Theorem 3.2, it suffices to show that C′
is list decodable, and so going forward we will consider a code C with a random k × n generator
matrix. For notational convenience, we will also treat C =

{
xG | x ∈ Fkq

}
as a multi-set, so that in
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particular we always have N = |C| = qk. Because by the above analysis the parameter of interest
is now k, not |C|, this will be innocuous.

We make use the simplex encoding used in the CGV analysis, which maps the code C to a
complex matrix Φ.

Definition 3.4 (Simplex encoding from [20]).
Define a map ϕ : [q] → Cq−1 by ϕ(x)(α) = ωxα for α ∈ {1, . . . , q − 1}. We extend this map to a
map ϕ : [q]n → Cn(q−1) in the natural way by concatenation. Further, we extend ϕ to act on sets
C ⊂ [q]n: ϕ(C) is the n(q − 1)×N matrix whose columns are ϕ(c) for c ∈ C.

Notice that when q = 2, the simplex encoding Φ = ϕ(C) is the same as the matrix Φ in our
proof of the average-radius, average-distance Johnson bound in Theorem 2.8.

Suppose that C is a q-ary linear code with random generator matrix G ∈ Fk×nq , as above.
Consider the n × N matrix M which has the codewords as columns. The rows of this matrix are
independent—each row corresponds to a column t of the random generator matrix G. To sample
a row r, we choose t ∈ Fkq uniformly at random (with replacement), and let r = (〈t, x〉)x∈Fkq . Let T

denote the random multiset with elements in Fkq consisting of the draws t. To obtain Φ = ϕ(C), we
replace each symbol β of M with its simplex encoding ϕ(β), regarded as a column vector. Thus,
each row of Φ corresponds to a vector t ∈ T (a row of the original matrix M , or a column of the
generator matrix G), and an index α ∈ {1, . . . , q − 1} (a coordinate of the simplex encoding). We
denote this row by ft,α.

We use the following facts about the simplex encoding, also from [20]:

1. For x, y ∈ [q]n,

(3.2) 〈ϕ(x), ϕ(y)〉 = (q − 1)n− qδ(x, y)n.

2. If C is a linear code with a uniformly random generator matrix, the columns of Φ are orthogonal
in expectation. That is, for x, y ∈ Fnq , indexed by i, j ∈ Fkq respectively, we have

Ed(x, y) =
1

n
E
∑
t∈T

1〈t,i〉6=〈t,j〉

= P {〈t, i〉 6= 〈t, j〉}

=

{
1− 1

q i 6= j

0 i = j

Combined with (3.2), we have

E 〈ϕ(x), ϕ(y)〉 = (q − 1)n− qnEδ(x, y)

=

{
(q − 1)n x = y

0 x 6= y

This implies that

(3.3) E‖Φx‖22 =
∑

i,j∈[N ]

xixjE 〈ϕ(ci), ϕ(cj)〉 = (q − 1)n‖x‖2.

3.3 Sufficient conditions for list decodability

Suppose that C is a linear code as above, and let Φ = ϕ(C) ∈ Cn(q−1)×N be the complex matrix
associated with C by the simplex encoding. We first translate Definition 2.3 into a linear algebraic
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statement about Φ. The identity (3.2) implies that C is (ρ, L − 1) list decodable if and only if for
all w ∈ Fnq , for all sets Λ ⊂ C with |Λ| = L, there is at least one codeword c ∈ Λ so that d(w, c) > ρ,
that is, so that

〈ϕ(c), ϕ(w)〉 < (q − 1)n− qρn.

Translating the quantifiers into appropriate max’s and min’s, we observe

Observation 3.5. A code C ∈ [q]n is (ρ, L− 1)-list decodable if and only if

max
w∈[q]n

max
Λ⊂C,|Λ|=L

min
c∈Λ
〈ϕ(w), ϕ(c)〉 < (q − 1)n− qρn.

When ρ = (1− 1/q) (1− ε), C is (ρ, L− 1)-list decodable if and only if

(3.4) max
w∈[q]n

max
Λ⊂C,|Λ|=L

min
c∈Λ
〈ϕ(w), ϕ(c)〉 < (q − 1)nε.

We seek sufficient conditions for (3.4). Below is the one we will find useful:

Lemma 3.6. Let C ∈ Fnq be a q-ary linear code, and let Φ = ϕ(C) as above. Suppose that

(3.5)
1

L
max
x∈ΣL

‖Φx‖1 < (q − 1)nε.

Then (3.4) holds, and hence C is ((1− 1/q) (1− ε) , L− 1)-list decodable.

Proof. We always have

min
c∈Λ
〈ϕ(w), ϕ(c)〉 ≤ 1

L

∑
c∈Λ

〈ϕ(w), ϕ(c)〉 ,

so

max
w∈[q]n

max
|Λ|=L

min
c∈Λ
〈ϕ(w), ϕ(c)〉 ≤ 1

L
max
w∈[q]n

max
|Λ|=L

∑
c∈Λ

〈ϕ(w), ϕ(c)〉

=
1

L
max
w∈[q]n

max
x∈ΣL

ϕ(w)TΦx

≤ 1

L
max
w∈[q]n

‖ϕ(w)‖∞ max
x∈ΣL

‖Φx‖1

=
1

L
max
x∈ΣL

‖Φx‖1.

Thus it suffices to bound the last line by (q − 1)nε.

Remark 3. There are two inequalities in the proof above. The first is passing from list-decodability
to average-radius list-decodability, which we mentioned in Chapter 2. The second is the more serious
inequality, and it is here that we give up on large q. Indeed, for q = 2, the second inequality in the
proof of Lemma 3.6 is an equality, and nothing is lost. As q grows, this becomes more and more
lossy.

3.3.1 Aside: the Restricted Isometry Property

A matrix A has the Restricted Isometry Property (RIP) if, for some constant δ and sparsity
level s,

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22
for all s-sparse vectors x. The best constant δ = δ(A, k) is called the Restricted Isometry Constant.
The RIP is an important quantity in compressed sensing—an area of signal processing—and much
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work has gone into understanding it. See [31] for an excellent overview of compressed sensing,
including the RIP.

CGV have shown that if 1√
n(q−1)

ϕ(C) has the RIP with appropriate parameters, C is list de-

codable. The proof that the RIP is a sufficient condition follows, after some computations, from
an average-distance Johnson bound. While the average-distance Johnson bound is interesting on
its own, in this section we note that Lemma 3.6 implies the sufficiency of the RIP immediately.
Indeed, by Cauchy-Schwarz,

1

L
max
x∈ΣL

‖Φx‖1 ≤
√
n(q − 1)

L
max
x∈ΣL

‖Φx‖2

≤
√
n(q − 1)

L

(√
n(q − 1)(1 + δ) max

x∈ΣL
‖x‖2

)
≤ n(q − 1)√

L
(1 + δ),

where Φ = ϕ(C), and δ = δ(Φ̃, L) is the restricted isometry constant for Φ̃ = 1√
n(q−1)

Φ and sparsity

L. By Lemma 3.6, this implies that
δ + 1√
L

< ε

also implies (3.4), and hence ((1− 1/q) (1− ε) , L − 1)-list decodability. Setting δ = 1/2, we may
conclude the following statement:

For any code C ⊂ [q]n, if 1√
n(q−1)

ϕ(C) has the RIP with contant 1/2 and sparsity level

L, then C is ((1− 1/q) (1− 3/2
√
L) , L− 1)-list decodable.

This precisely recovers Theorem 11 from [20].

3.4 Random linear codes are optimally list-decodable over small alpha-
bets

We wish to show that, when Φ = ϕ(C) for a random linear code C, (3.5) holds with high
probability. Thus, we need to bound maxx∈ΣL ‖Φx‖1. We write

(3.6) max
x∈ΣL

‖Φx‖1 ≤ max
x∈ΣL

E‖Φx‖1 + max
x∈ΣL

|‖Φx‖1 − E‖Φx‖1| ,

and we will bound each term separately. First, we observe that E‖Φx‖1 is correct.

Lemma 3.7. Let C ⊂ Fnq be a linear q-ary code with a random generator matrix. Let Φ = ϕ(C) as
above. Then for any x ∈ ΣL,

1

L
E‖Φx‖1 ≤

n(q − 1)√
L

.

Proof. The proof is a straighforward consequence of (3.3). For any x ∈ ΣL, we have

E‖Φx‖1 ≤
√
n(q − 1)E‖Φx‖2

≤
√
n(q − 1)

(
E‖Φx‖22

)1/2
= n(q − 1)

√
L

using (3.3) and the fact that ‖x‖2 =
√
L.

Next, we control the deviation of ‖Φx‖1 from E‖Φx‖1, uniformly over x ∈ ΣL. We do not require
the vectors tj be drawn uniformly at random anymore, so long as they are selected independently.
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Lemma 3.8. Let C ⊂ Fnq be q-ary linear code, so that the columns t1, . . . , tn of the generator matrix
are independent. Then

1

L
E max
x∈ΣL

|‖Φx‖1 − E‖Φx‖1| ≤ C0(q − 1)
√
n ln(N)

with probability 1− 1/poly(N), for an absolute constant C0.

Remark 4. As noted above, we do not make any assumptions on the distribution of the vectors
t1, . . . , tn, other than that they are chosen independently. In fact, we do not even require the code
to be linear—it is enough for the vectors vi = (c(i))c∈C ∈ [q]N to be independent. However, as we
only consider linear codes in this work, we stick with our statement in order to keep the notation
consistent.

As a warm-up to the proof, which involves a few too many symbols, consider first the case when
q = 2, and suppose that we wish to succeed with constant probability. Then the rows ft of Φ are
rows of the Hadamard matrix, chosen independently. By standard symmetrization and comparison
arguments (as we saw in Section 2.4, and which we will make more precise below), it suffices to
bound

1

L
E max
x∈ΣL

∑
t∈T

gt 〈ft, x〉 =
1

L
E max
x∈ΣL

〈g,Φx〉

≤ E max
x∈BN1

〈g,Φx〉

= E max
y∈ΦBN1

〈g, y〉 ,

where above g = (g1, g2, . . . , gn) is a vector of i.i.d. standard normal random variables, and BN1
denotes the `1 ball in RN . The last line is the Gaussian mean width of ΦBN1 , which we discussed
in Section 2.4 (Equation (2.11)). Fortunately, it is easy to estimate the mean width of ΦBN1 , which
is a polytope contained in the convex hull of ±ϕ(c) for c ∈ C, (that is, the columns of Φ and their
opposites). As in (2.12), taking convex hulls does not change the mean width, and so

E max
y∈ΦBN1

〈g, y〉 = Emax
c∈C
〈g, ϕ(c)〉

≤ 3
√

log |C|
√
E 〈g, ϕ(c)〉2

= 3‖c‖2
√

log(N)

= 3
√
n log(N)

which is what we wanted. Above, we used Fact 2.13 that 〈g, ϕ(c)〉 ∼ N(0, ‖ϕ(c)‖22), and then
Proposition 2.14.

For general q and failure probability o(1), there is slightly more notation, but the proof idea is
the same. We will need the following bound on moments of maxima of Gaussian random variables.

Lemma 3.9. Let X1, . . . , XN be standard normal random variables (not necessarily independent).
Then (

Emax
i≤N
|Xi|p

)1/p

≤ C1N
1/p√p

for some absolute constant C1.

We remark that while Lemma 3.9 is clearly suboptimal for small p (compare to the bound we
got for p = 1 above), we will apply it with p ∼ ln(N) and this will give us the desired results.

Proof. Let Z = maxi≤N |Xi|. Then

P {Z > s} ≤ N exp(−s2/2)
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for s ≥ 1. Integrating,

E|Z|p =

∫
P {Zp > s} ds

=

∫
P {Zp > tp} ptp−1 dt

≤ 1 +N

∫ ∞
1

exp(−t2/2)ptp−1 dt

≤ 1 +Np2p/2Γ(p/2)

≤ 1 + (Np)
(
pp/2

)
.

Thus,

(E|Z|p)1/p ≤ C1N
1/p√p.

for some absolute constant C1.

Now we may prove the lemma.

Proof of Lemma 3.8. We recall the notation from the facts in Section 3.2: the rows of Φ are ft,α
for t ∈ T , where T is a random multiset of size n with elements chosen independently from Fdq , and
α ∈ F∗q .

To control the largest deviation of ‖Φx‖1 from its expectation, we will control the pth moments
of this deviation—eventually we will choose p ∼ ln(N). By a symmetrization argument followed by
a comparison principle (Lemma 6.3 and Equation (4.8), respectively, in [80]), for any p ≥ 1,

E max
x∈ΣL

|‖Φx‖1 − E‖Φx‖1|p

= E max
x∈ΣL

∣∣∣∣∣∣
∑
t∈T

∑
α∈F∗q

(| 〈ft,α, x〉 | − E| 〈ft,α, x〉 |)

∣∣∣∣∣∣
p

≤ C2ETEg max
x∈ΣL

∣∣∣∣∣∣
∑
t∈T

gt
∑
α∈F∗q

| 〈ft,α, x〉 |

∣∣∣∣∣∣
p

≤ C2ETEg max
x∈ΣL

∣∣∣∣∣(q − 1) max
α∈F∗q

∑
t∈T

gt| 〈ft,α, x〉 |

∣∣∣∣∣
p

≤ C24p(q − 1)pETEg max
x∈ΣL

max
α∈F∗q

∣∣∣∣∣∑
t∈T

gt 〈ft,α, x〉

∣∣∣∣∣
p

,(3.7)

where the gt are i.i.d. standard normal random variables, and we dropped the absolute values
at the cost of a factor of four by a contraction principle (Equation (2.13)). Above, we used the
independence of the vectors ft,α for a fixed α to apply the symmetrization.

For fixed α, let Φα denote Φ restricted to the rows ft,α that are indexed by α. Similarly, for
a column ϕ(c) of Φ, let ϕ(c)α denote the restriction of that column to the rows indexed by α.
Conditioning on T and fixing α ∈ F∗q , let

X(x, α) :=
∑
t∈T

gt 〈ft,α, x〉 = 〈g,Φαx〉 .

Let BN1 denote the `1 ball in RN . Since ΣL ⊂ LBN1 , we have

Φα(ΣL) ⊂ LΦα(BN1 ) = conv{±Lϕ(c)α : c ∈ C}.
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Thus, we have

Eg max
x∈ΣL

max
α∈F∗q

|X(x, α)|p

= Eg max
y∈ΦαΣL

max
α∈F∗q

| 〈g, y〉 |p

≤ Lp Eg max
±c∈C

max
α∈F∗q

| 〈g, ϕ(c)α〉 |p,(3.8)

using the fact that maxx∈conv(S) F (x) = maxx∈S F (x) for any convex function F . Using Lemma 3.9,
and the fact that 〈g, ϕ(c)α〉 is Gaussian with variance ‖ϕ(c)α‖22 = n,

Lp Eg max
±c∈C

max
α∈F∗q

| 〈g, ϕ(c)α〉 |p

≤
(
C1 L

√
np(2N(q − 1))1/p

)p
.(3.9)

Together, (3.7), (3.8), and (3.9) imply

E max
x∈ΣL

|‖Φx‖1 − E‖Φx‖1|p

≤ C24p(q − 1)pET
(
C1L
√
np(2N(q − 1))1/p

)p
≤
(

4C
1/p
2 C1(q − 1)(1+1/p)L

√
np(2N)1/p

)p
=: Q(p)p.

Finally, we set p = ln(N), so we have

Q(ln(N)) ≤ C3(q − 1)L
√
n ln(N),

for an another constant C3. Then Markov’s inequality implies

P
{

max
x∈ΣL

|‖Φx‖1 − E‖Φx‖1| > eQ(ln(N))

}
≤ 1

N
.

We conclude that with probability at least 1− o(1),

1

L
max
x∈ΣL

|‖Φx‖1 − E‖Φx‖1| ≤ C0(q − 1)
√
n ln(N),

for C0 = eC3.

Now we may prove Theorem 3.2.

Proof of Theorem 3.2. Lemmas 3.7 and 3.8, along with (3.6), imply that

1

L
max
x∈ΣL

‖Φx‖1 ≤
n(q − 1)√

L
+ C0(q − 1)

√
n ln(N)

with probability 1− o(1). Thus, if

(3.10) (q − 1)

(
n√
L

+ C0

√
n ln(N)

)
< (q − 1)nε

holds, the condition (3.5) also holds with probability 1− o(1). Setting L = (2/ε)
2

and n =
4C2

0 ln(N)
ε2

satisfies (3.10), so Lemma 3.6 implies that C is ((1− 1/q) (1− ε) , 4/ε2)-list decodable, with k equal
to

logq(N) =
nε2

(2C0)2 ln(q)
.

With the remarks from Section 3.2 following the definition of random linear codes, this concludes
the proof.
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3.5 Generalization to randomly punctured codes

In this section, we show that our approach above applies not just to random linear codes,
but to many ensembles. In our proof of Theorem 3.2, we required only that the expectation of
‖Φx‖1 be about right, and that the columns of the generator matrix were chosen independently,
so that Lemma 3.8 implies concentration. The fact that ‖Φx‖1 was about right followed from the
condition (3.3), which required that, within sets Λ ⊂ C of size L, the average pairwise distance is, in
expectation, large. We formalize this observation in the following lemma, which can be substituted
for Lemma 3.7.

Lemma 3.10. Let C = {c1, . . . , cN} ⊂ [q]n be a (not necessarily uniformly) random code2 so that
for any Λ ⊂ [N ] with |Λ| = L,

(3.11)
1(
L
2

)E ∑
i<j∈Λ

δ(ci, cj) ≥ (1− 1/q) (1− η) .

Then for all x ∈ ΣL,

1

L
E‖ϕ(C)x‖1 ≤ n(q − 1)

√
1

L
+

2η
(
L
2

)
L2

.

Proof. Fix x ∈ ΣL, and let Λ denote the support of x. Then, using (3.2),

1

L
E‖ϕ(C)x‖1 ≤

√
n(q − 1)

L

(
E‖ϕ(C)‖22

)1/2
=

√
n(q − 1)

L

E
∑
i,j∈Λ

〈ϕ(ci), ϕ(cj)〉

1/2

=

√
n(q − 1)

L

E
∑
i,j∈Λ

(q − 1)n− qn δ(ci, cj)

1/2

≤
√
n(q − 1)

L

(
L(q − 1)n+ 2

(
L

2

)
n(q − 1)η

)1/2

= n(q − 1)

√
1

L
+

2η
(
L
2

)
L2

,

as claimed.

Thus, we may prove a statement analogous to Theorem 3.2 about any distribution on linear
codes whose generator matix has independent columns, which satisfies (3.11). Where might we find
such distributions? Notice that if the expectation is removed, (3.11) is precisely what we needed
for the average-distance Johnson bound (Theorem 2.8 in this thesis, or Theorem 8 in [20]) to work,
and so any code C0 to which the average-distance Johnson bound applies attains (3.11). However,
such a code C0 might have substantially suboptimal rate—we can improve the rate, and still satisfy
(3.11), by forming generator matrix for a new code C from a random set of columns of the generator
matrix of C0.

Definition 3.11. Fix a code C0 ⊂ [q]n0 , and define an ensemble C = C(C0) ⊂ [q]n as follows. To
draw C, choose a random multiset T = {t1, . . . , tn} of size n by drawing elements of [n0] indepen-
dently with replacement. Then let

C = {(ct1 , . . . , ctn) : c ∈ C0} .

We will call C a random sampled version of C0, with block length n.

2C need not be linear, so we switch the alphabet from Fq to [q] to emphasize that the field structure is not
important.
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Remark 5 (Sampling vs. Puncturing). We note that the operation of randomly sampling a code
(a term we just made up) is very similar to that of randomly puncturing a code (a term with a long
and illustrious history). The only difference is that we sample with replacement, while a randomly
punctured code can be viewed as a code where the sampling is done without replacement. These
two distributions are basically the same in the parameter regimes we consider: as such we will (and
have) occasionally abuse(d) language and refer(ed) to the operation in Definition 3.11 “puncturing.”

We also notice that since all we need is independence of the symbols, the results would follow if
we retained each coordinate in [n0] independently with probability n/n0. This would actually be a
punctured code, except that the length would now be a random variable, with expected length n.

Replacing Lemma 3.7 with Lemma 3.10 in the proof of Theorem 3.2 immediately implies that
randomly sampled codes are list decodable with high probability, if the original code C has good
average distance.

Corollary 3.12. Let C0 = {c1, . . . , cN} ⊂ Fn0
q be any linear code with

1(
L
2

) ∑
i<j∈Λ

δ(ci, cj) ≥
(

1− 1

q

)
(1− η)

for all sets Λ ⊂ [N ] of size L. Set

ε2 := 4

(
1

L
+ η

(
1− 1

L

))
.

There is some R = Ω(ε2) so that if C = C(C0) is as in Definition 3.11 with rate R, then C is
((1− 1/q) (1− ε) , L− 1)-list decodable with probability 1− o(1).

The average-distance Johnson bound implies that if C is as in the statement of Corollary 3.12,
then the original code C0 is

(
(1− 1/q) (1− ε) , O(1/ε2)

)
-list decodable, for ε as above. Thus, Corol-

lary 3.12 implies that C has the same list decodability properties as C0, but perhaps a much better
rate.

As a example of this construction, consider the family of (binary) degree r Reed-Muller codes,
RM(r,m) ⊂ Fm2 . RM(r,m) can be viewed as the set of degree r, m-variate polynomials over F2. It
is easily checked that RM(r,m) is a linear code of dimension k = 1 +

(
m
1

)
+
(
m
2

)
+ · · · +

(
m
r

)
and

minimum relative distance 2−r. The random sampling C of RM(r,m) is a natural class of codes:
decoding C is equivalent to learning a degree r polynomial over Fm2 from random samples, in the
presence of (worst case) noise.

We cannot hope for short list sizes in this case, but we can hope for nontrivial ones. Kaufman,
Lovett, and Porat [76] have given tight asymptotic bounds on the list sizes for RM(r,m) for all
radii, and in particular have shown that RM(r,m) is list decodable up to 1/2− ε with list sizes on

the order of εΘr(mr−1). As |RM(r,m)| is exponential in mr, this is a nontrivial bound. We will show
that randomly sampled Reed-Muller codes, with rate Ω(ε2), have basically the same list decoding
parameters as their un-punctured progenitors.

Proposition 3.13. Let C = C(RM(r,m)) be as in Definition 3.11, with rate O(ε2). Then C is
(1/2(1− ε), L(ε))-list decodable with probability 1− o(1), where

L(ε) =

(
1

ε

)Or(mr−1)

,

where Or hides constants depending only on r.

Proof. We aim to find η so that (3.11) is satisfied. As usual, let N = |RM(r,m)|. We borrow a
computation from the proof of Lemma 6 in [20]. Let A = A(ε) be the number of codewords of
RM(r,m) with relative weight at most 1/2(1− ε2). Let L = A/ε2 and choose a set Λ ⊂ [N ] of size
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L. By linearity, for each codeword ci with i ∈ Λ, there are at most A − 1 codewords cj within
1/2(1− ε2) of ci, out of L− 1 choices for cj . Thus, the sum of the relative distances over j 6= i is at
most (L−A) · 1/2(1− ε2). This implies

1(
L
2

) ∑
i<j∈Λ

δ(ci, cj) ≥
L−A
L− 1

(
1

2
(1− ε2)

)

=

(
1− A− 1

L− 1

)(
1

2
(1− ε2)

)
≥ 1

2

(
1− ε2 − A− 1

L− 1

)
=

1

2

(
1−O(ε2)

)
,

using the choice L = A/ε2 in the final line. Thus, in Corollary 3.12, we may take η = O(ε2).
We conclude that the randomly punctured code C(RM(r,m)) of rate O(ε2) is (1/2(1− ε), L− 1)

list decodable, with list size L on the order of A/ε2. It remains to estimate A = A(ε). It is shown
in [76] that

A = A(ε) =

(
1

ε

)Θr(mr−1)

,

which finishes the proof.

Another popular ensemble of linear codes is the Wozencraft ensemble [74, 109], which encodes
an element x ∈ Fqk as (x, α1x, α2x, . . . , αrx) for uniformly random αj ∈ F2k . In this case, the
symbols within a codeword are not all independent, so Lemma 3.10 does not apply. However, the
techniques above extend immediately to imply that a code from this ensemble (with r ∼ k/ε2) is
((1− 1/q) (1− ε) , O(1/ε))-list decodable with rate ε2/k. (Previously, the only known result about
the list decodability of the Wozencraft ensemble follows from the Johnson bound, which implies a
rate on the order of ε4 for the same radius, so for very small ε this is better). It would be interesting
to see if this argument could be modified to obtain constant rate for the Wozencraft ensemble, or
for other ensembles of linear codes.

3.6 Conclusion

In this chapter, we have shown that a random linear code of rate Ω
(

ε2

log(q)

)
is ((1− 1/q) (1− ε) , O(1/ε))-

list decodable with probability 1−o(1). Our result improves the results of [20] in three ways. First,
we remove the logarithmic dependence on ε in the rate, achieving the optimal dependence on ε.
Second, it improves the dependence on q in the rate, from 1/ log4(q) to 1/ log(q). Finally, we show
that list decodability holds with probability 1 − o(1), rather than with constant probability. As
an added benefit, the proof is relatively short and straightforward. For constant alphabet sizes q,
this closes a question asked by [28]: Random linear codes are (up to constant factors, with high
probability) optimally list-decodable. For q > 2, this work is the first to establish even existence of
such codes.

We also extended our argument to randomly punctured codes (modulo Remark 5). As an
example, we considered Reed-Muller codes, and showed that they retain their combinatorial list
decoding properties with high probability when randomly punctured down to constant rate.

However, some questions remain. While these results are optimal for constant q, they are not
correct if q is allowed to grow with ε. We recall Corollary 2.5, which gave upper bounds on the rate
R when ρ = (1− 1/q) (1− ε): we had

R ≤ 1−Hq(1− 1/q − ε) ≤ min

{
ε,

qε2

log(q)

}
.

In particular, our dependence on q in Theorem 3.2 is off by a factor of q. Additionally, when q is
large, say, larger than 1/ε2, then our quadratic dependence on ε is not correct. In Chapter 4, we
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will address these questions, and see how to extend the argument in this chapter to large alphabet
sizes.
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CHAPTER 4

List Decoding: large alphabets and Reed-Solomon codes

When we last left our heroes (Alice and Bob) in Chapter 3, they had been able (combinatorially
speaking) to communicate using a random linear code, provided the alphabet size was constant.
However, the chapter ended on a cliff-hanger of sorts. If Alice and Bob want to communicate over
a larger alphabet, say, q � 1/ε2, the results of Chapter 3 wouldn’t help much. There are several
reasons to consider larger alphabet sizes. In addition to the complexity-theoretic applications
mentioned in Chapter 2, our primary motivation for the work in the current chapter was the Reed-
Solomon codes of Definition 2.1. Because the symbols of Reed-Solomon codes are indexed by the
evaluation points α1, . . . , αn ∈ Fq, we must have q ≥ n to define them; in particular, q cannot
be constant if we are going to allow n → ∞. As a final piece of motivation, we like to resolve
cliff-hangers.

4.1 Introduction

We will continue our exploration of list decoding, this time over larger alphabet sizes. We recall
that our goal is to understand list-decodability in the parameter regime where ρ = 1 − 1/q − ε is
very large. The optimal rate to correct ρ fraction of errors is given by Theorem 2.4 and Corollary
2.5:

R∗(q, ε) := 1−Hq(1− 1/q − ε) ≤ min

{
ε,

qε2

log(q)

}
.

As we mentioned in Chapter 2, for complexity applications it is often enough to design a code with
rate Ω(R∗(q, ε)) with the same error correction capability.

In Chapter 3, we got the right dependence on ε, when q was constant. In this chapter, we will
also try to get the right dependence on q. That is, we seek to correct a ρ = 1 − 1/q − ε fraction
of errors, with rate Ω(R∗(q, ε)). The quest for such codes comes in two flavors: one can ask about
the list decodability of a specific family of codes, or one can ask for the most general conditions
which guarantee list decodability. The results in this chapter address open problems of both flavors,
discussed more below.

Specific families of codes with near-optimal rate. There has been significant effort
directed at designing efficiently-decodable codes with optimal rate. This has led to the study of
very specific families of list-decodable codes. The first non-trivial progress towards this goal was
due to work of Sudan [101] and Guruswami-Sudan [57] who showed that Reed-Solomon (RS) codes
1 can be list decoded efficiently from 1−ε fraction of errors with rate ε2. This matches the Johnson
bound (Theorem 2.7).

The work of Guruswami and Sudan held the record for seven years, during which time RS codes
enjoyed the best known tradeoff between rate and fraction of correctable errors. However, Parvaresh

1Recall Definition 2.1: an RS code encodes a low-degree univariate polynomial f over Fq as a list of evaluations
(f(α1), . . . , f(αn)) for a predetermined set of n ≤ q evaluation points in Fq .

44
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and Vardy showed that a variant of Reed-Solomon codes can beat the Johnson bound [87]. This
was then improved by Guruswami and Rudra who achieved the optimal rate of ε with Folded
Reed-Solomon codes [51]. Since then this optimal rate result has been achieved with other codes:
derivative codes [62], multiplicity codes [78], folded Algebraic Geometric (AG) codes [63] as well as
subcodes of RS and AG codes [64]. There has also been a lot of recent work on reducing the runtime
and list size for folded RS codes [23,48,62].

Even though many of the recent developments on list decoding are based on Reed-Solomon codes,
there has been no non-trivial progress on the list decodability of Reed-Solomon codes themselves
since the work of Guruswami-Sudan. This is true even if we only ask for combinatorial (not
necessarily efficient) decoding guarantees, and even for rates only slightly beyond the Johnson
bound. The question of whether or not Reed-Solomon codes can be list decoded beyond the
Johnson bound was our main motivation for this work:

Question 4.1. Are there Reed-Solomon codes which can be combinatorially list decoded from a 1−ε
fraction of errors, with rate ω

(
ε2
)
?

This question, which has been well-studied, is interesting for several reasons. First, Reed-
Solomon codes themselves are arguably the most well-studied codes in the literature. Secondly,
there are complexity applications where one needs to be able to list decode Reed-Solomon codes in
particular: e.g. the average-case hardness of the permanent [17]. Finally, the Johnson bound is a
natural barrier and it is an interesting to ask whether it can be overcome by natural codes.2

There have been some indications that Reed-Solomon codes might not be list decodable beyond
the Johnson bound. Guruswami and Rudra [50] showed that for a generalization of list decoding
called list recovery, the Johnson bound indeed gives the correct answer for RS codes. Further,
Ben-Sasson et al. [12] showed that for RS code where the evaluation set is all of Fq, the correct
answer is close to the Johnson bound. In particular, they show that to correct 1 − ε fraction of
errors with polynomial list sizes, the RS code with Fq as its evaluation points cannot have rate
better than ε2−γ for any constant γ > 0. However, this result leaves open the possibility that one
could choose the evaluation points carefully and obtain an RS code which can be combinatorially
list decoded significantly beyond the Johnson bound.

Resolving the above possibility has been open since [56]: see e.g. [43,94,108] for explicit formu-
lations of this question.

Large families of codes with near-optimal rate. While the work on list decodability of
specific families of codes have typically also been accompanied with list decoding algorithms, results
on larger classes of codes are typically combinatorial. Two classic results along these lines are (i)
that random (linear) codes have optimal rate with high probability, and (ii) the fact, following from
the Johnson bound, that any code with distance 1− 1/q − ε2 can be list decoded from 1− 1/q − ε
fraction of errors.

Results of the second type are attractive since they guarantee list decodability for any code,
deterministically, as long as the code has large enough distance. Unfortunately, it is known that
the Johnson bound is tight for some codes [55], and so we cannot obtain a stronger form of (ii).
However, one can hope for a result of the first type for list decodability, based on distance. More
specifically, it is plausible that most puncturings of a code with good distance can beat the Johnson
bound.

In Chapter 3, we obtained such a result for constant q. In particular, we showed that any code
with distance 1 − 1/q − ε2 has many puncturings of rate Ω(ε2/ log q) that are list decodable from
a 1− 1/q − ε fraction of errors. This rate is optimal up to constant factors when q is small, but is
far from the optimal bound of R∗(q, ε) for larger values of q, even when q depends only on ε and
is otherwise constant. This leads to our second motivating question, the cliff-hanger at the end of
Chapter 3:

2We note that it is easy to come up with codes that have artificially small distance and hence can beat the
Johnson bound; it is also known that Reed-Muller codes (Definition 2.12) can be list decoded beyond the Johnson
bound [39,40].
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Question 4.2. Is it true that any code with distance 1 − 1/q − ε2 has many puncturings of rate

Ω̃(R∗(q, ε)) that can list decode from 1− 1/q − ε fraction of errors?

4.1.1 Contributions of Chapter 4

We answer Questions 4.1 and 4.2 in the affirmative. Our main result addresses Question 4.2.
We show that random puncturings of any code with distance 1 − 1/q − ε2 can list decode from
1− 1/q − ε fraction of errors with rate

min
{
ε, qε2

}
log(q) log5(1/ε)

.

A corollary of this is that random linear codes are list decodable from 1− 1/q− ε fraction of errors
with the same rate. This improves upon our answers of Chapter 3 for q & log5(1/ε), and is optimal
up to polylogarithmic factors.

Our main result also implies a positive answer to Question 4.1, and we show that there do exist
RS codes that are list decodable beyond the Johnson bound. In fact, most sets of evaluation points
will work: we show that if an appropriate number of evaluation points are chosen at random, then
with constant probability the resulting RS code is list decodable from 1− ε fraction of errors with
rate

ε

log(q) log5(1/ε)
.

This beats the Johnson bound for

ε ≤ Õ
(

1

log(q)

)
.

Finally, we prove some new average-distance, average-radius Johnson bounds, which we will
need for our main results. We saw such a bound for q = 2 in Theorem 2.8, and here we extend it to
large alphabets. The proofs of these bounds are very similar to some of the proofs of the standard
Johnson bound, and the fact that these proofs extend to the average case appears to be folklore.
However, it’s probably worth writing them down, so we’ll do that in this chapter.

Relationship to impossibility results. Before we get into the details, we digress a bit to
explain why our result on Reed-Solomon codes does not contradict the known impossibility results
on this question. The lower bound of [50] works for list recovery but does not apply to our results
about list decoding.3 The lower bound of [12] does work for list decoding, but critically needs
the set of evaluation points to be all of Fq (or more precisely the evaluation set should contain
particularly structured subsets Fq). Since we pick the evaluation points at random, this property
is no longer satisfied. Finally, Cheng and Wan [19] showed that efficiently solving the list decoding
problem for RS codes from 1−ε fraction of errors with rate Ω(ε) would imply an efficient algorithm
to solve the discrete log problem. However, this result does not rule out the list size being small
(which is what our results imply), just that computing the list quickly is unlikely.

4.1.2 Chapter Organization

Our main technical result addresses Question 4.2 and states that a randomly punctured code4

will retain the list decoding properties of the original code as long as the original code has good
distance. Our results for RS codes (answering Question 4.1) and random linear codes follow by
starting from the RS code evaluated on all of Fq and the q-ary Hadamard code, respectively.

3Our results can be extended to the list recovery setting, and the resulting parameters obey the lower bound
of [50].

4Technically, our construction is slightly different than randomly punctured codes: see Remark 6.
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We’ll go over notation and review definitions in Section 4.2. In Section 4.3 we’ll prove some
average-radius, average-distance Johnson bounds which we will need. Preliminaries over with, we
give a more detailed technical overview of our approach in Section 4.4. In Section 4.5 we state
our main result, Theorem 4.6, about randomly punctured codes, and we apply it to Reed-Solomon
codes and random linear codes. The remainder of the paper, Sections 4.6 and 4.7, are devoted to
the proof of Theorem 4.6. Finally, we conclude with Section 4.8.

4.2 Yet more definitions

Motivated by Reed-Solomon codes, we consider random ensembles of linear codes C ⊂ Fnq ,
where the field size q is large. We recall that a code C ⊆ Fnq is linear if it forms a subspace of

Fnq . Equivalently, C =
{
xTG : x ∈ Fkq

}
for a generator matrix G ∈ Fk×nq . We will study the list

decodability of these codes, up to “large” error rates 1−1/q−ε, which is 1−Θ(ε) when q & 1/ε. We
recall Definition 2.3 and say that a code C ⊆ Fnq is (ρ, L)-list-decodable if for all z ∈ Fnq , the number
of codewords c ∈ C with δ(z, c) ≤ ρ is at most L. As usual, δ(z, c) denotes the relative Hamming
distance between z and c. We will actually study a slightly stronger notion of list decodability,
which we waved our hands about in Chapters 2 and 3 and which was explicitly studied in [49].
We say that a code C ⊂ Fnq is (ρ, L)-average-radius list-decodable if for all z ∈ Fnq and all sets Λ of
L+ 1 codewords c ∈ C, the average distance between elements of Λ and z is at least ρ. Notice that
standard list decoding can be written in this language with the average replaced by a maximum.

As before, we are interested in the trade-off between ε, L, and the rate of the code C. The
rate of a linear code C is defined to be dim(C)/n, where dim(C) refers to the dimension of C as a
subspace of Fnq . As in the small-alphabet case in Chapter 3, We’ll consider ensembles of linear codes
where the generator vectors are independent; this includes random linear codes and Reed Solomon
codes with random evaluation points. More precisely, a distribution on the matrices G induces a
distribution on linear codes. We say that such a distribution on linear codes C has independent
symbols if the columns of the generator matrix G are selected independently.

We will be especially interested in codes with randomly sampled symbols, where a new code
(with a shorter block length) is created from an old code by including a few symbols of the codeword
at random. We recall Definition 3.11 of a randomly sampled code: suppose that C0 ⊂ Fn0

q is a q-ary
code with block length n0. Form a new code C ⊂ Fnq from C0 by choosing n symbols uniformly
at random, with replacement from [n0]. That is, choose a multiset {t1, . . . , tn} ⊂ [n0] by choosing
each ij ∈ [n0] independently, uniformly. Then for each x ∈ Fkq , define C(x) by

C(x) = (C0(x)t1 , C0(x)t2 , . . . , C0(x)tn).

Notice that randomly sampled codes have independent symbols by definition.

Remark 6 (Sampling vs. Puncturing). We make the same remark here as we did in Chapter 3,
Remark 5. That is, the operation of randomly sampling a code is very similar to that of randomly
puncturing a code. The only difference is that we sample with replacement, while a randomly
punctured code can be viewed as a code where the sampling is done without replacement. Our
method of sampling is convenient for our analysis because of the independence. However, for the
parameter regimes we will work in, collisions are overwhelmingly unlikely, and the distribution on
randomly sampled codes is indeed very similar to that of randomly punctured codes.

A few more bits of notation: as in Chapter 3, the size of C will be |C| = N , and throughout we
will consider linear codes C ⊆ Fnq of block length n and message length k, with generator matrices

G ∈ Fk×nq . For a message x ∈ Fkq , we will write c = C(x) for the encoding C(x) = xTG. We will be

interested in subsets Λ ⊆ Fkq of size L (the list size), which we will identify, when convenient, with
the corresponding subset of C.

For x, y ∈ Fnq , let agr(x, y) = n(1 − δ(x, y)) be the number of symbols in which x and y agree.
For a vector v = (v1, v2, . . . , vn) ∈ Rn and a set S ⊆ [n], we will use vS to denote the restriction
of v to the coordinates indexed by S. We use log to denote the logarithm base 2, and ln to denote
the natural log.
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4.3 Average-radius Johnson bounds

Now, we’ll prove two average-radius, average-distance variants on the Johnson bound. These
two statements are based on two proofs of of the (standard) Johnson bound, found in [59] and [84],
respectively. It appears to be folklore that such statements are true (and follow from the proofs in
the two works cited above), but we include them below for completeness.

Theorem 4.3. Let C : Fkq → Fnq be any code. Then for all Λ ⊂ Fkq of size L and for all z ∈ Fnq ,
and for all ε ∈ (0, 1),∑

x∈Λ

agr(C(x), z) ≤ nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

δ(C(x), C(y)).

Remark 7. As with Theorem 2.8, a “normal” Johnson-bound (a la Theorem 2.7) follows by bound-
ing δ(C(x), C(y)) ≥ δ(C) for all x, y, and by bounding

∑
x∈Λ agr(C(x), z) ≥ Lminx∈Λ agr(C(x), z).

Proof. Fix a z ∈ Fnq . The crux of the proof is to map the relevant vectors over Fnq to vectors in Rnq
as follows. Given a vector u ∈ Fnq , let u′ ∈ Rnq denote the concatenation

u′ = (eu1
, eu2

, . . . , eun),

where eui ∈ {0, 1}q is the vector which is one in the ui’th index and zero elsewhere. (Above, we
fix an arbitrary mapping of Fq to [q]). In particular, for an x ∈ Λ, we will use C′(x) to denote the
mapping of the codeword C(x). Finally let v ∈ Rnq be

v = ε · z′ +
(

1− ε
q

)
· 1,

where 1 denotes the all-ones vector.
Given the definitions above, it can be verified that the identities below hold for every x 6= y ∈ Λ:

(4.1) 〈C′(x), v〉 = ε · agr(C(x), z) +
(1− ε)n

q
,

(4.2) 〈v, v〉 =
n

q
+ ε2

(
1− 1

q

)
n,

(4.3) 〈C′(x), C′(y)〉 = n(1− δ(C(x), C(y)),

and

(4.4) 〈C′(x), C′(x)〉 = n.
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Now consider the following sequence of relations:

0 ≤

〈∑
x∈Λ

(C′(x)− v) ,
∑
x∈Λ

(C′(x)− v)

〉(4.5)

=
∑
x,y∈Λ

〈C′(x), C′(y)〉 −
∑
x,y∈Λ

(〈C′(x), v〉+ 〈C′(y), v〉) +
∑
x,y∈Λ

〈v, v〉

=
∑
x∈Λ

〈C′(x), C′(x)〉+
∑

x 6=y∈Λ

〈C′(x), C′(y)〉 − 2L ·
∑
x∈Λ

〈C′(x), v〉+
∑
x,y∈Λ

〈v, v〉

= nL+ n
∑

x 6=y∈Λ

(1− δ(C(x), C(y)))(4.6)

− 2L ·
∑
x∈Λ

(
ε · agr(C(x), z) +

(1− ε)n
q

)
+ L2 ·

(
n

q
+ ε2

(
1− 1

q

)
n

)
= nL2 ·

(
1 +

1

q
+ ε2

(
1− 1

q

)
− 2(1− ε)

q

)
− n

∑
x 6=y∈Λ

δ(C(x), C(y))− 2Lε ·
∑
x∈Λ

agr(C(x), z)

= nL2 ·
(

(1 + ε2)

(
1− 1

q

)
+

2ε

q

)
− n

∑
x 6=y∈Λ

δ(C(x), C(y))− 2Lε ·
∑
x∈Λ

agr(C(x), z)(4.7)

In the above, (4.5) follows from the fact that the norm of a vector is always positive and (4.6)
follows from (4.1), (4.2), (4.3) and (4.4).

Equation (4.7) then implies that

2Lε ·
∑
x∈Λ

agr(C(x), z) ≤ nL2 ·
(

(1 + ε2)

(
1− 1

q

)
+

2ε

q

)
− n

∑
x 6=y∈Λ

δ(C(x), C(y)),

which implies the statement after rearranging terms.

Next, we prove a second average-radius variant of the Johnson bound, which has been copied
almost verbatim from [84].

Theorem 4.4. Let C : Fkq → Fnq be any code. Then for all Λ ⊂ Fkq of size L and for all z ∈ Fnq ,

∑
x∈Λ

agr(C(x), z) ≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

δ(C(x), C(y))

 .

Proof. For every j ∈ [n], define
aj = | {x ∈ Λ|C(x)j = zj} |.

Note that

(4.8)

n∑
j=1

aj =
∑
x∈Λ

agr(C(x), z),
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and

n∑
j=1

(
aj
2

)
=

1

2
·
n∑
j=1

∑
x6=y∈Λ

1C(x)j=zj1C(y)j=zj

≤
n∑
j=1

∑
x 6=y∈Λ

1C(x)j=C(y)j

=
1

2
·
∑

x6=y∈Λ

agr(C(x), C(y))

=
L(L− 1)n

2
− n

2

∑
x 6=y∈Λ

δ(C(x), C(y)).(4.9)

Next, note that by the Cauchy-Schwartz inequality,

n∑
j=1

(
ai
2

)
=

1

2

 n∑
j=1

a2
j −

n∑
j=1

aj

 ≥ 1

2n

 n∑
j=1

aj

2

− 1

2

n∑
j=1

aj .

Combining the above with (4.8) and (4.9) implies that(∑
x∈Λ

agr(C(x), z)

)2

− n ·
∑
x∈Λ

agr(C(x), z)−

n2L(L− 1)− n2
∑

x6=y∈Λ

δ(C(x), C(y))

 ≤ 0,

which in turn implies (by the fact that the sum we care about lies in between the two roots of the
quadratic equation) that

∑
x∈Λ

agr(C(x), z) ≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

δ(C(x), C(y))

 ,

which completes the proof.

4.4 Overview of approach

In this section, we give a technical overview of our argument, and point out where it differs from
previous approaches, and in particular from the approach in Chapter 3. The main difficulty that
arose in Chapter 3, and again arises here, is that the codewords are not independent. When the
codewords are independent, as with a general random code, we saw in the proof of Theorem 2.4
that optimal list-decodability follows from a simple union bound: for a given set of messages Λ and
a received word z, the probability that z lies close to the encodings of all messages in Λ is extremely
small. However, without independence, this probability is not so small, and this approach fails.

In Proposition 2.6, we got around this by considering only the linearly independent messages in
Λ, but at the cost of exponentially large list sizes. The exponential dependence on ε can actually be
removed for a constant fraction of errors, by a careful analysis of the dependence between codewords
corresponding to linearly dependent messages [44]. However, such techniques do not seem to work in
the large-error regime that we consider. Instead, in Chapter 3, we avoided analyzing the dependence
between the codewords by (impicitly) doing the union bound in a smarter way. By considering the
geometry of these sets Λ, we used a mean-width argument to take advantage of the fact that the
well-behaved-ness of the all of the Λ followed from the well-behaved-ness of a few extreme cases.
We could indeed afford a union bound over these few cases.

However, the argument in Chapter 3 did not scale well with q; we pointed out in Remark 3
where we gave up on large alphabet sizes. Handling large alphabets is necessary for the application
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to Reed-Solomon codes. In this chapter, we’ll follow the same basic idea of Chapter 3—avoiding the
naive union bound using techniques from high-dimensional probability—but we will handle large
alphabets. Instead of a simple mean-width argument, we’ll have to get our hands a little dirtier
and do a chaining argument, like we outlined in Chapter 2, Section 2.4. We outline the approach
in slightly more detail below.

As before, our proof actually establishes average-radius list decodability, which has the advantage
of linearizing the problem. However, instead of using the simplex embedding to formulate a sufficient
condition, like we did in of Section 3.3 in the previous chapter, we will be a little more direct. After
some rearranging (which is encapsulated in Proposition 4.5), it turns out that it’s sufficient to
control ∑

c∈Λ

agr(z, c) =
∑
c∈Λ

n∑
j=1

1cj=zj

uniformly over all Λ ⊆ C and all z ∈ Fnq .
We will show that this is true in expectation; that is, we will bound

(4.10) Emax
Λ,z

∑
c∈Λ

n∑
j=1

1cj=zj .

The proof proceeds in two steps. The first (more straightforward) step is to argue that if the
expectation and the maximum over Λ were reversed in (4.10), then we would have the control we
need. To that end, we introduce a parameter

E = max
|Λ|=L

Emax
z∈Fnq

∑
c∈Λ

n∑
j=1

1cj=zj .

It is not hard to see that the received word z which maximizes the agreement is the one which, for
each j, agrees with the plurality of the cj for c ∈ Λ. That is,

max
z∈Fnq

∑
c∈Λ

n∑
j=1

1cj=zj =

n∑
j=1

max
α∈Fq

|{c ∈ Λ : cj = α}| =:

n∑
j=1

pluralityj (Λ) .

Thus, to control E , we must understand the expected pluralities. For our applications, this follows
from standard Johnson-bound type arguments.

Of course, it is generally not okay to switch expectations and maxima; we must also argue that
the quantity inside the maximum does not deviate too much from its mean in the worst case. This
is the second and more complicated step of our argument. We must control the deviation

(4.11)

n∑
j=1

(
pluralityj(Λ)− Epluralityj(Λ)

)
uniformly over all Λ of size L. By the assumption of independent symbols (that is, independently
chosen evaluation points for the Reed-Solomon code, or independent generator vectors for random
linear codes), each summand in (4.11) is independent.

Sums of independent random variables tend to be reasonably concentrated, but, as pointed out
above, because the codewords are not independent there is no reason that the pluralities themselves
need to be particularly well-concentrated. Thus, we cannot handle a union bound over all Λ ⊆ C
of size L. Instead, we use a chaining argument to deal with the union bound; the idea is that if the
set Λ is close to the set Λ′ (say they overlap significantly), then we should not have to union bound
over both of them as though they were unrelated. Our main theorem, Theorem 4.6, bounds the
deviation (4.11), and thus bounds (4.10) in terms of E . We control E in the Corollaries 4.7 and 4.8,
and then explain the consequences for Reed-Solomon codes and random linear codes in Sections
4.5.2 and 4.5.3.
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We prove Theorem 4.6 in Section 4.6. To carry out the intuition above, we first pass to the
language of Gaussian processes, as per Figure 2.12. Through some standard tricks from high
dimensional probability (the symmetrization and comparison arguments that we saw in Section
2.4), it will suffice to instead bound the Gaussian process

(4.12) X(Λ) =

n∑
j=1

gjpluralityj(Λ).

uniformly over all Λ of size L, where the gj are independent standard normal random variables.
Now, we condition on C, considering only the randomness over the Gaussians. We control this

process in Theorem 4.9, the proof of which is contained in Section 4.7. The process (4.12) induces
a metric on the space of sets Λ: Λ is close to Λ′ if the vectors of their pluralities are close, in `2
distance. Indeed, if Λ is close to Λ′ in this sense, then the corresponding increment X(Λ)−X(Λ′)
is small with high probability. Now the situation is more in line with that discussed in Section 2.4
in Chapter 2, and our intuition about “wasting” the union bound on close-together Λ and Λ′ can
be made precise. In particular, Dudley’s theorem [80, 104] bounds the supremum of the process in
terms of the size of ε-nets with respect to this distance.

Thus, our proof of Theorem 4.9 boils down to constructing nets on the space of Λ’s. In fact,
our nets are quite simple—smaller nets consist of all of the sets of size L/2t, for t = 1, . . . , log(L).
However, showing that the width of these nets is small is trickier. Our argument actually uses the
structure of the chaining argument that is at the heart of the proof of Dudley’s theorem: instead
of arguing that the width of the net is small, we argue that each successive net cannot have points
that are too far from the previous net, and thus build the “chain” step-by-step. With some work,
one can abtract out a distance argument and apply Dudley’s theorem as a black box. However, at
the point that we are explicitly constructing the chains, it actually takes a bit longer to package
things up for Dudley’s theorem than to write out the chaining argument directly. To this end, (and
to keep the dissertation self-contained), we unwrap Dudley’s theorem in Section 4.7.2, as part of
our proof.

We construct and control our nets in Lemma 4.10, which we prove in Section 4.7.3. Briefly, the
idea is as follows. In order to show that a set Λ of size L/2t is “close” to some set Λ′ of size L/2t+1,
we use the probabilistic method. We choose a set Λ′ ⊆ Λ at random, and argue that in expectation
(after some appropriate normalization), the two are “close.” Thus, the desired Λ′ exists. However,
the expected distance of Λ to Λ′ in fact depends on the quantity

Qt = max
|Λ|=L/2t

n∑
j=1

pluralityj(Λ).

For t = 0, this is the quantity that we were trying to control in the first place in (4.10). Carrying
this quantity through our argument, we are able to solve for it at the end and obtain our bound.

Controlling Qt for t > 0 requires a bit of delicacy. In particular, as defined above Qlog(L) is
deterministically equal to n, which it turns out is too large for our applications. To deal with this,
we actually chain over not just the Λ, but also the set of the symbols j ∈ [n] that we consider.5 In
fact, if we did not do this trick, we would recover (with some extra logarithmic factors) our results
from Chapter 3.

Our argument has a similar flavor to some existing arguments in other domains, for example [92,
93], where a quantity analogous to Q0 arises, and where analogous nets will work; indeed, those
works are a major inspiration for our approach. There are a few main differences between that
work and what we do here, although it is possible that one could re-frame our argument to mimic
those. The first difference is that our proof of distance is structurally quite different; we actually
prove distance step-by-step, by constructing the chains. The second difference is the trick described
above, where we chain over the symbols j ∈ [n] as well as the sets Λ. This is the part that makes
the argument obnoxious to repackage for Dudley’s theorem. One informal way to describe this

5In particular we lied a little bit above, and (4.12) is not actually the Gaussian process we end up analyzing.
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trick is to say that we use qualitatively different chains for different sets Λ; how the set I ⊂ [n] of
evaluation points changes over the chain depends on the initial set Λ. In this sense, our argument
smells a bit more like the “generic chaining” of [104].

4.5 Main theorem

In this section, we state our main technical result, Theorem 4.6. To begin, we first give a
sufficient condition for list decodability, which is weaker than the sufficient condition we gave in
Chapter 3. This sufficient condition is known as average-radius list-decodability. It’s been implicitly
studied for a long time (indeed, we used it implicitly in Chapter 3, and this is the condition that our
average-radius Johnson bounds of Section 4.3 show), and it was first explicitly studied in [49]. All
of our results in this chapter will actually show average-radius list decodability, and the following
proposition shows that this will imply the standard notion of list decodability.

Proposition 4.5. Suppose that

max
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) < nL

(
ε+

1

q

)
.

Then C is (1− 1/q − ε, L− 1)-list decodable.

Proof. By definition, C is (1− 1/q− ε, L− 1)-list decodable if for any z ∈ Fnq and any set Λ ⊂ Fkq of
size L, there is at least one message x ∈ Λ so that agr(C(x), z) is at most n (ε+ 1/q), that is, if

max
z∈Fnq

max
|Λ|=L

min
x∈Λ

agr(C(x), z) < n

(
ε+

1

q

)
.

Since the average is always larger than the minimum, it suffices for

max
z∈Fnq

max
|Λ|=L

∑
x∈Λ

agr(C(x), z) < Ln

(
ε+

1

q

)
,

as claimed.

Our main theorem gives conditions on ensembles of linear codes under which Emaxz,Λ
∑
x∈Λ agr(C(x), z)

is bounded. Thus, it gives conditions under which Proposition 4.5 holds.

Theorem 4.6. Fix ε > 0. Let C be a random linear code with independent symbols. Let

E = max
Λ⊂Fkq ,|Λ|=L

EC max
z∈Fkq

(∑
x∈Λ

agr(C(x), z)

)
.

Then
EC max

z∈Fnq
max

Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) ≤ E + Y +
√
EY ,

where
Y = C0L log(N) log5(L)

for an absolute constant C0.

Together with Proposition 4.5, Theorem 4.6 implies results about the list decodability of random
codes with independent symbols, which we present next.

Remark 8. We have chosen the statement of the theorem which gives the best bounds for Reed-
Solomon codes, where q � L is a reasonable parameter regime. An inspection of the proof shows
that we may replace one log(L) factor with min{log(L), log(q)}.
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Before we prove Theorem 4.6, we derive some consequences of it for randomly sampled codes,
in terms of the distance of the original code. We work out two corollaries to this effect in Section
4.5.1 below. Our motivating examples are Reed-Solomon codes with random evaluation points,
and random linear codes, which both fit within this framework. Indeed, Reed-Solomon codes with
random evaluation points are obtained by sampling symbols from the Reed-Solomon code with
block length n = q, and a random linear code is a randomly sampled Hadamard code. We’ll discuss
the implications and optimality for the two motivating examples below in Sections 4.5.2 and 4.5.3
respectively.

4.5.1 Codes with good distance have abundant optimally-list-decodable puncturings

We’ll prove two statements. The first holds for all q, but only yields the correct list size when
q is small. The second holds for q & 1/ε2, and gives an improved list size in this regime. As
discussed below in Section 4.5.3, our results are nearly optimal in both regimes. The proofs of both
results follow from the average-radius Johnson bounds of Section 4.3; they amount to controlling
the quantity E . We state both results first, and then prove them.

The following result is intended for use with small q.

Corollary 4.7 (Small q). Let C0 be a linear code over Fq with distance 1− 1
q −

ε2

2 . Suppose that

n ≥ C0 log(N) log5(L)

min {ε, qε2}
,

and choose C to be a randomly sampled version of C0, of block length n. Then, with constant
probability over the choice of C, the code C is (1−1/q−ε′, 2/ε2)-list decodable, where ε′ =

(
2 +
√

2
)
ε.

Corollary 4.7 holds for all values of q, but the list size L & ε−2 is suboptimal when q & 1/ε. To
that end, we include the following corollary, which holds when q & 1/ε2 and attains the “correct”
list size.6

Corollary 4.8 (Large q). Suppose that q > 1/ε2, and that ε is sufficiently small. Let C0 be a linear
code over Fq with distance 1− ε2. Let

n ≥ 2C0 log(N) log5(L)

ε
,

and choose C to be a randomly sampled version of C0, of block length n. Then, with constant
probability over the choice of C, the code C is (1− ε′, 1/ε)-list decodable, where ε′ = 5ε.

Remark 9 (Average-radius list decodability). We remark that the proofs of both Corollaries 4.7
and 4.8 go through Proposition 4.5, and thus actually show average-radius list decodability, not just
list decodability. In particular, the applications to both Reed-Solomon codes and random linear codes
hold under this stronger notion as well.

We prove Corollaries 4.7 and 4.8 below.

Proof of Corollary 4.7. Suppose that L ≥ 2/ε2 and that the distance of C0 is at least 1−1/q−ε2/2.
We need an average-radius version of the Johnson bound, which we provide in Theorem 4.3 in
Appendix 4.3. By Theorem 4.3, for any z ∈ Fnq and for all Λ ⊂ Fkq of size L,

(4.13)
∑
x∈Λ

agr(C(x), z) ≤ nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

δ(C(x), C(y)).

6As discussed below, we do not know good lower bounds on list sizes for large q; by “correct” we mean matching
the performance of a general random code.
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By Theorem 4.6, it suffices to control E . Since the right hand side above does not depend on z,

E = max
|Λ|=L

EC max
z∈Fkq

∑
x∈Λ

agr(C(x), z)

≤ max
|Λ|=L

EC max
z∈Fkq

nL
q

+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

δ(C(x), C(y))


= max
|Λ|=L

nL
q

+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

ECδ(C(x), C(y))


≤ nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
−
n(L− 1)

(
1− 1

q −
ε2

2

)
2ε

(4.14)

=
nL

q
+
nLε

2

(
3

2
− 1

q

)
+
n
(

1− 1
q −

ε2

2

)
2ε

≤ nL

q
+

3nLε

4
+

n

2ε

≤ nL
(

1

q
+ ε

)
.(4.15)

In the above, (4.14) follows from the fact that the original code had (relative) distance 1−1/q−ε2/2
and that in the construction of C from C0, pairwise Hamming distances are preserved in expectation.
Finally, (4.15) follows from the assumption that L ≥ 2/ε2.

Recall from the statement of Theorem 4.6 that we have defined

Y = C0L log(N) log5(L),

so the assumption on n implies that

Y ≤ nLmin{ε, qε2}.

Suppose that qε ≤ 1, so that Y ≤ nLqε2. Plugging this along with (4.15) into Theorem 4.6, we
obtain

EC max
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) ≤ E + Y +
√
EY

≤ nL
(

1

q
+ ε

)
+ nLqε2 + nL

√
qε2

(
1

q
+ ε

)
= nL

(
1

q
+ ε

(
1 + qε+

√
1 + qε

))
≤ nL

(
1

q
+ ε

(
2 +
√

2
))

,

using the assumption that qε ≤ 1 in the final line. Thus, Proposition 4.5 implies that C is(
1− 1/q − (2 +

√
2)ε, 2/ε2

)
-list-decodable.

On the other hand, suppose that qε ≥ 1, so that Y ≤ nLε. Then following the same outline, we
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have

EC max
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) ≤ E + Y +
√
EY

≤ nL
(

1

q
+ ε

)
+ nLε+ nL

√
ε

(
1

q
+ ε

)
= nL

(
1

q
+ ε

(
2 +

√
1

qε
+ 1

))
≤ nL

(
1

q
+ ε

(
2 +
√

2
))

,

using the assumption that qε ≥ 1 in the final line. Thus, in this case as well, C is
(
1− 1/q − (2 +

√
2)ε, 2/ε2

)
-

list-decodable.
This completes the proof of Corollary 4.7.

Proof of Corollary 4.8. As with Corollary 4.7, we need an average-radius version of the Johnson
bound. In this case, we follow a proof of the Johnson bound from [84], which gives a better
dependence on ε in the list size when q is large. For completeness, our average-radius version of
the proof is given in Appendix 4.3, Theorem 4.4.

We proceed with the proof of Corollary 4.8. By Theorem 4.4, for any z ∈ Fnq and for all Λ ⊂ Fkq
of size L,

(4.16)
∑
x∈Λ

agr(C(x), z) ≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x6=y∈Λ

δ(C(x), C(y))

 .

By Theorem 4.6, it suffices to control E . Since the right hand side above does not depend on z,

E = max
|Λ|=L

EC max
z∈Fkq

∑
x∈Λ

agr(C(x), z)

≤ max
|Λ|=L

EC max
z∈Fkq

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

δ(C(x), C(y))

(4.17)

≤ max
|Λ|=L

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

ECδ(C(x), C(y))

(4.18)

≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

(1− ε2)

(4.19)

≤ 1

2

(
n+

√
n2 + 4n2L(L− 1)ε2

)
<

1

2

(
n+

√
n2 + 4n2L2ε2

)
≤ 2nLε.(4.20)

In the above, (4.17) follows from (4.16). (4.18) follows from Jensen’s inequality. (4.19) follows
from the fact that the original code had (relative) distance 1 − ε2 and that in the construction of
C from C0, pairwise Hamming distances are preserved in expectation. Finally, (4.20) follows from
the assumption that L ≥ 1/ε.
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Now, Theorem 4.6 implies that

EC max
z∈Fnq

max
Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(C(x), z) ≤ E + Y +
√
EY

≤ 2 (E + Y )

≤ 2 (2nLε+ Y )

≤ 5nLε

where as before
Y = C0L log(N) log5(L)

and where we used the choice of n in the final line. Choose ε′ = 5ε, so that whenever 5ε > 1/q,
Proposition 4.5 applies and completes the proof. Because we have chosen ε > 1/

√
q (which is

necessary in order for C0 to have distance 1− ε2), the condition that 5ε > 1/q holds for sufficiently
small ε.

Next, we’ll show how to apply Corollaries 4.7 and 4.8 to our headline results, about Reed-
Solomon codes and random linear codes.

4.5.2 Most Reed-Solomon codes are list-decodable beyond the Johnson bound

Our results imply that a Reed-Solomon code with random evaluation points is, with high prob-
ability, list decodable beyond the Johnson bound. Recall Definition 2.1 of Reed-Solomon codes:
For q ≥ n, and an integer k, and let {α1, . . . , αn} ⊆ Fq be a list of “evaluation points.” The corre-
sponding Reed-Solomon code C ⊂ Fnq encodes a polynomial (message) f ∈ Fq[x] of degree at most
k − 1 as

C(f) = (f(α1), f(α2), . . . , f(αn)) ∈ Fnq .

Note that there are qk polynomials of degree at most k − 1, and thus |C| = qk.
For Reed-Solomon codes, we are often interested in the parameter regime when q ≥ n is quite

large. In particular, below we will be especially interested in the regime when q � 1/ε2, and so
we will use Corollary 4.8 for this application. To apply Corollary 4.8, let C0 be the Reed-Solomon
code of block length q (that is, every point in Fq is evaluated), and choose the n evaluation points
(αi)

n
i=1 for C independently from Fq. We will choose the block length n so that

n .
log(N) log5(1/ε)

ε
.

As we discussed in Chapter 2, the generator matrix for C will have full rank, and so the rate of C
is at least

(4.21) R &
ε

log(q) log5(1/ε)
.

Before we investigate the result of Corollary 4.8, let us pause to observe what the Johnson bound
predicts for C. The distance of C is exactly 1 − (k − 1)/n. Indeed, any two polynomials of degree
k − 1 agree on at most k − 1 points, and this is attained by, say, the zero polynomial and any
polynomial with k distinct roots in {α1, . . . , αn}. Thus, letting ε = (k − 1)/n, the Johnson bound
predicts that C has rate ε, distance 1− ε, and is list decodable up to 1− O(

√
ε), with polynomial

list sizes.
Now, we compare this to the result of Corollary 4.8. The distance of C0 is 1 − (k − 1)/q, so

as long as q & k/ε2, we may apply Corollary 4.8. Then, Corollary 4.8 implies that the resulting
Reed-Solomon code C has rate

Ω

(
ε

log(q) log5(1/ε)

)
,

distance 1− ε, and is list decodable up to radius 1− 5ε, with list sizes at most 1/ε.
In particular, the tolerable error rate may be as large as 1−O(ε), rather than 1−O(

√
ε), and

the rate suffers only by logarithmic factors.
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Best known
rate for random

linear codes

Upper bound
on rate

Best known list
size for random

linear codes

Lower bound
on list size

ε2

log(q) ,

Chapter 3

qε2

log(q) log5(1/ε)

Cor. 4.7

ε

log(q) log5(1/ε)

Cors. 4.7, 4.8

qε2

log(q)

1−Hq

(
1− 1

q
− ε

)

ε

1

ε2

[20],
Chapter 3,

and Cor. 4.7

1

ε

Cor. 4.8

1

q5ε2

[61]

q = log5(1/ε)

q = 1/ε

q = 1/ε2

Regime

Figure 4.1: The state of affairs for q-ary random linear codes. Above, the list decoding radius is
1− 1/q − ε, and we have suppressed constant factors.

4.5.3 Near-optimal bounds for random linear codes over large alphabets

In addition to implying that most Reed-Solomon codes are list decodable beyond the Johnson
bound, Corollaries 4.7 and 4.8 provide the best known bounds on random linear codes over large
fields; this improves on the results of Chapter 3 for large q. Our new results are tight up to constant
factors.

Suppose that C0 is the Hadamard code over Fq of dimension k; that is, the generator matrix of

C0 ∈ Fk×qkq has all the elements of Fkq as its columns. The relative distance of C0 is 1− 1/q, and so
we may apply the corollaries with any ε > 0 that we choose.

To this end, fix ε > 0, and let C be a randomly sampled version of C0, of block length

n =
2C0 log(qk) log5(1/ε)

ε
.

It is not hard to see that the generator matrix of C will have full rank with high probability, and
so the rate of C will be at least

(4.22) R = k/n =
min

{
ε, qε2

}
2C0 log(q) log5(1/ε)

.

By Corollary 4.7, C is list decodable up to error radius 1− 1/q −O(ε), with list sizes at most 2/ε2.
When q & 1/ε2, Corollary 4.8 applies, and we get the same result with an improved list size of 1/ε.

We compare these results to known results on random linear codes in Figure 4.1. The best
known results on the list decodability of random linear codes, from [111], state that a random
linear code of rate on the order of ε2/ log(q) is (1−1/q− ε,O(1/ε2))-list decodable. This is optimal
(up to constant factors) for constant q, but it is suboptimal for large q. In particular, the bound
on the rate is surpassed by our bound (4.22) when q & log5(1/ε).

When the error rate is 1−1/q− ε, the optimal information rate for list decodable codes is given
by the list decoding capacity theorem, which implies that we must have R ≤ 1−Hq(1− 1/q − ε).
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This expression behaves differently for different parameter regimes; in particular, when q ≤ 1/ε and
ε is sufficiently small, we have

1−Hq(1− 1/q − ε) =
qε2

2 log(q)(1− 1/q)
+O(ε3),

while when q ≥ 2Ω(1/ε), the optimal rate is linear in ε. For the first of these two regimes—and
indeed whenever q ≤ 1/poly(ε)—our bound (4.22) is optimal up to polylogarithmic factors in 1/ε.
In the second regime, when q is exponentially large, our bound slips by an additional factor of
log(q).

For the q ≤ 1/ε2 regime, our list size of 1/ε2 matches existing results, and when q is constant
it matches the lower bounds of [61]. For q ≥ 1/ε2, our list size of 1/ε is the best known. There
is a large gap between the lower bound of [61] and our upper bounds for large q. However, there
is evidence that the most of discrepancy is due to the difficulty of obtaining lower bounds on list
sizes. Indeed, a (general) random code of rate 1−Hq(1− 1/q − ε)− 1/L is list-decodable with list
size L, implying that L = O(1/ε) is the correct answer for q & 1/ε. Thus, while our bound seems
like it is probably weak for q super-constant but smaller than 1/ε2, it seems correct for q & 1/ε2.

4.6 Proof of Theorem 4.6: reduction to Gaussian processes

In this section, we prove Theorem 4.6. For the reader’s convenience, we restate the theorem
here.

Theorem (Theorem 4.6, restated). Fix ε > 0. Let C be a random linear code with independent
symbols. Let

E = max
Λ⊂Fkq ,|Λ|=L

EC max
z∈Fkq

(∑
x∈Λ

agr(C(x), z)

)
.

Then
EC max

z∈Fnq
max

Λ⊂Fkq ,|Λ|=L

∑
x∈Λ

agr(c(x), z) ≤ E + Y +
√
EY ,

where
Y = C0L log(N) log5(L)

for an absolute constant C0.

To begin, we introduce some notation.

Notation 4.1. For a set Λ ⊆ Fkq , let plCj denote the (fractional) plurality of index j ∈ [n]:

plCj (Λ) =
1

|Λ|
max
α∈Fq

|{x ∈ Λ : C(x)j = α}| .

For a set I ⊆ [n], let
plCI (Λ) ∈ [0, 1]n

be the the vector ( plCj (Λ))nj=1 restricted to the coordinates in I, with the remaining coordinates set
to zero. When C is fixed, we will drop the superscript for notational clarity.

Rephrasing the goal in terms of our new notation, the quantity we wish to bound is

(4.23) EC max
z∈Fnq

max
|Λ|=L

∑
x∈Λ

agr(C(x), z) = L · EC max
|Λ|=L

∑
j∈[n]

plCj (Λ).

Moving the expectation inside the maximum recovers the quantity

E = L · max
|Λ|=L

EC
∑
j∈[n]

plCj (Λ),
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which appears in the statement of Theorem 4.6. Since Theorem 4.6 outsources a bound on E to
the user (in our case, Corollaries 4.7 and 4.8), we seek to control the worst deviation

F := L · EC max
|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

plCj (Λ)− EC
∑
j∈[n]

plCj (Λ)

∣∣∣∣∣∣
= L · EC max

|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

(
plCj (Λ)− EC plCj (Λ)

)∣∣∣∣∣∣ .(4.24)

Indeed, let

Q = Q(C) = max
|Λ|=L

∑
j∈[n]

plCj (Λ),

so that L · ECQ is the quantity in (4.23). Then,

ECQ = EC max
|Λ|=L

∑
j∈[n]

plCj (Λ)− EC
∑
j∈[n]

plCj (Λ) + EC
∑
j∈[n]

plCj (Λ)


≤ EC max

|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

plCj (Λ)− EC
∑
j∈[n]

plCj (Λ)

∣∣∣∣∣∣+ max
|Λ|=L

EC
∑
j∈[n]

plCj (Λ)

=
1

L
(F + E) ,(4.25)

so getting a handle on F would be enough. With that in mind, we return our attention to (4.24). By
the assumption of independent symbols, the summands in (4.24) are independent. By a standard
symmetrization argument followed by a comparison argument (Lemmas 2.16 and 2.17, respectively),
we may bound

1

L
F = EC max

|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

(
plCj (Λ)− EC plCj (Λ)

)∣∣∣∣∣∣(4.26)

≤
√

2π ECEg max
|Λ|=L

∣∣∣∣∣∣
∑
j∈[n]

gj plCj (Λ)

∣∣∣∣∣∣(4.27)

Above, gj are independent standard normal random variables.
Let

(4.28) S0 = {[n]} ×
{

Λ ⊂ Fkq : |Λ| = L
}
,

so that we wish to control

ECEg max
(I,Λ)∈S0

∣∣∣∣∣∣
∑
j∈I

gj plCj (Λ)

∣∣∣∣∣∣ .
At this stage, maximimizing I over the one-element collection {[n]} may seem like a silly use of
notation, but we will use the flexibility as the argument progresses.

Condition on the choice of C until further notice, and consider only the randomness over the
Gaussian random vector g = (g1, . . . , gn). In particular, this fixes Q = Q(C), and also fixes the
function plC . In order to take advantage of (4.26), we will study the Gaussian process

(4.29) X(I,Λ) =
∑
j∈I

gj plCj (Λ)

indexed by (I,Λ) ∈ S0. The bulk of the proof of Theorem 4.6 is the following theorem, which
controls the expected supremum of X(I,Λ), in terms of Q.
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Theorem 4.9. Condition on the choice of C. Then

Eg max
(I,Λ)∈S0

|X(I,Λ)| ≤ C3

√
Q log(N) log5(L)

for some constant C3.

We will prove Theorem 4.9 in Section 4.7. First, let us show how it implies Theorem 4.6. By
(4.26), and applying Theorem 4.9, we have

F ≤
√

2π LECEg max
(I,Λ)∈S0

∣∣∣∣∣∣
∑
j∈I

gj plCj (z,Λ)

∣∣∣∣∣∣
≤ C3

√
2π LEC

[√
Q log(N) log5(L)

]
≤ C3

√
2π L

√
ECQ log(N) log5(L)

Using the fact (4.25) that ECQ ≤ 1
L (E + F),

F ≤ C3

√
2π

√
L (E + F) log(N) log5(L)

=:
√
Y (E + F),

where
Y := C2

32πL log(N) log5(L).

Solving for F , this implies that

F ≤ Y +
√
Y 2 + 4Y E
2

≤ Y +
√
Y E .

Then, from (4.25) and the definition of Q (recall that L · ECQ is the quantity in (4.23)),

EC max
I,Λ

∑
x∈Λ

agr(C(x), z) = LECQ

≤ E + F

≤ E + Y +
√
Y E ,

as claimed. This proves Theorem 4.6.

4.7 Proof of Theorem 4.9: controlling a Gaussian process

In this section, we prove Theorem 4.9. Recall that the goal was to control the Gaussian process
(4.29) given by

X(I,Λ) =
∑
j∈I

gj plCj (Λ).

Recall also that we are conditioning on the choice of C. Because of this, for notational convenience,
we will drop the superscript on plC , and additionally identify Λ ⊂ Fkq with the corresponding set
of codewords {C(x) : x ∈ Λ} ⊂ C. That is, for this section, we will imagine that Λ ⊂ C is a set of
codewords.

Notation 4.2. When the code C is fixed (in particular, for the entirety of Section 4.7), we will
identify Λ ⊂ Fkq with Λ ⊂ C, given by

Λ← {C(x) : x ∈ Λ} .
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To control the Gaussian process (4.29), we will use a chaining argument. We outlined the
basic intuition of such an argument in Section 2.4. More precisely, we will define a series of nets,
St ⊂ 2[n] × 2C and write, for any (I0,Λ0) ∈ S0,

|X(I0,Λ0)| ≤

(
tmax−1∑
t=0

|X(πt(I0,Λ0))−X(πt+1(I0,Λ0))|

)
+ |X(πtmax

(I0,Λ0))| ,

where πt(I0,Λ0) ∈ St and tmax ∈ Z will shortly be determined, π0(I0,Λ0) = (I0,Λ0). Then we will
argue that each step in this “chain” (that is, each summand in the first term) is small with high
probability, and union bound over all possible chains.

For Gaussian processes, such chaining arguments come in standard packages, for example Dud-
ley’s integral inequality [80], or Talagrand’s generic chaining inequality [104]. We choose to unpack
the argument for two reasons. The first and main reason is that our choice of nets is informed by
the structure of the chaining argument. Thus, it is clearer to define the nets in the context of the
complete argument. The second reason is to make the exposition self-contained.

We remark that, due to the nature of our argument, it is convenient for us to start with the large
nets indexed by small t, and the small nets indexed by large t; this is in contrast with convention.

4.7.1 Defining the nets

We will define nets St, for each t recursively. Begin by defining S0 as in (4.28), and let π0 :
S0 → S0 be the identity map. Given St, we will define St+1, as well as the maps πt+1 : S0 → St+1.
Our maps πt will satisfy the guarantees of the following lemma.

Lemma 4.10. Fix a parameter η = 1/ log(L), and suppose c0 < L < N/2 is sufficiently large, for
some constant c0. Let

(4.30) tmax =
log(L)− 2 log(1/η)− 2

log(2/(1− η))
.

Then there is a sequence of maps
πt : S0 → 2[n] × 2C

for t = 0, . . . , tmax so that π0 is the identity map and so that the following hold.

1. For all (I0,Λ0) ∈ S0, and for all t = 0, . . . , tmax, the pair (It,Λt) = πt(I0,Λ0) obeys

(4.31)
∑
j∈It

plj(Λt) ≤ Qt := (1 + η)
t
Q.

and

(4.32)

(
1− η

2

)t
L ≤ |Λt| ≤

(
1 + η

2

)t
L.

2. For all (I0,Λ0) ∈ S0, and for all t = 0, . . . , tmax−1, the pair (It+1,Λt+1) = πt+1(I0,Λ0) obeys

(4.33)
∥∥∥plIt(Λt)− plIt+1

(Λt+1)
∥∥∥

2
≤
C4

√
Qt log(L)

η
√
|Λt|

for some constant C4.

3. For all t = 0, . . . , tmax, define

St := {πt(I0,Λ0) : (I0,Λ0) ∈ S0} .

Then, for t ≥ 1, the size of the net St satisfies

(4.34) |St| ≤ C6

(
N

eL/2t

)(
N

eL/2t−1

)
,

for some constant C6, while |S0| =
(
N
L

)
.
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4.7.2 Proof of Theorem 4.9 from Lemma 4.10: a chaining argument

Before we prove Lemma 4.10, we will show how to use it to prove Theorem 4.9. This part of the
proof follows the standard proof of Dudley’s theorem [80], and can be skipped by the reader already
familiar with it.7 As outlined above, we will use a chaining argument to control the Gaussian process
in Theorem 4.9. We wish to control

E max
(I,Λ)∈S0

|X(I,Λ)| .

For any (I0,Λ0) ∈ S0, write

|X(I0,Λ0)| ≤

(
tmax−1∑
t=0

|X(πt(I0,Λ0))−X(πt+1(I0,Λ0))|

)
+ |X(πtmax

(I0,Λ0))|

=: S(I0,Λ0) + |X(πtmax
(I0,Λ0))| ,(4.35)

where Lemma 4.10 tells us how to pick (It,Λt) := πt(I0,Λ0), and where we have used the fact that
π0(I0,Λ0) = (I0,Λ0).

Each increment

X(πt(I0,Λ0))−X(πt+1(I0,Λ0)) =

n∑
j=1

gj
[
1j∈It plj(Λt)− 1j∈It+1

plj(Λt+1)
]

is a Gaussian random variable (see Fact 2.13) with variance

n∑
j=1

(
1j∈It plj(Λt)− 1j∈It+1 plj(Λt+1)

)2
=
∥∥∥plIt(Λt)− plIt+1

(Λt+1)
∥∥∥2

2

≤ C2
4Qt log(L)

η2|Λt|
by (4.33)

≤ C2
4Qt log(L)

η2
(

1−η
2

)t
L

by (4.32)

≤ C2
4 (1 + η)tQ log(L)

η2
(

1−η
2

)t
L

by (4.31)

≤
(
C4

η

)2(
Q log(L)(2(1 + 2η))t

L

)
using η ≤ 1/2.

≤
(
eC4

η

)2(
Q log(L)2t

L

)
using η = 1/ log(L) and tmax ≤ log(L).

Thus, for each 0 ≤ t < tmax, and for any u, at ≥ 0,

P {|X(πt(z,Λ))−X(πt+1(z,Λ))| > u · at} ≤ exp

(
−u2 · a2

t

2
∑n
j=1

(
1j∈It plj(Λt)− 1j∈It+1

plj(Λt+1)
)2
)

≤ exp

 −u2 · a2
t

2
(
eC4

η

)2 (
Q log(L)2t

L

)


=: exp

(
−u2 · a2

t

δ2
t

)
.(4.36)

7Assuming that the reader is willing to take our word on the calculations.
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In the above, we used the fact that for a Gaussian variable g with variance σ, P {|g| > u} ≤
exp(−u2/(2σ2)). Now we union bound over all possible “chains” (that is, sequences {πt(I0,Λ0)}t)
to bound the probability that there exists a (I0,Λ0) ∈ S0 so that the first term S(I0,Λ0) in (4.35)
is large. Consider the event that for all (I0,Λ0) ∈ S0,

|X(πt(I0,Λ0))−X(πt+1(I0,Λ0))| ≤ u · at,

for at to be determined shortly. In the favorable case that this event occurs, the first term in (4.35)
is bounded by

S(I0,Λ0) =

tmax−1∑
t=0

|X(πt(I0,Λ0))−X(πt+1(I0,Λ0))| ≤ u ·
tmax−1∑
t=0

at,

for all (I0,Λ0). Let

(4.37) Nt =

{
C6

(
N

eL/2t

)(
N

eL/2t−1

)
t ≥ 1(

N
L

)
t = 0

be our bound on |St|, given by (4.34) in Lemma 4.10. Then probability that the above good event
fails to occur is at most, by the union bound,

P

{
max

(I0,Λ0)∈S0
S(I0,Λ0) > u ·

tmax−1∑
t=0

at

}
≤
tmax−1∑
t=0

NtNt+1 exp

(
−u2 · a2

t

δ2
t

)
.

Indeed, there are at most NtNt+1 possible “steps” between πt(I0,Λ0) and πt+1(I0,Λ0), and the
probability that any step at level t fails is given by (4.36).

Choose

(4.38) at =
√

2 ln (NtNt+1) δt.

This choice will imply that

(4.39) E max
(I0,Λ0)∈S0

S(I0,Λ0) ≤ 2

tmax−1∑
t=1

at.

Indeed, to establish (4.39), we may follow a (standard) computation similar to that of Proposition

2.14 that we saw in Chapter 2. Let A =
∑tmax−1
t=1 . Then

E max
(I,Λ)∈S0

S(I,Λ) =

∫ ∞
u=0

P
{

max
(I,Λ)

S(I,Λ) > u

}
du

≤ A+

∫ ∞
u=A

tmax−1∑
t=0

NtNt+1 exp

(
−u2 · a2

t

δ2
tA

2

)
du

= A+

∫ ∞
u=A

tmax−1∑
t=0

NtNt+1 exp

(
−2u2 ln (NtNt+1)

A2

)
du

≤ A+

tmax−1∑
t=0

NtNt+1

∫ ∞
u=A

exp

(
−2u2 ln (NtNt+1)

A2

)
du.

Repeating the trick (2.10), we estimate∫ ∞
u=A

exp

(
−2u2 ln (NtNt+1)

A2

)
≤ A

4 ln (NtNt+1)
exp (−2 ln (NtNt+1)) ≤ A

4N2
t N

2
t+1

.
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Plugging this in, we get

E max
(I,Λ)∈S0

S(I,Λ) ≤ A

(
1 +

1

4

tmax−1∑
t=0

1

NtNt+1

)
≤ 2A.

In the last inequality, we used the definition of Nt = C6

(
N

eL/2t

)(
N

eL/2t+1

)
if t ≥ 1 and N0 =

(
N
L

)
. In

particular, we have used the fact that Nt ≥ 2 for our setting of parameters. This establishes (4.39).
Now, plugging in our definition (4.38) of at and then of δt and Nt (Equations (4.36) and (4.37),

respectively),

E max
(z,Λ)∈S0

S(I0,Λ0) ≤ 2

tmax−1∑
t=0

√
2 ln (NtNt+1) δt

.
tmax−1∑
t=0

√
L

2t
log(N)

(
1

η

√
Q log(L)2t

L

)

= tmax

(√
Q log(N) log(L)

η

)
≤ log2(L)

√
Q log(N) log(L),(4.40)

after using the choice of η = 1/ log(L) and tmax ≤ log(L) in the final line.
With the first term S(I0,Λ0) of (4.35) under control by (4.40), we turn to the second term, and

we now bound the probability that the final term X(πtmax
(z,Λ)) is large. Let (Imax,Λmax) =

πtmax(I0,Λ0), so we wish to bound the Gaussian random variable

X(πtmax
(I0,Λ0)) =

∑
j∈Imax

gj plj(Λmax).

As with the increments in S(I0,Λ0), we will first bound the variance of X(πtmax(I0,Λ0)). By (4.31),
we know that ∑

j∈Imax

plj(Λmax) ≤ Qtmax
≤ eQ.

Further, since plj(Λmax) is a fraction, we always have

plj(Λmax) ≤ 1.

By Hölder’s inequality,

∑
j∈Imax

plj(Λmax)2 ≤

 ∑
j∈Imax

plj(Λmax)

( max
j∈Imax

plj(Λmax)

)
≤ eQ.

Thus, for each (I0,Λ0) ∈ S0, X(πtmax
(I0,Λ0)) is a Gaussian random variable with variance at most

eQ (using Fact 2.13). We recall the choice from (4.30) of

(4.41) tmax =
log(L)− 2 log(1/η)− 2

1 + log(1/(1− η))
≥ log(L)− 2 log log(L)− C7,

for some constant C7, for sufficiently large L. Because there are |Stmax | ≤
(

N
eL/2tmax

)
of these,

Proposition 2.14 says that

E max
(I0,Λ0)∈S0

|X(πtmax
(I0,Λ0))| .

√
ln |Stmax

| ·
√
Q

.

√
LQ log(N)

2tmax

. log(L)
√
Q log(N),
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using the choice of tmax (and the bound on it in (4.41)) in the final line. Finally, putting together
the two parts of (4.35), we have

E max
(I0,Λ0)∈S0

X(I0,Λ0) . log2(L)
√
Q log(N) log(L) + log(L)

√
Q log(N)(4.42)

. log2(L)
√
Q log(N) log(L).

This completes the proof of Theorem 4.9 (assuming Lemma 4.10).

4.7.3 Proof of Lemma 4.10: the desired nets exist

Finally, we prove Lemma 4.10. We proceed inductively. In addition to the conclusions of the
lemma, we will maintain the inductive hypotheses

(4.43) It+1 ⊆ It and Λt+1 ⊆ Λt

for all t.
For the base case, t = 0, we set π0(I0,Λ0) = (I0,Λ0). The definition of Q guarantees (4.31),

and the definition of S0 guarantees (4.32). By definition |S0| ≤
(
N
L

)
. Further, since by definition

I0 = [n], the first part of (4.43) is automatically satisfied. (We are not yet in a position to verify
the base case for the second part of (4.43), having not yet defined Λ1, but we will do so shortly).

We will need to keep track of how the pluralities plj(Λt) change, and for this we need the
following notation.

Notation 4.3. For α ∈ Fq and Λ ⊂ C, let

vj(α,Λ) =
|{c ∈ Λ : cj = α}|

|Λ|

be the fraction of times the symbol α appears in the j’th symbol in Λ.

Now we define St for t ≥ 1. Suppose we are given (It,Λt) = πt(I0,Λ0) ∈ St satisfying the
hypotheses of the lemma. We need to produce (It+1,Λt+1) ∈ St+1, and we will use the probabilistic
method. We will choose It+1 deterministically based on Λt. Then we will choose Λt+1 randomly,
based on Λt, and show that with positive probability, (It+1,Λt+1) obey the desired conclusions.
Then we will fix a favorable draw of (It+1,Λt+1) and call it πt+1(I0,Λ0).

We choose It+1 to be the “heavy” coordinates,

It+1 :=
{
j : |Λt|plj(Λt) ≥ γ

}
,

for

(4.44) γ :=
4c1 log(L)

(1− η)2η2
,

where c1 is a suitably large constant to be fixed later. Notice that It+1 depends only on Λt (and
on C, which for the moment is fixed).

Now consider drawing Λt+1 ⊂ Λt at random by including each element of Λt in Λt+1 indepen-
dently with probability 1/2. We will choose some Λt+1 from the support of this distribution.

Before we fix Λt+1, observe that we are already in a position to establish (4.43). Indeed, the
second part of (4.43) holds for all t, because Λt+1 ⊆ Λt by construction. To establish the first part
of (4.43) for t, t+ 1, we use that Λt ⊆ Λt−1 (by induction, using (4.43) for t− 1, t), and this implies
that for all j ∈ It+1,

γ ≤ |Λt|plj(Λt)

= max
α
|{c ∈ Λt : cj = α}|

≤ max
α
|{c ∈ Λt−1 : cj = α}|

= |Λt−1|plj(Λt−1),



67

and hence j ∈ It. Thus,

(4.45) It+1 ⊆ It.

Before we move on to the other inductive hypotheses, stated in Lemma 4.10, we must fix a
“favorable” draw of Λt+1. In expectation, Λt+1 behaves like Λt, and so the hope is that the “step”

plIt(Λt)− plIt+1
(Λt+1)

is small. We quantify this in the following lemma.

Lemma 4.11. For all j,

E
[
|Λt+1||plj(Λt)− plj(Λt+1)|

]
≤
√
C5|Λt| log(L) plj(Λt)

and
E
[
|Λt+1|2( plj(Λt)− plj(Λt+1))2

]
≤ C5|Λt| log(L) plj(Λt)

for some constant C5.

Proof. The second statement implies the first, by Jensen’s inequality, so we prove only the second
statement. For each α ∈ Fq, and each j ∈ [n], consider the random variable

Yj(α) := |Λt+1| (vj(α,Λt+1)− vj(α,Λt))

=
∑

c∈Λt:cj=α

(
ξc −

|Λt+1|
|Λt|

)

=
∑

c∈Λt:cj=α

(
ξc −

1

2

)
+

∑
c∈Λt:cj=α

(
1

2
− |Λt+1|
|Λt|

)

=
∑

c∈Λt:cj=α

(
ξc −

1

2

)
+ vj(α,Λt)

∑
c∈Λt

(
1

2
− ξc

)
=: Zj(α) +Wj(α),

where above ξc is 1 if c ∈ Λt+1 and 0 otherwise. Both Zj(α) and Wj(α) are sums of independent
mean-zero random variables, and we use Chernoff bounds to control them. First, Zj(α) is a sum
of |Λt|vj(α,Λt) independent mean-zero random variables, and a Chernoff bound (Theorem 2.15)
yields

P {|Zj(α)| > u} ≤ 2 exp

(
−2u2

|Λt|vj(α,Λt)

)
≤ 2 exp

(
−2u2

|Λt|plj(Λt)

)
.

Similarly, Wj(α) is a sum of |Λt| independent mean-zero random variables, each contained in[
−vj(α,Λt)

2
,
vj(α,Λt)

2

]
⊆
[
−

plj(Λt)

2
,

plj(Λt)

2

]
,

and we have

P {|Wj(α)| > u} ≤ 2 exp

(
−2u2

|Λt|plj(Λt)
2

)
≤ 2 exp

(
−2u2

|Λt|plj(Λt)

)
,

using the fact that plj(Λt) ≤ 1. Together,

P {|Yj(α)| > u} ≤ P {|Wj(α)| > u/2}+ P {|Zj(α)| > u/2} ≤ 4 exp

(
−u2

2 plj(Λt)|Λt|

)
,
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Let
Tj = {α ∈ Fq : ∃c ∈ Λt, cj = α}

be the set of symbols that show up in the j’th coordinates of Λt. Then

|Tj | ≤ min{q, |Λt|} ≤ L.

By the union bound, and letting v = u2,

(4.46) P
{

max
α∈Fq

Yj(α)2 > v

}
= P

{
max
α∈Tj

Yj(α)2 > v

}
≤ 4L exp

(
−v

2 plj(Λt)|Λt|

)
.

Next, we show that if all of the Yj(α) are under control, then so are the pluralities plj(Λt). For
any four numbers A,B,C,D with A ≤ B and C ≤ D, we have

(4.47) |B −D| ≤ max {|B − C|, |D −A|} .

Indeed, we have

B −D ≤ (B −D) + (D − C) = B − C and D −B ≤ (D −B) + (B −A) = D −A.

The claim (4.47) follows. Now, for fixed j, let

α = argmaxσ∈Tjvj(σ,Λt) and β = argmaxσ∈Tjvj(σ,Λt+1),

so that

|Λt+1|vj(α,Λt+1) ≤ |Λt+1|vj(β,Λt+1) and |Λt+1|vj(β,Λt) ≤ |Λt+1|vj(α,Λt).

By (4.47), we have

|Λt+1||plj(Λt+1)− plj(Λt)| = |Λt+1||vj(β,Λt+1)− vj(α,Λt)|
≤ |Λt+1|max {|vj(α,Λt)− vj(α,Λt+1)|, |vj(β,Λt)− vj(β,Λt+1)|}
≤ max
α∈Tj

|Yj(α)|.

Thus, the probability that |plj(Λt+1) − plj(Λt)| is large is no more than the probability that
maxα∈Tj |Yj(α)| is large, and we conclude from (4.46) that

P
{
|Λt+1|2( plj(Λt)− plj(Λt+1))2 > v

}
≤ 4L exp

(
−v

2 plj(Λt)|Λt|

)
.

Integrating, we bound the expectation by

E|Λt+1|2( plj(Λt)− plj(Λt+1))2 =

∫ ∞
0

P
{

max
α∈Tj

Yj(α)2 > v

}
dv

≤ A+ 4L

∫ ∞
A

exp

(
−v

2 plj(Λt)|Λt|

)
dv

= A+ 4L · 2 plj(Λt)|Λt| · exp

(
−A

2 plj(Λt)|Λt|

)
for any A ≥ 0. Choosing A = 2 plj(Λt)|Λt| ln(4L) gives

E|Λt+1|2( plj(Λt)− plj(Λt+1))2 ≤ 2|Λt|plj(Λt) (ln(4L) + 1) .

Setting C5 correctly proves the second item in Lemma 4.11, and the first follows from Jensen’s
inequality.
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The next lemma uses Lemma 4.11 to argue that a number of good things happen all at once.

Lemma 4.12. There is some Λt+1 ⊆ Λt so that:

1. (
1− η

2

)t+1

L ≤
(

1− η
2

)
|Λt| ≤ |Λt+1| ≤

(
1 + η

2

)
|Λt| ≤

(
1 + η

2

)t+1

L.

2. ∑
j∈It+1

plj(Λt+1) ≤
∑
j∈It+1

plj(Λt) +
∑
j∈It+1

√
c1|Λt| log(L) plj(Λt)

|Λt+1|2

3.  ∑
j∈It+1

( plj(Λt+1)− plj(Λt))
2

1/2

≤
√
c1|Λt| log(L)Qt
|Λt+1|

for some constant c1.

Proof. We show that (for an appropriate choice of c1), each of these items occurs with probability
at least 2/3, 3/4, and 3/4, respectively. Thus, all three occur with probability at least 1/6, and in
particular there is a set Λt+1 which satisfies all three.

First, we address Item 1. By a Chernoff bound (Theorem 2.15),

P
{∣∣∣∣|Λt+1| −

1

2
|Λt|

∣∣∣∣ > u

}
≤ 2 exp

(
−2u2/|Λt|

)
,

By the inductive hypothesis (4.32),

|Λt| ≥
(

1− η
2

)t
L,

and so by our choice of tmax and the fact that t ≤ tmax, we have

(4.48) |Λt| ≥ 4/η2.

Thus,

P
{∣∣∣∣|Λt+1| −

|Λt|
2

∣∣∣∣ ≥ η|Λt|
2

}
≤ 2e−2 < 1/3.

Again by the inductive hypothesis (4.32) applied to |Λt|, we conclude that(
1− η

2

)t+1

L ≤
(

1− η
2

)
|Λt| ≤ |Λt+1| ≤

(
1 + η

2

)
|Λt| ≤

(
1 + η

2

)t+1

L.

For Item 2, we invoke Lemma 4.11 and linearity of expectation to obtain

E
∑
j∈It+1

|Λt+1||plj(Λt)− plj(Λt+1)| ≤
∑
j∈It+1

√
C5 log(L) plj(Λt)|Λt|.

By Markov’s inequality, as long as c1 ≥ 16C5, with probability at least 3/4,∑
j∈It+1

|Λt+1||plj(Λt)− plj(Λt+1)| ≤
∑
j∈It+1

√
c1 log(L) plj(Λt)|Λt|,
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and in the favorable case the triangle inequality implies∑
j∈It+1

plj(Λt+1) ≤
∑
j∈It+1

plj(Λt) +
∑
j∈It+1

|plj(Λt)− plj(Λt+1)|

≤
∑
j∈It+1

plj(Λt) +
∑
j∈It+1

√
c1 log(L) plj(Λt)|Λt|

|Λt+1|
.

Thus, Item 2 holds with probability at least 3/4.
Similarly, for Item 3, Lemma 4.11 and linearity of expectation (as well as Jensen’s inequality)

implies that

E

 ∑
j∈It+1

|Λt+1|2( plj(Λt+1)− plj(Λt))
2

1/2

≤

 ∑
j∈It+1

C5|Λt| log(L) plj(Λt)

1/2

≤

∑
j∈It

C5|Λt| log(L) plj(Λt)

1/2

since It+1 ⊆ It

≤
√
C5|Λt| log(L)Qt by the inductive hypothesis (4.31) .

Again, Markov’s inequality and an appropriate restriction on c1 implies that Item 3 occurs with
probability strictly more than 3/4.

This concludes the proof of Lemma 4.12.

Finally, we show how Lemma 4.12 implies the conclusions of Lemma 4.10 for t + 1, notably
(4.31), (4.32) and (4.33). First, we observe that (4.32) follows immediately from Lemma 4.12, Item
1. Next we consider (4.31). The definition of It+1 and the choice of γ, along with the fact from
Lemma 4.12, Item 1 that |Λt+1| ≥

(
1−η

2

)
|Λt|, imply that for j ∈ It+1,

|Λt|plj(Λt) ≥ γ ≥
(
|Λt|
|Λt+1|

)2
c1 log(L)

η2
,

and so

(4.49)

√
c1|Λt| log(L) plj(Λt)

|Λt+1|
≤ η plj(Λt).

Thus, ∑
j∈It+1

plj(Λt+1) ≤
∑
j∈It+1

(1 + η) plj(Λt) by Lemma 4.12, Item 2 and from (4.49)

≤ (1 + η)
∑
j∈It

plj(Λt) since It+1 ⊆ It, by (4.45)

≤ (1 + η)Qt by the inductive hypothesis (4.31) for t

= (1 + η)
t+1

Q by the definition of Qt

= Qt+1.

This establishes (4.31).
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To establish the distance criterion (4.33), we use the triangle inequality to write

‖plIt(Λt)− plIt+1
(Λt+1)‖2 = ‖plIt+1

(Λt) + plIt\It+1
(Λt)− plIt+1

(Λt+1)‖2(4.50)

≤ ‖plIt+1
(Λt)− plIt+1

(Λt+1)‖2(4.51)

+ ‖plIt\It+1
(Λt)‖2(4.52)

The first term (4.51) is bounded by Lemma 4.12, Item 3, by

‖plIt+1
(Λt)− plIt+1

(Λt+1)‖2 ≤
√
c1|Λt| log(L)Qt
|Λt+1|

.

To bound (4.52), we will bound both the `∞ and `1 norms of plIt\It+1
(Λt) and use Hölder’s

inequality to control the `2 norm. By the inductive hypothesis (4.31) and the fact (4.45) that
It+1 ⊆ It,

‖plIt\It+1
(Λt)‖1 ≤ ‖plIt(Λt)‖1 ≤ Qt.

Also, by the definition of It+1,

‖plIt\It+1
(Λt)‖∞ ≤

γ

|Λt|
.

Together, Hölder’s inequality implies that

‖plIt\It+1
(Λt)‖2 ≤

√
‖plIt\It+1

(Λt)‖1‖plIt\It+1
(Λt)‖∞ ≤

√
γQt
|Λt|

.

This bounds the second term (4.52) of (4.50), and putting it all together we have

‖plIt(Λt)− plIt+1
(Λt+1)‖2 ≤

√
c1|Λt| log(L)Qt
|Λt+1|

+

√
γQt
|Λt|

.

Using the fact from Lemma 4.12, Item 1 that |Λt|/|Λt+1| ≤ 2/(1− η), as well as the definition of γ
in (4.44), we may bound the above expression by

‖plIt(Λt)− plIt+1
(Λt+1)‖2 ≤

(
1 +

1

η

)(
2

1− η

)√
c1 log(L)Qt
|Λt|

.

This establishes (4.33), for an appropriate choice of C4, and for sufficiently large L (and hence
sufficiently small η).

Finally, we verify the condition (4.34) on the size |St+1|. By (4.32), and the fact that our choices
of η and tmax imply that (1 + η)t ≤ e, |Λt| ≤ eL/2t. We saw earlier that It+1 depends only on Λt,
so (using the fact that L ≤ N/2), there are at most

eL/2t∑
r=1

(
N

r

)
.

(
N

eL/2t

)
choices for It+1. Similarly, we just chose Λt+1 so that |Λt+1| ≤ eL/2t+1, so there are at most∑eL/2t

r=1

(
N
r

)
.
(

N
eL/2t+1

)
choices for Λt+1. Altogether, there are at most

C6

(
N

eL/2t

)(
N

eL/2t+1

)
choices for the pair (It+1,Λt+1), for an appropriate constant C6, and this establishes (4.32).

This completes the proof of Lemma 4.10.
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4.8 Conclusion and future work

We have shown that “most” Reed-Solomon codes are list decodable beyond the Johnson bound,
answering an open question (Question 4.1) of [43, 56, 94, 108]. More precisely, we have shown that
with high probability, a Reed-Solomon code with random evaluation points of rate

Ω

(
ε

log(q) log5(1/ε)

)
is list decodable up to a 1−ε fraction of errors with list size O(1/ε). This beats the Johnson bound
whenever ε ≤ Õ (1/ log(q)).

Our proof actually applies more generally to randomly punctured codes, and extends the results
of Chapter 3 to large alphabets. This provides a positive answer (up to polylogarithmic factors) to
our second motivating question, Question 4.2, about whether randomly punctured codes with good
distance are optimally list-decodable. As an added corollary, we have obtained improved bounds on
the list decodability of random linear codes over large alphabets. Our bounds are nearly optimal
(up to polylogarithmic factors), and are the best known whenever q & log5(1/ε).

The most obvious open question that remains is to remove the polylogarithmic factors from the
rate bound. The factor of log(q) is especially troublesome: it bites when q = 2Ω(1/ε) is very large,
but this parameter regime can be reasonable for Reed-Solomon codes. Removing this logarithmic
factor seems as though it may require a restructuring of the argument. A second question is
to resolve the discrepancy between our upper bound on list sizes and the bound associated with
general random codes of the same rate; there is a gap of a factor of ε in the parameter regime
1/ε ≤ q ≤ 1/ε2.

To avoid ending the chapter on the shortcomings of our argument, we mention a few hopeful
directions for future work. Our argument applies to generally to randomly punctured codes, and
in fact to any code with independent symbols. We will explore some generalizations in Chapter 5.
Additionally, list decodable codes are connected to many other pseudorandom objects; it would be
extremely interesting to explore the ramifications of our argument for random families of extractors
or expanders, for instance.
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CHAPTER 5

List decoding: more general applications

In Chapters 3 and 4, we built up a general machinery for proving list-decodability results for
randomly punctured codes. In fact, the arguments in those chapters are even more general. In
particular, the only things we used were:

• The coordinates of the random code C are independent, and

• The “expected average-radius-list-decodabiity” of C is good. In Chapter 3, we controlled this
by bounding E‖Φx‖1, and in Chapter 4 we controlled this by bounding the quantity E .

There’s nothing special about puncturing codes with good (averaged) distance, and one can imagine
a whole host of operations that meet the above two criterion. In this chapter, we develope a more
general theory, which will form a new code C of length n from an old code C0 of length n0 by
applying a randomized function f : C0 → C; the only requirement will be that the coordinate
functions f1, . . . , fn of f are independent and that f behaves decently in expectation.

This encompasses many operations; as examples, we’ll consider the case where fi(c) = 〈ai, c〉
for a suitable random vector ai ∈ Fn0 (random inner products); and the case where fi(c) =

(c
j
(i)
1
, c
j
(i)
2
, . . . , c

j
(i)
t

) ∈ Fqt for a random list of t integers (j
(i)
1 , . . . , j

(i)
t ) ∈ [n0]t (random folding).

Using these two operations, we’ll show:

1. The existence of binary codes that are combinatorially list decodable from 1/2− ε fraction of
errors with optimal rate Ω(ε2) that can be encoded in linear time.

2. Show that any code with Ω(1) relative distance when randomly folded (enough times) lead to
codes that can be list decoded from 1− ε fraction of errors. This formalizes the intuition for
why the folding operation has been successful in obtaining codes with optimal list decoding
parameters.

5.1 Introduction

In this chapter we will work in the same regime as Chapters 3 and 4. Namely, we are interested
in list-decoding q-ary codes from a ρ = 1− 1/q − ε fraction of errors, for small ε > 0. As we have
seen in Chapter 2, the best rate one could hope for here is

R∗(q, ε) := 1−Hq(1− 1/q − ε) ≤ min

{
ε,

qε2

log(q)

}
.

For complexity applications it is often enough to design a code with rate Ω(R∗(q, ε)) with the same
error correction capability. We will focus on this parameter regime in the current paper.

Perhaps the ultimate goal of list decoding research in the parameter regime above would be to
solve the following:

73
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Problem 5.1. Construct codes with rate Ω(R∗(q, ε)) that can correct 1− 1/q− ε fraction of errors
with linear time encoding and linear time decoding.1

Even though much progress has been made in algorithmic list decoding, we are far from an-
swering Problem 5.1. In particular, if we are happy with polynomial time encoding and decoding
and large enough alphabet sizes, then the problem was solved by Guruswami and Rudra [51] and
subsequent works [23, 48, 62–64, 78]. If we are happy with non-algorithmic results, then the work
in Chapters 3 and 4 (or, just plain old random codes) gives combinatorial list-decoding guarantees,
over any alphabet size.

This chapter generalizes the machinery of Chapters 3 and 4 to make some modest progress on
algorithmic questions, and to shed some new light on some of the recent algorithmic developments
in list decoding.

5.1.1 Linear time encoding with near optimal rate

We first consider the special case of Problem 5.1 that concentrates on the encoding complexity
for binary codes:

Question 5.2. Do there exist binary codes with rate Ω(ε2) that can be encoded in linear time and
can be (combinatorially) list decoded from 1/2− ε fraction of errors?

We remark that once we ignore the decoding time, the question above is only interesting when we
talk about linear encoding time. Chapter 3 showed that random binary linear codes of rate R∗(q, ε)
are list-decodable from 1/2 − ε fraction of errors; this immediately implies quadratic encoding
time. In fact, near linear time encoding with optimal rate also follows from known results: e.g.
Guruswami and Rudra [53] showed that folded Reed-Solomon code concatenated with random inner
codes (with at most logarithmic block length) achieve the optimal rate and fraction of correctable
errors tradeoff. This code is overall near linear time encodable since Reed-Solomon (and hence
folded Reed-Solomon) codes can be encoded in near linear time.

However, obtaining linear time encoding with optimal rate is still an open question. For q-ary
codes (for q sufficiently large that depends only on ε), Guruswami and Indyk showed that one can
get linear time encoding and decoding with near optimal rate but for unique decoding [47]. For list
decoding, they prove a similar result for list decoding but the rate is exponentially small in 1/ε [46].
This result can be used with code concatenation to give a similar result for binary codes, but also
suffers from an exponentially small rate.2

5.1.2 Folded codes

The aforementioned result of Guruswami and Rudra [51] showed that if one applied the folding
operation on Reed-Solomon codes, then the resulting codes (called folded Reed-Solomon codes) can
be list decoded in polynomial time with optimal rate. The folding operation is illustrated in Figure
5.1: given a q-ary code C0 of block length n0 and a folding parameter t (that divides n0) and a
partition of [n0] into n0/t sets of size t positions in them, the new “folded” code C is the same as
C0 except it is now a qt-ary code, where each set of t symbols in each of the partitioned sets is now
a bigger symbol. For large enough t, and appropriate partitions, this results in codes that can list
decode from 1−ε fraction of errors with optimal rate [51,63,65] when one starts with Reed-Solomon
or more generally certain algebraic-geometric codes.

There is a natural intuition for the effectiveness of the folding operation [51, 52]. Folding effec-
tively reduces the number of error patterns that a decoder has to handle. For example, consider the
case when q = 2. Consider an error pattern that corrupts a 1−2ε fraction of the odd positions (the
rest do not have errors). This error pattern must be handled by any decoder which can list decode
from 1/2− ε fraction of errors. On the other hand, consider a 2-folding (with partition as above) of

1One needs to be careful about the machine model when one wants to claim linear runtime. In this chapter we
consider the RAM model—for our purposes, it is fine to consider “linear time” to mean “a linear number of Fq

operations,” and to assume that the alphabet size is small, say polynomial in 1/ε.
2We thank Venkat Guruswami for pointing out this fact.
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c ∈ C0

α3 ∈ Fq
α2 ∈ Fq
α1 ∈ Fq

t β = (α1, α2, α3) ∈ Ftq ' Fqt

f(c) ∈ C

Figure 5.1: The folding operation. f(c) is a folded version of c ∈ C0. The folded code C ∈ Fn0/t
qt the

image f(C0) of C0 ∈ Fn0
q .

the code; now the alphabet size has increased, so we hope to correct 1− 1/22− ε = 3/4− ε fraction
of errors. However, the earlier error pattern affects a 1 − 2ε of the new, folded symbols. Thus, in
the folded scenario, an optimal decoder need not handle this error pattern, since 1− 2ε > 3/4− ε
(for small enough ε).

In some sense, this intuition is the reason that random codes over large alphabets can tolerate
more error than random codes over small alphabets: because the smallest “corruptable unit” is
larger when the alphabet is larger, there are fewer error patterns to worry about. Indeed, an
inspection of the proof that random codes obtain optimal list-decoding parameters shows that this
is the crucial difference. Since a random code over a large alphabet is in fact a folding of a random
code over a small alphabet, the story we told above is at work here.

Despite this nice-sounding intuition—which doesn’t use anything specific about the code—the
arguments for folding of specific codes crucially exploit algebraic properties of the unfolded codes.
It is natural to wonder if the intuition above can be made rigorous. In particular,

Question 5.3. Given any code with distance Ω(1) and rate O(ε) does there exist a folding (for suffi-
ciently large but constant folding parameter m) such that the resulting code can be (combinatorially)
list decoded from 1− ε fraction of errors?

We note that we do need an Ω(1) lower bound on the distance of the original code as otherwise
it is easy to come up with codes where the answer to the above question is no. The bound of O(ε)
on the rate of the original code is also needed, as folding preserves the rate and the list-decoding
capacity theorem implies that any code that can be list decoded from 1− ε fraction of errors must
have rate O(ε).

5.1.3 Contributions of Chapter 5

We generalize the framework of Chapters 3 and 4 to address Problem 5.1. Specifically, we
answer both Questions 5.2 and 5.3. This yields modest progress in both linear-time algorithms (in
the case of 5.2) and in understanding why (from a philosophical point of view) existing algorithmic
techniques work.

Another contribution is the generalization itself. From a technical point of view, this chapter
does not contain much mathematics beyond what has been presented in earlier chapters, but it is
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our hope that the approach of the previous chapters can be applied fruitfully to answer many more
algorithmic questions in list decoding.3

5.1.4 Chapter organization

In Section 5.2, we will introduce a general framework for the results of the previous two chapters.
In Section 5.3, we’ll address Question 5.2, and give a family of linear-time encodable binary codes.
In Section 5.4, we’ll address Question 5.3, and prove that randomly folded codes are optimally list-
decodably with high probability. This provides some rigor behind the intuition generally invoked
for algorithmic folding results.

5.2 Setup, and still more definitions

In this chapter, we will intrepret the results of Chapters 3 and 4 as the following intuition:

If you take a code with alphabet Σ0 which is list-decodable (enough) up to ρ0 = 1 −
1/|Σ0|−ε, and do some random (enough) stuff to the symbols, you will obtain a new code
(possibly over a different alphabet Σ) which is list-decodable up to ρ = 1−1/|Σ|−O(ε).

In order to make this intuition precise, we will recall (and set up) a bit of notation. So far in this
dissertation, we have only ever dealt with linear codes, and so it has been convenient to take the
alphabet to always be a finite field. We will deviate from this notation slightly, to emphasize that
the generalizations in this chapter do not require linearity. Thus, we will consider codes C ⊂ Σn of
length n over the alphabet Σ. As usual, the rate of C is defined to be

R :=
log|Σ|(|C|)

n
.

For x, y ∈ Σn, δ(x, y) is the relative Hamming distance, and agr(x, y) := n(1− δ(x, y)) denotes the
agreement between x and y. For x ∈ Fn, nnz(x) will denote the number of nonzero entries in x.

As in previous chapters, we study the average-radius list-decodability of C:

Definition 5.4. A code C ⊂ Σn is (ρ, L)-average-radius list-decodable if for all sets Λ ⊂ C with
|Λ| = L,

max
z

∑
c∈Λ

agr(c, z) ≤ nLρ.

As we have seen, average-radius list-decodability implies the standard notion of list-decodability
(Definition 2.3).

In the following, we will always start with some code C0 ∈ Σn0
0 and a distribution D on functions

f : C0 → Σn. We will draw a function f from D, and define C ⊂ Σn to be the image of f . Thus, C
will be a random code, with |C| = |C0|.

Now we are ready to make the intuition about precise: we need to define “random enough”
and “list-decodable enough.” We will make the phrase “random enough” precise in the following
definition.

Definition 5.5. Let D be a distribution on functions f : C0 → Σn, as above; write such an f as
f(x) = (f1(x), . . . , fn(x)). We say that D has independent symbols if the fi are independent for
i = 1, . . . , n.

For example, we may take fj(c) to be a random symbol from the codeword c ∈ C0, chosen inde-
pendently for each j; this results (up to some abuse of notation about sampling with replacement)
in a randomly punctured code. Or, if Σ0 is a finite field F, we could take fj(c) = 〈aj , c〉 for a
independent random vectors aj ∈ Fn.

3...and beyond!
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Now, we will quantify what it means to be “list-decodable enough.” We introduce a parameter
E = E(C0,D), defined as follows:

(5.1) E(C0,D) := max
Λ⊂C0,|Λ|=L

Ef∼D max
z∈Σn

∑
c∈C0

agr(f(c), z).

The quantity E , which is the same as E from Chapter 4, captures how list-decodable C is in
expectation. Indeed, maxz

∑
c inC0 agr(f(c), z) is the quantity controlled by average-radius list-

decodability (Definition 5.4). To make a statement about the actual average-radius list-decodability
of C (as opposed to in expectation), we will need to understand E when the expectation and the
maximum are reversed:

Ef∼D max
Λ⊂C0,|Λ|=L

max
z∈Σn

∑
c∈C0

agr(f(c), z).

In this notation, we can combine Theorems 3.2 and 4.6 in the following statement:

Theorem 5.6. [Follows from Theorems 3.2 and 4.6] Let C0,D and C be as above, and suppose that
D has independent symbols. Fix ε > 0. Then

Ef max
z∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ E + Y +
√
EY ,

where
Y = CL log(N) log5(L)

for an absolute constant C. For |Σ| = 2, we have

Ef max
x∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ E + CL
√
n ln(N).

Theorem 5.6 makes the intuition above more precise: Any “random enough” operation (that
is, an operation with independent symbols) of a code with good “average-radius list-decodability”
(that is, good E(C0,D)) will result in a code which is also list-decodable.

In this work, we answer Questions 5.2 and 5.3 by coming up with useful distributions D on
functions f and computing the parameter E . To control E , we will make use of some average-radius
Johnson bounds that we’ve already encountered: Theorems 2.8, 4.3, and 4.4. For the reader’s
convenience, we restate these bounds here.

Theorem 5.7 (Average-radius Johnson bounds). Let C : Fkq → Fnq be any code. Then for all

Λ ⊂ Fkq of size L and for all z ∈ Fnq :

• If q = 2, ∑
x∈Λ

agr(C(x), z) ≤ n

2

L+

√
L2 − 2

∑
x 6=y∈Λ

d(C(x), C(y))

 .

• For all ε ∈ (0, 1),∑
x∈Λ

agr(C(x), z) ≤ nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

d(C(x), C(y)).

• ∑
x∈Λ

agr(C(x), z) ≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x 6=y∈Λ

d(C(x), C(y))

 .
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5.3 Efficiently encodable list-decodable codes from expander graphs

In this section, we answer Question 5.2, and give linear-time encodable binary codes with the
optimal trade-off between rate and list-decoding radius.

Theorem 5.8. There is a randomized construction of binary codes C ∈ Fn2 so that the following
hold with probability 1− o(1), for any sufficiently small ε and any sufficiently large n.

1. C is encodable in time O(n ln(1/ε)).

2. C is (ρ, L)-average-radius list-decodable with ρ = 1
2 (1 − Cε) and L = ε−2, where C is an

absolute constant.

3. C has rate Ω(ε2).

The rest of this section is devoted to the proof of Theorem 5.8. Our codes will work as follows.
We begin with a linear-time encodable code with constant rate and constant distance; we will
use Spielman’s variant on expander codes [100, Theorem 19]. These codes have rate 1/4, and
distance δ0 ≥ 0 (a small positive constant). In this case, a random puncturing of C0 (as in the
previous chapters) will not work, as C0 does not have good enough distance. Instead, we will use
a different operation, which can be viewed as a generalization of puncturing: we will take random
inner products with vectors of weight t.

Definition 5.9 (Random t-wise XOR). Let C0 ∈ Fn0
2 . Choose t ≤ n0. For v ∈ Fn0

2 with
nnz(v) = t, define fv : Fn0

2 → F2 by fv(c) = 〈v, c〉. Define a distribution Dip(t) on functions
f : C0 → Fn2 by choosing v1, . . . , vn independently, uniformly at random with replacement from
{v ∈ Fn0

2 : nnz(v) = t}, and setting f = (fv1 , fv2 , . . . , fvn). We call this distribution random t-wise
inner product.

We will choose C to be the ensemble of codes arising from C0 and Dip(t) for t = 4 ln(1/ε)δ−1
0 .

We first verify Item 1 of Theorem 5.8, that C is linear-time encodable. Indeed, we have

C(x) = AC0(x),

where A ∈ Fn×n0
2 is a matrix whose rows are the vectors vi, which have nnz(vi) ≤ t. In particular,

the time to multiply by A is nt = O(n ln(1/ε)), as claimed.
To verify Item 2 about the list-decodability, we begin by computing the quantity E(C0,Dip(t)).

Lemma 5.10. Let C0 ∈ Fn0
2 be a code with distance δ0, and suppose t ≥ 4 ln(1/ε)

δ0
. Then

E(C0,Dip(t)) ≤
n

2

(
L(1 + ε) +

√
L
)
.

Proof. We will use the average-radius Johnson bound, Theorem 5.7, Item 1. Thus, we start by
computing the expected distance between two symbols of the code C ∈ Fn2 obtained from C0 and
Dip(t). Let c, c′ denote two distinct codewords in C0. Then

Eδ(f(c), f(c′)) =
1

n

n∑
i=1

P {fi(c) 6= fi(c
′)}

= P {〈ai, c〉 6= 〈ai, c′〉}

=
1

2
P {(c− c′)Suppai 6= 0}

=
1

2

(
1− (1− δ0)t

)
≤ 1

2

(
1− e−δ0t/2

)
.
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In particular, if t = 4 ln(1/ε)
δ0

, then this is 1
2 (1− ε2). Then Theorem 5.7 implies that

E(C0,Dip(t)) = max
Λ⊂C0

Ef∼Dip(t) max
z∈Fn2

∑
c∈Λ

agr(f(c), z)

≤ max
Λ

Ef max
z∈Fn2

n

2

L+

√
L2 − 2

∑
c6=c′∈Λ

δ(f(c), f(c′))


≤ max

Λ

n

2

L+

√
L2 − 2

∑
c 6=c′∈Λ

Efδ(f(c), f(c′))


≤ n

2

L+

√
L2 − 2

∑
c6=c′∈Λ

1

2
(1− ε2)


=
n

2

(
L+

√
L2ε2 + L(1− ε2)

)
≤ n

2

(
L(1 + ε) +

√
L
)
.

Thus, Theorem 5.6 implies that with constant probability,

max
z∈Fn2

max
Λ⊂C,|Λ|=L

1

L

∑
c∈Λ

agr(c, z) ≤ E
L

+ C
√
n ln(N)

≤ n

2

(
1 + ε+

1√
L

)
+ C
√
n lnN.

In particular, if C
√
n lnN ≤ εn, then in the favorable case C is (ρ, L − 1)-average-radius list-

decodable, for L = ε−2 and ρ = 1/2(1− C ′ε) for some constant C ′.
It remains to verify Item 3, about the rate R of C. Notice that if |C| = N , then we are done,

because then the requirement C
√
n ln(N) ≤ εn reads

R =
log2(N)

n
≤ ε2

C ln(2)
.

Thus, to complete the proof we will argue that f is injective with high probability, and so in the
favorable case |C| = N . Fix c 6= c′ ∈ C0. Then, by the same computations as above,

P {f(c) = f(c′)} =

(
1

2

(
1 + (1− δ0)t

))n
≤
(

1 + ε2

2

)n
.

Using the fact that we will choose n ≥ C ln(N)/ε2, the right hand side is(
1 + ε2

2

)C ln(N)/ε2

= N
− ln

(
2

1+ε2

)
C/ε2 ≤ N−3

for sufficiently small ε. Thus, by the union bound on the
(
N
2

)
≤ N2 choices for the pairs of distinct

codewords (c, c′), we see that P {|C| < N} ≤ 1/N , which is o(1) as desired. This completes the
proof of Theorem 5.8.

Remark 10 (Random inner products for q > 2). For this application, q = 2 is the interesting case.
However, the argument above works just fine for q > 2. In this case, we define fv(c) = 〈v, c〉 for v
uniform in

{
v ∈ Fn0

q : nnz(a) = t
}

, and define Dip(t) as before. We may use the first statement of
Theorem 5.6, and statements 2 or 3 of Theorem 5.7 for the average-radius Johnson bound.
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5.4 Random folding

In this section, we answer Question 5.3, and show that every code with good distance has a
folding which is optimally list-decodable. We must first define the “random folding” operation.

Definition 5.11 (Random t-wise folding). Let C0 ∈ Σn0
0 . Choose t ≤ n0, and let Σ = Σt0. For

S ⊂ [n0] with |S| = t, define fS : Σn0
0 → Σn by fS(c) = (ci)i∈S. Define a distribution Dfold(t) on

functions f : C0 → Σn by choosing S1, . . . , Sn independently, uniformly at random with replacement
from {S ⊂ [n0] : |S| = t}, and setting f = (fS1 , fS2 , . . . , fSn). We call this distribution random
t-wise folding.

Remark 11 (Definition 5.11 vs. standard folding). The definition above is slightly different from a
uniformly random t-wise folding, which would correspond to a random partition of [n0] into n pieces
of size t. Because the elements for each of the symbols are chosen with replacement, it’s possible
that the new symbols “overlap” slightly, and that other symbols from the original code are not
represented at all in C0. However, sampling with replacement makes the computations significantly
simpler. Since the goal of this section is to provide some rigor behind the intuition discussed around
Question 5.3, we will go with the simpler case.

Theorem 5.12 below analyzes folding in two parameter regimes. In the first parameter regime,
we address Question 5.3, and we consider t-wise folding where n0 = nt. In this case, the folded
code C will have the same rate as the original code C0, and so in order for C to be list-decodable up
to radius 1−ε, the rate R0 of C0 must be O(ε). Item 1 shows that if this necessary condition is met
(with some logarithmic slack), then C is indeed list-decodable up to 1− ε. In the second parameter
regime, we consider what can happen when the rate R0 of C0 is significantly larger. In this case, we
cannot hope to take n as small as n0/t and hope for list-decodability up to 1− ε. The second part
of Theorem 5.12 shows that we may take n nearly as small as the list-decoding capacity theorem
allows.

Theorem 5.12. There are constants Ci, i = 0, . . . , 5, so that the following holds. Suppose q > 1/ε2.
Let C0 ⊂ Fn0

q be a code with distance δ0 ≥ C2 > 0.

1. Suppose t ≥ C0 log(1/ε) ≥ 4 ln(1/ε)/δ0. Suppose that C0 has rate

R0 ≤
C1ε

log(q)t log5(1/ε)
.

Let C ⊂ Fqt be a random t-wise folding of C0 of length n = n0/t. Then with high probability,
C is (1−C3ε, 1/ε)-average-radius list-decodable, and further the rate R of C satisfies R = R0.

2. Suppose that t ≥ 4 ln(1/ε)/δ0, and suppose that C0 has rate R0 so that

R0 ≤
(
nt

n0

)(
log(1/ε)

log(q)

)
.

Let C be a random t-wise folding of C0 of length

n ≥ log(N) log(1/ε)

ε
.

Then with high probability, C is (1−C4ε, 1/ε)-average-radius list-decodable, and the rate R of
C is at least

R ≥ C5ε

t log(q) log5(1/ε)
.
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The rest of this section is devoted to the proof of Theorem 5.12. As before, it suffices to control
E(C0,Dfold(t)), which we do via the average-radius Johnson bound (Theorem 5.7). Because we are
interested in the parameter regime where q ≥ 1/ε2, we use the third statement in Theorem 5.7.

Suppose t ≥ 4 ln(1/ε)/δ0 and set L = 1/ε. For c 6= c′ ∈ C0, we compute

Ef∼Dfold(t)δ(f(c), f(c′)) =
1

n

n∑
i=1

P {fj(c) 6= fj(c
′)}

= P
{
∃j ∈ Si : cj 6= c′j

}
= 1− (1− δ0)t

≤ 1− ε2,

using the choice of t in the final line. Thus, by Theorem 5.7, Item 3,

E(C0,Dfold(t)) = max
Λ⊂C0

Ef∼Dfold(t) max
z∈Fnq

∑
c∈Λ

agr(f(c), z)

≤ max
Λ⊂C0

Ef∼Dfold(t) max
z∈Fnq

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
c 6=c′∈Λ

δ(f(c), f(c′))


= max

Λ⊂C0

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
c6=c′∈Λ

Efδ(f(c), f(c′))


≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
c6=c′∈Λ

(1− ε2)


=
n

2

(
1 +

√
1 + 4L(L− 1)ε2

)
≤ Cn,

using the choice of L and defining C = (1 +
√

5)/2. Then, by Theorem 5.6, recalling that

Y = CL log(N) log5(L),

and N = |C0|, we have with high probability that

Ef max
z∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ E(C0,Dfold(t)) + Y +
√
E(C0,Dfold(t)Y

≤ O
(
L log(N) log5(L) + n

)
.

In the favorable case,

(5.2) Ef max
z∈Σn

max
Λ⊂C,|Λ|=L

1

L

∑
c∈Λ

agr(c, z) ≤ O
(
log(N) log5(L) + n/L

)
= O

(
log(N) log5(1/ε) + nε

)
.

As before, C is (1 − Cε,L − 1) average-radius list-decodable, for some constant C, as long as the
right hand side is no more than O(nε). This holds as long as

(5.3) log(N) log5(1/ε) ≤ nε.

Equation (5.3) holds for any choice of n. First, we prove item 1 and we focus on the case that
n0 = nt; this mimics the parameter regime the standard definition of folding. Given n0 = nt, we
can translate (5.3) into a condition on R0, the rate of C0. We have

R0 =
logq(N)

n0
=

logq(N)

nt
,
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and so translating (5.3) into a requirement on R(C0), we see that as long as

R0 .
ε

log(q)t log5(1/ε)
.

ε

log(q) log6(1/ε)
,

then with high probability C is (1− Cε,L)-list-decodable. Choose n so that this holds.
It remains to verify that the rate R of C is the same as the rate R0 of C0. For standard folding,

it is immediate that the rate of the code does not change. With our slightly randomized tweak on
it (Definition 5.11), this requires some argument: it might be the case that |C| < N , in which case
the rate would decrease.

Claim 5.13. With C0 as above and with n0 = nt, |C| = N with probability at least 1− o(1).

Proof. The only way that |C| < N is if two codewords c 6= c′ ∈ C0 collide, that is, if f(c) = f(c′).
This is unlikely: we have

P {f(c) = f(c′)} = (1− δ0)nt ≤ ε2nt.

By a union bound over
(
N
2

)
≤ N2 pairs c 6= c′, we conclude that the probability that |C| < N is at

most

(5.4) P {|C| < N} ≤ N2ε2nt.

If nt = n0, we have

P {|C| < N} ≤ q2n0R0ε2nt =
(
qR0ε

)2n0
.

In particular, when qR0 < 1/ε, this is o(1). By our assumption, R0 < ε, and so this is always true
for sufficiently small ε.

By a union bound, with high probability both the favorable event (5.2) occurs, and Claim 5.13
holds. In this case, C is (1− Cε,L)-list-decodable, and the rate R of C is

R = R0.

Next, we consider a general case, where we may choose n < n0/t, thus increasing the rate. It
remains true that as long as (5.3) holds, then C is (1−Cε,L)-list-decodable. Again translating the
condition (5.3) into a condition on logqt(N)/n, we see that as long as

(5.5)
logqt(N)

n
≤ ε

t log(q) log5(1/ε)
,

then C is (1 − Cε,L)-list-decodable. Now we must verify that the left-hand-side of (5.5) is indeed
the rate R of C, that is, that |C| = N .

Claim 5.14. With C0 as above and with n arbitrary, |C| = N with probability at least 1− o(1).

Proof. As in (5.4), we have
P {|C| < N} ≤ N2ε2nt.

We may bound the right-hand-side by

N2ε2nt =
(
qR0n0/nεt

)2n

,

and for this to be o(1), it is sufficient for

R0 ≤
(
nt

n0

)(
log(1/ε)

log(q)

)
,

which was our assumption for part 2 of the theorem.

Now, recalling our choice of n in (5.5), with high probability both (5.2) occurs and Claim 5.14
holds. In the favorable case, C is (1− Cε,L)-list-decodable, as long as the rate R satisfies

R =
logqt(|C|)

n
=

logqt(N)

n
≤ Cε

t log5(1/ε) log(q)
.

This completes the proof of Theorem 5.12.
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5.5 Conclusion

We generalized the results of Chapters 3 and 4 to a large class of random operations, beyond just
random puncturing. The purpose of these generalizations (beyond generalization for generalization’s
sake) was to begin to bridge the gap between the combinatorial statements of the preceding chapters
and the algorithmic statements that dominate the list decoding literature. First, we used our
new framework to obtain families of linear-time-encodable binary codes. Second, we used our
framework to provide some insight to a successful algorithmic technique, namely, folding. Informal
combinatorial arguments are often invoked as an intuition for folding, but making these rigorous has
proved challenging. We made this combinatorial intuition more precise, and showed that a random
folding of any code with nontrivial distance and appropriate rate is nearly optimally list-decodable
with high probability.
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CHAPTER 6

Local decoding: expander codes

In this chapter, we switch gears from list decoding to local decoding. We discussed locally
decodable codes in Chapter 2. The idea is that Bob must work extremely quickly—so quickly that
he doesn’t have time to look at the entire codeword. We will focus on expander codes, which we
introduced in Chapter 2.

We will present a local-decoding (actually, local-correcting) algorithm for expander codes. Our
codes will have rate approaching 1. Bob will make nε queries (where n is the block length of
the code) for an arbitrarily small constant ε, and he’ll be able to handle a constant fraction of
errors. In addition to providing new locally correctible codes in this regime (joining two existing
constructions, multiplicity codes [79] and lifted codes [41]), this gives a sublinear-time decoding
algorithm for expander codes.

Our techniques are rather different than they have been in previous chapters. Before, we had
to take a union bound over several (related) events that were not sufficiently unlikely. Now, we
will still have to take a union bound over not-improbable-enough events, but no amount of clever
union-bounding will save us. Instead, we will see how to deal with the situation algorithmically.

6.1 Introduction

Expander codes, introduced in [98], are linear codes which are notable for their efficient decoding
algorithms. In this paper, we show that when appropriately instantiated, expander codes are also
locally decodable, and we give a sublinear time local-decoding algorithm.

We introduced locally decodable codes in Chapter 2. As in the standard model of coding theory,
Alice encodes a message x ∈ Fkq as a codeword c ∈ Fnq , and transmits it to Bob across a (malicious)
noisy channel. Bob’s goal is to recover x from the corrupted codeword w. Decoding algorithms
typically process all of w and in turn recover all of x. The goal of local decoding is to recover only
a single symbol of x, with the benefit of querying only a few bits of w. The number of symbols of
w needed to recover a single bit x is known as the query complexity, and we will denote this by Q.
The important trade-off in local decoding is between query complexity and the rate R = k/n of the
code. When Q is constant or even logarithmic in k, the best known codes have rates which tend to
zero as n grows. The first locally decodable codes to achieve sublinear locality and rate approaching
one were the multiplicity codes of Kopparty, Saraf and Yekhanin [79]. Prior to this work, only two
constructions of locally decodable codes were known with sublinear locality and rate approaching
one [41, 79]. In this paper, we show that expander codes provide a third construction of efficiently
locally decodable codes with rate approaching one.

6.1.1 Notation and preliminaries

Before we state our main results, we set notation and give a few definitions. We will construct
linear codes C of length n and message length k, over a finite field F = Fq That is, C ⊂ Fn is a linear
subspace of dimension k. As usual, the rate of C is the ratio R = k/n. We will also use expander
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graphs; we will give a brief introduction to expanders in Section 6.2. For n ∈ Z, [n] denotes the set
{1, 2, . . . , n}. For x, y ∈ FN , δ(x, y) denotes relative Hamming distance. In contrast with previous
chapters, we will use x[i], rather than xi, to denote the ith symbol of x. The reason for the switch
is that this chapter will be somewhat more subscript-heavy than previous ones. For x ∈ Fn and
S ⊂ [n], we will use x|S to denote x restricted to symbols indexed by S.

We recall Definitions 2.9 and 2.10 of locally decodable and locally correctable codes. A code
(along with an encoding algorithm) is locally decodable if there is an algorithm which can recover a
symbol x[i] of the message, making only a few queries to the received word.

Definition 6.1 (Locally Decodable Codes (LDCs)). Let C ⊂ Fn be a code of size |F|k, and let
E : Fk → Fn be an encoding map. Then (C, E) is (Q, ρ)-locally decodable with error probability η if
there is a randomized algorithm ∆, so that for any w ∈ Fb with ∆(w,E(x)) < ρ, for each i ∈ [k],

P {∆(w, i) = x[i]} ≥ 1− η,

and further ∆ accesses at most Q symbols of w. Here, the probability is taken over the internal
randomness of the decoding algorithm R.

In this work, we will actually construct locally correctable codes, which we will see below imply
locally decodable codes.

Definition 6.2 (Locally Correctable Codes (LCCs)). Let C ⊂ Fn be a code, and let E : Fk → Fn be
an encoding map. Then C is (Q, ρ)-locally correctable with error probability η if there is a randomized
algorithm, ∆, so that for any w ∈ Fn with ∆(w,E(x)) < ρ, for each j ∈ [n],

P {∆(w, j) = w[j]} ≥ 1− η,

and further ∆ accesses at most Q symbols of w. Here, the probability is taken over the internal
randomness of the decoding algorithm ∆.

The difference between locally correctable codes and locally decodable codes is that locally
correctable codes can recover symbols of the codeword while locally decodable codes recover symbols
of the message.

When there is a constant ρ > 0 and a failure probability η = o(1) so that C is (Q, ρ)-locally
correctable with error probability η, we will simply say that C is locally correctable with query
complexity Q (and similarly for locally decodable).

When C is a linear code, writing the generator matrix in systematic form gives an encoding
function E : Fk → Fn so that for every x ∈ Fk and for all i ∈ [k], E(x)[i] = x[i]. In particular, if C
is a (Q, ρ) linear LCC, then (E, C) is a (Q, ρ) LDC. Because of this connection, we will focus our
attention on creating locally correctable linear codes.

Many LCCs work on the following principle: suppose, for each i ∈ [N ], there is a set of Q query
positions S(i), which are smooth—that is, each query is almost uniformly distributed within the
codeword—and a method to determine c[i] from {c[j] : j ∈ S(i)} for any uncorrupted codeword
c ∈ C. If Q is constant, this smooth local reconstruction algorithm yields a local correction algorithm:
with high probability none of the locations queried are corrupted. In particular, by a union bound,
the smooth local reconstruction algorithm is a local correction algorithm that fails with probability
at most ρ ·Q. This argument is effective when Q = O(1); however, when Q is merely sublinear in
n, as is the case for us, this reasoning fails. This paper demonstrates how to turn codes which only
possess a local reconstruction procedure (in the noiseless setting) into LCCs with constant rate and
sublinear query complexity.

Definition 6.3 (Smooth reconstruction). For a code C ⊂ Fn, consider a pair of algorithms (S,A),
where S is a randomized query algorithm with inputs in [n] and outputs in 2n, and A : FQ× [n]→ F
is a deterministic reconstruction algorithm. We say that (S,A) is a s-smooth local reconstruction
algorithm with query complexity Q if the following hold.

1. For each i ∈ [n], the query set S(i) has |S(i)| ≤ Q.
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2. For each i ∈ [n], there is some set B ⊂ [N ] of size s, so that each query in S(i) is uniformly
distributed in B.

3. For all i ∈ [n] and for all codewords c ∈ C, A(c|S(i) , i) = c[i].

If s = n, then we say the reconstruction is perfectly smooth, since all symbols are equally likely
to be queried. Notice that the queries need not be independent. The codes we consider in this work
decode a symbol indexed by x ∈ Fm by querying random subspaces through x (but not x itself),
and thus will have s = n− 1.

6.1.2 Related work

The first local-decoding procedure for an error-correcting code was the majority-logic decoder for
Reed-Muller codes proposed by Reed [89]. Local-decoding procedures have found many applications
in theoretical computer science including proof-checking [5,82,88], self-testing [16,33,34] and fault-
tolerant circuits [99]. While these applications implicitly used local-decoding procedures, the first
explicit definition of locally decodable codes did not appear until later [75]. For an excellent survey
of locally decodable codes, we refer the reader to [114]. The study of locally decodable codes
focuses on the trade-off between rate (the ratio of message length to codeword length) and query
complexity (the number of queries made by the decoder). Research in this area is separated into
two distinct areas: the first seeks to minimize the query complexity, while the second seeks to
maximize the rate. In the low-query-complexity regime, Yekhanin was the first to exhibit codes
with a constant number of queries and a subexponential rate [113]. Following Yekhanin’s work,
there has been significant progress in constructing locally decodable codes with constant query-
complexity [10, 11, 18, 22, 25, 26, 71, 113]. On the other hand, in the high-rate regime, there has
been less progress. In 2011, Kopparty, Saraf and Yekhanin introduced multiplicity codes, the first
codes with a sublinear local-decoding algorithm [79] and rate approaching one. Like Reed-Muller
codes, multiplicity codes treat the message as a multivariate polynomial, and create codewords
by evaluating the polynomial at a sequence of points. Multiplicity codes are able to improve on
the performance of Reed-Muller codes by also including evaluations of the partial derivatives of
the message polynomial in the codeword. A separate line of work has developed high-rate locally
decodable codes by “lifting” shorter codes [41]. The work of Guo, Kopparty and Sudan takes a
short code C0 of length |F|t, and lifts it to a longer code C, of length |F|m for m > t over F, such that
every restriction of a codeword in C to an affine subspace of dimension t yields a codeword in C0.
The definition provides a natural local-correcting procedure for the outer code: to decode a symbol
of the outer code, pick a random affine subspace of dimension t that contains the symbol, read the
coordinates and decode the resulting codeword using the code C0. Guo, Kopparty and Sudan show
how to lift explicit inner codes so that the outer code has constant rate and query complexity nε.

In this work, we show that expander codes can also give locally decodable codes with rate
approaching one, and with query complexity nε. Expander codes, introduced by Sipser and Spiel-
man [98], are formed by choosing a d-regular expander graph, G on n vertices, and a code C0 of
length d (called the inner code), and defining the codeword to be all assignments of symbols to
the edges of G so that for every vertex in G, its edges form a codeword in C0. We discussed this
construction (for general graphs) in Chapter 2. The connection between error-correcting codes and
graphs was first noticed by Gallager [32] who showed that a random bipartite graph induces a
good error-correcting code. Gallager’s construction was refined by Tanner [105], who suggested the
use of an inner code. Sipser and Spielman [98] were the first to consider this type of code with
an expander graph (which we will formally define in Section 6.2 below). Spielman [100] showed
that these expander codes could be encoded and decoded in linear time. Spielman’s work provided
the first family of error-correcting codes with linear-time encoding and decoding procedures. The
decoding procedure has since been improved by Barg and Zemor [7–9,115].
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6.1.3 Contributions of Chapter 6

We show that certain expander codes can be efficiently locally decoded, and we instantiate our
results to obtain novel families of (nε, ρ)-LCCs of rate 1−α, for any positive constants α, ε and some
positive constant ρ. Our decoding algorithm runs in time linear in the number of queries, and hence
sublinear in the length of the message. We provide a general method for turning codes with smooth
local reconstruction algorithms into LCCs: our main result, Theorem 6.13, states that as long as
the inner code C0 has rate at least 1/2 and possesses a smooth local reconstruction algorithm, then
the corresponding family of expander codes are constant rate LCCs. In Section 6.4, we give some
examples of appropriate inner codes, leading to the parameters claimed above.

In addition to providing a sublinear time local decoding algorithm for an important family of
codes, our constructions are only the third known example of LDCs with rate approaching one,
after multiplicity codes [79] and lifted Reed-Solomon codes [41]. Our approach (and the resulting
codes) are very different from earlier approaches. Both multiplicity codes and lifted Reed-Solomon
codes use the same basic principle, also at work in Reed-Muller codes: in these schemes, for any
two codewords c1 and c2 which differ at index i, the corresponding queries c1|S(i) and c2|S(i) differ
in many places. Thus, if the queries are smooth, with high probability they will not have too many
errors, and the correct symbol can be recovered. In contrast, our decoder works differently: while
our queries are smooth, they will not have this distance property. In fact, changing a mere log(Q)
out of our Q queries may change the correct answer. The trick is that these problematic error
patterns must have a lot of structure, and we will show that they are unlikely to occur.

Finally, our results port a typical argument from the low-query regime to the high-rate regime.
As mentioned above, when the query complexity Q is constant, a smooth local reconstruction
algorithm is sufficient for local correctability. However, this reasoning fails when Q grows with n.
In this paper, we show how to make this argument go through: via Theorem 6.13, any family of
codes C0 with good rate and a smooth local decoder can be used to obtain a family of LCCs with
similar parameters.

6.1.4 Chapter organization

Before getting into our local correction algorithm, we state some basic results about expander
graphs. In particular, we will need a slightly nonstandard Chernoff bound for expander graphs,
which we will prove in Section 6.2. Next, in Section 6.3, we will give our local correction algorithm
and prove that it works, provided that the inner code C0 satisfies a few locality conditions. At this
point, the reader will likely be asking themselves if these inner codes exist, and if so, whether or
not they produce interesting results. In Section 6.4, we will give two examples of inner codes, which
will produce a locally correctable outer code with the advertised parameters.

6.2 Overview of expander graphs

In this section, we give a brief overview of expander graphs and codes arising from them. We
saw in Chapter 2 how to make a code C ∈ Fnq out of an inner code C0 ⊂ Fdq and a d-regular bipartite
graph G on 2N vertices. Briefly, the block length n of C will be |E(G)| = Nd, and we will identify
elements of Fnq with labelings of the edges of G. A labeling is in C if at every vertex of G, the edges
leaving that vertex (in some prescribed order) form a codeword in C0.

In this chapter, we will consider the case when the underlying graph arises from an expander
graph. A complete exposition of expander graphs is beyond the scope of this thesis: the reader is
referred to [69] for an excellent survey. In the meantime, we will briefly recap the basic notions that
we will need. Let G = (V,E) be a d-regular graph on N vertices. (Not necessarily bipartite). Let
A be the normalized adjacency matrix of G; that is, A ∈ {0, 1/d}N×N and

Aij =

{
1
d (i, j) ∈ E
0 (i, j) 6∈ E
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Consider the spectrum of A. It is not hard to see that the largest eigenvalue of A is 1, and that
the corresponding eigenvector is the all-ones vector 1 ∈ RN . If G is connected, it turns out that
the second-largest eigenvalue is strictly less than 1.

Definition 6.4. Let G be a connected d-regular graph with normalized adjacency matrix A. The
second-largest eigenvalue of A is called the expansion parameter of G, and is denoted λ = λ(G).

We will see a few reasons for the name “expansion parameter” later; it turns out that the smaller
λ is, the more “connected” G is. If λ is smallish, we say that G is an expander graph. If λ is basically
as small as it can be, we say that G is a Ramanujan graph:

Definition 6.5. A d-regular graph G = (V,E) is a Ramanujan graph if λ(G) ≤ 2
√
d−1
d .

It is known that this is basically the smallest λ(G) can be; more precisely, λ(G) ≥ 2
√
d−1
d −o(1).

Not surprisingly (given what we’ve seen so far in this thesis), a random d-regular graph is Ramanujan
with high probability. Much more surprisingly, there exist explicit constructions of Ramanujan
graphs [83, 85, 86] for arbitrarily large values of d. We will use the existence (and explicitness) of
these constructions as a black box.

To get a suitable bipartite graph H out of G, we will take the double cover of G.

Definition 6.6. Let G be any graph on N vertices. The double cover H of G is a bipartite graph
on 2N vertices, as follows. The vertices V (H) of H are two disjoint copies V0 and V1 of V (G). For
each edge (u, v) ∈ E(G), there are two edges (u0, v1) and (v0, u1) in E(H), where ui is the copy of
u in Vi.

The notation for double covers is illustrated in Figure 6.1.

u v

w

G

u0 u1

v0 v1

w0 w1

H

Figure 6.1: A graph G and its double-cover H.

We return to the expansion parameter λ. What does λ tell us about a graph G, or its double-
cover H? Generally, as it turns out, the smaller λ is, the more like the complete graph (or the
complete bipartite graph) G (or H) behaves. More specifically, suppose that a subset of B of vertices
are “bad,” and consider a random walk on G. Let X be the number of bad vertices that this walk
hits. If G is a complete graph, then each step of the random walk is an independent, uniformly
random vertex, and the number of bad vertices is controlled by a Chernoff bound (Theorem 2.15).
We would like to mimic this behavior when G is degree d, rather than N − 1. The well-known
expander Chernoff bound [35,70] says that we may do this, and the quality of the result depends on
the expansion parameter λ. In this chapter, we’ll need a slight variant on the expander Chernoff
bound, which we state and prove below.

Lemma 6.7. Let G be a d-regular graph on N vertices, and H be its double cover. Let B ⊂ E(H)
best a set of ρ|E(H)| edges, and suppose that ρ > 6λ, where λ = λ(G) is the expansion parameter.
Let v0, . . . , vL be a random walk of length L on H, starting from the left side at a vertex chosen
from a distribution1 ν with

∥∥ν − 1
n1n

∥∥
2
≤ 1√

n
. Let X denote the number of edges in B included in

the walk, and choose γ so that ρ+ 2λ < γ < 1/2. Then

P {X ≥ γL} ≤ exp (−LD (γ||ρ+ 2λ)) .

1We think of a distribution ν on V0 as a vector ν ∈ RN
≥0 so that ‖ν‖1 = 1. Thus, ν[u] is the probability mass on

vertex u.
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In particular, when ρ+ 2λ ≤ ln(1/(1− γ)), we have

P {X ≥ γL} ≤
(
ρ+ 2λ

γ

)γL
.

As mentioned above, this is very much like the expander Chernoff bound [35, 70]. In this case,
H is the double cover of an expander, not an expander itself, and the edges, rather than vertices,
are corrupted, but the proof remains basically the same. For completeness, we include the proof of
Lemma 6.7 here.

6.2.1 Proof of Lemma 6.7

The lemma follows with only a few tweaks from standard results. The only differences between
this and a standard analysis of random walks on expander graphs are that (a) we are walking on the
edges of the bipartite graph H, rather than on the vertices of G, and (b) our starting distribution
is not uniform but instead close to uniform. Dealing with this differences is straightforward, but
we document it below for completeness.

First, we need the relationship between a walk on the edges of a bipartite graph H and the
corresponding walk on the vertices of G. For ease of analysis, we will treat H as directed, with one
copy of each edge in each direction.

Lemma 6.8. Let G be a degree d undirected graph on d vertices with normalized adjacency matrix A,
and let H be the double cover of G. For each vertex v of G, label the edges incident to v arbitrarily,
and let v(i) denote the ith edge of v. Let H ′ be the graph with vertices V (G)× [d]×{0, 1} and edges

E(H ′) = {((u, i, b), (v, j, b′)) : (u, v) ∈ E(G), b 6= b′, u(i) = v} .

Then H ′ is a directed graph with 2dN edges, and in-degree and out-degree both equal to d. Further,
the normalized adjacency matrix A′ is given by

A′ = R⊗ S

where S : R2 → R2 is S =

[
0 1
1 0

]
and R : Rnd → Rnd is an operator with the same rank and

spectrum as A.

Proof. We will write down A′ in terms of A. Index [N ] by vertices of V , so that ev ∈ Rn refers to
the standard basis vector with support on v. Let ⊗ denote the Kronecker product. We will need
some linear operators. Let B : RN2 → RN2

so that

B(eu ⊗ ev) = ev ⊗ ev

and P : RN2 → RNd so that

P (eu ⊗ ev) =

{
eu ⊗ ei v = u(i)

0 (u, v) 6∈ E(G)
.

Finally, let S : R2 → R2 be the cyclic shift operator. Then a computation shows that the adjacency
matrix A′ of H ′ is given by

(P (I ⊗A)BPT )⊗ S.
Let R = P (I ⊗A)BPT . To see that the rank of R is at most N , note that for any i ∈ [d] and any
u ∈ V (G),

R(eu ⊗ ej) = eu(j) ⊗
1

d
1d.

In particular, it does not depend on the choice of j. Since {eu ⊗ ej : u ∈ V (G), j ∈ [d]} is a basis
for RNd, the image of R has dimension at most n. Finally, a similar computation shows that if p is
an eigenvector of A with eigenvalue λ, then p⊗ 1

d1d is a right eigenvector of R, also with eigenvalue
λ. (The left eigenvectors are P ( 1

N 1N ⊗ p)). This proves the claim.
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With a characterization of A′ in hand, we now wish to apply an expander Chernoff bound.
Existing bounds require slight modification for this case (since the graph H ′ is directed and also
not itself an expander), so for completeness we sketch the changes required. The proof below follows
the strategies in [2] and [70]. We begin with the following lemma, following from the analysis of [2].

Lemma 6.9. Let G and H be as in Lemma 6.8, and let v0, v1, . . . , vT be a random walk on the
vertices of H, beginning at a vertex of H, chosen as follows: the side of H is chosen according to a
distribution σ0 = (s, 1 − s), and the vertex within that side is chosen independently according to a
distribution ν with ‖ν − 1

N 1N‖2 ≤ 1√
N

. Let W be any set of edges in H, with |W | ≤ ρnd. Suppose

that ρ > 6λ. Then for any set S ⊂ {0, 1, . . . , T − 1},

P {(vt, vt+1) ∈W, ∀t ∈ S} ≤ (ρ+ 2λ)|S|.

Proof. As in Lemma 6.8, we will consider H as directed, with one edge in each direction. As before,
we will index these edges by triples (u, i, `) ∈ V (G) × [d] × {0, 1}, so that (u, i, `) refers to the ith

edge leaving vertex u on the `th side of H. Let µ be the distribution on the first step (v0, v1) of the
walk, so

µ = ν ⊗ 1

d
1d ⊗ σ0.

Let M ∈ R2Nd be the projector onto the edges in W . Let M (0) be the restriction to edges
emanating from the left side of H, and M (1) from the right side, so that both M (0) and M (1) are
Nd × Nd binary diagonal matrices with at most ρNd nonzero entries. Let A′ = R ⊗ S be as in
the conclusion of Lemma 6.8. After running the random walk for T steps, consider the distribution
on directed edges of H, conditional on the bad event that (vt, vt+1) ∈ W for all t ∈ S. As in the
analysis in [2], this distribution is given by

µT =
(MT1

A′)(MT−2A
′) · · · (M1A

′)(M0µ)

P {(vt, vt+1) ∈W, ∀t ∈ S}
,

where

Mt =

{
M t ∈ S
I t 6∈ S

.

Since the `1 norm of any distribution is 1, we have

P {(vt, vt+1) ∈W, ∀t ∈ S} = ‖(MT−1A
′)(MT−2A

′) · · · (M1A
′)(M0µ)‖1(6.1)

Let
µ0 := M0µ,

and
µt := MtA

′µt−1,

so we seek an estimate on ‖µT ‖1.
The following claim will be sufficient to prove the theorem.

Claim 6.10. If ρ ≥ 6λ, and t ∈ S,

(µ− 2λ) ‖µt‖1 ≤ ‖µt+1‖1 ≤ (µ+ 2λ) ‖µt‖1 .

On the other hand, if t 6∈ S,
‖µt‖1 = ‖µt+1‖1 .
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The second half of the claim follows immediately from the definition of µt. To prove the first
half, suppose that t ∈ S. We will proceed by induction. Again, we follow the analysis of [2].

Write µ0 = v0 ⊗ σ0, and write σ0 = (s, 1 − s) Part of our inductive hypothesis will be that for
all t,

µt = v
(0)
t ⊗ ste0 + v

(1)
t ⊗ (1− st)e1,

where st = s if t is even and 1− s if t is odd, and where v
(i)
t ∈ RNd. For i ∈ {0, 1}, write

v
(i)
t = x

(i)
t + y

(i)
t ,

where x
(i)
t ‖1 and y

(i)
t ⊥ 1. The second part of the inductive hypothesis will be

(6.2) ‖y(i)
t ‖2 ≤ q‖x

(i)
t ‖2,

for a parameter q to be chosen later, and for i ∈ {0, 1}.
Because

‖µt‖1 = st‖v(0)
t ‖1 + (1− st)‖v(1)

t ‖1
= st‖x(0)

t ‖1 + (1− st)‖x(1)
t ‖1

=
√
nd
(
st‖x(0)

t ‖2 + (1− st)‖x(1)
t ‖2

)
,

it suffices to show that

(6.3) (µ− 2λ)
∥∥∥x(0)

t

∥∥∥
2
≤
∥∥∥x(1)

t+1

∥∥∥
2
≤ (µ+ 2λ)

∥∥∥x(0)
t

∥∥∥
2

and similarly with the 0 and 1 switched. The analysis is the same for the two cases, so we just
establish (6.3). Using the decomposition A′ = R⊗ S from Lemma 6.8,

µt+1 = Mt(R⊗ S)(v
(0)
t ⊗ ste0 + v

(1)
t ⊗ (1− st)e1)

= Mt

(
Rv

(0)
t ⊗ (1− st+1)e1 +Rv

(1)
t ⊗ st+1e0

)
=
(
M

(1)
t Rv

(0)
t

)
⊗ (1− st+1)e1 +

(
M

(0)
t Rv

(1)
t

)
⊗ st+1e0

This establishes the first inductive claim about the structure of µt+1, and

v
(0)
t+1 = M

(0)
t Rv

(1)
t and v

(1)
t+1 = M

(1)
t Rv

(0)
t .

Consider just v
(1)
t+1. We have

v
(1)
t+1 = M

(1)
t R(x

(0)
t + y

(0)
t ).

Because t ∈ S, we know that M
(1)
t is diagonal with at most ρnd nonzeros, and further we know

that R has second normalized eigenvalue at most λ, by Lemma 6.8. The analysis in [2] now shows
that, using the inductive hypothesis (6.2),

(6.4) ρ‖x(0)
t ‖2 − qλ

√
ρ(1− ρ)‖x(0)

t ‖2 ≤ ‖x
(1)
t+1‖2 ≤ ρ‖x

(0)
t ‖2 + qλ

√
ρ(1− ρ)‖x(0)

t ‖2,

and that
‖y(1)
t+1‖2 ≤ qλ‖x

(0)
t ‖2 +

√
ρ(1− ρ)‖x(0)

t ‖2.

We must ensure that (6.2) is satisfied for the next round. As long as λ < ρ/6, this follows from the
above when

q = 2

√
1− ρ
ρ

.

With this choice of q, the (6.3) follows from (6.4). Further, the hypotheses on ν show that the (6.2)
is satisfied in the initial step.
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Finally, we invoke the following theorem, from [70].

Theorem 6.11 (Theorem 3.1 in [70]). Let X1, . . . , XL be binary random variables so that for all
S ⊂ [L],

P

{∧
i∈S

Xi = 1

}
≤ δ|S|.

Then for all γ > δ,

P

{
L∑
i=1

Xi ≥ γL

}
≤ e−LD(γ||δ).

Lemma 6.7 follows immediately.

6.3 Local correctability of expander codes

Preliminaries dispensed with, we are ready to present our local correction algorithm for expander
codes. We use a formulation of expander codes due to [115]. Let G be a d-regular expander graph
on N vertices with expansion parameter λ, as in Definition 6.4. We will take G to be a Ramanujan

graph, that is, so that λ ≤ 2
√
d−1
d ; as mentioned above, explicit constructions of Ramanujan graphs

are known [83, 85, 86] for arbitrarily large values of d. Let H be the double cover of G, as in
Definition 6.6. Fix a linear inner code C0 over F of rate R0 and relative distance δ0. Let N = nd.
For vi ∈ V (H), let Γ(vi) = (Γ1(vi), . . . ,Γd(vi)) denote the edges attached to v, with an arbitrary
order. The expander code C ⊂ Fn of length n arising from G and C0 is the Tanner code (as in
Definition 2.2) defined by H and C0. That is,

(6.5) C = Cn(C0, G) =
{
x ∈ Fn : x|Γ(vi)

∈ C0 for all vi ∈ V (H)
}

As we saw in Chapter 2, as long as the inner code C0 has good rate and distance, so does the
resulting code C.

Theorem 6.12 ( [98,105]). The code C has rate R ≥ 2R0 − 1, and as long as 2λ ≤ δ0, the relative
distance of C is at least δ2

0/2.

Notice that when R0 <
1
2 , Theorem 6.12 is meaningless. The rate in Theorem 6.12 comes from

the fact that C0 has rate R0, so each vertex induces (1− R0)d linear constraints, and there are N
vertices, so the outer code has Nd(1−R0) constraints. Since the outer code has length n = Nd/2,
its rate is at least 2R0 − 1. This näıve lower bound on the rate ignores the possibility that the
constraints induced by the different vertices may not all be independent. It is an interesting question
whether for certain inner codes, a more careful counting of constraints could yield a better lower
bound on the rate. The ability to use inner codes of rate less than 1

2 would permit much more
flexibility in the choice of inner code in our constructions.

The difficulty of a more sophisticated lower bound on the rate was noticed by Tanner, who
pointed out that simply permuting the codewords associated with a given vertex could drastically
alter the parameters of the outer code [105].

6.3.1 Local Correction

If the inner code C0 has a smooth local reconstruction procedure, then not only does C have good
distance, but we show it can also be efficiently locally corrected. Our main result is the following
theorem.

Theorem 6.13. Let C0 be a linear code over F of length d and rate R0 > 1/2. Suppose that C0
has a s0-smooth local reconstruction procedure with query complexity Q0. Let C = Cn(C0, G) be the
expander code of length n arising from the inner code C0 and a Ramanujan graph G. Choose any
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γ < 1/2 and any ζ > 0 satisfying γ
(
eζQ0

)−1/γ
> 8λ. Then C is (Q, ρ)-locally correctable, for any

error rate ρ, with ρ < γ
(
eζQ0

)−1/γ − 2λ. The success probability is

1−
(n
d

)−1/ ln(d/4)

and the query complexity is

Q =
(n
d

)ε
where ε =

(
1 +

ln(Q′0) + 1

ζ

)
· ln(Q′0)

ln(d/4)
.

Further, when the length of the inner code, d, is constant, the correction algorithm runs in time
O(|F|Q′0+1Q), where Q′0 = Q0 + (d− s0).

Remark 12. We will choose d (and hence Q′0 < d) and |F| to be constant. Thus, the rate of C, as
well as the parameters ρ and ε, will be constants independent of the block length n. The parameter
ζ trades off between the query complexity and the allowable error rate. When Q0 is much smaller
than d (for example, Q0 = 3 and d is reasonably large), we will want to take ζ = O(1). On the
other hand, if Q0 = dε and d is chosen to be a sufficiently large constant, we should take ζ on the
order of ln(Q0).

Before diving into the details, we outline the correction algorithm. First, we observe that it
suffices to consider the case when the local correction algorithm S0 of the inner code is perfectly
smooth: that is, the queries of the inner code are uniformly random. Otherwise, if S0 is s0-smooth
with Q0 queries, we may modify it so that it is d-smooth with Q0 + (d− s0) queries, by having it
query extra points and then ignore them. Thus, we set Q′0 = Q0 and assume in the following that
S0 makes Q0 perfectly smooth queries.

Suppose that C0 has local reconstruction algorithm (S0, A0), and we receive a corrupted code-
word, w, which differs from a correct codeword c∗ in at most a ρ fraction of the entries. Say we
wish to determine c∗[(u0, v1)], for (u0, v1) ∈ E(H). The algorithm proceeds in two steps. The first
step is to find a set of about nε/2 query positions which are nearly uniform in [n], and whose correct
values together determine c∗[(u0, v1)]. The second step is to correct each of these queries with very
high probability—for each, we will make another nε/2 or so queries.

Step 1. By construction, c∗[(u0, v1)] is a symbol in a codeword of the inner code, C0, which lies
on the edges emanating from u0. By applying S0, we may choose Q0 of these edges, S = S0(u0) ={

(u0, s
(i)
1 ) : i ∈ [Q0]

}
, so that

A0 (c∗|S , (u0, v1)) = c[(u0, v1)].

Now we repeat on each of these edges: each (u0, s
(i)
1 ) is part of a codeword emanating from s

(i)
1 , and

so Q0 more queries determine each of those, and so on. Repeating this L1 times yields a Q0-ary
tree T of depth L1, whose nodes are labeled by of edges of H. This tree-making procedure is given
more precisely below in Algorithm 4. Because the queries are smooth, each path down this tree is
a random walk in H; because G is an expander, this means that the leaves themselves, while not
independent, are each close to uniform on E(H). Note that at this point, we have not made any
queries, merely documented a tree, T , of edges we could query.

Step 2. Our next step is to actually make queries to determine the correct values on the edges
represented in the leaves of T . By construction, these values determine c∗[(u0, v1)]. Unfortunately,
in expectation a ρ fraction of the leaves are corrupted, and without further constraints on C0, even
one corrupted leaf is enough to give the wrong answer. To make sure that we get all of the leaves
correct, we use the fact that each leaf corresponds to a position in the codeword that is nearly
uniform (and in particular nearly independent of the location we are trying to reconstruct). For
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each edge, e, of H that shows up on a leaf of T , we repeat the tree-making process beginning at
this edge, resulting in new Q0-ary trees Te of depth L2. This time, we make all the queries along
the way, resulting in an evaluated tree τe, whose nodes are labeled by elements of F; the root of τe
is the e-th position in the corrupted codeword, w[e], and we hope to correct it to c∗[e].

For a fixed edge, e, on a leaf of T , we will correct the root of τ = τe with very high probability,
large enough to tolerate a union bound over all the trees τe. For two labelings σ and ν of the same
tree by elements of F, we define the distance

(6.6) D(σ, ν) = max
P

δ (σ|P , ν|P ) ,

where the maximum is over all paths P from the root to a leaf, and σ|P denotes the restriction of
σ to P . We will show below in Section 6.3.2 that it is very unlikely that τ contains a path from the
root to a leaf with more than a constant fraction γ < 1/2 of errors. Thus, in the favorable case, the
distance between the correct tree τ∗ arising from c∗ and the observed tree τ is at most D(τ∗, τ) ≤ γ.
In contrast, we will show that if σ∗ and τ∗ are both trees arising from legitimate codewords with
distinct roots, then σ∗ and τ∗ must differ on an entire path P , and so D(σ∗, τ) > 1 − γ. To take
advantage of this, we show in Algorithm 5 how to efficiently compute

Score(a) = min
σ∗:root(σ∗)=a

D(σ∗, τ)

for all a, where root(σ∗) denotes the label on the root of σ∗. The above argument (made precise
below in Section 6.3.2) shows that there will be a unique a ∈ F with score less than γ, and this will
be the correct symbol c∗[e].

Finally, with all of the leaves of T correctly evaluated, we may use A0 to work our way back
up T and determine the correct symbol corresponding to the edge at the root of T . The complete
correction algorithm is given below in Algorithm 3.

Algorithm 3: correct: Local correcting protocol.

Input: An index e0 ∈ E(H), and a corrupted codeword w ∈ FE(H).
Output: With high probability, the correct value of the e0’th symbol.
Set L1 = log(N)/ log(d/4) and fix a parameter L2.
T = makeTree(e0, L1)
for each edge e of H that showed up on a leaf of T do

Te = makeTree(e, L2).
Let τe = Te|w be the tree of symbols from w.
w∗[e] = correctSubtree(τe).

Initialize a Q0-ary tree τ∗ of depth L1.
Label the leaves of τ∗ according to T and w∗: if a leaf of T is labeled e, label the
corresponding leaf of τ∗ with w∗[e].
Use the local reconstruction algorithm A0 of C0 to label all the nodes in τ∗.
return the label on the root of τ∗.

The number of queries made by Algorithm 3 is

(6.7) Q = QL1+L2
0

and the running time is O(td|F|Q0+1Q), where td is the time required to run the local correction
algorithm of C0. For us, both d and |F| will be constant, and so the running time is O(Q).

6.3.2 Proof of Theorem 6.13

Suppose that c∗ ∈ C, and Algorithm 3 is run on a received word w with δ(c∗, w) ≤ ρ. To prove
Theorem 6.13, we must show that Algorithm 3 returns c∗[e0] with high probability. As remarked
above, we assume that the inner recovery algorithm S0 is perfectly smooth.

We follow the proof outline sketched in Section 6.3.1, which rests on the following observation.
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Algorithm 4: makeTree: Uses the local correction property of C0 to construct a tree of indices.

Input: An initial edge e0 = (u0, v1) ∈ E(H), and a depth L.
Output: A Q0-ary tree T of depth L, whose nodes are indexed by edges of H, with root e0

Initialize a tree T with a single node labeled e0

s = 0
for ` ∈ [L] do

Let leaves be the current leaves of T .
for e = (us, v1−s) ∈ leaves do

Let
{
v

(i)
1−s : i ∈ [d]

}
be the neighbors of us in H.

Choose queries Q0(e) ⊂
{

(us, v
(i)
1−s) : i ∈ [d]

}
, and add each query in T as a child at

e.

s = 1− s
return T

Algorithm 5: correctSubtree: Correct the root of a fully evaluated tree τ .

Input: τ , a Q0-ary tree of depth L whose nodes are labeled with elements of F.
Output: A guess at the root of the correct tree τ .
For a node x of τ , let τ [x] denote the label on x.
for leaves x of τ and a ∈ F do

besta(x) =

{
1 τ [x] 6= a

0 τ [x] = a

for ` = L− 1, L− 2, . . . , 0 do
for nodes x at level ` in τ and a ∈ F do

Let y1, . . . , yQ0
be the children of x.

Let Sa ⊂ FQ0 be the set of query responses for the children of x so that A0 returns a
on those responses.

besta(x) = min(a0,...,aQ0
)∈Sa maxr∈[Q0]

(
bestar (yr) + 1τ(yr)6=ar

)
Let r be the root of τ .
for a ∈ F do

Score(a) =
besta(r) + 1τ(r)6=a

L

return a ∈ F with the smallest Score(a).

Proposition 6.14. Let c1, c2 ∈ C and let e ∈ E(H) so that c1[e] 6= c2[e]. Let the distance D
between trees with labels in F be as in (6.6). Let T = makeTree(e), and let τ = T |c1 and σ = T |c2
be the labeled trees corresponding to c1 and c2 respectively. Then D(τ, σ) = 1. That is, there is some
path from the root to the leaf of T so that τ and σ disagree on the entire path.

Proof. Since c1[e] 6= c2[e], τ and σ have different symbols at their root. Since the labels on the
children of any node determine the label on the node itself (via the local correction algorithm), it
must be that τ and σ differ on some child of the root. Repeating the argument proves the claim.

Let τe be the tree arising from the received word w, starting at e, as in Algorithm 3. Let

Te = {makeTree(e)|c : c ∈ C}
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be the set of query trees arising from uncorrupted codewords, and let τ∗e ∈ Te be the “correct” tree,
corresponding to the original uncorrupted codeword c∗. Suppose that

(6.8) D(τe, τ
∗
e ) ≤ γ

for some γ ∈ [0, 1/2). Then Proposition 6.14 implies that for any σ∗e ∈ Te with a different root from
τ∗e has

(6.9) D(τe, σ
∗
e) ≥ 1− γ.

Indeed, there is some path along which τ∗e and σ∗e differ in every place, and along this path, τe
agrees with τ∗e in at least a 1 − γ fraction of the places. Thus, τe disagrees with σ∗e in those same
places, establishing (6.9). Consider the quantity

(6.10) Score(a) = min
σ∗e∈Te:root(σ∗e )=a

D(τe, σ
∗
e).

Equations (6.8) and (6.9) imply that if a∗ is the label on the root of τ∗e , then Score(a) ≤ γ, and
otherwise, Score(a) ≥ 1− γ. Thus, to establish the correctness of Algorithm 3, it suffices to argue
first that Algorithm 5 correctly computes Score(a) for each a, and second that (6.8) holds for all
trees τe in Algorithm 3.

The first claim follows by inspection. Indeed, for a node x ∈ τe, let (τe)x denote the subtree

below x. Let T (x,a)
e denote the set of trees in Te so that the node x is labeled a. Throughout

Algorithm 3, the quantity besta(x) gives the distance from the observed tree rooted at x to the best
tree in Te, rooted at x, with the additional restriction that the label at x should be a. That is,

(6.11) besta(x) = min
σ∗e∈T

(x,a)
e

D̃ ((σ∗e)x , (τe)x) ,

where D̃ is the same as D except it does not count the root, and it is not normalized. It is easy to
see that (6.11) is satisfied for leaves x of τe. Then for each node, Algorithm 5 updates besta(x) by
considering the best labeling on the children of x consistent with τ(x) = a, taking the distance of
the worst of those children, and adding one if necessary.

To establish the second claim, that (6.8) holds for all trees τe, we will use Lemma 6.7 from
Section 6.2. Applying Lemma 6.7 with B equal to the set of corrupted edges, we see that a random
walk on H will not hit too many corrupted edges. The conditions on ρ and λ in the statement of
Theorem 6.13 implies that ρ > 6λ, and so Lemma 6.7 applies to random walks on H.

Suppose that L1 is even, and consider any leaf of T . This leaf has label (u0, v1) ∈ E(H), where
u is the result of a random walk of length L1 on G and v is a randomly chosen neighbor of u.
Because G is a Ramanujan graph, the distribution µ on u satisfies∥∥∥∥µ− 1

N
1N

∥∥∥∥
2

≤ λL1 ≤ 1√
N

as long as

L1 ≥
log(N)

log(d/4)
.

Thus, Lemma 6.7 applies to random walks in H starting at e. Fix a leaf of τe; by the smoothness
of the query algorithm S0, each path from the root to the leaf of each tree τe is a uniform random
walk, and so with high probability, the number of corrupted edges on this walk is not more than
γL2, which was the desired outcome.

Finally, we union bound over QL1
0 trees τe and QL2

0 paths in each tree. We will set L2 = CL1,
for a constant C to be determined. Thus, (6.8) holds (and hence Algorithm 3 is correct) except
with probability at most

(6.12) P {Algorithm 3 fails} ≤ exp

(
(C + 1)L1 ln(Q0)− CγL1 ln

(
γ

ρ+ 2λ

))
.
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Our goal is to show that P {Algorithm 3 fails} ≤ exp(−L1), which is equivalent to showing

(C + 1) ln(Q0)− Cγ ln

(
γ

ρ+ 2λ

)
< −1

Rearranging, this means our goal is to find C so that

C

(
ln(Q0)− γ ln

(
γ

ρ+ 2λ

))
< −1− ln(Q0)

By hypothesis in Theorem 6.13 we have ρ < γ
(
eζQ0

)−1/γ − 2λ, which means that

γ ln

(
γ

ρ+ 2λ

)
> γ ln

(
γ

γ (eζQ0)
−1/γ

)
= γ ln

((
eζQ0

)1/γ)
= ζ + lnQ0

Thus

ln(Q0)− γ ln

(
γ

ρ+ 2λ

)
< −ζ

Thus choosing C = ln(Q0)+1
ζ is sufficient to bound the failure probability by exp(−L1). From (6.7),

Q = Q
(C+1)L1

0 , which completes the proof of Theorem 6.13.

6.4 Examples

In this section, we provide two examples of choices for C0, both of which result in (nε, ρ)-LCCs
of rate 1− α for any constants ε, α > 0 and for some constant ρ > 0. Our first and main example
is a generalization of Reed-Muller codes, based on finite geometries. With these codes as C0, we
provide LCCs over Fp—unlike multiplicity codes, these codes work naturally over small fields.

Our second example comes from the observation that if the C0 is itself an LCC (of a fixed length)
our construction provides a new family of (nε, ρ)-LCCs. In particular, plugging the multiplicity
codes of [79] into our construction yields a novel family of LCCs. This new family of LCCs has a
very different structure than the underlying multiplicity codes, but achieves roughly the same rate
and locality.

Codes from Affine Geometries. One advantage of our construction is that the inner code C0
need not actually be a good locally decodable or correctable code. Rather, we only need a smooth
reconstruction procedure, which is easier to come by. One example comes from affine geometries;
in this example, we will show how use Theorem 6.13 to make LCCs of length n, rate 1 − α and
query complexity nε, for any α, ε > 0.

For a prime power h = p` and parameters r and m, consider the r-dimensional affine subspaces
L1, . . . , Lt of the vector space Fmh . let H be the t×hm incidence matrix of the Li and the points of
Fmh , and let A∗(r,m, h) be the code over Fp whose parity check matrix is H. These codes, examples
of finite geometry codes, are well-studied, and their ranks can be exactly computed—see [3, 4] for
an overview.

The definition of of A∗(r,m, h) gives a reconstruction procedure: we may query all the points in
a random r-dimensional affine subspace of Fmh and use the corresponding parity check. In particular,
if we index the positions of the codeword by elements of Fmh . Then given the position x ∈ Fmh , the
query set S(x) is all the points other than x in a random r-flat L that passes through x. Given a
codeword c ∈ A∗(r,m, h), we may reconstruct cx by

A
(
c|S(x)

)
= −

∑
y∈Q(x)

cy.

By definition, (A,S) is a smooth reconstruction procedure which makes hr queries.
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The locality of A∗(r,m, h) has been noticed before, for example in [41], where it was observed
that these codes could be viewed as lifted parity check codes. However, as they note, these codes
do not themselves make good LCCs—the reconstruction procedure cannot tolerate any errors in
the chosen subspace, and thus the error rate ρ must tend to zero as the block length grows. Even
though these codes are not good LCCs, we can use them in Theorem 6.13 to obtain good LCCs
with sublinear query complexity, which can correct a constant fraction of errors. We will use the
bound on the rate of A∗(1,m, h) from [41]:

Lemma 6.15 (Lemma 3.7 in [41]). Choose ` = εm, with h = p` as above. The dimension of
A∗(1,m, h) is at least hm − hm(1−β), for β = β(ε′) = Ω(2−2/ε′).

We will apply Lemma 6.15 with

ε′ =
ε

2
and m =

√
ln(2/α)

ε′β(ε′) ln(p)
,

to obtain a p-ary code C0 of length d = pε
′m2

with rate R0 at least 1 − α/2 and which has a
(d− 1)-smooth reconstruction algorithm with query complexity Q0 = dε

′
. To apply Theorem 6.13,

fix any ε, α > 0, sufficiently small. We set ζ = 2 ln(Q0), and choose γ = 1/4 in Theorem 6.13, and
use C0: the resulting expander code C has rate 1− α and query complexity

Q ≤
(n
d

)ε
for sufficiently large d. Finally, using the fact that λ ≤ 2/

√
d, we see that C corrects against a ρ

fraction of errors, where

ρ =
1

5
d−6ε′

again for sufficiently large d, as long as ε < 1/12. Assuming ε and α are small enough that d is a
suitably large constant, this rate ρ is a positive constant, and we achieve the advertised results.

Multiplicity codes. Multiplicity codes [79] are themselves a family of constant-rate locally
decodable codes. We can, however, use a multiplicity code of constant length as the inner code
C0 in our construction. This results in a new family of constant-rate locally decodable codes. The
parameters we obtain from this construction are slightly worse than the original multiplicity codes,
and the main reason we include this example is novelty—these new codes have a very different
structure than the original multiplicity codes.

For constants α′, ε′ > 0, the multiplicity codes of [79] have length d and rate R0 = 1 − α′ and
a (d − 1)-smooth local reconstruction algorithm with query complexity Q0 = O(dε

′
). To apply

Theorem 6.13, we will choose ζ = C ln(Q0) for a sufficiently large constant C, and so the query
complexity of C will be

Q =
(n
d

)(1+β)ε′

for an arbitrarily small constant β. Thus, setting ε = ε′(1 + β), and α = 2α′, we obtain codes C
with rate 1− ε and query complexity (n/d)ε. As long as ε is sufficiently small, C can tolerate errors
up to ρ = C ′d−C

′′ε for constants C ′ and C ′′ (depending on the constants in the constructions of the
multiplicity code, as well as on C above). Multiplicity codes require sufficiently large block length
d, on the order of

d ≈
(

1

α2ε3

)1/ε

log

(
1

αε

)
.

Choosing this d results in a requirement ρ ≤ 1/poly(αε). We remark that the distance of the
multiplicity codes is on the order of δ0 = Ω(α2ε), and so the distance of the resulting expander
code C is Ω(α4ε2).
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6.5 Conclusion

In the constant-rate regime, all known LDCs work by using a smooth local reconstruction
algorithm. When the locality is, say, three, then with very high probability none of the queried
positions will be corrupted. This reasoning fails for constant rate codes, which have larger query
complexity: we expect a ρ fraction of errors in our queries, and this is often difficult to deal with.
In this chapter, we made the low-query argument valid in a high-rate setting—any code with large
enough rate and with a good local reconstruction algorithm can be used to make a full-blown locally
correctable code.

The payoff of our approach is the first sublinear time algorithm for decoding expander codes.
More precisely, we have shown that as long as the inner code C0 admits a smooth local reconstruction
algorithm with appropriate parameters, then the resulting expander code C is a (nε, ρ)-LCC with
rate 1−α, for any α, ε > 0 and some constant ρ. Further, we presented a decoding algorithm with
runtime linear in the number of queries.

There are only two other constructions known in this regime, and and our constructions are
substantially different. Expander codes are a natural construction, and it is our hope that the
additional structure of our codes, as well as the extremely fast decoding time, will lead to new
applications of local decodability.
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CHAPTER 7

Summary and conclusions

7.1 Summary of contributions

We have investigated two variants of coding theory from a rather non-standard view. In list
decoding, we worked very hard to ignore some very nice algebraic structure, and focused instead on
probabilistic and geometric considerations. In local decoding, we used a combinatorial and proba-
bilistic approach to provide new constructions of LCCs, while to date only algebraic constructions
were known.

As punchlines of our work on list decoding, we showed that random linear codes are (nearly)
optimally list-decodable with high probability, and that there exist Reed-Solomon codes which are
list-decodable beyond the Johnson bound. These questions had each been open for over 15 years.
Along the way, we developed a toolkit which complements existing algebraic approaches. Our
toolkit could be described as a general theory of “random stuff you can do to codes.” This theory
gives us some insight about the structure of list-decodability: while it may not be the case that
a simple structural property (like distance) is enough to guarantee optimal list-decodability, it is
the case that a simple structural property and a little bit of randomness (like distance and some
random puncturing) is enough.

In local-decoding, we gave examples of constant-rate locally correctible codes, using expander
graphs and some probabilistic arguments. Our constructions are the third known family of codes in
this regime, and they are of a very different flavor: while existing approaches are algebraic, ours are
are combinatorial. In fact, “our” constructions are actually expander codes, which are neither ours
nor new. Thus, our work also gives sublinear time decoding algorithms for a well-studied family of
codes.

Finally, and most importantly, we have perhaps improved life for Alice and Bob (Figure 7.1.)

Alice Bob

Figure 7.1: Concrete results of the work in this dissertation.
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7.2 Future work and open questions

Fortunately (from the perspective of obtaining future employment) we did not solve all of the
problems.1 We conclude with a few open problems raised by our work.

7.2.1 List decoding

In Chapter 3, we gave a very simple argument for the optimal list-decodability of random linear
codes over constant-sized alphabets. The major open question of that chapter was to extend the
argument to large alphabet sizes. We nearly did this in Chapter 4, but there were some obnoxious
logarithmic factors, and our proof became much more complicated. It is natural to ask if either or
both of these issues could be ameliorated.

Question 7.1. Is it true that random linear codes of rate Ω(ε) are list-decodable up to radius
ρ = (1− ε) for sufficiently large alphabet sizes q? And, if so, is there a simple proof?

In Chapter 4, our main motivation was Reed-Solomon codes, and we showed that there exist
Reed-Solomon codes which are list-decodable beyond the Johnson bound. Again, there is the open
question of removing the logarithmic factors. Additionally, there’s the problem of actually finding
such a code.

Question 7.2. For any R = ω(ε2), is there a set of explicit evaluation points α1, . . . , αn so that the
Reed-Solomon code of rate R with these evaluation points is list-decodable up to radius ρ = 1− ε?

One way to try to attack Question 7.2 is to find evaluation points that are suitable “structure-
free.” More precisely, the work of [12] shows that certain algebraic structure in the evaluation
points is bad (in that it hinders list-decodability); our work shows that a lack of structure (random
evaluation points) are good. Making this rigorous is an interesting direction.

Question 7.3. Charactize algebraic structure that hinders list-decodability. More precisely, is there
some (nontrivial) algebraic property so that

(a) any Reed-Solomon code whose evaluation points avoid this property is list-decodable beyond
the Johnson bound, and

(b) any Reed-Solomon code whose evaluation points have this property get stuck at the Johnson
bound?

Even finding a nontrivial property so that (a) is true would be interesting, and, depending on the
property, could answer Question 7.2.

Choosing evaluation points to be subspace evasive sets seems like a good candidate.
Question 7.3 leads naturally to a more general question about the structure of list-decoding.

Our work on list-decoding gave a theory of “random stuff you can do to codes,” and one take-
away is that “most codes (derived from) codes with good structural properties are optimally list-
decodable.” When the structural property was distance, this gave a sort of randomized version of
the Johnson bound. This was satisfying because it went beyond the actual Johnson bound, but
unsatisfying because of the randomness. A very ambitious goal is to derandomize this approach,
and to characterize (deterministically) the pathological cases which prevent the actual Johnson
bound from working.

Question 7.4. Is there a simple structural property A (like distance) and another simple structural
property B (a generalization of an answer to Question 7.3 to arbitrary codes) so that having A and
not B is a sufficient condition for (near) optimal list-decodability?

1Clearly, this was a deliberate decision.
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Whether or not we can derandomize our results, we might ask whether or not we can do
anything efficient with them. In Chapter 5, we focused our machinery on closing the gap between
the combinatorial and probabilistic approach of this thesis and the existing algorithmic approaches.
The holy grail for list-decoding is Problem 5.1, and we did not come close. Any further progress in
this direction would be exciting.2

Question 7.5. Is there any way to apply Theorem 4.6 to obtain efficiently decodable list-decodable
codes, with any nontrivial parameters?

Finally, list-decodable codes are related to many pseudorandom objects. (See [107] for a nice
overview of many of these connections). It is natural to ask if our machinery could be used there
as well.

Question 7.6. Can one extend the tools from this dissertation to answer open questions in pseu-
dorandomness? As a concrete question, is a random linear extractor3 an optimal strong extractor?

The machinery of Gaussian processes, well-understood and also well-exploited in other areas,
has a great deal of potential in coding theory and pseudorandomness. The problem of controlling
the worst case of a random process, a.k.a., bounding E sup[stuff], is ubiquitous in coding theory,
pseudorandomness, and other areas of theoretical computer science. It is exciting to think how
tools from (continuous) probability might be brought to bear in these (generally discrete) domains.

7.2.2 Local decoding

In Chapter 6, we gave a general framework for turning codes C0 with smooth local reconstruction
algorithms into full-blown locally correctible codes. We gave two instantiations of such inner codes,
both of which gave codes of arbitrarily high rate and query complexity nε. Many questions remain
about how to choose inner codes. A major limitation on allowable inner codes is that the rate needs
to be at least 1/2 in order to obtain an expander code with nontrivial rate. However, the argument
for the rate of expander codes (which we sketched in Chapter 2) is known not to be tight [105]. If
we could overcome this obstacle, it would give us access to a much larger class of codes to use as
inner codes (for example, perhaps we could use Reed-Muller codes as an inner code).

Question 7.7. What other families of inner codes result in locally correctible expander codes?

A more specific form of Question 7.7, which was asked of me by Avi Wigderson and Shubhangi
Saraf, is whether we can find suitable inner codes over R. There are no known locally correctable
codes over the reals in this regime, and currect evidence [6, 24] indicates that finding LCCs over R
is harder than over finite fields.

Question 7.8. Are there suitable inner codes which are linear over R?

A final question is whether or not techniques like this could be used to obtain codes with
logarithmic query complexity.

Question 7.9. Can the techniques of Chapter 6 be extended to produce codes with rate tending to
1 and query complexity (poly)logarithmic in n?

In [21], it was conjectured that no such codes exist—if they did not, it would imply explicit
families of rigid matrices.

Finally, we conclude with the obvious question raised by this dissertation.

Question 7.10. May I please have a Ph.D.?

2Especially if it rests on the work in this dissertation.
3That is, use a random seed to choose a m × n matrix from some random subset of all such matrices, and use

this matrix to map a low-entropy n-bit source to m bits of near-uniform randomness. This form of the question was
asked to me by Swastik Kopparty and David Zuckerman. One can say something about strong Renyi extractors
(that is, extractors for Renyi entropy) without too much trouble, but the question is for the standard definition of a
strong extractor.



BIBLIOGRAPHY

103



104

BIBLIOGRAPHY

[1] Erik Agrell, Alexander Vardy, and Kenneth Zeger. Upper bounds for constant-weight codes.
Information Theory, IEEE Transactions on, 46(7):2373–2395, 2000.

[2] Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized graph prod-
ucts. Computational Complexity, 5(1):60–75, 1995.

[3] Edward F. Assmus and Jennifer D. Key. Designs and their Codes. Cambridge University
Press, 1994.

[4] Edward F. Assmus and Jennifer D. Key. Polynomial codes and finite geometries. In Vera
Pless, Richard A Brualdi, and William Cary Huffman, editors, Handbook of Coding Theory,
volume 2, pages 1269–1343. Elsevier, 1998.
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