
Designing More “Human-like” Algorithms:
A computational complexity perspective

Megha Srivastava

March 2023

1 Introduction

We encounter and solve a variety of algorithmic tasks in our daily lives without intentionally
formalizing the underlying algorithm, such as sorting through a pile of laundry, remembering long
numerical sequences (e.g. social security numbers), and creating schedules under a given set of
constraints. In fact, such examples often inspired well-known problems in theoretical computer
science – for example, the “traveling salesman problem” (an NP-hard problem) phrase was first
mentioned in a 1832 German handbook describing a 47-city tour through Germany for a salesman
that does not visit any city more than once (Applegate et al., 2006). However, while we may often
wish to solve such tasks optimally, humans are not always capable of analyzing and discovering the
optimal solution to an algorithmic task. Instead, we tend to develop heuristics or rely on instructions
from family and friends to guide our strategies, and are also faced with limitations (perceptual,
memory, etc.) that either alter the overall task complexity or lead to suboptimal behavior.

A diverse set of works have attempted to discuss the links between human strategies when solv-
ing a given task and its computational complexity. Such studies explore a variety of modalities,
ranging from perceptual tasks (e.g. designing compact frequency-based word clouds) to decision-
making (e.g. choosing a path to travel on) to social behavior (e.g. forming friendships and alliances),
and often seek to answer one of the following questions:

• When does computational complexity (as opposed to other features) serve as a strong predic-
tive signal for human behavior?

• When (and why) does human behavior deviate from computationally optimal strategies?

• When does diversity (e.g. different solutions to the same problem) in behavior arise?

However, these works largely come from researchers who are primarily concerned with develop-
ing stronger models of human intelligence in decision-making contexts. For example, Lieder and
Griffiths (2020) describe a unifying paradigm of resource-rational analysis that covers a variety of em-
pirical findings that humans deviate from optimal behavior due to cognitive limitations or the use
of heuristics, while Gershman et al. (2015) present a unifying view of computational rationality, which
describes the goal of making real-world decisions with the highest expected utility under computa-
tional constraints. Many of the works covered by these paradigms focus on tasks requiring human
decision making under uncertainty using probabilistic inference, which has been shown to belong to
the NP-hard complexity class (over a general class of Bayesian belief networks) (Cooper, 1990). But
what about other types of tasks, that more closely map to some of the classical problems studied in
introductory computational complexity?

We provide an accessible overview to classical complexity problems with known-optimal algo-
rithms (and accompanying proofs), accompanied by corresponding empirical results that explore
human behavior when solving such problems in real-world contexts. Why should one care about
such connections? One practical reason is that by understanding the general resource constraints
that affect human behavior, we can hope to develop stronger algorithms for assistive technologies
(e.g. navigation tools or virtual chess tutors 1) that compensate for human sub-optimalities (e.g. in-
ability to perform exhaustive search). However, our overall goal is to encourage people who may
have little familiarity with either computational complexity theory or cognitive science (or both) to
better reason about the way complexity intersects our daily lives through simple examples.

2 Travelling Salesman

The Travelling Salesman Problem is one of the most famous problems in optimization. The goal
is to find the route with shortest cost (e.g. length) between a set of points (e.g. locations) that must
be visited, and underlies many transportation problems.

1https://noctie.ai/

1

2.1 Overview

Let us consider a graph G over a set of n vertices V connected via weighted edges E. We define
a Hamiltonian cycle to be a cycle through this graph that visits every vertex vi ∈ V exactly once.
The Travelling Salesman Problem (TSP) essentially asks us to find the Hamiltonian cycle with the
smallest overall cost (sum of all edge weights). While the decision version of the problem (deciding if
there exists a given graph G with a Hamiltonian cycle of cost ≤ k) is NP-complete, the optimization
problem as described above is only known to be NP-Hard. Furthermore, we can also consider a
Euclidean variant of the problem, where each vertex v ∈ V is a point in R2 space, and the weight of
edge ei,j between vi and vj is equal to the Euclidean distance between both points, ||vi − vj ||2.

2.2 Exact Algorithm

One natural algorithm to solve the Travelling Salesman Problem is a brute force approach, where
we search between all possible Hamiltonian cycles (or permutation of vertices in V), and pick the
one with the smallest cost. This would require searching across n! paths, which is not very efficient.
Here, we describe the Held-Karp algorithm, which finds an exact solution for TSP using dynamic
programming.

1 (Held-Karp Algorithm) :
Select a starting vertex s ∈ V . For every subset S ⊂ V − s of vertices not including s, and vertex

v′ ∈ S, let d(S, v′) be the cost of the lowest cost path from s to v′ that also visits every vertex in S.

Base case: S = v′, d(S, v′) = c(s, v′) where c is the cost function over edge es,v′ .

For S when |S| ≥ 2, we follow the recursive procedure:
d(S, v′) = min{d(S − v′, u) + c(u, v′)|u ∈ S − v′}

Calculate the lowest cost path as min{d(V − s, v′) + c(s, v′)|v′ ∈ V − s}.

Because the number of subsets of a set of size n is 2n, the overall time complexity of the Held-Karp
Algorithm is θ(2n ∗ n2), which is better than the brute force approach wtih complexity O(n!).

2.3 Approximate Algorithm

An efficient algorithm to solve TSP approximately is the Nearest Neighbors algorithm, which
greedily visits the nearest point, as described below.

2 (Nearest Neighbors) :

Mark all vertices in V as ”unvisited”. Select a starting vertex s ∈ V , and mark it as ”visited”.

For all vi ∈ V where vi is unvisited, calculate the cost c(s, vi), and identify the vertex v′i with the
smallest cost. Reset the starting vertex s to be v′i, and mark v′i as ”visited”.

Repeat the above procedure until all vi ∈ V are marked as ”visited”.

Because we now need to calculate the distance between a vertex on all remaining unvisited ver-
tices, the time complexity is θ(n2).

2.4 Human behavior

For both exact (e.g. Held-Karp) and approximate (e.g. Nearest Neighbors) algorithms, we analyze
complexity in terms of time complexity, which in turn is a function of the number of vertices n.
However, a key principle behind understanding more ”human-like” approaches to such problems
is considering what other measures of complexity drive human behavior. Consider the Euclidean
variant of TSP mentioned earlier. It has been shown that the optimal path for any set of vertices,
solving the TSP, in the Euclidean plane does not contain “self-intersection” – essentially, no two
paths cross (Flood, 1956). Guided by this knowledge, one can essentially consider the convex hull of
the set of vertices, and make sure to connect all vertices on the boundary sequentially, as shown in
Figure 1. This largely leaves uncertainty on how to visit the “interior points”, and so we can consider
the number of interior points as a notion of complexity instead (MacGregor and Omerod, 1996).

This is in fact what MacGregor and Omerod (1996) study in two human subject studies, where
they find that as the number of interior points increases, human subjects identify significantly more

2

Figure 1: Two possible paths between vertices in the Euclidean plane (MacGregor and Omerod,
1996). The above path has no intersecting paths, all the boundary vertices are connected sequen-
tially, and is optimal for the travelling salesman problem defined over these vertices. However, the
bottom (non-optimal) strategy shows an example of intersecting paths and not following consecutive
vertices along the convex hull.

optimal solutions than heuristics such as Nearest Neighbors described earlier (e.g. 3.8 vs. 10.4 av-
erage percent above optimal path length). Furthermore, they find that solutions had significantly
less number of indentations than the expected value, suggesting that human subjects were indeed
guided by the global properties of the convex hull. However, while MacGregor and Omerod (1996)
find no notable difference between participants, Vickers et al. (2004) present alternate findings when
increasing the path complexity of different TSP instances, which measures the degree at which ver-
tices should be connected to their nearest neighbor in the optimal path. They find that for sufficiently
complex problems, human performance correlated with their performance on the Raven’s Advanced
Progressive Matrices test, a cognitive exam that assesses non-verbal skills, and propose using prob-
lems like TSP. where there may be multiple optimal solutions. as important cases for study human
problem-solving abilities (Vickers et al., 2004).

One reason why understanding what forms of complexity of the TSP influence behavior can be
useful is, as suggested in the introduction, for designing assistive technologies for humans. Krolak
et al. (1970) demonstrate this by framing TSP, which itself underlies common tasks like circuit board
wiring, as a human-computer cooperative task where a computer and human iterate on refining
initial solutions. Their approach relies on the assumption that humans, who have the ability to
visualize the entire set of vertices, are particularly skilled at identifying global, visual properties, and
can therefore rely on heuristics such as a good solution to TSP likely having less indentations and is
more polygonal in nature. Using vertices that are locations selected from a map of the United States,
Krolak et al. (1970) show that study participants are able to arrive at solutions close to one percent in
length of the optimal solution.

3 Vehicle Routing

The Vehicle Routing Problem (VRP) is a generalization of the Travelling Salesman Probelm (TSP),
where the goal is to find an optimal set of routes for multiple vehicles instead just one, which would be
equivalent to TSP. There are many different factors underlying optimality, including the total overall
cost of all routes, the maximum cost of single vehicle’s route, and vehicle capacity constraints. Any
approach to solving the vehicle routing problem naturally fall into two steps: first, assigning different
locations (points) to each vehicle, and second, deciding the route for each vehicle to follow.

3.1 Overview

Let us define a transportation graph G over a set of n vertices V . Let v0 denote a special “depot”
vertex, from which an unlimited fleet of vehicles can travel from, K represent the capacity of each
vehicle, and q0...qn represent the weight demand of each vertex in V . The goal is to minimize the total
distance travelled by all vehicles in the fleet, where distance d(v9, vj) is measured using a distance
metric d such as the Euclidean distance. Since the case of 1 vehicle reduces to a TSP instance, it is clear
that this VRP problem is NP-hard, and we will primarily focus on describing a common heuristic.

3.2 Savings Heuristic

A common heuristic approach to VRP is the ”savings” algorithm proposed by Clarke and Wright
(1964). The overall approach is to consider the savings in total distance a single vehicle visits two
vertices on the same route, versus two vehicles separately visiting each vertex.

3

3 (Clark-Wright Savings Algorithm) :
Let s(vi, vj) = 2d(v0, vi) + 2d(v0, vj)− (d(v0, vi) + d(vi, vj) + d(v0, vj)) = d(v0, vi) + d(v0, vj)−

d(vi, vj), representing the savings when a single vehicle visits vi and vj .

Calculate s(vi, vj) across all pairs vi ∈ V, vj ∈ V , and let L be a sorted list of all s(vi, vj) in
descending order.

Initialize a starting current route r containing the first s(vi, vj) in L. For each remaining s(vi, vj) in
L, if neither vi nor vj are in r, initialize a new route with that pair.

If vi an vj exist in two different routes, merge the two routs as loss as the capacity constraint is met
(sum of qi for each vi in route r is less than K).

If either vi or vj exist in a, add (vi, vj) to the route as loss as the capacity constraint is met (sum of qi
for each vi in route r is less than K).

Once the list is processed, return all routes.

The time complexity of this algorithm is O(n2log2(n)).

3.3 Human behavior

Recent work has sought to model human strategies when solving VRP, and compare these strate-
gies to three heuristics, including the savings heuristic, across VRP problem instances with a variety
of topology (e.g. number of nodes, local structures) Fontaine et al. (2020). As the Clark-Wright sav-
ings algorithm is a global heuristic strategy, it is strong when relying on local structure first (e.g. first
visually clustering vertices before creating routes) is not optimal. Interestingly, Fontaine et al. (2020)
do find that human participants modify their strategy depending on problem instances, and in gen-
eral there is more variance in solutions between participants in the multiple vehicle setting (vs. TSP).
The average human performance is between the first and second best heuristic strategy for each in-
stance, and similar to Vickers et al. (2004), there is correlation between aptitude test performance (in
this case, the Cognitive Reflection Test) and overall optimality of solutions. Interestingly, as human
participants with low Cognitive Reflection Test performance tended to create clusters (i.e. assign-
ment of vertices to different vehicles) for which the TSP problem is easier to solve, while those with
high Cognitive Reflection Test performance invested in creating good clusters that led to stronger
overall solutions. Finally, Fontaine et al. (2020) find that providing feedback (in the form of giving
the overall distance of the current solution) helps can generally significantly help improve perfor-
mance, but for subjects with low Cognitive Reflection Test actually disimproves performance, which
is hypothesized to be due to an overreaction towards feedback.

4 Exact Cover

The Exact Cover Problem is a type of constraint satisfaction problem, where the goal is to find
a collection of subsets that contain every element of a set exactly once. It underlies many popular
puzzles, including Sudoku, finding Latin squares, and Pentomino tiling puzzles.

4.1 Overview

Let A be a binary matrix where each cell is either 1 or 0. The goal of the Exact Cover Problem
is to identify a subset of the rows of A such that the digit 1 appears in each column exactly once.
Intuitively, each column represents a “constraint”, and the overall problem is NP-Complete (via an
equivalence to 3-SAT). We can see that the common puzzle Sudoku maps to this, where a particular
number can must be used exactly once in a given row, column, and block.

4.2 Exact Algorithm

One of the most well-known exact algorithms for the Exact Cover Problem is the recursive Al-
gorithm X, described by Knuth (2000) to show the power of “dancing links” as an efficient way to
implement backtracking.

4 (Algorithm X) :
Let A be the input binary-valued matrix, which we will modify and return. Initialize a solution set S

which will contain the rows in the solution.

If A is empty, terminate return the current solution set S.

4

Otherwise, pick a column c, and a random row r such that A[r][c] = 1. Include r in the current partial
solution set S.

For every column j where A[r][j] = 1, delete every row i where A[i][j] = 1 and then delete column j
from A.

Repeat the above algorithm recursively until it terminates.

The algorithm essential performs a depth-first search, where the original matrix A is the root of
the search tree, and has exponential running time.

4.3 Human behavior

Search problems in general are challenging for humans due to our limited memory – to perform
an algorithm requiring backtracking, a human would need to remember a large number of candi-
date solutions at the start. Therefore, humans tend to rely on logical heuristics to aid their search,
which often deviate far from the optimal strategy. In Sudoku, popular logical strategies range from
identifying “naked pairs”, where two cells in the same row, column, or block share the same possi-
bilities of two candidates, to complex strategies for eliminations such as the Finned Mutant Swordfish,
which requires constraints on sets of three rows, columns, or blocks (Stuart, 2007). Moreover, Chap-
man and Rupert (2012) propose a group-theoretic approach for representing human Sudoku-solving
strategies, leveraging the fact that humans tend to first identify constraints on a cell (e.g. numbers it
cannot be assigned to), and that two boards are similar if they can be transformed to each other with-
out introducing new constraints. Likewise, Lee et al. (2009) conduct a series of interesting human
subject experiments that show that indeed, novice humans are more likely to rely on simple “ex-
clusion tactics”, focusing on what numbers a cell cannot be assigned, than “inclusion tactics”. They
define the “ relational complexity” of a tactic as the number of constraints needed to determine the
target variable, or in the context of Sudoku, the number of digits to consider, and found a significant
increase in latency of human participants as the complexity of required tactics increased (Lee et al.,
2009), showing that the number of constraints and “options” to keep in mind is a strong influence on
human behavior.

5 Knapsack

The Knapsack Problem is a well-known combinatorial optimization problem inspired by the re-
source allocation problem faced when one needs to choose which items to fill a fixed-size knapsack
with. It underlies many real-world applications, from knapsack-based encryption systems to home
energy and power management.

5.1 Overview

Let there be n items, number 1 to n, which each have a weight wi and value vi. Furthermore, let
W represent the maximum weight capacity of a knapsack. Let xi be the number of copies of each
item to place in the knapsack. The goal of the Knapsack Problem is to maximize

∑n
x=1 vixi subject to

the constraint
∑n

i=1 wixi ≤ W . For the 0-1 Knapsack Problem, we add the constraint that xi ∈ 0, 1.
Although the decision version of the problem (whether an assignment of items that achieve a certain
value V subject to weight constraints exists) is NP-complete, the actual optimization problem is NP-
hard.

5.2 Exact Algorithm

While the brute force approach for solving the Knapsack Problem would be to try all 2n possible
subsets of n, a more efficient method using Dynamic Programming, as shown below:

5 (Dynamic Programming) :
Define a matrix M such that M [i, w] stores the maximum value that we can achieve using all items

up to item i, and with weight less than or equal to w.

Initialize M [0, w] = 0.
If wi > w, then we should not add the a new item i, so M [i, w] = M [i− 1, w].
Otherwise, if wi < w, then M [i, w] = max(M [i− 1, w],m[i− 1, w − wi] + vi).

Starting from i = 0, w = 0, use dynamic programming with the above rules to fill all entries of M .
Return M [n,W].

5

The overall time complexity of the algorithm is O(nW), which is pseudo-polynomial, meaning it is
polynomial with respect to the value of W , but not its length.

5.3 Approximate Algorithm

As discussed earlier, algorithms that require storing lots of sub-solutions in memory (like dy-
namic programming approaches) are often challenging for humans to employ as strategies. A very
intuitive approach is the greedy algorithm, where one greedily selects items with the most value,
which does not solve the Knapsack Problem exactly. A stronger approximation algorithm proposed
by Sahni (1975) is shown below:

6 (Sahni k-approximation) :
Given integer input k, let I be the set of all subsets s of n items such that |s| = k and

∑
j∈s wj < W .

Initialize PMAX = {}.
For each s in I , set P = s. Then, greedily add remaining items into P until

∑
j∈P wj ≥ W .

If
∑

j∈P vj ≥
∑

j∈PMAX
vj , set P = PMAX .

After iterating through every s in I , return PMAX .

Intuitively, this algorithm improves upon greedy by allowing us to explore adding items the
greedy approach would not identify via the input k. The runtime of this algorithm is O(nk), and
we can define a notion of Sahni difficulty level k as the number k at which a given Knapsack Problem
instance can be solved exactly, but for k − 1 cannot be.

5.4 Human Behavior

Many cognitive assesment tests use tasks that reduce to the Knapsack Problem, such as The Hotel
Task on which low-functioning ADHD patients have been found to perform significantly worse on
(Torralva et al., 2013). This warrants a closer look at what strategies humans employ when solving
such problems. The Sahni difficulty level k described above is what Murawski and Bossaerts (2016)
select as a measure of problem complexity to study human behavior when solving eight different
instances of the 0-1 Knapsack Problem. Participants in their human subject study were provided a
computer interface to assign items to a digital knapsack, and Murawski and Bossaerts (2016) showed
that as the Sahni difficulty level k increased, the overall “economic performance”, or closeness in total
value with the value of an optimal solution, decreased, suggesting a strong correlation between a
measure of computational complexity and human performance. This supports the hypothesis that a
greedy approach is intuitive for human behavior, and the closer a Knapsack Problem instance is for a
greedy approach to be successful, the stronger human performance will be. Interestingly, Murawski
and Bossaerts (2016) also found that more than 30% of the time, participants were unable to recover
the same solution when provided the same instance again, suggesting that they were not aware of
the optimality of their approach. Furthermore, there was strong heterogeneity amongst solutions,
showing that humans exhibit diversity even when there is a fundamental structure behind their
approach.

6 Numerical Processing & Basic Arithmetic

Beyond classical problems in theoretical computer science, we can also consider complexity of
more simple tasks, such as basic arithmetic operations and numerical processing. In cognitive sci-
ence, numerical processing refers to how humans represent different numbers, which is influenced
not only by biological development, but also by cultural and social factors such as early mathematics
education .

6.1 Overview

When analyzing the computational complexity of the simple arithmetic operations we perform
in our daily lives, such as subtraction and multiplication, we focus on the computational binary rep-
resentation of numbers. Concretely, a number N is represented as a sequence of n = floor(logN) + 1
bits (0 or 1), and arithmetic operations are carried out on these sequences by bitwise operators such
as ”AND”. The time complexity of arithmetic operations ultimately relies on the operators needed
for processing the binary-representation of numbers:

• Addition/Subtraction: θ(n)

• Multiplication: O(n2) using the standard “grade school” algorithm, or O(n1.585) using Karat-
suba’s algorithm, which is optimized for bit operations on a computer and reduces standard
multiplication into three smaller multiplications (Karatsuba and Ofman, 1962)

6

• Parity: O(1), by just checking the last bit

6.2 Human behavior

For computers, the complexity of simple arithmetic operations is driven by the fact that we repre-
sent numbers as bits – e.g., regardless of their values, subtracting two n− digit numbers always has
time complexity θ(n). However, research on numerical processing has shown that humans represent
numbers very differently. For example, discriminating (e.g. identifying two values are different) be-
tween 16 and 32 is much easier for infants that discriminating between 16 and 24, and the “precision”
of such numerical discrimination tasks improves over the course of cognitive development (Feigen-
son et al., 2004). Furthermore, a well-known study by Landauer (1967) showed that when comparing
the magnitude of two numbers, adults both took more time and produced more errors when the dif-
ference between two numbers were smaller. Therefore, instead of a precise bit-wise representation of
numbers, it is believed that humans employ two systems: approximate representations that capture
the relationship between numbers, where the accuracy is driven by their ration in magnitude, and an
exact representation to capture small numbers (Feigenson et al., 2004). The exact representation can
be extremely limited in early-staged of development – in second a study by Feigenson et al. (2004),
they found that infants were able to reliably choose the larger of two pools of crackers where com-
paring amounts of 1 vs. 2 and 2 vs. 3, but chose randomly when given choices of 3 v. 4, 1 v. 4, 2
v. 4, and 3 v. 6, indicating a particular sensitivity to numbers lower than 3. This sensitivity to value
of numbers, even when the number of digits is maintained, suggests a form of complexity unique
to human behavior that drives the difficulty and performance on arithmetic operations as simple as
subtraction and comparison.

While many basic findings regarding numerical processing, such as the distance effect and the
numerical Stroop effect (confusion regarding the relationship of a digits magnitude and physical
size when presented), have been replicated across different cultures, such as school children in the
United States and Japan, there still exists strong cultural diversity across strategies for more complex
arithmetic operations (Omura and Matsuta, 2018). One interesting example is parity processing, or
determining in a number is odd or even, which has O(1) time complexity when a number is rep-
resented as bits. Through a series of cross-cultural studies measuring auditory parity processing,
Heubner et al. (2018) observe a general trend that parity processing is sensitive to properties such as
shorter processing time if the number is square (perhaps due to square numbers being taught more
in mathematics education), and longer processing time if the number is prime. However, they also
observe linguistic sensitivity: in German, the digit relevant for parity judgement is pronounced first,
leading to shorter reaction times than both English or Polish speakers. Furthermore, whether a num-
ber was part of the multiplication table of not led to different effects between German and Polish
speakers, which was hypothesized to be due to different cultural attitudes towards using multiplica-
tion table drills in early mathematics education (Heubner et al., 2018).

Finally, mathematics education plays a strong role in the development of cognitive skills, and
subsequent behavioral complexity, for operations such as multiplication or large summations. One
famous example is the “Chinese lattice” method for multiplication, where a lattice grid is used to
break down the steps of long-multiplication, and a similar approach called “Japanese Visual Multi-
plication”. Teaching of these methods are often driven by the idea that spatial ability helps develop
STEM expertise (Wai et al., 2009). In fact, there appears to be a strong human preference for spa-
tial methods of solving mathematical problems, including an anecdote of the famous mathematician
Carl Gauss to “fold” a list of numbers and sum the pairs when performing a summation over a list
of consecutive integers (Hayes, 2006). Finally, Frank and Barner (2012) showed that humans trained
to use an abacus to perform computations such as multiplication, division, and even square cube
roots, as in many Asian cultures, develop a visual “mental abacus”, appearing to manipulate imag-
inary beads in the air and solving problems with high speed and accuracy. Unlike a control set of
participants, such users were insensitive to language interference when solving problems, suggest-
ing that this visual representation helps reduce the overall task complexity of performing arithmetic
operations (Frank and Barner, 2012).

7 Kolmogorov Complexity

Departing from time or space-based notions of complexity, another notion of computational com-
plexity is Kolmogorov complexity, or the length of the shortest computer program that can produce
a given output.

7.1 Overview

Kolmogorov complexity is naturally dependent on the programming language it is defined over,
and was primarily studied by as a way of measuring the randomness of a sequence (). For example,
one can consider a string s as truly random if every computer program that produces s is as long as s
itself. There is also a natural connection with compression – specifically, if there exists a method that
can compression a string s by c bits, then we can upper bound the Kolmogorov complexity of s with
|s| − c.

7

7.2 Human behavior

One aspect of human behavior where Kolmogorov complexity provides a useful tool of analysis
is understanding subjective perceptions of randomness: how do people judge the randomness of a
sequence of events? This plays an important role in tasks such as memorizing phone numbers or
Social Security numbers, as well as reasoning about sequential events (e.g. a tennis player’s winning
streak). One measure of human perception of randomness is the “subjective probability of alterna-
tion”, or the subjective probability that an event in a sequence will have a different outcome than
the preceding event, which has been shown to significantly differ from the actual event probability
(Sun and Wang, 2012). In a well-known paper about randomness, Falk and Konold (1997) propose
that this bias is due to the “difficulty level” of a sequence based on its minimum description, and
therefore an underlying notion of Kolmogorov complexity. Through a series of three experiments,
where human subject study participants were asked to study sequences until they could type them
from memory, Falk and Konold (1997) found that the perceived notion of randomness was more cor-
related with this “difficulty level” measure (which measures the number of “runs”, or subsequences
that can be described by short expressions) rather than entropy, which would be the more standard,
objective way of measuring randomness. However, Griffiths and Tenenbaum (2003) suggest that
Kolmogorov complexity online provides too weak a set of constraints to properly capture human
subjective judgements, and propose a statistical model to better capture priors such as symmetry
and motif-replication.

Another domain where Kolmogorov complexity is relevant is analysis of human visual percep-
tion. For example, Schmidhuber (1997) introduced the notion of “low-complexity art”, where an
observer’s preferred drawing from a larger set of drawings is the one with which the information
required to computer their subjective model of aesthetics is minimized. Knitsch (2012) draws sim-
ilarity between this notion and the idea of “gestalt”, or perceiving objects as complex systems over
small components, as well as the idea of visual “interestingness” stems from when there can be fur-
ther compression – or complexity is higher. Finally, Peptenatu et al. (2022) recently performed an
interesting study over 1200 paintings from of Byzantine art (from Greece, Russia, and Romania) that
show that Kolmogorov complexity, implemented via the amount of memory required for a loss-less
compression algorithm, helped differentiate the three different schools of art more so than entropy-
based measures. These works suggest that the patterns inherent to visual perception – repeated
motifs, blocks of color, shape structure – allow Kolmogorov complexity to be a useful explanation
for human behavior both in appreciating and producing art.

8 Social Learning

While most of the case studies described above analyzed individual human behavior across dif-
ferent tasks, they did not focus on how humans learn such strategies, particularly via collaboration
and social learning from others. Social learning enables the communication of optimal strategies be-
tween individuals, as well as leveraging the different abilities of a diverse team to discover a novel
approach or algoirthm. A popular example of social learning is the Foldit game, where players col-
laborate to design protein structure models. Khatib et al. (2011) created a capability withing Foldit
to create “recipes”, or smaller algorithmic building blocks and strategies, which were then able to be
shared, modified, and re-used by other players in the game. In fact, interviews by the research team
showed that “word of mouth” was a common way successful recipes were shared, and eventually
two new algorithms became dominant across all players (“Blue Fuse” and “Quake”). Meanwhile,
scientists from the Rosetta project2, developed new optimizations for their protein design algorithm,
called “Fast Relax”. When comparing “Fast Relax” and “Blue Fuse”, Khatib et al. (2011) not only see
comparable performance, but also in terms of the underlying building blocks, with both algorithms
alternating the protein repulsive interaction strength from high to low repeatedly. These results show
that even non-scientists, through communication and shared discovery, and help discover algorith-
mic strategies that perform close to state-of-the art.

Thompson et al. (2022) take a closer look at social learning by focusing on a more classical prob-
lem: sorting. They asked 3,450 human subject study participants (separated into 12 population
groups) to sort unknown sequences of numbers, with a reward for performing fewer operations and
incentives to look and upon prior participants’ strategies. Just as in FoldIt, two algorithms emerged
as dominant in frequency across all algorithms (80% of all participants): the first was selection sort, a
well-known algorithm with time complexity O(n2), and the second was gnome sort, which is slightly
more efficient (towards is O(n)) depending on the initial state). However, participants found it easier
to describe, and therefore communicate their strategy, for selection sort, and therefore language-based
cultural transmission resulted in a preference for selection sort, while participants learning gnome-
sort primarily relied on visual descriptions (Thompson et al., 2022). These results suggest that human
behavior is partially influenced by the ease in describing the strategy for a task. This is particular
relevant when considering teaching, and ways we can develop instructional curricula to help teach
optimal strategies. In a series of experiments involving a knot-tying task, Caldwell et al. (2017) show
that the utility of having access to an expert teacher for instruction depends on task difficulty: while
for simple knots, simply observing the target outcome led to equally high learning outcomes, for
more complex knots (complexity measured by number of steps required), having a teacher describe

2https://www.rosettacommons.org/

8

the optimal approach was important. Overall, these results emphasize how human behavior in solv-
ing algorithmic tasks is not stand alone, but influenced by others.

9 Conclusion

Thus far we intentionally focus on simple algorithmic tasks and notions of complexity, the pur-
pose is to better inform how different types of tasks result in if, and how, human behavior deviates
from optimal strategies, as well as leads to heterogeneity amongst human subjects. However, more
complex tasks such as Wordle or Chess (EXP time complexity) have been studied by complexity
theoreists, and initiatives such as the MAIA chess project seek to replicate human-like strategies for
playing chess show that sub-optimalities such as bounded human memory result in different kinds
of behavior (McIlroy-Young et al., 2020). Likewise, Wu et al. (2018) show that Gaussian process
function learning behavior explains human behavior in vast search problems where, under human’s
limited horizons, it is difficult to obtain the optimal strategy. As we seek to design technologies that
better augment human capabilities, the goal of this overview is to provide better intuition for how
computational strategies to solving classical tasks compare with those used by humans.

References

D. L. Applegate, R. E. Bixby, V. Chvatál, and W. J. Cook. The Traveling Salesman Problem: A Computa-
tional Study. Princeton University Press, 2006. ISBN 9780691129938. URL http://www.jstor.
org/stable/j.ctt7s8xg.

C. A. Caldwell, E. Renner, and M. Atkinson. Human teaching and cumulative cultural evolution.
2017.

H. Chapman and M. Rupert. A group-theoretic appr etic approach to human solving strategies in
sudoku. 2012.

G. Clarke and J. Wright. Scheduling of vehicle routing problem from a central depot to a number of
delivery points. 1964.

G. Cooper. The computational complexity of probabilistic inference using bayesian belief networks.
1990.

R. Falk and C. Konold. Making sense of randomness: Implicit encoding as a basis for judgment.
1997.

L. Feigenson, S. Dehaene, and E. Spelke. Core systems of number. 2004.

M. Flood. The traveling-salesman problem. 1956.

P. Fontaine, F. Taube, and S. Minner. Human solution strategies for the vehicle routing problem:
Experimental findings and a choice-based theory. 2020.

M. C. Frank and D. Barner. Representing exact number visually using mental abacus. 2012.

S. Gershman, E. Horvitz, and J. Tenenbaum. Computational rationality: A converging paradigm for
intelligence in brains, minds, and machines. 2015.

T. Griffiths and J. Tenenbaum. Probability, algorithmic complexity, and subjective randomness. 2003.

B. Hayes. Gauss’s day of reckoning. 2006.

L. Heubner, K. Cipora, M. Soltanlou, M.-L. Schlenker, K. Lipowska, S. M. Gobel, F. Domahs,
M. Haman, and H.-C. Nuerk. A mental odd-even continuum account: Some numbers may be
“more odd” than others and some numbers may be “more even” than others. 2018.

A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic computers. 1962.

F. Khatib, S. Cooper, M. D. Tyka, K. Xu, I. Makedon, Z. Popović, D. Baker, and F. Players. Algorithm
discovery by protein folding game players. 2011.

W. Knitsch. Musings about beauty. 2012.

D. Knuth. Dancing links. 2000.

P. Krolak, W. Felts, and G. Marble. A man-machine approach toward solving the traveling salesman
problem. 1970.

R. S. M. . T. K. Landauer. Time required for judgements of numerical inequality. 1967.

N. L. Lee, G. P. Goodwin, and P. Johnson-Laird. The psychological puzzle of sudoku. 2009.

F. Lieder and T. L. Griffiths. Resource-rational analysis: Understanding human cognition as the optimal use
of limited computational resources. Behavioral and Brain Sciences, 2020.

9

http://www.jstor.org/stable/j.ctt7s8xg
http://www.jstor.org/stable/j.ctt7s8xg

J. N. MacGregor and T. Omerod. Human performance on the traveling salesman problem. 1996.

R. McIlroy-Young, S. Sen, J. M. Kleinberg, and A. Anderson. Aligning superhuman AI and human
behavior: Chess as a model system. CoRR, abs/2006.01855, 2020. URL https://arxiv.org/
abs/2006.01855.

C. Murawski and P. Bossaerts. How humans solve complex problems: The case of the knapsack
problem. 2016.

K. Omura and S. Matsuta. Numerical processing and executive functioning in early versus middle
childhood: A japanese sample. 2018.

D. Peptenatu, I. Andronache, H. Ahammer, R. Taylor, I. Liritzis, M. Radulovic, B. Ciobanu, M. Burcea,
M. Perc, T. D. Pham, B. M. Tomić, C. I. Cı̂rstea, A. N. Lemeni, A. K. Gruia, A. Grecu, M. Marin, and
H. F. Jelinek. Kolmogorov compression complexity may differentiate different schools of orthodox
iconography. 2022.

S. Sahni. Approximate algorithms for the 0/1 knapsack problem. 1975.

J. Schmidhuber. Low-complexity art. 1997.

A. Stuart. The Logic of Sudoku. Michael Mepham Publishing, 2007.

Y. Sun and H. Wang. Perception of randomness: Subjective probability of alternation. 2012.

B. Thompson, B. van Opheusden, T. Sumers, and T. L. Griffiths. Complex cognitive algorithms pre-
served by selective social learning in experimental populations. Science, 376(6588):95–98, 2022. doi:
10.1126/science.abn0915. URL https://www.science.org/doi/abs/10.1126/science.
abn0915.

T. Torralva, E. Gleichgerrcht, A. Lischinsky, M. Roca, and F. Manes. ”ecological” and highly demand-
ing executive tasks detect real-life deficits in high-functioning adult adhd patients. 2013.

D. Vickers, T. Mayo, M. Heitmann, M. D. Lee, and P. Hughes. Intelligence and individual differences
in performance on three types of visually presented optimisation problems. 2004.

J. Wai, D. Lubinski, and C. P. Benbow. Spatial ability for stem domains: Aligning over 50 years of
cumulative psychological knowledge solidifies its importance. 2009.

C. M. Wu, M. S. Eric Schulz, J. D. Nelson, and B. Meder. Generalization guides human exploration
in vast decision spaces. 2018.

10

https://arxiv.org/abs/2006.01855
https://arxiv.org/abs/2006.01855
https://www.science.org/doi/abs/10.1126/science.abn0915
https://www.science.org/doi/abs/10.1126/science.abn0915

	Introduction
	Travelling Salesman
	Overview
	Exact Algorithm
	Approximate Algorithm
	Human behavior

	Vehicle Routing
	Overview
	Savings Heuristic
	Human behavior

	Exact Cover
	Overview
	Exact Algorithm
	Human behavior

	Knapsack
	Overview
	Exact Algorithm
	Approximate Algorithm
	Human Behavior

	Numerical Processing & Basic Arithmetic
	Overview
	Human behavior

	Kolmogorov Complexity
	Overview
	Human behavior

	Social Learning
	Conclusion

